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EQUIVALENCE OF THE ERLANG-DISTRIBUTED SEIR EPIDEMIC
MODEL AND THE RENEWAL EQUATION\ast 

DAVID CHAMPREDON\dagger , JONATHAN DUSHOFF\ddagger , AND DAVID J. D. EARN\S 

Abstract. Most compartmental epidemic models can be represented using the renewal equa-
tion. The value of the renewal equation is not widely appreciated in the epidemiological modelling
community, perhaps because its equivalence to standard models has not been presented rigorously in
nontrivial cases. Here, we provide analytical expressions for the intrinsic generation-interval distribu-
tion that must be used in the renewal equation in order to yield epidemic dynamics that are identical
to those of the susceptible-exposed-infectious-recovered (SEIR) compartmental model with Erlang-
distributed latent and infectious periods. This class of models includes the standard (exponentially
distributed) SIR and SEIR models as special cases.
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1. Background. The renewal equation was introduced by Euler in 1767 [11] in
his work on population dynamics and was reframed in a modern continuous formula-
tion by Lotka in 1907 [22]. Lotka's formulation is usually expressed as

(1.1) B(t) =

\int \infty 

0

B(t - a) p(a) \nu (a) da,

where B(t) is the number of births at time t, p(a) is the probability of survival to
age a, and \nu (a) is the fertility at age a. This equation was derived for demographic
studies and has been adapted to epidemics using an ``age of infection"" model that was
described in the seminal work of Kermack and McKendrick in 1927 [19]. This epidemic
model changes the interpretation of the variables: B(t) represents the number of
new infectious individuals at time t, p(a) the probability to be infectious a time
units after acquiring the disease, and \nu (a) the ``transmission potential,"" that is, the
average number of secondary infections at ``infection age"" a. In the 1970s, this model
was reformulated and key results about epidemic dynamics were derived (see, for
example, [9, 10, 23]). As we explain in section 2.3, it is convenient in an epidemiological
context to express the renewal equation using the generation-interval distribution.
The generation interval is the interval between the time when an individual is infected
by an infector and the time when this infector was infected.
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EQUIVALENCE RENEWAL EQUATION AND ERLANG SEIR 3259

The dynamics of epidemics are more commonly modelled with ordinary differen-
tial equations (ODEs), following Kermack and McKendrick [19]. This family of models
identifies epidemiological states (susceptible, infectious, immune, etc.) and considers
the flow rates between ``compartments"" containing individuals in each disease state.
A standard example is the ``SEIR"" (suspectible-exposed-infectious-recovered) model,
which distinguishes between a latent state of infection, traditionally labelled E for ``ex-
posed,"" where the infected individual is not yet infectious, and then a state I where
the infected individual is infectious. When not infected, an individual is either suscep-
tible (S) or immune/recovered (R). A generalization of this model, which we refer to
as the ``Erlang SEIR model,"" divides the E and I stages into m and n substages, re-
spectively. All m latent (resp., n infectious) substages are identical. This subdivision
is usually viewed as a mathematical trick in order to make latent and infectious period
distributions more realistic; the resulting latent and infectious periods have Erlang
distributions (gamma distributions with integer shape parameter) [1, 20, 21, 27]. The
probability density function of the Erlang distribution is

(1.2) f(x; k, \lambda ) =
\lambda k

(k  - 1)!
xk - 1e - \lambda x , x \geq 0,

where the shape parameter k is a positive integer and the rate parameter \lambda > 0. The
mean of the distribution is k/\lambda .

The renewal and ODE approaches are based on different conceptualizations of dy-
namics. The renewal approach focuses on cohorts of infectious individuals, and how
they spread infection through time, while the ODE approach focuses on counting indi-
viduals in different states. The renewal equation is less common than compartmental
models in epidemiological applications, probably because the goal when modelling
epidemics is often to identify optimal intervention strategies, which is facilitated by
clearly distinguishing the various epidemiological states (e.g., susceptible, infectious,
immune, vaccinated, quarantined, etc.) on which to act. However, the simplicity of
the renewal equation makes it particularly well adapted to estimate the effective re-
productive number from incidence time series [26] and to forecast epidemics [8]. As a
notable example, it was used recently by the WHO Ebola Response Team to estimate
the reproductive number of the 2014 Ebola epidemic in Western Africa [28].

Despite their very different formulations, these two models can simulate exactly
the same epidemics when the generation-interval distribution g derived from the ODE
system is used in the renewal equation. This connection was demonstrated in the
mathematical field of integro-differential equations more than 30 years ago [12, 29].
However, in mathematical epidemiology, apart from simple cases with exponential
stage duration distributions [5], the generation-interval distribution g that links Er-
lang SEIR models to renewal-equation models has apparently never been explicitly
derived. Here, we provide an analytical expression for the intrinsic generation-interval
distribution implied by an Erlang SEIR model and show that a renewal equation
model using this distribution for g yields exactly the same epidemic dynamics as the
corresponding compartmental model.

2. Methods. In this section, we define the notations and equations for the re-
newal and Erlang SEIR models. We consider a normalized population (i.e., the total
population size is 1) and set the day as the time unit. The computer code for all
numerical simulations is provided in the supplementary materials, which are linked
from the main article webpage.
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3260 D. CHAMPREDON, J. DUSHOFF, AND D. J. D. EARN

2.1. The Erlang SEIR model. The Erlang SEIR model, with balanced vital
dynamics, is described by a system of m+ n+ 1 ODEs,

dS

dt
= \mu  - \beta SI  - \mu S ,(2.1a)

dE1

dt
= \beta SI  - (m\sigma + \mu )E1 ,(2.1b)

dEj

dt
= m\sigma Ej - 1  - (m\sigma + \mu )Ej , j = 2, . . . ,m,(2.1c)

dI1
dt

= m\sigma Em  - (n\gamma + \mu )I1 ,(2.1d)

dIk
dt

= n\gamma Ik - 1  - (n\gamma + \mu )Ik, k = 2, . . . , n,(2.1e)

where S is the proportion of the population that is susceptible, Ej is the proportion
of the population that is in the jth latent compartment, Ik is the proportion of
the population that is in the kth infectious compartment, and I =

