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Abstract

Genomic surveillance during the coronavirus disease 2019 (COVID-19) pandemic has been key 
to the timely identification of virus variants with important public health consequences, such 
as variants that can transmit among and cause severe disease in both vaccinated or recovered 
individuals. The rapid emergence of the Omicron variant highlighted the speed with which 
the extent of a threat must be assessed. Rapid sequencing and public health institutions’ 
openness to sharing sequence data internationally give an unprecedented opportunity to 
do this; however, assessing the epidemiological and clinical properties of any new variant 
remains challenging. Here we highlight a “band of four” key data sources that can help to 
detect viral variants that threaten COVID-19 management: 1) genetic (virus sequence) data; 2) 
epidemiological and geographic data; 3) clinical and demographic data; and 4) immunization 
data. We emphasize the benefits that can be achieved by linking data from these sources and 
by combining data from these sources with virus sequence data. The considerable challenges 
of making genomic data available and linked with virus and patient attributes must be balanced 
against major consequences of not doing so, especially if new variants of concern emerge and 
spread without timely detection and action.
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and spread of new variants of interest and variants of concern 
(VOC) have the potential to undermine our ability to manage 
the coronavirus disease 2019 (COVID-19) pandemic, with costly 
consequences to health, healthcare systems and economies. 
The SARS-CoV-2 virus faces heterogeneous selection: 
highly vaccinated communities and those with substantial 
immunity from previous infection are partially protected, while 
unvaccinated communities and those with waning immune 
protection are susceptible. With rising immunity levels, selection 
is expected to favour variants that better escape vaccine or 

infection-induced immunity (10). It is particularly crucial to know 
if a new virus variant emerges with mutations that increase 
1) the ability to infect vaccinated or recovered individuals, 2) the 
transmissibility of the virus and/or 3) the severity of the disease. 
The rapid spread of the Omicron variant has led to the highest 
demand yet on hospitals in many areas, despite the disease 
being less severe on average (11), highlighting the urgency of 
developing the methods and data processes to answer these 
questions in time to take appropriate preventive action.

Introduction

Since the start of the pandemic, severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2) has evolved in multiple 
ways that increase its public health threat, with higher 
transmissibility (Alpha, Delta, Omicron variants) (1–4), partial 
immune escape (Beta, Omicron variants) (5,6) and greater 
severity (Alpha, Delta variants) (7–9). The continued emergence 
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It is to be hoped that SARS-CoV-2 will not evolve higher 
transmissibility simultaneously with higher severity among 
vaccinated or recovered individuals. The cellular immune 
response is strong and complex (12–14), and breakthrough 
infections have had reduced severity compared to infections 
in unvaccinated individuals (15). Before Omicron emerged, 
vaccine-induced antibody responses remained strong across 
a variety of VOCs (16,17), but Omicron is a stark reminder 
that variants can emerge that substantially evade our 
immune responses (1–3,18), at least in terms of neutralizing 
antibodies (14,18–20), dramatically reducing vaccine-induced 
protection against infection (21). There is no guarantee that 
future variants will follow Omicron’s path in terms of severity.

Virus sequencing initiatives and related genomic surveillance 
systems give a high-resolution and near-real-time view of how 
SARS-CoV-2 is evolving and spreading and of the mutations that 
are rising in frequency (22). Establishing surveillance systems 
that can detect evolving viral characteristics that impact clinical 
outcomes and effectiveness of control measures is a key aim of 
viral sequencing efforts (23). For a newly emerging variant with 
uncertain impact, rapidly assessing the degree of risk to control 
efforts is paramount and requires multiple sources of data.

Data and linkages that are required
While genomic data alone allow certain inferences (e.g. 
identifying which cases are related, and identifying which 
mutations occur in a new variant), substantially greater value can 
be obtained by combining a “band of four” key data sources: 
genetic data; epidemiological and geographic data; clinical and 
demographic data; and immunization (or recovery) data.

Genetic data refer to attributes of the virus. Here we focused 
on SARS-CoV-2 whole genome sequence data, but note that 
polymerase chain reaction testing can identify specific mutations 
or deletions without fully sequencing the virus genome and so 
can provide rapid VOC detection.

