
Chapter 6

Wave equations on Rn

Solutions of this equation describe the propagation of light, of sound waves in
a gas or a fluid, of gravitational waves in the interstellar vacuum, and many
other phenomena. It is one of my favourite equations. Posed in R1

t × Rn
x

the initial value problem, (or Cauchy problem), for the equation looks very
similar to (2.10) of Chapter 2;

(6.1) ∂2
t u−Δu = 0, x ∈ Rn, t ∈ R1 ,

with initial or Cauchy data for u(x, t) given by

u(0, x) = f(x) , ∂tu(0, x) = g(x) .

The given initial data u(0, x) = f(x) is often referred to as the initial position
or displacement of the field u(t, x), while the data for ∂tu(0, x) = g(x) is
called the initial momentum or velocity.

6.1. Wave propagator by Fourier synthesis

Assuming first that f(x), g(x) ∈ S, we may take the Fourier transform of
the equation to obtain

(6.2) ∂2
t û(ξ, t) + |ξ|2û(ξ, t) = 0 .

Solutions of this second order ODE are composed of linear combinations
of e±i|ξ|t; taking into account that û(ξ, 0) = f̂(ξ) and ∂tû(ξ, 0) = ĝ(ξ), we
derive the expression

(6.3) û(t, ξ) = cos(|ξ|t)f̂(ξ) + sin(|ξ|t)
|ξ| ĝ(ξ) .
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68 6. Wave equations on Rn

The inverse Fourier transform gives the solution

(6.4) u(t, x) =
1√
2π

n

�
eiξ·x

�
cos(|ξ|t)f̂(ξ) + sin(|ξ|t)

|ξ| ĝ(ξ)

�
dξ .

we observe from (6.3) that û(t, ξ) ∈ S(Rn
x) for each time t, and therefore our

solution given in (6.4) is Schwartz class as well. However this high level of
smoothness is not at all necessary, and one notes that the expression (6.4)

makes sense whenever f̂(ξ), ĝ(ξ)|ξ| ∈ L2(Rn
x).

Theorem 6.1. For f, g ∈ S, the expression (6.4) gives a solution of the

wave equation u(t, x) ∈ S(Rn
x) for each time t ∈ R. For f̂(ξ), ĝ(ξ)|ξ| ∈ L2 (Rn

x),

then (6.4) gives a weak solution to the wave equation, in the sense that (6.2)
is satisfied.

One basic property satisfied by solutions of the wave equation is the
principle of ‘energy’ conservation under time evolution. The energy of a
solution is given by

(6.5) E(u) =
1

2

�
(∂tu(t, x))

2 + |∇xu(t, x)|2 dx .

Theorem 6.2. For (f, g) ∈ H1(Rn
x)×L2(Rn

x) the energy (6.5) is conserved
for solutions of the wave equation (6.1).

Proof. Using the expression (6.3) for the Fourier transform of the solution,
we give a similar formula for (∂xu(t, x), ∂tu(t, x))

T

�
∂xu(t, x)
∂tu(t, x)

�
=

1√
2π

n

�
eiξ·x

�
cos(|ξ|t) iξ

|ξ| sin(|ξ|t)
iξ
|ξ| sin(|ξ|t) cos(|ξ|t)

��
iξf̂(ξ)
ĝ(ξ)

�
dξ .

By inspection this is a well defined vector values function in [L2(Rn)]n+1 as
long as (∇xf(x), g(x))

T ∈ [L2(Rn)]n+1, which it is by hypothesis. By the
Plancharel identity

�∂tu(x, t)�2L2 + �∂xu(x, t)�2L2 = �
�

cos(|ξ|t) iξ
|ξ|

iξ
|ξ| sin(|ξ|t) cos(|ξ|t)

��
iξf̂(ξ)
ĝ(ξ)

�
�2L2

= �
�
iξf̂(ξ)
ĝ(ξ)

�
�2L2 = �∇xf�2L2 + �g�2L2 .

The second to last equality holds because the 2× 2 matrix featured in this
calculation is unitary. �
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An alternative proof works in the case that we also have ∂2
t u,Δu ∈ L2,

then for solutions of (6.1);

d

dt
E(u) = 1

2

�
2∂tu∂

2
t u+ 2∂xu∂t∂xu dx

=

�
∂tu

�
∂2
t u−Δu

�
dx = 0 .

6.2. Lorentz transformations

Just as the Laplace operator Δ =
�n

j=1 ∂
2
xj

is invarialnt under translations

x� = x + c and rotations x� = Rx, where RT = R−1, the wave operator or
d’Alembertian

� = ∂2
t −Δ = ∂2

t −
n�

j=1

∂2
xj

is invariant under a group of transformations of the space-time R1
t × Rn

x

known as the Lorentz group. Elements of this transformation group are
generated by the same rotations of Rn

x as above, and hyperbolic rotations
which involve time as well as space. Define a hyperbolic rotation in the
(t, x1) coordinate plane in R2 ⊆ Rn+1 by

�
t�

x�1

�
=

�
cosh(ψ) sinh(ψ)
sinh(ψ) cosh(ψ)

��
t
x1

�
= H(ψ)

�
t
x1

�
.

One calculates that det(H(ψ)) = cosh(ψ)2−sinh(ψ)2 = 1 and thatH−1(ψ) =
H(−ψ). Vector fields in the (t, x1) coordinate plane trasnsform as follows

(6.6)

�
∂t
∂x1

�
=

�
cosh(ψ) sinh(ψ)
sinh(ψ) cosh(ψ)

��
∂t�

∂x�
1

�
= H(ψ)

�
∂t�

∂x�
1

�
.

The Lorentz group of transformations on the space-time R1
t×Rn

x is generated
by all spatial rotations R and by the hyperbolic rotations H(ψ). It is a
Lie group known as SO(1, n). The set of space-time translations (t�, x�) =
(t + b, x + c) leave the wave equation invariant, and so do the elements of
the Lorentz group.

Proposition 6.3. The Lorentz transformations leave the d’Alembertian
operator invariant.