\sum n
k=1 Ik. To

reduce the notational burden, the dependence on time has been omitted (i.e., S =
S(t), etc.). Initial conditions are discussed in section 2.4. The parameter \beta is the
transmission rate, 1/\sigma and 1/\gamma are the mean latent and infectious periods (conditioned
on survival), and \mu represents the per capita rates of both birth1 and death. The
mean durations of latency and infectiousness, taking account of natural mortality, are
1/(\sigma + \mu ) and 1/(\gamma + \mu ), respectively. We use transition rates that are scaled by
the number of compartments (m\sigma and n\gamma ); this is more convenient for comparison
of epidemic models because the times 1/\sigma and 1/\gamma retain their meanings as average
stage durations regardless of the number of compartments.

For the Erlang SEIR model (2.1), the basic reproduction number---defined as the
average number of secondary cases generated by a primary case in a fully susceptible
population [2]---is easily derived by standard methods [14, 20, 25],

(2.2) \scrR 0 =
\Bigl( m\sigma 

m\sigma + \mu 

\Bigr) m \beta 

n\gamma + \mu 

n - 1\sum 
k=0

\Bigl( n\gamma 

n\gamma + \mu 

\Bigr) k
.

In the absence of vital dynamics (\mu = 0), this expression reduces to \scrR 0 = \beta /\gamma .

2.2. Intrinsic generation-interval distribution via cohort equations. In
addition to the ODE system (2.1) describing the number of individuals in different
clinical states, we can naturally define another ODE system for the probabilities to
be in these different clinical states at a given time after infection. Let Lj(\tau ) be the
probability that an individual is alive and in the jth latent stage (Ej) \tau units of time
after being infected. Similarly, let Fk(\tau ) be the probability that one individual is
alive and in the kth infectious stage (Ik) \tau units of time after being infected. In other
words, we model the population proportion in each stage of each infectious cohort.

1Or, more generally, susceptible recruitment.
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EQUIVALENCE RENEWAL EQUATION AND ERLANG SEIR 3261

If we consider individuals infected at time t = 0, we have L1(0) = 1, Lj(0) = 0
for j = 2, . . . ,m, and Fk(0) = 0 for k = 1, . . . , n. We construct equations for the Lj

and Fk exactly in parallel with the equations for Ej and Ik:

dL1

d\tau 
=  - (m\sigma + \mu )L1 ,(2.3a)

dLj

d\tau 
= m\sigma Lj - 1  - (m\sigma + \mu )Lj , j = 2, . . . ,m,(2.3b)

dF1

d\tau 
= m\sigma Lm  - (n\gamma + \mu )F1 ,(2.3c)

dFk

d\tau 
= n\gamma Fk - 1  - (n\gamma + \mu )Fk , k = 2, . . . , n.(2.3d)

The probability to be infectious at time \tau after acquiring infection is simply the sum\sum n
k=1 Fk(\tau ) (an individual can be in only one infectious state at any given time), and

the intrinsic infectiousness of individuals who have been infected for a length of time
\tau is

(2.4) \beta 

n\sum 
k=1

Fk(\tau ) .

The basic reproductive number (2.2) is obtained by integrating across all possible ages
of infection:

(2.5) \scrR 0 = \beta 

\int \infty 

0

n\sum 
k=1

Fk(x) dx .

The intrinsic generation-interval distribution for the Erlang SEIR model, denoted by
g, is simply obtained by normalizing (2.4) [7],

(2.6) g(\tau ) =
\beta 
\sum n

k=1 Fk(\tau )

\scrR 0
.

2.3. The renewal equation with susceptible depletion. For typical trans-
missible infections, individuals acquire immunity after recovering and cannot be rein-
fected (at least for some time). Consequently, the total number of susceptible individ-
uals decreases during an epidemic. In addition, individuals who successfully transmit
their infection to others must survive at least until the moment of transmission. Fi-
nally, new susceptible individuals are recruited through births, and all individuals
have a finite lifespan. To account for these processes of ``susceptible depletion,"" ``sur-
vival to transmission,"" and ``vital dynamics"" (which are present in the Erlang SEIR
model), Lotka's equation (1.1) must be revised.

As in the ODE model (2.1), we denote by S(t) the proportion of the population
that is susceptible at time t. However, unlike the ODE model, our renewal equation
will be expressed in terms of incidence i(t) rather than prevalence I(t). Incidence
is the rate at which new infections occur in the population, and corresponds to the
flow rate \beta SI from S to E1 in (2.1a). Recalling that we defined (2.1) in terms of
proportions, our renewal equation is

dS

dt
= \mu  - i(t) - \mu S(t) ,(2.7a)

i(t) = \scrR 0 S(t)

\int \infty 

0

i(t - s) g(s) ds ,(2.7b)
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3262 D. CHAMPREDON, J. DUSHOFF, AND D. J. D. EARN

where \scrR 0 is the basic reproduction number and g is the intrinsic generation-interval
distribution [7]. The function g(\tau ) is the probability that an individual survives
and transmits the disease \tau days after acquiring it. Note that both \scrR 0 (2.5) and the
distribution g (2.6) implicitly account for deaths of exposed and infectious individuals.
This contrasts (2.2), in which\scrR 0 is expressed explicitly (and actually derived) in terms
of rate parameters, including the mortality rate \mu .