Epidemiological and geographic data refer to information about 
the transmission context, including the geographic location 
and the reason for testing or sequencing (e.g. whether the 
individual was part of a known outbreak, was a traveller, was 
randomly sampled, was a vaccine breakthrough infection, was 
someone previously infected or was tested for other reasons). 
Epidemiological data also include information about the source 
and location of exposure: workplace outbreak; household; travel; 
community exposure; animal exposure; and health care worker, 
as well as any other contact investigation information (e.g. 
indoors vs outdoors, ventilation, community setting).

Clinical and demographic data refer to attributes of individuals 
infected with SARS-CoV-2, including treatments provided, 
outcomes (e.g. symptoms, severity) and demographic aspects 
(e.g. age, comorbidities, exposure risks).

Immunization (or recovery) data refer to attributes of past 
COVID-19 infection or vaccination, including vaccine type(s), 
number of doses and dates of doses.

These data are typically gathered by different parts of a health 
system at different times and are used for a variety of purposes, 
creating challenges for data linkage. Medical facilities manage 
the clinical course of disease, contact tracing and other case 
data are gathered by epidemiological teams in public health, 
vaccination status may be in medical records or known only to 
the individual, while sequence information is often collected at 
specialized sequencing centres. Along the way, information may 
be lost or remain disconnected. Jurisdictions differ in the extent 
to which linkages among these data can be made; however, 
linking these four data sources is the most promising way to 
rapidly detect variants that have the potential to break through 
pandemic containment measures.

Opportunities with partial data
It is essential to understand vaccine effectiveness against a 
variety of outcomes (infection, symptoms, hospitalization, death), 
as well as intrinsic transmissibility and severity in vaccinated 
and unvaccinated individuals. These can change rapidly as new 
variants arise and spread. Links to genetic data can attribute 
transmissibility, severity and vaccine effectiveness to viral types, 
and thereby provide a better basis for projecting infections 
and healthcare burden in the context of vaccination. Viral 
evolution also causes a continual turn-over in how we classify 
a virus, as names are given only when a variant has spread and 
become sufficiently distinct (e.g. by Phylogenetic Assignment 
of Named Global Outbreak Lineages) (24). Consequently, case 
data with linked lineage information need to be updated as our 
classification system changes, and this is only possible if links to 
sequence data, as opposed to lineage names, are maintained.

With only viral sequences and sample dates, it is possible to 
identify unusual new variants, bursts of mutations, “mutator” 
lineages that evolve faster than predicted (25,26) or genetic 
changes that spread more rapidly than expected; however, rapid 
growth is difficult to interpret. Rapid growth could be due to viral 
characteristics, epidemiological fluctuations, travel-associated 
introductions or sampling artifacts (26). For example, the 
mutational profile of the Omicron variant was a cause for concern 
as it includes both new mutations and a number of mutations 
already seen in other VOC—including mutations known to 
enable the virus to evade neutralizing antibodies (27). Because 
of their genetic surveillance system, the Department of Health 
in South Africa sounded the alarm about Omicron (B.1.1.529; 
November 25, 2021) after detecting the new subvariant and 
witnessing its rapid spread in a matter of weeks (first collected 
on November 11, 2021). The researchers noted key outstanding 
questions about the effect of Omicron on transmissibility, 
effectiveness of vaccines and disease severity, which cannot 
be determined from data on the number of detected Omicron 
sequences alone (28).
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The fields of phylogeography and phylodynamics have 
enabled the use of virus sequence data to infer the 
geographic movements of viruses (24,25), identify factors 
driving transmission across geographic regions (29), estimate 
the effective reproduction number over time (30,31) and 
link virus sequences to epidemiological models for a range 
of applications (32,33); however, there are limitations. 
Phylogeographic analyses are affected by geographic differences 
in both sampling rates and strategies. Phylodynamic estimates 
of reproduction numbers over time tend to be retrospective, 
apply to large virus populations at the national or international 
scale, have high degrees of uncertainty and are often not 
immediately actionable at smaller locations—where public 
health units need to act. Combining sequence data with the 
other three bands of data offers more opportunities to use virus 
sequences to understand transmission, severity and immunity. 
This combination does not necessarily require individual-level 
linked data; much could be done with data that are de-identified 
and even data reported for small groups rather than individuals. 
Even disaggregating outcomes by VOC status would have very 
high value, as noted recently for Omicron (34).

