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Abstract. Many infectious diseases give rise to recurrent epidemics.
The time interval between epidemics is consequently an important prop-
erty that epidemiologists and public health officials would like to be able
to predict. Accurate estimates have been made for certain diseases by
associating the observed interepidemic interval with the natural period
of damped oscillations near the stable equilibrium solution of the stan-
dard (unforced) SEIR model. For childhood infections, this successful
prediction is surprising because seasonal variation in contact rates (due
to school terms) is known to have significant effects on patterns of dis-
ease incidence. Here, we show that the natural damping period of tran-
sients near the annual attractor of the seasonally forced SEIR model
is usually well-approximated by the damping period obtained without
forcing. This explains why naive calculations of interepidemic intervals
have yielded accurate results in certain cases. However, the unforced
approximation cannot be justified if the forced model has a non-annual
attractor with a non-negligible basin of attraction, as is typically the
case for measles; consequently, agreement between the interepidemic in-
terval predicted by the unforced model for measles and real measles time
series, appears to be coincidental.
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1 Introduction

Modelling the population dynamics of infectious diseases is a well-studied prob-
lem in mathematical biology due to the implications for public health, the suitability
of simple models, and the existence of extensive data sets [9, 12]. A key quantity
that models aim to predict is the typical time between epidemic outbreaks. The
outbreaks observed in real-world epidemic time series exhibit a wide range of pat-
terns. Outbreaks can be either periodic in time or occur at apparently random
times, and periodic outbreaks can be either seasonal (annual, biennial, etc.) or
non-seasonal.

In epidemic models, attractors (which may or may not be periodic themselves)
are often approached by damped oscillations at some natural period. These oscil-
lations can be sustained by demographic stochasticity [2, 6]. The natural period of
damped oscillations is, therefore, often used to predict the interepidemic period of
real outbreaks of infectious diseases.

The standard model for epidemics of childhood diseases is the SEIR model [2],
which divides the population into four compartments according to disease status:
S = susceptible, E = exposed but not yet infectious, I = infectious, R = recovered
(and immune). Assuming that new exposed (E) cases arise from mass-action mixing
among susceptible and infectious individuals, and assuming exponential waiting
times for transitions between other compartments, the following system of ordinary
differential equations can be derived:

Ṡ = ν − (βI + µ)S

Ė = βSI − (σ + µ)E

İ = σE − (γ + µ)I

Ṙ = γI − µR

(1.1)

Here, ν is the birth rate, µ is the death rate, β is the transmission rate, 1/σ is the
mean latent period (the time between infection and the onset of infectiousness),
and 1/γ is the mean infectious period. We take ν = µ throughout this paper,
producing a constant population size and reducing the dimensionality of equation
(1.1) to three. For simplicity, the transmission rate β is often taken to be constant
in time, even when it is known to vary seasonally (as a consequence of the sea-
sonality of school terms). In the following sections, we investigate how this crude
approximation of constant β affects the predicted interepidemic interval.

2 The unforced SEIR model

If β is constant then the system of differential equations (1.1) is unforced (au-
tonomous). If the basic reproductive ratio,

R0 =
βσ

(γ + µ)(σ + µ)
, (2.1)

is greater than one, then equations (1.1) have a unique nontrivial stable fixed point
(we assume R0 > 1 throughout this paper). There are no asymptotically periodic
solutions to this system, but convergence onto the stable fixed point occurs via
damped oscillations. The period of these oscillations is determined by the three
eigenvalues associated with the linear system obtained by expanding equations (1.1)
to first order near the fixed point.
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Because µ � σ and µ � γ, one of the three eigenvalues is real, negative and
large, and the other two are complex conjugates (see appendix). As a result, orbits
collapse rapidly onto a centre manifold and thereafter spiral slowly onto the fixed
point [17]. The period of these damped oscillations, Tu, is thus determined only by
the imaginary part of the complex conjugate pair, and can be written [2]

Tu = 2π
√
A(1/σ + 1/γ) . (2.2)

Here, A is the mean age at infection, which is related to the birth rate ν and the
basic reproductive ratio R0 via

A ' 1

ν(R0 − 1)
. (2.3)

It is the period Tu that is normally associated with observed intervals between
real epidemics. Oscillations at period Tu can be sustained, i.e., convergence onto
the fixed point can be prevented, by demographic stochasticity [2, 3, 4, 5, 6, 18].
Anderson and May [1, 2] compare the predicted Tu to the observed interepidemic
interval for a number of diseases and obtain rough agreement in most cases, with
the notable exceptions of chicken pox and rubella.