2.4. Initial conditions. To complete the formulation of the renewal equation
model (2.7), we must specify initial conditions. Doing so is not as straightforward as
for the ODE model (2.1), for which the initial state is simply an (m+n+1)-dimensional
vector containing the proportions of the population in each compartment. Instead, in
addition to the initial proportion susceptible, S(0), for the renewal equation we must
specify the incidence at all times before t = 0, i.e., i(t) for all t \in ( - \infty , 0]. Here, we
use the Dirac delta distribution, \delta (t), to ``jump-start"" the epidemic at time 0, and
write

S(0) = S0,(2.8a)

i(t) = I0 \delta (t) , t \leq 0.(2.8b)

This is equivalent to starting at time 0 with a proportion I0 in the first infected
state (state I1 if m = 0, state E1 otherwise) and no other infected individuals. The
renewal equation (2.7) with these initial conditions (2.8) can be solved numerically in
a straightforward manner. Appendix C outlines the algorithm that we have used in
our numerical simulations. This approach allows us to simulate efficiently, and to start
with any number of susceptible and infected individuals, thus effectively spanning the
phase space.

We note that, with more complicated simulations, it would be possible to match
not only the number susceptible and the total number infected (as above) but also
how the initial prevalence is spread among the m + n infected classes in the ODE
model (2.1), by using an alternative formulation [3] for (2.7b):

(2.9) i(t) = S(t)

\biggl( 
\beta \scrF 0(t) +\scrR 0

\int t

0

i(t - s) g(s) ds
\biggr) 
.

Here, the integral over the generation interval looks back only to time 0 (not time
 - \infty ) and the force of infection from individuals already infected at time 0 is instead
captured in the new term \beta \scrF 0(t), where

(2.10) \scrF 0(t) =

n\sum 
j=1

Fj(t) .

The Fj 's are calculated by integrating the cohort equations (2.3) starting from the
desired initial conditions, which can be done in advance (either analytically or numer-
ically) or simultaneous with numerically solving the alternative form of the renewal
equation (see (2.7a) and (2.9)).

3. Results.

3.1. The intrinsic generation-interval distribution of the Erlang SEIR
model. Here, we solve the ODE system (2.3) in order to obtain an analytical ex-
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EQUIVALENCE RENEWAL EQUATION AND ERLANG SEIR 3263

pression for the generation-interval distribution g for an Erlang SEIR model, using
(2.6).

Solving for the probabilities to be in the jth latent stage Lj is straightforward.
Equation (2.3a) gives L1(t) = e - (m\sigma +\mu )t. Multiplying (2.3b) by e(m\sigma +\mu )t for k = 2
gives (e(m\sigma +\mu )tL2)

\prime = m\sigma , and hence L2(t) = m\sigma t e - (m\sigma +\mu )t (recall that L2(0) = 0).
It then follows by induction that

(3.1) Lj(t) =
(m\sigma t)j - 1

(j  - 1)!
e - (m\sigma +\mu )t , j = 1, . . . ,m.

Solving for the probabilities to be in the kth infectious stage Fk is more tedious.
We present the two special cases when m = 0 and m\sigma = n\gamma first because both the
calculations and resulting expressions are much simpler; then we give the expression
for the general case.

3.1.1. Case \bfitm = 0. If m = 0 (which is also equivalent to \sigma \rightarrow \infty ), then the
Fk's satisfy the same type of ODE as the Lk in the case where m \geq 1. Hence, we
have

(3.2) Fk(t) =
(n\gamma t)k - 1

(k  - 1)!
e - (n\gamma +\mu )t.

The integration is straightforward:

(3.3)

\int \infty 

0

Fk(t) dt =
(n\gamma )k - 1

(n\gamma + \mu )k
.

Using (2.6), the intrinsic generation-interval distribution is

(3.4) g(t) =

\left\{       
\mu 

1 - (1 - \mu 
n\gamma +\mu )

n e - (n\gamma +\mu )t
\sum n - 1

k=0
(n\gamma t)k

k! for \mu > 0,

\gamma e - n\gamma t
\sum n - 1

k=0
(n\gamma t)k

k! for \mu = 0.

In the special case n = 1 this reduces to

(3.5) g(t) = (\gamma + \mu ) e - (\gamma +\mu )t ,

recovering the well-known result that the standard susceptible-infectious-recovered
(SIR) model has an exponential intrinsic generation-interval distribution [4].

Since we typically have \mu \ll n\gamma , it is worth noting in the context of (3.4) that

(3.6)
\mu 

1 - 
\Bigl( 
1 - \mu 

n\gamma +\mu 

\Bigr) n =
\Bigl( 
\gamma +

n+ 1

2n
\mu 
\Bigr) 
+\scrO (\mu 2) ,

so (3.4) implies

(3.7) g(t) =

\Biggl( 
e - (n\gamma +\mu )t

n - 1\sum 
k=0

(n\gamma t)k

k!

\Biggr) \Bigl( 
\gamma +

n+ 1

2n
\mu 
\Bigr) 
+\scrO (\mu 2) .
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3264 D. CHAMPREDON, J. DUSHOFF, AND D. J. D. EARN

3.1.2. Case \bfitm \geq 1 but \bfitm \bfitsigma = \bfitn \bfitgamma . If m\sigma = n\gamma , the analytical expression for
Fk is obtained in a similar way as Lk:

(3.8) Fk(t) =
(n\gamma t)m - 1+k

(m - 1 + k)!
e - (n\gamma +\mu )t.

The integration is again straightforward and we have

(3.9)

\int \infty 

0

Fk(t) dt =
(n\gamma )m+k - 1

(n\gamma + \mu )m+k
.

Hence, using (2.6) the intrinsic generation-interval distribution is

(3.10) g(t) =

\left\{       
\mu 

1 - (1 - \mu 
n\gamma +\mu )

n e - (n\gamma +\mu )t
\sum n - 1

k=0
(n\gamma t)m+k

(m+k)! for \mu > 0,

\gamma e - n\gamma t
\sum n - 1

k=0
(n\gamma t)m+k

(m+k)! for \mu = 0.

In the special case of the standard SEIR model (m = n = 1), for any \mu \geq 0, we obtain

(3.11) g(t) = (\gamma + \mu )2 t e - (\gamma +\mu )t .

Finally, using the first-order expansion (3.6), equation (3.10) can be written

(3.12) g(t) =

\Biggl( 
e - (n\gamma +\mu )t

n - 1\sum 
k=0

(n\gamma t)m+k

(m+ k)!