Proof. Since the group generators involving translations obviously leave the
d’Alembertian invariant, and all spatial rotations R just involve the Lapla-
cian, it suffices to check invariance under the hyperbolic rotations H(ψ).
Write the d’Alembertian operator using matrix notation

�u = (∂2
t −Δ)u =

�
∂t
∂x1

�T �
1 0
0 −In×n

��
∂t
∂x1

�
u .
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Use the transformation rule (6.6) for vector fields to check the invariance of
the d’Alembertian
�

∂t�

∂x�
1

�T �
HT

2×2 0
0 I(n−1)×(n−1)

��
1 0
0 −In×n

��
H2×2 0
0 I(n−1)×(n−1)

��
∂t�

∂x�
1

�
.

The only nontrivial part of this matrix calculation is the upper right hand
2× 2 block

HT
2×2

�
1 0
0 −1

�
H2×2 =

�
cosh(ψ) sinh(ψ)
sinh(ψ) cosh(ψ)

��
1 0
0 −1

��
cosh(ψ) sinh(ψ)
sinh(ψ) cosh(ψ)

�

=

�
cosh2(ψ)− sinh2(ψ) 0

0 sinh2(ψ)− cosh2(ψ)

�
=

�
1 0
0 −1

�
,

which is precisely to say that the d’Alembertian � is invariant under H(ψ).
This is the stated result. �

The effects of the Lorentz transformation H(ψ) on the time axis {x = 0}
are given by

x�1 = sinh(ψ)t , t� = cosh(ψ)t ,

therefore their ratio
x�1
t�

= tanh(ψ) := v

gives the velocity of the new frame of reference with respect to the old. We
note that |v| = | tanh(ψ)| < 1. In terms of v, the hyperbolic rotation can be
written in a more familiar form

H =




1√
1−|v|2

−v√
1−|v|2

−v√
1−|v|2

1√
1−|v|2


 .

The coordinate plane {(0, 0, x2, . . . xn)} is invariant under H(ψ), but the
x1-axis {(t, x2, . . . xn) = 0} is moved;

x�1 = cosh(ψ)x1 , t� = sinh(ψ)x1 ,

so that the {t = 0} coordinate plane is tilted in space-time as well, at slope

x�1
t�

= coth(ψ)

A diagram of the new space-time coordinates under a hyperbolic rotation is
as follows.

The set that remains invariant under the transformations of the Lorentz
group is the light cone itself. Setting LC = {t2 − |x|2 = 0} this fact is
checked as follows. Take (t, x) ∈ LC, then

�
t
x

�T �
1 0
0 −In×n

��
t
x

�
= 0 .
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Figure 1. This is the image of the {x = 0} and {t = 0} coordinate
planes under the Lorentz transformation consisting of a hyperbolic ro-

tation.

Under a Lorentz transformation L : (t, x) �→ (t�, x�) we have

�
t�

x�

�T �
1 0
0 −In×n

��
t�

x�

�
=

�
t
x

�T

LT

�
1 0
0 −In×n

�
L

�
t
x

�
= 0 ,

and as we have checked above,

LT

�
1 0
0 −In×n

�
L =

�
1 0
0 −In×n

�
.

The geometric interpretation of these properties is that the matrix

g :=

�
1 0
0 −In×n

�

defines the Minkowski metric ds2 = (dt, dx1, . . . dxn)
T g(dt, dx1, . . . dxn) on

the space-time R1
t ×Rn

x, which we have just shown to be invariant under the
Lorentz group.

The invariance of the wave equation under the Lorentz group of trans-
formations was part of a paradox that physics faced towards the end of the
19th century. As we have seen in (1.1), Maxwell’s equations are intimately
tied to the wave equation. While the equations of classical mechanics are
invariant under the Galilean transformation group, the theory of electricity
and magnetism is invariant under the Lorentz group, and these are incom-
patible. Compatibility was restored in 1905 when Einstein introduced the
special theory of relativity. However this was a revolutionary change in our
perception of the universe, for which many intuitive ideas about space-time
had to be modified. One of these we have seen above; the action of a hyper-
bolic rotation transforms the plane {t = 0} of spatial coordinates as well as
the time axis. Since we think of the spatial coordinate plane as being the
‘present’ state of the universe, it is a new idea that there is no universally
valid instant that can globally be considered to be the present, and that the
sense of the present is relative to the frame of reference of the observer. The
concept of simultaneity has to be sacrificed. In terms of the wave equation,
any one of the hypersurfaces {t� = 0} can be used as a Cauchy surface for
initial data for the wave equation.
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6.3. Method of spherical means

There is another method for representing the solution of the wave equation
in n space dimensions (6.1), based on the spherical means that we have
encountered in Chapter 4, in formula (4.20). Recall the elementary solution
method in the case of spatial dimension n = 1, via the d’Alembert formula

u(t, x) = 1
2(f(x+ t) + f(x− t)) + 1

2

� x+t

x−t
g(y) dy .

The goal of this section is to produce similar expressions for the solution of
the wave equation in the case of higher space dimensions.

Definition 6.4. Given a function h(x) ∈ C(Rn), its spherical mean centered
about the point x ∈ Rn is

(6.7) M(h)(x, r) :=
1

ωnrn−1

�

|x−y|=r
h(y) dSy ,

the average of h(x) over a sphere Sn−1 centered at x of radius r.

Recall that ωnr
n−1 is the surface area of the sphere Sn−1 of radius r

in n dimensions. When n = 1 the spherical mean of a function f(x) is
M(f)(x, r) = 1

2(f(x + r) + f(x − r)), reminding one of one of the two
terms of the d’Alembert formula. Changing variables in the integral (6.7),
y �→ x + rξ, ξ ∈ S1(0), there is another useful expression for the spherical
mean;

M(h)(x, r) =
1

ωn

�

|ξ|=1
h(x+ rξ) dSξ .

This expression is defined for r ≥ 0, but it is clear from this second expression
that M(h)(x, r) is an even function of r;

M(h)(x,−r) = M(h)(x, r) .

