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Mechanistic mathematical modelling of the population dynamics of infectious diseases has advanced tremendously 
over the last few decades [1–6]. Transmission models have been applied to countless diseases of public health im-
portance, including seasonal and pandemic influenza [7], childhood diseases such as measles [8,9] and whooping 
cough [10], vector transmitted diseases such as malaria [11] and dengue [12], and waterborne diseases such as cholera 
[13–15]. Much attention in recent years has been directed to emergent diseases such as SARS [16], new subtypes 
of influenza [17,18], Ebola [19,20], and Zika [21], for which an understanding of early outbreak dynamics is criti-
cal.

Early outbreak dynamics can provide clues about underlying processes that generate observed epidemic patterns. 
In particular, typical epidemic models predict initially exponential growth in incidence, and the assumption that such 
models are appropriate for studying outbreak dynamics is not usually questioned. Chowell and co-workers [22] review 
extensive work in the last few years that casts doubt on the common belief that initial epidemic growth should be 
expected to be exponential. Consequently, fitting mathematical models that generate exponential initial growth to 
observed epidemics—which might be growing non-exponentially—might lead to biased or meaningless parameter 
estimates and spurious epidemiological inferences. The two major themes of the Chowell et al. review are (i) the use 
of a simple, phenomenological model to investigate whether initial growth is truly exponential and (ii) transmission 
models with inhomogeneous contact structure that can yield initially sub-exponential epidemic growth.

In order to quantify departures from exponential growth, the approach that Chowell et al. [22] review is to fit a 
two-parameter generalized growth model [23] to the cumulative incidence of an observed epidemic. Writing C(t) for 
cumulative incidence at time t , the phenomenological model is dC/dt = rCp , which is easily solved to yield
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Fig. 1. Left panel: influenza pH1N1 incidence in Mexico from March 11th to April 29th 2009 (data sourced from [31]). Solid squares indicate data 
used for fitting parameters. Blue (resp. red) indicates data judged by eye to be before (resp. after) the tipping point beyond which the probability 
of fizzling was negligible. Middle panel: cumulative incidence inferred from the left panel. Right panel: estimates of r and p using an increasing 
amount of data (using parametric bootstrapping as in [23]). Solid circles are median estimates and grey segments are 95%CI. The estimates using 
the smallest (resp. largest) number of observations are indicated with • (resp. ×). Blue estimates correspond to fits based on data including the blue 
points in the left panel, so • indicates the “first fit” from day 11 to day 16 and × indicates the “last fit” from day 11 to day 45. Red estimates use 
only the red data in the left panel, so • indicates a fit based on days 33 to 38 and × indicates days 33 to 45. The variation of the estimates highlights 
their sensitivity with respect to the window of observation chosen. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.)
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For p = 1, the growth is exponential at rate r . For p < 1 it is sub-exponential, while for p > 1 it is super-exponential 
(until the finite-time singularity at tmax = C

−(p−1)

0 /[(p − 1)r]). Chowell et al. [22,23] assume that p ≤ 1, and fre-
quently find p < 1 when fitting the model to epidemic data.

The observation that initial epidemic growth is typically sub-exponential is important and will surely motivate 
much further research aiming to determine which biological mechanisms truly give rise to observed sub-exponential 
outbreak patterns. In addition to the issues that Chowell et al. [22] emphasize must be addressed (e.g., behaviour 
changes, spatial structure), we suggest that the further considerations listed below deserve careful attention as this 
research progresses. Several of these issues are illustrated in Fig. 1, where we have applied the methodology of 
Chowell et al. [22,23] to the 2009 influenza pandemic in Mexico.

1. Potential for super-exponential growth. Imposing the constraint that p ≤ 1 is unnecessary and potentially mis-
leading.

2. Sensitivity to observation window. Defining the “initial growth period” is generally done in an ad hoc manner, 
yet estimated values of r and p can depend strongly on time range considered. Plotting how parameter estimates 
change as the position and length of the observation window is altered greatly increases appreciation of the 
limitations of parameter estimation algorithms [24].

3. Confidence intervals may be large. Even if they exclude p = 1, wide confidence intervals on r and p may preclude 
inferences that differ substantially from exponential growth models.

4. Apparently non-exponential growth can be induced by demographic stochasticity (process error). Soon after ini-
tial invasion, the probability that an outbreak will fizzle out before taking off is substantial. Until an epidemic 
reaches the tipping point beyond which the probability of fizzling is negligible, incidence will tend to be noisy 
and cumulative incidence can appear non-exponential.
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5. Apparently non-exponential growth can be induced by reporting limitations (observation error). An exponentially 
growing epidemic can put strains on surveillance systems such that reporting rates decrease as incidence increases, 
yielding sub-exponential reported incidence. Depending on the disease, other systematic observation errors can 
be induced by changes in awareness or stigma, leading to biased reporting and growth estimates that could be 
non-exponential.

6. Saturation may bias estimates of r and p. Even in the deterministic limit, standard models yield exponential 
growth only instantaneously, since the growth rate is slowed by susceptible depletion. Particularly if temporal 
sampling of the growth phase of an epidemic is coarse (or the intrinsic growth rate is very fast), phenomeno-
logical models that incorporate saturation of growth (e.g., the logistic equation) may be better for estimation of 
the initial exponential growth rate [24]. Exploiting the same principle might improve estimates of r and p for 
non-exponentially growing epidemics.

The review of Chowell et al. [22] highlights existing methodology to detect and understand sub-exponential out-
breaks. Phenomenological modelling that can detect non-exponential growth in a given time series is a useful tool 
when investigating outbreaks precisely because it does not depend on specific biological assumptions and can be car-
ried out quickly. Other computationally efficient tools, such as time-dependent estimation of effective reproduction 
numbers [25–27] or compounding decreasing reproduction numbers [28] (which implicitly provide other frameworks 
for assessing sub-exponentiality), can also help to narrow the focus of more demanding mechanistic modelling. Ul-
timately, in most infectious disease management contexts, transmission models that incorporate both process and 
observation error [29,30] seem likely to be unavoidable (and perhaps most informative) for understanding and con-
trolling epidemics.
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