\Biggr) \Bigl( 
\gamma +

n+ 1

2n
\mu 
\Bigr) 
+\scrO (\mu 2) .

3.1.3. General case \bfitm \geq 1 and \bfitm \bfitsigma \not = \bfitn \bfitgamma . In this case, we set \mu = 0 as it
simplifies both the calculations and expressions considerably. For typical epidemics
of infectious disease, the demographic rate \mu is usually negligible compared to the
epidemiological rates (i.e., \mu \ll m\sigma and \mu \ll n\gamma ), so the effect of \mu on the generation-
interval distribution g(\tau ) will also be negligible in most applications. Calculations
described in Appendix A yield

(3.13) Fk(t) =

\left\{   
1

(m - 1)!

\bigl( 
m\sigma 
a

\bigr) m \scrG (m, at) e - n\gamma t , k = 1,\bigl( 
m\sigma 
a

\bigr) m
(n\gamma )k - 1

\bigl[ 
Ak(t) +Bk(t) + Ck(t)

\bigr] 
e - n\gamma t , k = 2, . . . , n,

where

a = m\sigma  - n\gamma ,(3.14a)

Ak(t) = ( - 1)k
\biggl( 
k +m - 3

k  - 2

\biggr) 
a1 - k

\bigl( 
 - 1 + at+ e - at

\bigr) 
,(3.14b)

Bk(t) =

k - 3\sum 
i=0

( - 1)i

ai

\biggl( 
m+ i - 1

i

\biggr) 
tk - 1 - i

(k  - 1 - i)!
,(3.14c)

Ck(t) = ( - 1)k+1\psi k - 1(t)

ak - 2
,(3.14d)

\psi k(t) =
1

a

m - 1\sum 
\ell =1

\biggl( 
m - \ell + k  - 2

k  - 1

\biggr) 
1

\ell !
\scrG (\ell + 1, at),(3.14e)

\scrG (k, x) =
\int x

0

tk - 1e - t dt.(3.14f)
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EQUIVALENCE RENEWAL EQUATION AND ERLANG SEIR 3265

The function \scrG is the lower incomplete gamma function [24, sect. 8.2.1]. We obtain
the intrinsic generation-interval distribution for the Erlang SEIR by combining (2.6)
and (3.13). In this generic case we obtain
(3.15)

g(t) =

\left\{           

\gamma 

(m - 1)!

\Bigl( m\sigma 
a

\Bigr) m
\scrG (m, at) e - \gamma t, n = 1,

1

Km,n

\Biggl[ 
\scrG (m, at)
(m - 1)!

+

n\sum 
k=2

(n\gamma )k - 1
\bigl( 
Ak(t) +Bk(t) + Ck(t)

\bigr) \Biggr] 
e - n\gamma t, n \geq 2 ,

where

Km,n :=
1

n\gamma 

\Bigl( a

m\sigma 

\Bigr) m
+

n\sum 
k=2

(n\gamma )k - 1
\bigl( 
\=Ak + \=Bk + \=Ck

\bigr) 
,(3.16a)

\=Ak :=

\int \infty 

0

e - n\gamma tAk(t) dt(3.16b)

= ( - 1)k
\biggl( 
k +m - 3

k  - 2

\biggr) 
a1 - k

\biggl( 
 - 1

n\gamma 
+

a

(n\gamma )2
+

1

m\sigma 

\biggr) 
,(3.16c)

\=Bk :=

\int \infty 

0

e - n\gamma tBk(t) dt(3.16d)

=
1

(n\gamma )k

k - 3\sum 
i=0

\biggl( 
m+ i - 1

i

\biggr) \biggl( 
 - n\gamma 
a

\biggr) i

,(3.16e)

\=Ck :=

\int \infty 

0

e - n\gamma tCk(t) dt(3.16f)

=

\biggl( 
 - 1
a

\biggr) k - 1
1

n\gamma 

m - 1\sum 
i=0

\biggl( 
m - i+ k  - 3

k  - 2

\biggr) \Bigl( a

m\sigma 

\Bigr) i+1

.(3.16g)

In the special case m = n = 1, i.e., the standard SEIR model, all of the complexities
collapse and we obtain

(3.17) g(t) =
\sigma \gamma 

\sigma  - \gamma 
\bigl( 
e - \gamma t  - e - \sigma t

\bigr) 
.

3.1.4. Case \bfitm \rightarrow \infty and \bfitn \rightarrow \infty . In the case where both m \rightarrow \infty and
n \rightarrow \infty , the generation-interval distribution can be deduced easily if \mu = 0. The
limit of the Erlang distribution, as its shape parameter tends to infinity, is a Dirac
delta distribution. In other words, the ODE system (2.1) implies that the latent and
infectious durations for all infected individuals are constant, with values equal to 1/\sigma 
and 1/\gamma , respectively. Hence, the generation interval will be uniformly distributed
between 0 and 1/\gamma after the fixed latent period 1/\sigma .

The case when only m \rightarrow \infty and n remains finite is similar to the case m = 0
(section 3.1.1), because the generation-interval distribution (see (3.4)) is simply shifted
to the right by 1/\sigma time units.

When m is finite and n\rightarrow \infty , using the same epidemiological argument as above
(still with \mu = 0), the generation-interval distribution is the convolution of an Erlang
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3266 D. CHAMPREDON, J. DUSHOFF, AND D. J. D. EARN

distribution (1.2) with mean 1/\sigma and a uniform distribution on the interval [0, 1/\gamma ],

g(t) =

\int 1/\gamma 

0

f(t - s; m, m\sigma ) ds(3.18a)

=
1

(m - 1)!