Lemma 6.5 (Darboux equation). Given h ∈ C2(Rn) then

ΔxM(h)(x, r) =
�
∂2
r +

n− 1

r
∂r
�
M(h)(x, r) ,

a formula that relates the Laplace operator of M(h) in the n-dimensional x
variables to its one dimensional r derivatives.

Proof. The Darboux equation follows from a calculation using multivariate
calculus. First take one derivative;

∂rM(h)(x, r) =
1

ωn

�

|ξ|=1
∂rh(x+ rξ) dSξ

=
1

ωn

�

|ξ|=1

n�

j=1

∂xjh(x+ rξ)ξj dSξ ,
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and we notice that
�n

j=1 ∂xjh(x + rξ)ξj = ∇h · N , the outwards normal
derivative of h on the unit sphere. Continue this line of calculation using
Green’s theorem;

1

ωn

�

|ξ|=1

n�

j=1

∂xjh(x+ rξ)ξj dSξ =
1

ωn

�

|ξ|<1
rΔxh(x+ rξ) dξ

=
1

ωnrn−1
Δx

�

|x−y|<r
h(y) dy

=
1

ωnrn−1
Δx

�� r

0

�

|x−y|=ρ
h(y) dSy dρ

�

=
1

rn−1
Δx

�� r

0
ρn−1M(h)(x, ρ) dρ

�
.

The second step is to take a second derivative, after multiplying through by
rn−1;

∂r
�
rn−1∂rM(h)(x, r)

�
= ∂r

�
Δx

� r

0
ρn−1M(h)(x, ρ) dρ

�

= Δx

�
rn−1M(h)(x, r)

�
.

Therefore

ΔxM(h)(x, r) =
1

rn−1
∂r
�
rn−1∂rM(h)(x, r)

�
(6.8)

=
�
∂2
r +

n− 1

r
∂r
�
M(h)(x, r) ,

which is the result of the lemma. �

Proposition 6.6. (i) For h(x) ∈ C(Rn) the value of h(x) at any x ∈ Rn

can be recovered from its spherical means;

h(x) = lim
r→0

M(h)(x, r) = M(h)(x, 0) .

(ii) Additionally, for h(x) ∈ C2(Rn)

∂rM(h)(x, 0) = lim
r→0

r

ωn

�

|ξ|<1
h(x+ rξ) dξ = 0 .

Formulae involving spherical means can be used to give an expression
for the solution of the wave equation. Suppose that u(t, x) is a solution
of the Cauchy problems for the wave equation (6.1). Then its spherical
mean M(u)(t, x, r) satisfies an auxiliary equation in the reduced space-time
variables (t, r) ∈ R2. Specifically, define

M(u)(t, x, r) =
1

ωn

�

|ξ|=1
u(t, x+ rξ) dSξ .



74 6. Wave equations on Rn

Taking time derivatives and using that u(t, x) is a solution of (6.1), one
obtains

∂2
tM(u)(t, x, r) =

1

ωn

�

|ξ|=1
∂2
t u(t, x+ rξ) dSξ

=
1

ωn

�

|ξ|=1
Δxu(t, x+ rξ) dSξ = ΔxM(u)(t, x, r) .

Now use the Darboux equation of Lemma 6.5

(6.9) ∂2
tM(u)(t, x, r) =

�
∂2
r +

n− 1

r
∂r
�
M(u)(t, x, r) ,

a partial differential equation in the two variables (t, r) ∈ R2. This is the
Euler – Poisson – Darboux equation.

The wave equation in R3: The equation (6.9) is normally posed as an initial
value problem

∂2
tM(u)(t, x, r) =

�
∂2
r +

n− 1

r
∂r
�
M(u)(t, x, r)(6.10)

M(u)(0, x, r) = M(f)(x, r) , ∂tM(u)(0, x, r) = M(g)(x, r) .

The precise methods and the character of the solution depend quite a bit
on the the spatial dimension under consideration. The most straightforward
case is in dimension n = 3. In the Euler – Poisson – Darboux equation (6.10)
use the substitution M(u)(t, x, r) �→ rM(u)(t, x, r), giving

∂2
t

�
rM(u)(t, x, r)

�
= r

�
∂2
r +

2

r
∂r
�
M(u)(t, x, r) = ∂2

r

�
rM(u)(t, x, r)

�
.

Therefore the function v(t, r) = rM(u)(t, x, r) is a solution of the wave
equation in one dimension, and the variable x is relegated to the role of a
parameter. The solution is given by the d’Alembert formula

v(t, r) = rM(u)(t, x, r)

= 1
2

�
(r + t)M(f)(x, r + t) + (r − t)M(f)(x, r − t)

�

+ 1
2

� r+t

r−t
ρM(g)(x, ρ) dρ .

Since M(f)(x, r) and M(g)(x, r) are even functions under r �→ −r, then
rM(f)(x, r) and rM(g)(x, r) are odd, therefore we may rewrite the above
expression, dividing through by r;

M(u)(t, x, r) =
1

2r

�
(t+ r)M(f)(x, t+ r)− (t− r)M(f)(x, t− r)

�

+
1

2r

� t+r

t−r
ρM(g)(x, ρ) dρ .
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We have used the fact that
� r−t
t−r ρM(g)(x, ρ) dρ = 0 which holds because

rM(g)(x, r) is odd. Taking the limit as r → 0, we recover a representation
for the solution u(t, x).

Theorem 6.7 (Kirchhoff’s formula). When n = 3 the solution to the wave
equation (6.1) is given by the expression

(6.11) u(t, x) = ∂t
�
tM(f)(x, t)

�
+ tM(g)(x, t) ,

which is well defined as long as f(x) ∈ C1(R3) and g(x) ∈ C(R3).

However it is quite explicit to see that in terms of pointwise regularity,
the solution is in general less smooth than the initial data, for the Kirchhoff
formula depends upon the the derivative of f(x). Specifically, carrying out
the differentiation in (6.11) we obtain

u(t, x) =
1

4πt2

�

|x−y|=t

�
tg(y) + f(y) + t∇f(y) · x− y

|x− y|
�
dSy .

Corollary 6.8. Given initial data g(x) ∈ C2(R3) and f(x) ∈ C3(R3) then
the spherical means solution given in (6.11) is a classical solution u(t, x) ∈
C2(R1

t × R3
x).