If the epidemiological context is known, it is possible to 
distinguish the emergence of a variant with a high growth 
rate from growth driven by chance “founder effects” (e.g. 
superspreader events, social gatherings among unvaccinated 
individuals, introductions vs transmission in care settings or 
increased sampling due to a particular outbreak) (35,36). Making 
this distinction increases the reliability of the inference and the 
value for both research and public health (36,37). For example, 
Volz et al. combined sequencing and polymerase chain reaction 
testing data with reason for sequencing (community samples) 
and geography in estimating transmissibility of the Alpha variant 
B.1.1.7 (1). Virus sequences can also be linked to travel history 
to monitor the spread of emerging variants and to inform public 
health measures aiming to limit importation (24,38,39).

In densely sampled outbreaks, linking virus sequences to 
epidemiology can offer information of immediate relevance to 
infection prevention, especially when analysis can be done in 
real time. Lucey et al. used whole genome sequence data to 
identify previously undetected transmission events in hospital-
acquired infections, finding evidence that transmission occurred 
from both symptomatic and asymptomatic healthcare workers, 
and occurred disproportionately in patients who required high 
levels of nursing care, informing better prevention tools (40). In a 
real-time genomic epidemiology study in Australia, sequencing 
linked to epidemiological data indicated the probable source 
of infection and identified previously unknown connections 
between institutions (37,41). Linking virus sequences to 
additional host and epidemiological data, such as the location of 
exposure, would also make it possible to detect mutations that 
give the virus a context-specific advantage, such as transmitting 
more efficiently outdoors or among specific age groups.

Linking viral sequence data with host data on age, sex, 
race, occupation, dwelling type, comorbidities and other 
clinical/demographic data permits virus and host factors 
contributing to severe disease to be identified. For example, 
Bager et al. used linked data for virus sequences, hospitalization 
outcome and a large number of host covariates to demonstrate 
a higher adjusted risk ratio of hospitalization for the Alpha 
variant (42). Similarly, Fisman and Tuite estimated the increase 
in risk of hospitalization, intensive care unit admission and death 
from N501Y-containing variants and the Delta variant (43). 
Further resolution could be achieved with whole genome 
sequence in place of VOC screening data.

Linked immunization and sequence data are essential to 
determine whether newly emerging types and/or variants 
reduce vaccine effectiveness and to what extent. For example, 
Skowronski et al. linked VOC typing with vaccine status and 
testing information to show that a single dose of messenger 
ribonucleic acid (mRNA) vaccines was similarly effective against 
the Alpha and Gamma variants and non-VOC SARS-CoV-2 (44). 
Examining clusters or sets of closely related virus sequences 
together with immunization status informs us about potential 
transmission. If a cluster consists mainly of vaccinated individuals, 
this suggests considerable transmission among these individuals; 
however, if breakthrough infections are preferentially sequenced, 
an apparent cluster of breakthrough cases could be missing 
many unvaccinated individuals who comprised most of the 
transmission. Distinguishing between these requires linking 
sequences, vaccination status and reason for sequencing, which 
may include contact tracing or household information.

The entire band of four is needed to determine whether a virus 
variant can be transmitted by vaccinated individuals and cause 
severe disease among them: sequence data can tell us whether 
this is a new variant; epidemiological data and vaccination data 
can tell us whether it is being transmitted among vaccinated 
individuals and clinical data will indicate whether the variant is 
causing severe disease. Without these four linked pieces—shared 
sufficiently rapidly and over a large enough area to have strong 
statistical power—there will be gaps that substantially weaken 
our ability to monitor the virus’ changing phenotype. Small-scale 
but aggregated and de-identified data may be sufficient for early 
warnings and help to avert concerns over privacy.