\Bigl[ 
\scrG 
\Bigl( 
m, m\sigma 

\bigl( 
t - 1

\gamma 

\bigr) \Bigr) 
 - \scrG (m, m\sigma t)

\Bigr] 
.(3.18b)

3.1.5. Discrete time SIR. While our focus has been on continuous-time mod-
els, it is worth mentioning that the SIR model in discrete time is equivalent to the
renewal equation with a geometric generation-interval distribution, with probability
parameter \gamma \Delta t, where \Delta t is the time discretization step (which must be chosen such
that \gamma \Delta t < 1). This result, which we derive in Appendix B, is consistent with the
fact that the exponential distribution is the continuous analogue of the geometric
distribution.

3.2. Numerical simulations. We verified the correctness of our analytical ex-
pressions for the stage duration distributions (see (3.1) and (3.13)) by comparing
them with direct numerical integration of the linear ODE system for these probabili-
ties (2.3). Figure A1 shows a visually perfect match between the analytical formulae
and the numerical solutions for Lk(\tau ) and Fk(\tau ). Inserting (3.13) into (2.6) we ob-
tained the associated intrinsic generation-interval distribution g(\tau ), which is plotted
in Figure A2 together with the approximate distribution obtained by integrating the
linear ODEs (2.3) numerically.

We then checked that solutions of the renewal equation (2.7) agree with those of
the Erlang SEIR ODE system (2.1). As an example, Figure 1 shows a visually perfect
match between the two models for a particular parameter set.

We also checked our finding that the discrete time SIR model (section 3.1.5 and
Appendix B) is equivalent to a renewal equation model with a geometric generation-
interval distribution (Figure B1). Moreover, Figure 2 shows an illustrative example
of the equivalence of the renewal equation (2.7) and the Erlang ODE system (2.1) in
the presence of vital dynamics and periodic forcing of the transmission rate. In this
example we used again the renewal equation model with an exponential generation-
interval distribution, and applied a sinusoidally forced basic reproduction number
\scrR (t) = \scrR 0(1 + \alpha sin(2\pi t/T )) with \scrR 0 = 1.3, forcing amplitude \alpha = 0.6, forcing
period T = 365 days, and forcing birth and death rates \mu = 0.03 yr - 1.

4. Discussion. Appreciation of the fact that many epidemic models can be ex-
pressed either with ODEs or with a renewal equation can be traced back to the original
landmark paper of Kermack and McKendrick (see [5, 19]). Provided one wishes to
track only the dynamics of the total susceptible population and incidence rate, there
is no difference in the output of the two formulations. This result is well known in
the broader field of delayed integro-differential equations [12, 29] (and sometimes de-
scribed as the ``linear chain trick"" [5, 18]). While references to this connection have
certainly been made in epidemiological contexts (see, for example, [5, 13, 16]), the
epidemic modelling community has not taken full advantage of this result. Here, by
providing exact analytical expressions for the intrinsic generation-interval distribution
of any Erlang SEIR model, we hope to draw attention to the renewal equation and
its potential uses in studying infectious disease dynamics. Table 1 summarizes our
main results. We note that the methodology we have used to derive the intrinsic
generation-interval distribution g(\tau ) required in the renewal equation (2.7) can be
applied to any staged-progression epidemic model [17].
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EQUIVALENCE RENEWAL EQUATION AND ERLANG SEIR 3267

Table 1
Compartmental models and their equivalent intrinsic generation-interval distribution for the

renewal equation (2.7). The mean duration of the latent (resp., infectious) period is 1/\sigma (resp.,
1/\gamma ). The variable t is the time since infection and \Delta t (which must be less than 1/\gamma ) is the size of
the time step when time is discrete. If \mu > 0, then one just replaces \sigma and \gamma with \sigma + \mu and \gamma + \mu 
in g(t) for SIR and SEIR (second and third cases).

Compartmental ODE Renewal-equation intrinsic generation-interval distribution g(t)

SIR discrete time Geometric(\gamma \Delta t): \gamma \Delta t(1 - \gamma \Delta t)
t

\Delta t
 - 1

SIR Exponential(\gamma ): \gamma e - \gamma t

SEIR

\Biggl\{ 
\gamma 2 t e - \gamma t, \sigma = \gamma ,
\sigma \gamma 
\sigma  - \gamma 

\bigl( 
e - \gamma t  - e - \sigma t

\bigr) 
, \sigma \not = \gamma 

SEmInR (``Erlang"")

\left\{     
(3.4), m = 0,

(3.10), m\sigma = n\gamma , m \geq 1,

(3.15), m\sigma \not = n\gamma , m \geq 1

SE\infty I\infty R Uniform
\Bigl( 

1
\sigma 
, 1

\sigma 
+ 1

\gamma 

\Bigr) 

Epidemic models described by ODEs---with state variables corresponding to com-
partments that represent various epidemiological states---are invaluable tools for eval-
uating public health strategies [2]. For example, when the goal of a modelling study
is to assess a particular intervention (e.g., vaccination of a particular group) in a large
population, a compartmental ODE is convenient because it is easy to keep track of the
numbers of individuals in each disease state. The Erlang SEIR model is often a good
choice, at least as a starting point, because it can represent realistic distributions of
latent and infectious periods [27]. However, if one is interested only in the dynamics
of the susceptible and/or infectious populations (e.g., when forecasting incidence in
real time during an outbreak), the renewal equation framework can be beneficial as
it can simplify the modelling [8] and potentially speed up the computation times.
The analytical formulae for the intrinsic generation interval of the SEIR Erlang ODE
model (see (3.4), (3.10), (3.15), or Table 1) are relatively easy to implement in a
computer program. Our experience has been that the renewal equation yields faster
numerical simulations than the corresponding ODE models. Of course, computing
times depend on the numerical methods and software implementation; more work is
needed to ascertain how computing times vary between approaches given identical
problems and equivalent error bounds.