This loss of differentiability for n ≥ 2, due to focusing effects, is the
topic of Problem 6.1. In contrast, when solutions are viewed in the sense of
the Sobolev spaces Hs through the energy, there is no loss visible;

E(u)(t) =

�
1
2(∂tu)

2 + 1
2 |∇xu|2 dx =

�
1
2g

2 + 1
2 |∇xf |2 dx .

The Sobolev regularity of the solution is the same as the Sobolev regularity
of the initial data.

The wave equation in Rn for odd dimensions n: There are similar expressions
for the solution of the wave equation for x ∈ Rn, for odd dimensions, for
n ≥ 3. Returning to the Euler – Poisson – Darboux equation (6.9) for the
n dimensional wave equation

∂2
tM(u) =

�
∂2
r +

n− 1

r
∂r
�
M(u) ,

we seek an algebraic reduction to the wave equation in two dimensions in
the variables (t, r). This is able to be carried out in the odd dimensional
case.
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Proposition 6.9. Suppose that k ≥ 1 is an integer and that h = h(r) ∈
Ck+1(R1

+), then

∂2
r

�1
r
∂r

�k−1�
r2k−1h

�
=

�1
r
∂r

�k�
r2k∂rh

�
;

�1
r
∂r

�k−1�
r2k−1h

�
=

k−1�

j=0

βk
j r

j+1∂j
rh .

with the combinatorial coefficients being βk
0 = 1 ·3 · . . . (2k−1)) := (2k−1)!!.

Proof. A proof by induction will work. �

The result is useful because we may set n = 2k + 1 and take

v(t, x, r) :=
�1
r
∂r

�k−1�
r2k−1M(u)

�
(t, x, r) ,

for a given solution u(t, x) of (6.1). Then using the identities from Proposi-
tion 6.9

∂2
rv = ∂2

r

�1
r
∂r

�k−1�
r2k−1M(u)

�

=
�1
r
∂r

�k�
r2k∂rM(u)

�

=
�1
r
∂r

�k−1�
r2k−1∂2

rM(u) + 2kr2k−2∂rM(u)
�

=
�1
r
∂r

�k−1�
r2k−1

�
∂2
rM(u) +

2k

r
∂rM(u)

��

=
�1
r
∂r

�k−1�
r2k−1∂2

tM(u)
�
= ∂2

t v(t, r) .

Therefore v(t, x, r) is the quantity that satisfies the one dimensional wave
equation in the variables (t, r), for which we can apply the d’Alembert for-
mula.

v(t, x, r) = 1
2

�
v(0, r + t) + v(0, r − t)

�
+ 1

2

� r+t

r−t
∂tv(0, x, ρ) dρ ,

with initial data

v(0, x, r) =
�1
r
∂r

�k−1�
r2k−1M(f)

�
(x, r) ,

∂tv(0, x, r) =
�1
r
∂r

�k−1�
r2k−1M(g)

�
(x, r) .
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One recovers the solution as a limit

u(t, x) = lim
r→0

M(u)(t, x, r) = lim
r→0

v(t, x, r)

βk
0r

(6.12)

=
1

(n− 2)!!

�
∂t

�1
t
∂t

�(n−3)/2�
tn−2M(f)(t, x)

�

+
�1
t
∂t

�(n−3)/2�
tn−2M(g)(t, x)

��
.

Theorem 6.10. For n odd, and for f ∈ C(n−1)/2(Rn) and g ∈ C(n−3)/2(Rn)
the solution formula (6.12) gives a classical solution to the wave equation in
Rn.

It is interesting to quantify the possible loss of smoothness of the solution
over the initial data, made clear by the formula (6.12). Indeed the reduction
process from M(u) to v involves k− 1 = (n− 3)/2 derivatives, and the limit
involves one derivative, therefore in general the solution will be less regular
than the initial data by k = (n− 1)/2 many derivatives.

6.4. Huygens’ principle

Huygens’ principle is the expression of the principle of finite propagation
speed, analogous to the case of the one-dimensional wave equation in sec-
tion 2. This general form of Huygens’ principle is valid for the wave equation
in any space dimension, and for hyperbolic equations in general. The strong
form of Huygens’ principle says more than this; it is the property that so-
lutions are supported precisely on the union of light cones which have their
vertex on the support of the initial data. There is a difference in dimension
concerning this strong form of the Huygens’ principle; it holds for odd space
dimensional problems, but not in even dimensions. We state it here for the
case of three space dimensions.

Theorem 6.11. Consider solutions to the wave equation for x ∈ R3, and
assume that the Cauchy data f(x) and g(x) are compactly supported, such
that supp(f) ∪ supp(g) ⊆ BR(0). Then

(1) (Huygens’ principle). The solution u(t, x) has its support within the
bounded region BR+|t|(0);

supp(u(t, ·)) ⊆ BR+|t|(0) .

(2) (strong Huygens’ principle). Additionally, for |t| > R, for any space-time
point (t, x) in the region inside the light cones given by {(t, x) : |x| ≤ R−|t|},
again the solution vanishes; u(t, x) = 0.

Proof. (1). of Huygens’ principle: The result follows from the form of the
Kirchhoff formula, which gives an expression for the solution u(t, x) in terms
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of spherical means over spheres of radius |t| in the initial hyperplane plane
{t = 0}, which are of the form {y : |x − y| = |t|} (the intersection of the
backwards light cone emanating from (t, x) and the Cauchy hypersurface).
If |x| > R+ |t| then this sphere does not intersect BR(0), which contains the
support of the initial data, and hence the solution at that space-time point
vanishes.

(2). of the strong Huygens’ principle: When |t| > R and |x| < |t| − R,
again the backwards light cone emanating from the point (t, x) does not
intersect the support of the initial data, in this case because the sphere
{y : |x− y| = |t|} is too big and has passed outside of BR(0).