Data sharing and statistical power
Many jurisdictions may gather virus sequences and clinical, 
epidemiological and immunization data, but may not permit 
linkage among them due to structural or other barriers. Even 
where timely joint analysis of these data is possible, however, 
there is an additional challenge that an emerging variant or 
type is necessarily rare when it is first emerging. Sharing data 
across jurisdictions results in greatly improved statistical power 
by increasing the total amount of data available. Data delays are 
an additional problem. Even for countries sharing virus genomic 
data through the Global Initiative on Sharing All Influenza Data 
database, lags can span months (45). These extensive time 
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lags hamper international efforts to track variants and their 
mutations, determine which are rising in frequency and where, 
track variants’ epidemiological and biological consequences 
and develop effective public health policy (45). Furthermore, 
even where sequences are shared in a timely manner to the 
Global Initiative on Sharing All Influenza Data database, 
they are typically not shared alongside epidemiological, 
clinical/demographic and immunization data. Indeed, the barriers 
to public health data sharing are extensive: van Panhuis et al. 
described technical, motivational, economic, political, legal and 
ethical barriers (46). Many of these are of daily relevance in the 
COVID-19 pandemic.

Timeliness matters
To make an immediate practical difference, these data linkages 
and analyses need to be conducted with as little delay as 
possible. The sooner a new VOC can be characterized, the more 
warning decision-makers have about the risk. Identifying the 
spread of a VOC requires strong real-time genomic surveillance 
with sampling that reflects community transmission, and it 
requires regular reporting on the makeup of the virus population.

There are significant challenges to developing timely surveillance 
for emerging VOC, and these challenges differ according to 
whether the concern is an increase in severity, immune escape, 
transmissibility or a combination. It takes many infections before 
we can estimate a difference in severity, yet changes in severity 
will shape the impact on the healthcare burden. But only a 
minority of individuals experience severe disease, and there are 
inherent delays between infection and eventual outcomes. By the 
time the risks of hospital and acute care needs can be estimated, 
many hundreds or thousands of infections will have occurred. 
To stratify severity estimates by viral factors requires even more 
hospital records and therefore more infections (potentially 
thousands). This can be ameliorated slightly by focusing 
on measures with minimal time lags (for example hospital 
admissions rather than occupancy) and with timely reporting.

Differences in transmissibility are likely to be apparent earlier 
than differences in severity, because transmission occurs for all 
infections (whereas severe outcomes occur for a small minority). 
Indeed, with both the Alpha and Delta variants, increases 
in transmissibility were detected well ahead of increases in 
severity (1,7). Differences in immune evasion may or may not be 
apparent soon after the relevant variants arise, depending on the 
genomic surveillance system (e.g. prioritization of breakthrough 
infections, extent of surveillance) and whether the new type 
causes severe disease among vaccinated individuals.

An effective surveillance system also requires linking timely 
detection with timely action. Public health and policy makers 
need to assess when to take action in the face of the uncertainty 
that is inherent in early assessments of variants that might 
increase transmission, severity or immune escape. Early localized 
actions that prevent a VOC from spreading widely, while costly 

in the short-term, reduce the risk of prolonged and global 
challenges to effective COVID-19 control.

Discussion

Timely and accurate surveillance requires a range of expertise 
spanning infectious disease epidemiology, statistics, virus 
evolution, genomics and public health. Benefits are gained not 
just from combining data but from conducting joint analyses, 
bringing together a sufficient range of expertise to increase 
the chance of early detection of an emerging threat. Many 
standard approaches used to estimate transmissibility, vaccine 
effectiveness and severity (e.g. attack rates, test negative study 
designs) are only possible after community transmission is well 
established. Designing systems to warn of possible elevated 
transmission, immune evasion and severity when there are still 
few cases requires integrating many sources of information 
and expertise and developing and using analytical methods 
designed to combine these data streams. Furthermore, progress 
in establishing linked surveillance for SARS-CoV-2 is likely to 
benefit surveillance for other respiratory pathogens, including 
newly emerging zoonotic viruses and high-burden pathogens 
such as influenza and respiratory syncytial virus. Improvements 
in sequencing technology also allow sequencing multiple viral 
pathogens sampled from patients or the environment, improving 
the ability to respond rapidly to any newly emerging virus (47).