The generation interval is rarely observed (because the actual transmission time is
usually not observed), but through contact tracing it is possible to directly observe the
serial interval (i.e., the interval of time between the onset of symptoms for the infector
and her/his infectee). Although different in theory, the serial interval distribution
may be a good approximation to the generation-interval distribution, especially for
diseases for which the latent and incubation periods are similar (Appendix D and [15]).
On the other hand, the latent and infectious periods---which are used to parametrize
compartmental ODE models---can be observed only in clinical studies, which are more
rare. Consequently, the generation-interval distribution can be easier to obtain than
the distributions of latent and infectious periods, in which case a renewal equation
might be easier to parameterize than an Erlang SEIR ODE model.
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Fig. 1. Numerical check of equivalence in continuous time. Daily incidence time series of the
Erlang SEIR for different values of m and n is obtained by solving numerically the ODE system
(2.1) (and retrieving \beta SI as the incidence). The daily incidence time series of the renewal equation
was calculated using (2.7) and Algorithm C.1 with the intrinsic generation-interval g defined with
formula (3.15) and a time step of 0.1 day. The superimposed curves (thin line for ODE and thick for
the renewal equation) show the equivalence of both models when the generation-interval distribution
of the renewal equation is appropriately chosen. Mean duration of latency (resp., infectiousness) is
2 (resp., 3) days, and \scrR 0 = 1.3. The initial bump at time t = 0 reflects the incidence initialization
I0 = 10 - 5.
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Fig. 2. Time series for SIR model with vital dynamics and seasonal forcing. Top panel: sus-
ceptible proportion; bottom panel: daily incidence. The thin black curve represents the time series
obtained by solving numerically the ODE system (2.1). The thick grey time series was calculated
using the renewal equation model (2.7) with an exponential intrinsic generation-interval distribu-
tion and implemented with an integration time step of 0.05 day. The birth and death rates are
\mu = 0.02/year, and the mean infectious period is 1/\gamma = 3 days. The reproduction number was
periodically forced \scrR (t) = \scrR 0(1 + \alpha sin(2\pi t/T )) with \scrR 0 = 1.3, \alpha = 0.6, and T = 365 days.

Appendix A. Proof of formula (3.13).

A.1. Preliminaries.

Lower incomplete gamma function. The lower incomplete gamma function
\scrG (k, x) is defined for k > 0 and x \geq 0 via [24, sect. 8.2.1]

(A.1) \scrG (k, x) =
\int x

0

tk - 1e - t dt .

We use the notation \scrG rather than the standard \gamma for this function because, in this
paper, we reserve the symbol \gamma for the disease recovery rate. The integral of \scrG can
be written

(A.2)

\int t

0

\scrG (k, x) dx = tke - t + (t - k)\scrG (k, t) ,

which is straightforward to verify by noting that both sides vanish for t = 0 and that
they have identical derivatives. Because it is an expression that occurs often in our
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3270 D. CHAMPREDON, J. DUSHOFF, AND D. J. D. EARN

calculations, we note that

(A.3)

\int x

0

tke - at dt = \scrG (k + 1, ax)/ak+1.

Nested sums. In the course of our computations, certain types of nested sums
occur repeatedly, so it is helpful to note that, for any function f ,

(A.4)

m - 1\sum 
ik=0

ik\sum 
ik - 1=0

\cdot \cdot \cdot 
i2\sum 

i1=0

f(i1) =

m - 1\sum 
\ell =0

\biggl( 
m - 1 - \ell + k  - 1

k  - 1

\biggr) 
f(\ell ) .

In the special case f(0) = 0 and f(\ell ) = 1 for all \ell \geq 1, we have [6]

(A.5)

m - 1\sum 
ik=1

ik\sum 
ik - 1=1

\cdot \cdot \cdot 
i2\sum 

i1=1

1 =

m - 1\sum 
\ell =1

\biggl( 
m - 1 - \ell + k  - 1

k  - 1

\biggr) 
=

\biggl( 
m - 2 + k

k

\biggr) 
.

We define for any integers m \geq 1, k \geq 1, and real a

(A.6) \psi k(t) :=
1

a

m - 1\sum 
i1=0

i1\sum 
i2=0

\cdot \cdot \cdot 
ik - 1\sum 
ik=0

\scrG (ik + 1, at)

ik!
.

Using (A.4), we can rewrite \psi as a single sum,

(A.7) \psi k(t) =
1

a

m - 1\sum 
\ell =0

\biggl( 
m - 1 - \ell + k  - 1

k  - 1

\biggr) 
1

\ell !
\scrG (\ell + 1, at) .

We note, in particular, that \psi 0 = 0 and \psi 1 = 1
a

\sum m - 1
\ell =1

\scrG (\ell +1,at)
\ell ! . It can be proved by

induction that the integral of \psi k is

(A.8)

\int t

0

\psi k(x) dx =

\biggl( 
m - 2 + k

k

\biggr) 
( - 1 + at+ e - at)

a2
 - 1

a
\psi k+1(t) .

A.2. Calculations for \bfitF \bfone . From the system of ODEs (2.3) and (3.1) (in the
main text) we have

F \prime 
1 = m\sigma Lm  - n\gamma F1,(A.9a)

F \prime 
1 =

(m\sigma )mtm - 1

(m - 1)!
e - m\sigma t  - n\gamma F1,(A.9b)

(en\gamma tF1)
\prime =

(m\sigma )mtm - 1

(m - 1)!
e - (m\sigma  - n\gamma )t.(A.9c)

Hence,

(A.10) F1(t) =
(m\sigma 

a )m

(m - 1)!
\scrG (m, at)e - n\gamma t ,

where a = m\sigma  - n\gamma as in (3.14a).
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Fig. A1. Formula checks for probabilities Lk and Fk. Analytical formulas (3.1) and (3.13) are
compared to the numerical integration of the ODE system (2.3). For this figure, m = 4 and n = 5.

A.3. Calculations for \bfitF \bfitk for \bfitk \geq 2. Again from (2.3), F \prime 
2 = n\gamma (F1  - F2).

Multiplying both sides by en\gamma t gives

(A.11) F2 = n\gamma e - n\gamma t (m\sigma )m

(m - 1)!