One notes that this proof only depends upon the character of the solution
representation as a spherical mean. Therefore the result holds for solutions
of the wave equation in arbitrary odd dimensions, as exhibited in (6.12). �

In fact a more precise statement is true; at times t > 0 the solution
u(t, x) is supported within the region consisting of the union of light cones

LC+(t, x) = {(t, y) : t2 − |y − x|2 = 0, t > 0}
whose vertices x lie in the set supp(f) ∪ supp(g).

A space-time picture of the support of the solution is as follows:

Figure 2. Space-time picture of the support

The finite propagation speed property is sometimes known as the weak
Huygens’ principle, it is a central feature of hyperbolic equations. It implies
that in particular a signal will travel with finite speed. That is, for an
observer standing still at point x0 ∈ Rn, |x0| > R, the solution satisfies
u(x0, t) = 0 until |x0|−R < |t|.

Corollary 6.12. If the initial data f(x), g(x) vanish on BR(0), then the
solution u(t, x) must vanish on the cone {(t, x) : |x| < R − |t|}, 0 < |t| < R.
In particular if f, g are identically zero, then so will be u(t, x).

Proof. This is a local uniqueness theorem. Suppose that supp(f)∪supp(g) ⊆
Ha,v = {x ∈ Rn : a ≤ v · x} a half-space, then supp(u(t, x)) ⊆ Ha+|t|,v.
Therefore no data in any of the enveloping half-space HR−|t|,v, |v| = 1 to
BR−|t|(0) can propagate into the cone pictured below. �

Figure 3. The cone
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Definition 6.13. (i) The domain of influence of a set A ⊆ Rn is the
region in Rn+1 in which a solution u(x, t) of the wave equation can
be affected by data in A.

(ii) The domain of dependence of a set B ⊆ Rn+1 is the region A ⊆ Rn

in which data can influence the solution in B.

The results of Theorem 6.17 and Corollary 6.12 imply the following
pictures for the domains of influence and dependence of solutions of the
wave equation.

Figure 4. Domain of influence of A

Figure 5. Domain of dependence of the point B

6.5. Paley-Wiener theory

It is self-evident that the complex exponentials e−iξ·x, with ξ ∈ Rn and
x ∈ Rn, extend as holomorphic functions e−iζ·x for ζ ∈ Cn. More specifically
to its character, the extension is defined over all of Cn, meaning that is it is
entire, and furthermore the extension has bounds on its growth at infinity
of the form

|e−iζ·x| ≤ e|x||im(ζ)|.

Definition 6.14. An entire function g(ζ), ζ ∈ Cn, is of exponential type R
if it satisfies the estimates

(6.13) (1 + |ζ|2)N/2|g(ζ)| ≤ CNeR|im(ζ)|

for all N ∈ N.

Examples of the behavior are given by the Fourier transform. The com-
plex exponential above is not strictly speaking of exponential type because
it only satisfies (6.13) for the case N = 0. Another example of an entire
function, which however is not of exponential type, is

g(ζ) = e−ζ2/2 = e−
1
2 (ξ

2−η2)−iξη ,

for ζ = ξ + iη ∈ C. Given any function f ∈ S, we can express it’s Fourier
transform as a superposition of complex exponentials:

f̂(ξ) =
1√
2π

n

�

Rn

e−iξ·xf(x) dx ;

where each complex exponential extends to an entire function on Cn but the
function f̂(ξ) itself need not necessarily have a holomorphic extension off of
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the real subspace Rn ⊆ Cn at all. However if a function g(ξ) is such that

g(ξ) = f̂(ξ) with f(x) ∈ C∞
0 (Rn), in particular if f(x) has compact support,

then g(ξ) does have an entire holomorphic extension.

Proposition 6.15. Suppose that f ∈ C∞
0 (Rn), with supp(f) ⊆ {x ∈

Rn : |x| ≤ R}. Then f̂(ξ) = g(ξ) extends to an entire function, which is
of exponential type R.

Proof. For each ζ ∈ Cn, the integral

g(ζ) =
1√
2π

n

�

BR(0)
e−iζ·xf(x)dx

converges absolutely, uniformly over bounded sets of ζ. To check that g(ζ)
is holomorphic we simply test the Cauchy-Riemann equations:

∂ζ̄g(ζ) =
1√
2
(∂ξ + i∂η)g(ζ) =

1√
2π

n

�
∂ζ̄(e

−iζ·x)f(x) dx = 0 .

Lastly, for α a multi-index with |α| = N , we need to estimate the integrals
����ζα

�

Rn

e−iζ·xf(x)dx

���� =
�����

�

BR(0)
e−iζ·x

�
1

i
∂x

�α

f(x)dx

�����

≤
�

BR(0)
e|x||im(ζ)||∂α

x f(x)|dx ≤ C|α|e
R|im(ζ)|.

�

The content of Paley-Wiener theory is to say that the converse also holds.

Theorem 6.16 (Paley-Wiener). Suppose that g(ζ) is an entire function of
exponential type R. Then there is a function f(x) ∈ C∞

0 (Rn) with supp(f) ⊆
BR(0) such that

g(ζ) = f̂(ζ) =
1√
2π

n

�
e−iζ·xf(x) dx .

Proof. It is straightforward to restrict g(ξ) to ξ ∈ Rn, and define

f(x) =
1√
2π

n

�

Rn

eiξ·xg(ξ)dξ.

Since |g(ξ)| ≤ CN (1 + |ξ|2)−N/2 as in (6.13), this integral is absolutely con-
vergent. We may also take an arbitrary number of derivatives of f(x)

∂β
xf(x) =

1√
2π

n

�

Rn

eiξ·x(−iξ)βg(ξ) dξ ,

and the integral remains absolutely convergent. Thus f ∈ C∞(Rn) and the
question that remains has to do with its support.
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Using that g(ζ) is holomorphic, consider deformations of the region of
integration off of the real axis in the complex space Cn,

1√
2π

n

�
ei((ξ1+iη1)x1+ξ�·x�)g(ξ1 + iη1, ξ

�) dξ1dξ� ,

for η1 ∈ R. This is independent of η1, as can be shown by Cauchy’s theorem,
taking the limit of an integral in ζ1 = ξ1 + iη1 over the countour and letting

Figure 6. The contour

T → +∞. The decay condition (6.13) assumes that there are no contribu-
tions from the boundaries ξ1 = ±T in the limit. Repeating this argument
in all variables, we show that for any desired η ∈ Rn,

f(x) =
1√
2π

n

�

Rn

ei(ξ+iη)·xg(ξ + iη) dξ .