In the last 20–30 years, it has become clear that seasonal variation in the
transmission rate (β) is a crucial factor in the oscillatory behavior of at least some
childhood diseases, notably measles (when the time-varying transmission rate is
reconstructed from incidence data, the pattern of school terms is readily seen [10,
11]). The amplitude of the seasonal variation of the transmission rate, estimated
from real data, is large [10, 11]. It is also known from theoretical work that seasonal
forcing of epidemic models induces sustained oscillations [14] at periods different
from Tu. Thus, in retrospect, it seems paradoxical that Tu, the natural period of the
unforced model, has good predictive power for the real (forced) system. If seasonal
forcing is crucial to the dynamics, how is it that an unforced model can predict the
observed interepidemic intervals as well as it does?

3 The seasonally forced SEIR model

To answer this question we analyze the seasonally forced SEIR model, with
varying transmission rate specified according to school term dates [8, 15]. Thus we
replace the constant parameter β in equation (1.1) with a time varying function
β(t) that is high on days when school is in session and low otherwise,

β(t) =

{
βH school days,

βL non-school days.
(3.1)

For term dates we use the 2001–2002 academic calendar of the Toronto District
School Board: school is in session 4 September to 21 December (i.e., days 247 to
355 of 365), 7 January to 8 March (i.e., days 7 to 67) and 18 March to 27 June
(i.e., days 77 to 178). Weekends are counted as low contact days, i.e., β(t) = βL.
These school dates imply that there are a total of 198 school days per year, so the
proportion of days in school is

ps =
198

365
' 0.5425 . (3.2)

The mean transmission rate is

〈β〉 = psβH + (1− ps)βL (3.3)
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and we define the amplitude of seasonality to be

α =
1

2

(βH − βL

〈β〉
)
. (3.4)

In terms of 〈β〉 and α we can write the transmission rate

β(t) =

{ [
(1 + 2(1− ps)α

]
〈β〉 school days,

[
1− 2psα

]
〈β〉 non-school days.

(3.5)

This form for β(t) is more convenient than (3.1) because it is 〈β〉 that corresponds
to β in the unforced model (for which α = 0). Note that since β(t) ≥ 0, it is clear
from equation (3.5) that the range over which the seasonal amplitude α can be
varied is

0 ≤ α ≤ 1

2ps
=

365

396
' 0.9217 . (3.6)

At the maximum amplitude βL = 0, i.e., β(t) = 0 on non-school days.
Just as we can calculate the natural damping period Tu of oscillations about

the stable fixed point of the unforced model, it is possible to calculate the natural
period of damped oscillations onto periodic attractors of the forced model. This
can be done using a Poincaré map derived from the forced system of equations,
i.e., using the map obtained from the forced system by strobing it once a year
(an annual cycle of the full system becomes a fixed point of the map, a biennial
cycle becomes a two-cycle, and so on). Then, if the map has fixed points, standard
perturbation analysis can be carried out on them to derive the natural period,
Tf,1, of damped oscillations about annual attractors of the full forced system of
differential equations. Similarly, perturbation analysis of n-cycles of the Poincaré
map yields the natural period, Tf,n, of oscillations near n-year periodic attractors
of the full system.

The full forced SEIR equations represent a five-dimensional dynamical system.
One variable (typically R) is made redundant by fixing the population size and a
second dimension (t) is lost when we focus on the Poincaré map. Consequently,
there are three eigenvalues associated with each attractor of the map, as in the
unforced case. Away from bifurcation points, the Poincaré map of the forced system
has the key property that one of the eigenvalues has small modulus and the other
two are complex conjugates. This results in dynamics near the fixed point that are
analogous to the dynamics near the stable fixed point of the unforced differential
equations; in particular, it can be shown numerically that orbits again collapse
quickly onto a centre manifold and thereafter spiral slowly into the fixed point of
the Poincaré map. Thus, the epidemiologically interesting information about the
interepidemic interval is contained entirely in the complex conjugate pair [7]. As the
system approaches the fold bifurcation points, the complex conjugate pair splits,
and one of the eigenvalues crosses the unit circle, resulting in the fold bifurcation.
However, away from such points the value of Tf,n is given by

Tf,n =
2πn

|Arg(λn)|
(3.7)

where λn denotes either complex eigenvalue (which, in magnitude, have the same
argument).