\int t

0

\int x

0

um - 1e - au dudx,

which can be expressed explicitly using the lower incomplete gamma function,

(A.12) F2(t) = n\gamma e - n\gamma t
\Bigl( m\sigma 
a

\Bigr) m\Biggl( 
 - 1

a
+ t+

e - at

a
 - 1

a

m - 1\sum 
p=1

\scrG (p+ 1, at)

p!

\Biggr) 
.

Similarly, starting from F \prime 
3 = n\gamma (F2  - F3) and multiplying both sides by en\gamma t we

have, after some algebra,

(A.13) F3(t) = (n\gamma )2e - n\gamma t
\Bigl( m\sigma 
a

\Bigr) m\biggl( 
(1 - at - e - at)

m

a2
+

1

2
t2 +

1

a
\psi 2

\biggr) 
.
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3272 D. CHAMPREDON, J. DUSHOFF, AND D. J. D. EARN

Using the results from subsection A.1, we can prove by induction (using F3 as the
initial step) that

Fk(t) = (n\gamma )k - 1e - n\gamma t
\Bigl( m\sigma 
a

\Bigr) m \biggl[ 
( - 1)k

\biggl( 
k +m - 3

k  - 2

\biggr) 
( - 1 + at+ e - at)

ak - 1
(A.14a)

+

k - 3\sum 
p=0

( - 1)p

ap

\biggl( 
m+ p - 1

p

\biggr) 
tk - 1 - p

(k  - 1 - p)!
(A.14b)

+
( - 1)k+1

ak - 2
\psi k - 1

\biggr] 
.(A.14c)
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Fig. A2. Formula check for the intrinsic generation-interval distribution. Analytical formulas
(2.6) and (3.13) are compared to the numerical integration of the ODE system (2.3) when m = 3
and n = 4.

Appendix B. Renewal equation and SIR model in discrete time. This
section has the pedagogical purpose to show how, in the case of a discrete time SIR
model, the generation-interval distribution can be calculated simply.

B.1. Discrete time. The discrete-time formulation of the renewal equation,
without vital dynamics, is

it = \scrR 0St - 1

t\sum 
k=1

g(k)it - k,(B.1a)

St = St - 1  - it,(B.1b)

where \scrR 0 is the basic reproduction number, St is the proportion of susceptible indi-
viduals at time t, g is the generation-interval distribution, and it is the incidence at
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EQUIVALENCE RENEWAL EQUATION AND ERLANG SEIR 3273

time t. The discrete-time SIR model can be written as

it = \beta St - 1It - 1,(B.2a)

St = St - 1  - it,(B.2b)

It = It - 1 + it  - \gamma It - 1.(B.2c)

We use the standard notation where It is the disease prevalence at time t, \beta 
is the contact rate, and \gamma is the recovery rate. When studying disease invasion, we take
initial conditions I0 = 1  - S0 \ll 1. We note that (B.2c) can be re-
written as It = (1  - \gamma )It - 1 + it. Substituting It - 1 = (1  - \gamma )It - 2 + it - 1 gives
It = (1 - \gamma )2It - 2 + (1 - \gamma )it - 1 + it. Iterating this substitution t times, we have

(B.3) It =

t\sum 
k=0

(1 - \gamma )kit - k .

Next, we use (B.2a) to replace It on the left-hand side with it+1/\beta St, and shift by
one time unit (t\rightarrow t - 1) to obtain

(B.4) it = \beta St - 1

t\sum 
k=1

(1 - \gamma )kit - k .

If we note \scrR 0 := \beta /\gamma , set \~h(k) := (1  - \gamma )k and the normalized function h(k) :=
\~h(k)/

\sum \infty 
k=1

\~h(k), we have

(B.5) it = \scrR 0St - 1

t\sum 
k=1

h(k)it - k.

Thus, we have expressed the SIR model (B.2) in the same form as the renewal equa-
tion (B.1). The function h can then be identified as the intrinsic generation-interval
distribution in the renewal equation framework. We have h(k) = \gamma (1 - \gamma )k - 1, which is
the density of the geometric distribution with probability parameter \gamma . Hence, a dis-
cretized SIR model is exactly the same as a renewal equation model with a geometric
generation-interval distribution.

B.2. Limit of continuous time. We will also need an expression of the renewal
equation when using a time step that is smaller than the time unit (i.e., day). The
renewal equation models how transmission occurs from all previous cohorts infected at
times 0, 1, . . . , t - 1 to the current time t. The way the generation-interval distribution
g is defined depends on the unit of the time discretization. Writing the renewal
equation (B.1) necessitates changing the definition of incidence from daily incidence
to incidence during the new time step period. Moreover, if we want to keep the same
parameterization for the generation-interval distribution, then \gamma must be rescaled.
Let's consider a time step \Delta t < 1 that partitions one time unit in N segments of
the same size, say \Delta t := 1/N . Rewriting the renewal equation (B.1a) with that new
subpartition gives, for any p \geq 1,

(B.6) ip = \scrR 0Sp - 1

p\sum 
k=1

ip - k \~g(N, \gamma , k).

Despite using the same notation, the implicit meaning for i and S in (B.6) has changed
and now refers to the incidence and susceptible proportion during the time step \Delta t
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Fig. B1. Numerical check of equivalence in discrete time. The thick lines show the time
series of the susceptible proportion of the population for the SIR model in discrete time (time step
= 1, grey curve) and in continuous time (time step = 0.01, red). The thin blue lines represent
the susceptible proportion from the discrete renewal equation implemented with different time step
values \Delta t = 1/N with N = 1, 2, 4, 8, 16, 32. The renewal equation model has a generation interval
geometrically distributed, with the time-rescaled probability parameter \gamma \Delta t (see (B.7)). When N = 1
the renewal equation is simulated at the same times as the discrete SIR, and the two curves match.
As N increases, time discretization becomes closer to continuous time and the renewal equation
curves approach the SIR model simulated in continuous time. The y-axis has a log scale to better
visualize the difference between the curves. Parameters used: \scrR 0 = 4.0, mean duration of infection
\gamma = 1day - 1, and initial proportion of infectious individuals I0 = 10 - 5.