Now fix x �= 0 in Rn, and choose the particular η = λ x
|x| , with a real

parameter λ > 0. Then

|f(x)| ≤ 1√
2π

n

����
�

Rn

eiξ·x−λ|x|g
�
ξ + iλ

x

|x|

�
dξ

����

≤ 1√
2π

n

�

Rn

e−λ|x|
����g

�
ξ + iλ

x

|x|

����� dξ

≤CN

�

Rn

(1 + |ξ|2)−N/2e−λ|x|+λRdξ.

Now suppose that |x| > R; as λ → +∞ the RHS tends to zero. Thus we
have shown that f(x) = 0. This proves that indeed supp(f) ⊆ BR(0). �

There is a similar theory for distributions of compact support, and their
Fourier transforms as entire functions of exponential type; conversely if g(ζ)
is an entire function which for some N satisfies the estimate

(6.14) |g(ζ)| ≤ C(1 + |ζ|2)N/2eR|im(ζ)|,

then there is a distribution f ∈ D�, with supp(f) ⊆ BR(0) such that the
(generalized) Fourier transform of f is g.

Hugens principle revisited: Returning to the discussion of solutions of the
wave equation, our Fourier integral expression is that

u(x, t) =
1√
2π

n

�
eiξ·x

�
cos(|ξ|t)f̂(ξ) + sin(|ξ|t)

|ξ| ĝ(ξ)

�
dξ .

Let us suppose that the initial data is of compact support:

supp(f) ∪ supp(g) ⊆ BR(0) = {x ∈ Rn : |x| < R} .
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Then by Proposition 6.15, both f̂(ξ) and ĝ(ξ) extend to entire functions on
Cn, of exponential type R. Let us examine the Fourier transform of the
solution

û(ξ, t) = cos(|ξ|t)f̂(ξ) + sin(|ξ|t)
|ξ| ĝ(ξ) .

The individual functions cos(
�
ζ2t)f̂(ζ) and

sin(
√

ζ2t)√
ζ2

ĝ(ζ) are entire func-

tions of ζ ∈ Cn, where we are using the notation that ζ2 = ζ21 +ζ22 + . . .+ζ2n,
for ζj ∈ C. Furthermore,

���cos(
�
ζ2t)

��� ≤ e|im(ζ)||t|,

�����
sin(

�
ζ2t)�
ζ2

����� ≤ e|im(ζ)||t|,

therefore the two products cos(
�
ζ2t)f̂(ζ) and

�
sin(

�
ζ2t)/

�
ζ2
�
ĝ(ζ) are of

exponential type (R+ |t|). We can conclude that the solution u(x, t) of the
wave equation is the Fourier transform of an entire function of exponential
type (R + |t|), and thus by the Paley –Wiener theorem the solution u(x, t)
has its support in the ball BR+|t|(0) of radius R+ |t|.

Theorem 6.17 (Huygens’ principle again). Solutions of the wave equa-
tion (6.1) which start with initial data with support satisfying supp(f) ∪
supp(g) ⊆ BR(0) satisfy at nonzero times t ∈ R

supp(u(t, x)) ⊆ BR+|t|(0).

6.6. Lagrangians and Hamiltonian PDEs

The wave equation can be derived from a Lagrangian, using a compelling
analogy with classical mechanics. The Lagrangian function in the case of
the wave equation (6.1) is defined by

(6.15) L :=

�

Rn

1
2(∂tu)

2 − 1
2 |∇u|2 dx .

This Lagrangian has an associated action integral given by

(6.16) S =

� T

0

�

Rn

1
2(∂tu)

2 − 1
2 |∇u|2 dxdt .

From the action the wave equation arises from the principle of least ac-
tion, which dictates that the motion of a Lagrangian system is a stationary
point of the action integral. A stationary point u(t, x) of the action over
the time interval 0 ≤ t ≤ T satisfies δS = 0 for all admissible variations
v(t, x) = δu(t, x), where δu(t, x) denotes a small but arbitrary variation of
the function u(t, x). Admissible variations are smooth, and are such that
v(0, x) = v(T, x) = 0, so that u(t, x) and u(t, x) + v(t, x) have the same
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initial and final states over the time interval [0, T ]. In the case of the wave
equation, a stationary point of the action satisfies

δS =

� T

0

�

Rn

∂tu∂tv −∇xu ·∇xv dxdt

= −
� T

0

�

Rn

(∂2
t u−Δu)v dxdt+

�

Rn

∂tuv dx
���
T

t=0
.

From the assumption that v(0, x) = v(T, x) = 0, the last term of the RHS
vanishes. The conclusion is that, because v(t, x) is otherwise arbitrary, we
must have that

∂2
t u−Δu = 0 .

These are the Euler – Lagrange equations for the action (6.16). Notice
that the principle of stationary action allows us to give an initial posi-
tion u(0, x) = f(x) but does not allow for setting the initial momentum
∂tu(0, x) = g(x), so it is not in fact compatible with the initial value prob-
lem. Nonetheless the principle of least action, or more generally of stationary
action, remains a guiding principle for many equations in physics, while on
a rigorous mathematical level the principle remains a formal one in this and
other cases.

A Lagrangian L and subsequently an action integral S can be defined
for more general systems, indeed this is how wave equations are derived in
most problems in physics. Consider the more general Lagrangian

(6.17) L =

�

Rn

1
2 u̇

2 −G(u,∇xu) dx

whose associated action is given by

S =

� T

0

�

Rn

1
2 u̇

2 −G(u,∇xu) dxdt .