In Bartlett’s classic analysis [6], demographic stochasticity sustains oscillations
of period Tu about the unforced system’s stable fixed point. Similarly, stochasticity
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Table 1 Parameters used in this paper. Estimates of R0 are from Anderson
and May [2]. Ranges of 〈β〉 (in years−1) follow from equation (6.3). The
disease-independent parameters are always taken to be ν = µ = 0.02 years−1

(as in ref. [8]).

Disease 1/σ (days) 1/γ (days) R0 range 〈β〉 range
Measles 8 5 5–18 350–1350
Whooping Cough 8 14 10–18 250–500
Rubella 10 7 6–16 300–850
Chicken Pox 10 5 7–12 500–900

may be able to sustain oscillations of period Tf,n about the forced system’s n-year
attractor. This is not certain, however, since the forced system may have multiple
coexisting attractors of different periods and stochasticity may cause the system to
jump from the basin of one attractor to another [8, 16]; this would be expected to
stimulate short-term oscillations at periods Tf,n for more than one n, or irregular
behaviour if different basins of attraction are densely intermixed. Perturbative
analysis of the forced model will predict a single dominant interepidemic period (as
with the unforced model) provided there is only one attractor with a substantial
basin of attraction; in order to approximate this interepidemic period using the
unforced model, it is essential that the dominant attractor of the forced system be
the annual cycle that corresponds to the fixed point of the unforced system (the
only justification for using Tu as an approximation is that Tf,1 → Tu as α→ 0).

We therefore focus on Tf,1 and ask how well it is approximated by Tu. We
end by discussing the circumstances under which Tf,1 itself should or should not be
expected to correspond to the interepidemic interval.

4 Predicted periods in the forced and unforced models

We analyze the Poincaré map of the seasonally forced SEIR model using the
bifurcation and continuation software package Content 1.5 [13]. We study the
cases of measles, whooping cough, rubella and chicken pox in figures 1, 2, 3 and 4,
respectively. The parameters used to generate these diagrams are listed in table 1,
where we have also listed estimates of R0 and 〈β〉.

In the four diagrams, α ranges from the unforced case at α = 0 (where Tf,1 =
Tu), to the maximum value given in equation (3.6). In each figure, the top panel
shows contours of constant Tf,1 (in the 〈β〉 vs α plane), and the bottom panel shows
contours of constant 〈β〉 (in the Tf,1 vs α plane). These diagrams make clear how
Tf,1 changes as a function of α.

As can be seen in the bottom panels of the figures, for lower values of 〈β〉 there
is little variation in Tf,1 over the entire range of α. On the other hand, for higher
values of 〈β〉, there is moderate change in Tf,1 as α increases. Thus we see that
Tu is an excellent approximation to Tf,1 unless the mean transmission rate 〈β〉 is
large. Referring to Table 1, we see that the range of estimated values for 〈β〉 lies in
regions where variation in Tf,1 as a function of α is small. Thus, figures 1 through 4
illustrate the fundamental reason why the unforced natural period Tu can roughly
predict the observed epidemic intervals of childhood diseases.
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Figure 1 Measles. The top panel shows contours of constant Tf,1 (the natural
period of damped oscillations) in a graph of mean transmission rate 〈β〉 versus
seasonal amplitude α. The value of Tf,1 is indicated next to each contour.
Tf,1 = 2 throughout the region between the two Tf,1 = 2 contours. The
bottom panel shows contours of constant 〈β〉, in a graph of the natural period
Tf,1 versus α. The value of 〈β〉 is indicated next to each contour. For both
panels, the fixed parameters (σ, γ, ν and µ) are specified in Table 1.

5 Discussion

Our numerical analysis in this paper shows that if Tf,1 correctly predicts the
interepidemic period of a typical childhood infectious disease then Tu will generally
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Figure 2 Whooping Cough. See caption to figure 1 for explanation.

do just as well. This provides a justification for previous uses of Tu to predict
interepidemic intervals. However, as we emphasized at the end of §3, in a seasonally
forced system it is not clear that Tf,1 should have anything to do with the observed
interepidemic interval.

A case in point is measles, which in the past was observed to exhibit strictly bi-
ennial epidemics over two decades, in both American and British cities [8, 19]. The
unforced SEIR model yields Tu ≈ 2, consistent with Tf,1 ≈ 2 in the forced model.
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Figure 3 Rubella: See caption to figure 1 for explanation.