(not 1 day). The index k now refers to new kth period of length \Delta t. Moreover, the
generation-interval distribution \~g now takes into account the time scale change, while
keeping the same parameterization with \gamma . In (B.1a), taking a geometric distribution
for the generation interval, g(k) = \gamma (1 - \gamma )k, implies that the mean generation interval
is 1/\gamma in the original time unit (e.g., days). If we were to write g(p) = \theta (1 - \theta )p in (B.6),
the mean generation interval would be 1/\theta in the new time unit (e.g., hours). Hence
we must have 1/\theta = N \times 1/\gamma , that is, \theta = \gamma /N . So, we have \~g(N, \gamma , k) = \gamma 

N (1 - \gamma 
N )k.

To summarize, the discrete-time SIR renewal equation with a time step less than the
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natural time unit (i.e., \Delta t = 1/N), is obtained by replacing (B.1a) with

(B.7) ip = \scrR 0 Sp - 1

p\sum 
k=1

ip - k
\gamma 

N

\Bigl( 
1 - \gamma 

N

\Bigr) k
and replacing t with p in (B.1b).

Now we consider an arbitrarily fine subpartition of the (natural) discrete time
and will take the limit when the time step tends to 0 in order to obtain the limit of
continuous time.

Starting again with the SIR model for the time step of \Delta t = 1/N , we can rewrite
(B.2c) as (Ik  - Ik - 1)/(1/N) = ik  - \gamma Ik - 1, that is, Ik = ik  - (1  - \gamma /N)Ik - 1, where
Ik and ik now refer to the prevalence and incidence of the kth period of length \Delta t.
Using the same algebraic manipulations as in the previous section with the original
time unit gives, for the incidence during the mth period of an SIR model, exactly
the same expression as the renewal equation (B.7). Hence, the result obtained for
the original (natural) time discretization---i.e., the discretized renewal equation with
a geometric generation interval is the same as the discretized SIR model---still holds
for any subpartitioned time discretization, as long as the probability parameter of the
geometric distribution is rescaled accordingly (i.e., \gamma \rightarrow \gamma 

N ).
For both the SIR model and the renewal equation, the continuous time formula-

tion is obtained when taking the limit N \rightarrow \infty (that is, \Delta t\rightarrow 0). But the limit of the
geometric distribution in (B.7) is the exponential distribution. Hence, the continuous
time formulation of the SIR model is equivalent to the continuous time formulation
of the renewal equation with an exponential distribution for its generation interval.
A numerical check of this result is shown in Figure B1.

Appendix C. Numerical solution of the renewal equation. The rewewal
equation (2.7) with invasion initial conditions (2.8) can be solved, for an integration
time step \Delta t, using the ``left Riemann sum"" approach detailed in Algorithm C.1.

Algorithm C.1. Numerical simulation of the renewal equation.

Input: Positive real numbers\scrR 0, \mu , and tmax; initial prevalence I0; density function
of the generation interval g; integration time step \Delta t

\#\# initialization

inc[0]\leftarrow I0/\Delta t
S[0]\leftarrow 1 - I0
nsteps\leftarrow tmax/\Delta t

\#\# Loop calculating incidence at each time step

integ \leftarrow 0
for (u=1, 2, . . . , nsteps) do
integ\leftarrow integ + g(s) \ast inc[u - s] \ast exp( - \mu \ast \Delta t \ast s)
inc[u]\leftarrow inc[u - 1] +\scrR 0 \ast S[u - 1] \ast integ \ast \Delta t
S[u]\leftarrow S[u - 1] + (\mu \ast (1 - S[u - 1]) - inc[u]) \ast \Delta t

end for

return Susceptible proportion at each time (vector S) and incidence (vector inc).

Appendix D. Generation and serial interval distributions. As high-
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lighted in [15], there are three fundamental time periods that determine transmission
from one individual to another for directly transmitted infectious diseases: the latent,
incubation, and infectious periods. Let \ell 1 be the latent period of an infector and \ell 2
the latent period of her/his infectee. Let w be the interval of time between the end
of the infector's latent period and the time of disease transmission to an infectee. We
denote by n1 and n2 the incubation periods of the infector and infectee, respectively.
The difference between the latent and incubation periods is denoted by di = \ell i  - ni
for i = 1, 2. Hence,

(D.1) generation interval = \ell 1 + w .

Fig. D1. Illustration of the epidemiological periods and parameters.

Moreover, the serial interval is equal to (\ell 1 +w - n1)+n2 (Figure D1), which we can
also write as

(D.2) serial interval = (\ell 2 + w) + (d2  - d1) .

If we assume that \ell 1 and \ell 2 are identically distributed, and also d1 and d2 are identi-
cally distributed with distribution \sansD , then the generation-interval distribution \sansG and
serial-interval distribution \sansS have the same mean:

(D.3) \BbbE (\sansS ) = \BbbE (\sansG ).

If, furthermore, we assume that d1 and d2 are independent from each other, and also
from \ell and w, we can write

(D.4) var(\sansS ) = var(\sansG ) + 2 var(\sansD ).

So when the variance of the difference between the latent and incubation periods is
small, the variance of the serial and generation intervals are similar.

To summarize, if we assume the following:
\bullet the latent period distribution is the same for both the infector and her/his
infectee (\ell 1 \sim \ell 2),
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\bullet the distribution of the difference between the latent and incubation periods
is the same for both the infector and her/his infectee (d1 \sim d2 \sim \sansD ) and
independent from one another (d1 \bot \bot d2),

\bullet the distribution \sansD has a relatively small variance,
\bullet the distribution of the difference between the latent and incubation periods
(d) is independent of the latent period (\ell ) and the interval of time between
the end of the infector's latent period and the time of disease transmission to
an infectee (w)

then the distributions of the generation and serial intervals are similar (because their
first two moments---the mean and variance---are similar).
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