Suppose that the field u(t, x) is a stationary point of the action;

0 =δS =
d

dε

���
ε=0

� T

0

�

Rn

1
2(∂tu+ ε∂tv)

2 −G(u+ εv,∇x(u+ εv)) dxdt

=

� T

0

�

Rn

∂tu∂tv − ∂∇uG(u,∇xu) ·∇xv − ∂uG(u,∇xu)v dxdt

=

� T

0

�

Rn

�
−∂2

t u+∇x · ∂∇uG(u,∇xu)− ∂uG(u,∇xu)
�
v dxdt

+

�

Rn

∂tuv dx
���
T

t=0
.

The notation is that the nonlinear function G = G(u, V ) depends upon
the variables u as well as the n components of V = ∇u. The notation for
its partial derivatives is that ∂∇uG(u,∇xu) = ∂V G(u, V )|V=∇xu. The final
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term vanishes because v(t, x) is an admissible variation. Since v is otherwise
arbitrary, the field u(t, x) must satisfy the Euler – Lagrange equations

∂2
t u−∇x · ∂∇uG(u,∇xu) + ∂uG(u,∇xu) = 0 .

This is a hyperbolic equation if the matrix of partial derivatives of G with
respect to the variables V is positive definite. In the example of the wave
equation, G(u,∇u) = 1

2 |∇u|2, and ∂2
∇uG = I.

There is a compelling analogy with classical mechanics in this formal
treatment of field theories. To continue the analogy, given a Lagrangian
L(u̇, u), there is a transformation of the Euler – Lagrange equations to a
Hamiltonian system, in our case to a system of Hamiltonian PDEs. This is
illustrated in the example Lagrangian

(6.18) L =

�

Rn

1
2(u̇)

2 −G(∇xu) dx ,

where for clarity we have simplified the Lagrangian (6.17) above. The action
integral is as before

S =

� T

0
Ldt,

and as above the principle of stationary action gives the Euler – Lagrange
equations

(6.19) −∂tδu̇L+ δuL = 0 ,

where δuL = ∇x · ∂∇uG(∇xu) and δu̇L = u̇. In general a Lagrangian may
depend explicitly on time L(u̇, u, t), but in many cases, such as the one at
hand, it describes a physical process whose properties do not change with
time, and it does not. In this situation, the Euler – Lagrange equations
exhibit a conservation law. This can be seen from the following computation:

d

dt
L =

� �
δu̇L ü+ δuL u̇

�
dx =

� �
δu̇L ü+ ∂t(δu̇L) u̇

�
dx

=
d

dt

�
δu̇L u̇ dx .

We used the Euler – Lagrange equations (6.19) in the last equality of the
first line. Therefore the conservation law is evident, namely

(6.20)
d

dt

��
δu̇L u̇− L

�
= 0 .

In the example (6.18) this conservation law is

d

dt

�

Rn

1
2(∂tu)

2 +G(∇xu) dx = 0 .
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Definition 6.18. (i) Define the Hamiltonian of the system (6.19) by

H :=

�
δu̇L u̇ dx− L

(ii) The conjugate momentum of the field u is defined to be

p := δu̇L ,

giving p = p(u̇, u).

(iii) If the relationship between u̇ and p can be inverted to obtain u̇ = u̇(p, u),
at least locally, then the mapping u̇ → p is called the Legendre transform.
Using this mapping, we may rewrite the Hamiltonian

H =

�
u̇ p dx− L = H(u, p) ,

in terms of the new Hamiltonian variables (u, p).

The Legendre transform offers an elegant way to transform a second
order equation (in time) to a first order system of equations.

Theorem 6.19. The Euler – Lagrange equations (6.19) for u = u(t, x) are
equivalent in the new variables (u(t, x), p(t, x)) to the system

∂tu = δpH(6.21)

∂tp = −δuH .

The system of equation (6.21) is known as Hamilton’s canonical equations
for the evolution equations described by H.

Proof. The formal equivalence of (6.19) and (6.21) is a general fact. Firstly,

H =

�
u̇ p dx− L ,

so that u̇ = δpH. Secondly we note that δuH = −δuL, so that

ṗ =
d

dt

�
δu̇L

�
= δuL = −δuH .

�

Exhibiting this transformation in the setting of the wave equation, we have

L =

�

Rn

1
2 u̇

2 − 1
2 |∇xu|2 dx ,

from which the Legendre transform gives p = δu̇L = u̇. Then

H =

�
u̇ p dx− L(u, u̇) =

�
u̇2 dx− L =

�
1
2p

2 + 1
2 |∇xu|2 dx .
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Hamilton’s canonical equations are then

∂tu = δpH = p(6.22)

∂tp = −δuH = Δu ,

which is of course the wave equation presented as a first order system of
equations. The energy functional E(u) for the wave equation is the Hamil-
tonian H(u, p) for the system.

Hamiltonian PDEs: This formal exposition is a lead-in to study other PDEs
that can be posed in the form of Hamiltonian systems. Consider systems of
equations of the form

(6.23) ∂tz = JgradzH ,

where z is a vector function, and the matrix J = −JT is skew symmetric.
Rewriting (6.22) as

(6.24) ∂t

�
u
p

�
=

�
p
Δu

�
=

�
0 I
−I 0

��
−Δu
p

�
:= Jgrad(u,p)H ,

the wave equation takes this form, with

J :=

�
0 I
−I 0

�
,

where we note that the matrix J satisfies J = −JT .

Proposition 6.20 (Conservation of energy). The Hamiltonian H(u, p) is a
conerved quantity for solutions of (6.24).

Proof. This can reasonably be called the law of conservation of energy as
the Hamiltonian function is often, not always, the energy of the system being
considered. The following classical calculation using the chain rule makes
the assumption that solutions to (6.23) exist. Indeed from (6.23),

d

dt
H(z(t)) = �gradzH, ż� = �gradzH, JgradzH� = 0 ,

where we have used the skew symmetry of the matrix J . �

A number of other problems can be viewed as Hamiltonian systems in
infinitely many variables. Several examples are:

1. nonlinear wave equations. Hyperbolic equations of this form can be
treated as Hamiltonian PDEs. Define the Hamiltonian to be

H(u, p) =

�

Rn

1
2p

2 + 1
2 |∇u|2 +G(x, u) dx

then the gradient of H is given by

δH(u, p) =

�
−Δu+ ∂uG(x, u)

p

�
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and therefore the equations of motion are posed as

∂t

�
u
p

�
= JgradH .

which is a first order system equivalent to the nonlinear wave equation

∂2
t u = Δu− ∂uG(x, u) .

