Math 4FT /Math 6 FT Problem Set #4

Problem 1. The $L^p(\Omega)$ norm for functions on a domain $\Omega \subseteq \mathbb{R}^n$ is defined as

$$||f||_{L^p} = \left(\int_{\Omega} |f(x)|^p \, dx\right)^{1/p},$$

for $1 \leq p < +\infty$. The Hölder inequality states that

$$\left| \int_{\Omega} f(x)g(x) \, dx \right| \le \|f\|_{L^p} \|g\|_{L^{p'}}$$

where $\frac{1}{p} + \frac{1}{p'} = 1$ are dual indices. A special case for p = p' = 2 is the Cauchy – Schwarz inequality.

Give a proof of the Hölder inequality for the range of p, p' given above.

Problem 2. This problem concerns the case of domains $\Omega = \mathbb{R}^n$ and of bounded domains $\Omega \subseteq \mathbb{R}^n$.

1. In the case of $\Omega = \mathbb{R}^n$, for which indices p and q does the following hold:

$$L^p(\mathbb{R}^n) \subseteq L^q(\mathbb{R}^n)$$
?

2. In the case of bounded Ω , use the Hölder inequality to show that

$$L^p(\Omega) \subseteq L^q(\Omega)$$
.

for $q \leq p$.

3. In the case of bounded Ω , is it true that

$$L^{\infty}(\Omega) = \bigcap_{1 \le p < +\infty} L^{p}(\Omega)$$

Problem 3. Prove the part (i) of the technical lemma on Schwartz class. Namely show that for $g \in \mathcal{S}(\mathbb{R}^n)$ such that g(0) = 1, then for all $f \in \mathcal{S}(\mathbb{R}^n)$

$$\mathcal{S} - \lim_{\varepsilon \to 0} (g(\varepsilon x)f(x)) = f(x) .$$

Problem 4. We have described the Fourier transform \mathcal{F} as a unitary operator on $L^2(\mathbb{R}^n)$. What are the eigenvalues and eigenfunctions $(\lambda_k, \psi_k(x))$ of this operator. For simplicity you may consider only the case n = 1.