There are precedents for strong genomic-based surveillance 
systems with linkage to clinical and epidemiological data. 
PulseNet Canada (48) is a virtual electronic network that delivers 
systemic surveillance for enteric disease and ensures that 
genomes of causal bacteria are rapidly sequenced. The presence 
of clusters of cases triggers coordinated outbreak investigations 
in which data are collected and linked to sequences to assess 
the full extent of the outbreak and identify the source. For 
SARS-CoV-2 surveillance, the Canadian COVID-19 Genomics 
Network (16) aims to establish large-scale virus and host 
sequencing at a national scale to inform decision-making and 
track the evolution and spread of the virus. Such national 
platforms can enable data linkage, either with public access or 
with privileged access given to approved researchers. Although 
to date such goals have been hampered in Canada, in part by 
limited or delayed access to virus sequences and limited linkage.

Throughout the SARS-CoV-2 pandemic, the United Kingdom has 
led the world in data linking, analyses and public communication 
in its efforts to understand SARS-CoV-2 evolution and impact 
on public health. The COVID-19 UK Genomics Consortium (49) 
performs and coordinates sequencing, with over 1.5 M publicly 
available viral genomes as of February 17, 2022 (50). Sequences 
are linked with clinical and epidemiological information and 
are stored securely. Public health agencies use genomic data 
linked to clinical, demographic and epidemiological data in the 
public health response and can provide de-identified COVID-19 
patient information into the Cloud Infrastructure for Microbial 
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Bioinformatics (CLIMB-COVID-19) (51) database. There are 
systems in place for researchers to access the data.

A recent briefing (SARS-CoV-2 VOC and variants under 
investigation in England: technical briefing 36) from the UK 
Health Security Agency (21) provides an excellent example of 
the impact of research enabled by data linkage in the United 
Kingdom. This report summarizes research linking Phylogenetic 
Assignment of Named Global Outbreak lineage information 
to contact tracing data, permitting the discovery that the 
BA.2 sublineage of Omicron has shorter serial intervals than 
the BA.1 sublineage, which in turn impacts the interpretation 
of selection (higher rate of spread is in part due to faster 
transmission rather than more overall transmission). Linking to 
vaccination data, age profiles and severity permitted estimates 
of protection against severe disease and the likely health care 
burden of BA.2. Sequence and screen-based characterization of 
the rise of BA.2 allowed estimates of its rate of spread, which is 
needed to project the future burden of infection and disease. 
The report is a collaboration of teams that combine expertise in 
genomics, outbreak surveillance, contact tracing, epidemiology 
and data analytics, linking and analyzing emerging data with very 
rapid turn-around and thereby benefitting the global community.

Beyond national-level analyses, linking data at a local level can 
provide important insight into transmission routes and outbreak 
risks; for example, genomic epidemiology tools have been 
used to examine transmission at the scale of outbreaks (52–56). 
By linking sequences, clinical outcome, epidemiological data 
and vaccination status, such local analyses can alert public 
health to the emergence of a concerning cluster. If there was a 
growing cluster with transmission among vaccinated individuals 
and high severity, this could be detected early. Both national 
and local-scale analyses require linkage among disparate data 
systems through unique identifiers, collaboration across multiple 
disciplines, and a process by which researchers can access linked 
data to develop and validate methods.

Conclusion
The SARS-CoV-2 virus will continue to evolve. We cannot predict 
where new variants of concern will arise, nor rely on them being 
detected early in locations that have strong genomic surveillance. 
The more we build strong surveillance systems worldwide, with 
high-quality data and linkages, the earlier we will be able to 
detect new variants and act accordingly. Many wealthy countries 
have high rates of vaccination, which leads to selection of 
variants with the ability to transmit among vaccinated individuals. 
With extensive international travel, emerging variants will be 
able to rapidly migrate around the world, and any that evade 
immunity will not be as impacted by vaccination requirements. 
In the worst case, viral evolution could undermine the potential 
for vaccination to mitigate the pandemic, even in countries that 
have not yet reached high vaccination rates. Countries with the 
resources to conduct high volumes of sequencing and to develop 

strongly linked surveillance programs are also the ones that have 
most benefited from early and extensive vaccination programs. 
Developing and supporting strong genomic surveillance that 
enables monitoring the virus’ phenotypes is important to help 
ensure that the vaccines remain effective for the rest of the 
world.
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