2. nonlinear Schrödinger equations. The Hamiltonian for this set of
equations is in the form

H(ψ, ψ̄) =

�
1
2 |∇ψ|2 +Q(x,ψ, ψ̄) dx ,

where Q(x,ψ, ξ) : Rx × Cψ × Cξ → C has the property that Q(x,ψ, ψ̄) is

real valued. Then δψ̄H(ψ, ψ̄) = −1
2Δxψ + ∂ψ̄Q, and setting J = iI (which

is a nondegenerate, skew symmetric operator), then

∂tψ = Jδψ̄H

= i(−1

2
Δψ + ∂ψ̄Q(x,ψ, ψ̄)) .

WhenQ = ±|ψ|4 this equation is the well-known cubic nonlinear Schrödinger
equation, where the + sign is the defocusing case and the − sign is the fo-
cusing case.

3. Korteweg-de Vries equation (KdV). This famous dispersive equa-
tion first arose in the 19th century as a model of waves in the free surface
of water in a canal. Currently it is used in modeling numerous phenom-
ena including tsunami propagation. It is also well known as a PDE that is
a completely integrable Hamiltonian system, where the study of the phase
space of solutions has led to discoveries as far ranging as algebraic geometry
and inverse spectral theory. The Hamiltonian is

H(q) =

� ∞

−∞

1

12
(∂xq)

2 +G(q) dx .

As above, the gradient of H(q) is given by

δqH = −1

6
∂2
xq + ∂qG(q) .

Setting J = ∂x, which again is a skew symmetric operator, we arrive at
Hamilton’s canonical equations in the form

∂tq = ∂x(−
1

6
∂2
xq + ∂qG(q))

= −1

6
∂3
xq +G��(q)∂xq .
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The most well-known versions of the KdV equation are when G(q) = 1
3q

3 ,

and when G(q) = 1
4q

4.

Exercises: Chapter 6

Exercise 6.1. (Focusing singularity of solutions of the wave equation in R3

(d’après F. John)):

(i) Suppose that the initial data for the wave equation in three dimensions
has spherically symmetric data;

f(x) = f(r) , g(x) = g(r) , r2 = x21 + x22 + x23 .

Show that the general solution can be expressed as

u(t, r) =
1

r

�
F (r + t) +G(r − t)

�
,

that is, it consists of an incoming wave and an outgoing wave.

(ii) With the special initial data u(0, r) = 0, ∂tu(r) = g(r) with g(r) an even
function of r, then

u(t, r) =
1

2r

� r+t

r−t
ρg(ρ) dρ .

(iii) Set the initial data to be

g(r) = 1 , 0 ≤ r < 1 , g(r) = 0 , 1 ≤ r ,

show that u(t, r) is continuous for |t| < 1 but at time t = 1 it exhibits a
jump discontinuity. This is due to the focusing of the singularity in ∂tu(0, r)
given at t = 0.

Exercise 6.2. This problem addresses the decay rate of solutions of the
wave equation in R3. Suppose that the initial data (f(x), g(x)) ∈ C1(R3)×
C(R3) and that it is supported in the bounded set B1(0). By inspecting the
Kirchhoff formula for the solution u(t, x), show that

|u(t, x)| ≤ C

|t|

for some constant C, which can be quantified using �f�C1(R3) and �g�C(R3).

Exercise 6.3. (Global existence with small initial data for certain nonlinear
wave equations):
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This question is to show that certain nonlinear wave equations possess
smooth solutions for all t ∈ R. This contrasts with other cases where solu-
tions form singularities in finite time. Consider the equation

∂2
t v −Δv + (∂tv)

2 − |∇v|2 = 0

(6.25)

v(0, x) = f(x) ∂tv(0, x) = g(x) (f(x), g(x)) ∈ C1(R3)× C(R3) ,

with f, g supported in a compact set.

(i) Setting u = ev − 1, show that u(t, x) satisfies the wave equation

∂2
t u−Δu = 0

u(0, x) = ef(x) − 1 := F (x) ∂tu(0, x) = g(x)ef(x) := G(x)

(F (x), G(x)) ∈ C1(R3)× C(R3) .

Explain why (F,G) has compact suport.

(ii) Show that for sufficiently small �(F, ∂xF,G)�C , the solution u(t, x) is
bounded by

|u(t, x)| < 1 ,

using the result of Problem 2.

In this case the transformation v �→ u is invertible for all (t, x) ∈ R1
t × R3

x,
giving rise to a global solution v(t, x) of the equation (6.25).

Exercise 6.4. (method of decent for the wave equation for x ∈ R2)

(i) Show that if x ∈ R3 but the Cauchy data for the wave equation only
depends upon (x1, x2), namely

(6.26) f = f(x1, x2) , g = g(x1, x2) ,

then the solution of the wave equation in R1
t ×R3

x is also independent of x3;

u = u(t, x1, x2) ,

and therefore u(t, x1, x2) satisfies the wave equation in two space dimensions;

∂2
t u− (∂2

x1
+ ∂2

x2
)u = 0 .

(ii) Use the Kirchhoff formula to express the solution to the wave equation
in R3 for data satisfying (6.26).

(iii) In the expression in (ii) reparametrize the spherical integrals by their
projection onto the (x1, x2)-plane; e.g.
�

S2:|x−y|=t
f(y) dSy =

��

|(x1−y1,x2−y2)|<t
f(y1, y2)

�
t2 − ((x1 − y1)2 + (x2 − y2)2) dy1dy2 ,
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which gives a general formula in R2 for the solution of the wave equation

�u = 0 .

(iv) Describe the nature of this solution in the case that the support of
f and g as functions on R2 is compact, say supported in the ball BR(0) =
{|(x1, x2)| < R}. In particular comment on the Huygens’ principle. Does the
solution satisfy the strong form of Huygens’ principle, and why? Describe
what an observer sees as time progresses when they are situated farther than
R from the origin.