However Tf,1 is an irrelevant quantity in this case because the asymptotically an-
nual cycle of the forced model is unstable. Instead, the transient periodicity must
be estimated from the attracting solution, which is itself a biennial cycle. As it
happens, the period of oscillation near this attractor is Tf,2 ≈ 2. The approximate
agreement between Tu and the observed interepidemic interval appears to be coin-
cidental. We do not see any justification for using Tu to estimate the interepidemic
interval in this case.
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Figure 4 Chicken Pox: See caption to figure 1 for explanation.

More broadly, it is not clear that it makes sense to talk about a single interepi-
demic period for disease incidence time series. Ideally, we would like to be able
to predict the full power spectrum of fluctuations in disease incidence. Many such
power spectra show more than one peak, whereas only one peak is expected from
analysis of the unforced SEIR model. For example, the power spectrum of rubella
in Ontario exhibits both an annual peak and a non-seasonal peak at 5–6 years,
whereas the unforced model predicts a single peak at Tu ≈ 4–5 years. Chicken pox
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in Ontario exhibits only a single annual peak, whereas the unforced model predicts
a peak at Tu ≈ 2–3 years. A careful analysis of the forced model seems essential
to understand this behaviour. Another important issue is to determine how much
demographic stochasticity is needed to sustain transients and hence for the analysis
of periods of damped oscillations to be relevant to interepidemic intervals. Predic-
tion of interepidemic intervals is further complicated if multiple attractors coexist,
which appears to have happened for measles during the Great Depression in the
United States and in several countries since the initiation of mass vaccination [8].
We are examining all these issues in greater depth in work in progress [7].

6 Appendix

In this appendix we justify equation (2.2) using the linearization of the SEIR
model near its stable fixed point, and a small parameter argument. These results
are not new (see, e.g, ref. [17]) but we include them for the sake of clarity and
completeness.

The unforced SEIR equations (1.1) with constant population size ν = µ reduce
to a three-dimensional system,

Ṡ = µ− (βI + µ)S

Ė = βSI − (σ + µ)E (6.1)

İ = σE − (γ + µ)I

which, for R0 > 1, has the unique nontrivial steady state,

S0 =
1

R0
, E0 =

µ(R0 − 1)(γ + µ)

βσ
, I0 =

µ(R0 − 1)

β
. (6.2)

Since µ� σ and µ� γ, it follows from equation (2.1) that

R0 ' β/γ , (6.3)

i.e., the basic reproductive ratio is approximately the product of the mean trans-
mission rate and the mean infectious period.

Since we are interested in the behaviour of the system near the fixed point
(S0, E0, I0), it is convenient to introduce new variables (x, y, z) via

S = S0(1 + x) , E = E0(1 + y) , I = I0(1 + z) . (6.4)

The fixed point of interest becomes (x, y, z) = (0, 0, 0) and, to first order in x, y
and z, equations (6.1) become

d

dt




x
y
z


 =



−µR0 0 −µ(R0 − 1)
(σ + µ) −(σ + µ) (σ + µ)

0 (γ + µ) −(γ + µ)






x
y
z


 (6.5)

The characteristic equation for the matrix above can be written

λ2(λ+σ+γ)+µ
[
(R0 +2)λ2 +(σ+γ+2µ)R0λ+(σ+µ)(γ+µ)(R0−1)

]
= 0 . (6.6)

In the limit µ→ 0, the only non-zero eigenvalue is λ1 = −(σ+γ). For any µ, exact
(but unweildy) expressions for each of the eigenvalues can be derived from equation
(6.6). Since µ is small relative to all the other parameters, it is more useful to
expand these expressions to leading order in µ. Retaining the leading term for the
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real and imaginary parts of each eigenvalue, the three eigenvalues of the matrix in
equation (6.5) can be written

λ1 = −(σ + γ) +O(µ) ,

λ+ = iω
√
µ− rµ+O(µ3/2) , (6.7)

λ− = −iω√µ− rµ+O(µ3/2) ,

where ω and r can be written

r =
1

2

(
R0 −

σγ(R0 − 1)

(σ + γ)2

)
, (6.8)

ω =

√
R0 − 1

1/σ + 1/γ
. (6.9)

Note that r > 0 for any parameter values and ω is real and positive if and only if
R0 > 1. Thus, since we are assuming R0 > 1, and since |λ+| ∼ |λ−| � |λ1|, near
the fixed point we can characterize the behaviour of the system as follows. There
is rapid collapse onto a two-dimensional centre manifold at rate σ + γ, followed by
oscillations about the fixed point at frequency ω

√
µ, which decay slowly at the rate

rµ. The period of the damped oscillations is Tu = 2π/(ω
√
µ), as in equation (2.2).
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