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Fever is commonly attenuated with antipyretic medication as a means to
treat unpleasant symptoms of infectious diseases. We highlight a potentially
important negative effect of fever suppression that becomes evident at the
population level: reducing fever may increase transmission of associated
infections. A higher transmission rate implies that a larger proportion of
the population will be infected, so widespread antipyretic drug use is
likely to lead to more illness and death than would be expected in a popu-
lation that was not exposed to antipyretic pharmacotherapies. We assembled
the published data available for estimating the magnitudes of these individ-
ual effects for seasonal influenza. While the data are incomplete and
heterogeneous, they suggest that, overall, fever suppression increases the
expected number of influenza cases and deaths in the US: for pandemic
influenza with reproduction number R ! 1:8, the estimated increase is 1%
(95% CI: 0.0–2.7%), whereas for seasonal influenza with R ! 1:2, the
estimated increase is 5% (95% CI: 0.2–12.1%).

1. Introduction
For millennia, humans have suppressed fevers without understanding the
potential effects [1,2] beyond the obvious alleviation of symptoms. Antipyretic
drug treatment is extremely prevalent in Western countries—especially by
parents [3], and also by healthcare professionals [4–6]. Even when treatment
is not aimed at fever specifically, fever is likely to be reduced, because most
common drugs that relieve other typical symptoms of infectious diseases also
contain an antipyretic component [7].

Previous investigations of the effects of fever suppression have focused on
the clinical benefits and costs to the individual [8,9]. The adaptive value of
fever [10–13] is well known to immunologists; for example, Janeway’s Immuno-
biology [14, p. 110] notes that ‘At higher temperatures, bacterial and viral
replication is less efficient, whereas the adaptive immune response operates
more efficiently’. Others argue that the adaptive value of fever arises instead
from activation and coordination of the immune response [12]. By contrast,
a common view in the medical community, as expressed for example in
Harrison’s Principles of Internal Medicine, is that the ‘treatment of fever and its
symptoms does no harm and does not slow the resolution of common viral
and bacterial infections’ [15, p. 107]. Here, we consider some population-level
effects of widespread fever suppression, effects that do not appear to have
been investigated previously.

An individual whose fever has been reduced is likely to feel better and
is therefore more likely to interact with others. In addition, fever suppres-
sion may increase both the rate and duration of viral shedding, further
increasing the pathogen’s transmission rate; this effect has been shown
experimentally for influenza in ferrets [16]. A higher transmission rate will
in general lead to larger epidemics [17,18] and hence to greater morbi-
dity and mortality. The increase in epidemic size is larger for more weakly
transmissible pathogens.

& 2014 The Author(s) Published by the Royal Society. All rights reserved.
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2. Theoretical argument
To make this idea more precise, suppose that (i) a proportion
p of infected individuals develop a fever and are treated with
antipyretics (the treatment probability) and (ii) on average,
antipyretic treatment of febrile individuals increases their
probability of infecting others by a factor fi (the individual
transmission enhancement factor). The proportion of infected
individuals with enhanced transmission is then p, and the
proportion without enhanced transmission (i.e. with trans-
mission enhancement factor 1) is 1 2 p. Antipyretics
therefore increase the overall transmission rate by the factor

fp ¼ ð1# pÞ % 1þ p % fi ð2:1aÞ
¼ 1þ pðfi # 1Þ ; ð2:1bÞ

which we call the population transmission enhancement factor.
(Note that fp . 1 given that fi . 1 and 0 , p ' 1.)

Transmissibility of a pathogen is normally quantified by
the basic reproduction number R0, the average number of
secondary cases caused by a primary case in a wholly suscep-
tible population [19]. In a population that is not wholly
susceptible—which is always the situation for seasonal influ-
enza—the effective reproduction number is reduced by the
proportion susceptible at the start of the epidemic
(R ¼ Sinit (R0). In these terms, antipyretic use has the
effect of increasing the reproduction number

R! fpR : ð2:2Þ

We would like to estimate how many additional infections,
and correspondingly how many severe illnesses and deaths,
can be expected to result from this increase in R during an
influenza epidemic or pandemic [20].

For a very large class of epidemic models, the proportion
of the population that is expected to be infected during an epi-
demic (the expected final size Z) is related to the reproduction
number by the classical final size relation [17,18],

Z ¼ 1# e#RZ; ð2:3Þ

which can be solved explicitly (see the electronic supple-
mentary material). Note that Z is the final size as a
proportion of those who were initially susceptible; if everyone

were susceptible initially (Sinit ¼ 1), as is possible in a pande-
mic, then R ¼ R0 and Z is the proportion of the entire
population infected.

Figure 1a shows this final size relation, ZðRÞ, and figure 1b
shows the relative incremental change in final size,

DZ
Z
¼

Zð fpRÞ # ZðRÞ
ZðRÞ

; ð2:4Þ

as a function of the population transmission enhancement factor
fp, for three values of R in the plausible range for influenza,
1:2 & R & 1:8 (R is likely near the lower end of this range for
seasonal influenza [21,22] and the higher end for pandemic
influenza [23–26]). Because the final size Z is a decelerating
function of the reproduction number R (figure 1a), antipyresis
always enhances transmission more for less transmissible
diseases (which have smaller R0: figure 1b). The precise quanti-
tative predictions in figure 1b depend on our use of the standard
final size relation; however, the qualitative conclusions are
very general because the expected final size always increases
(typically in a decelerating fashion) as R increases [27–31].

3. Estimating the effect for influenza
To predict the magnitude of the effect in practice, we need an
estimate of the population transmission enhancement factor
fp. We have insufficient data to estimate how all the relevant
biological mechanisms contribute to increasing fp; in particu-
lar, we expect the increase in social interaction owing to
reduced symptoms to lead to a major increase in the epide-
miological contact rate, but are unable to quantify this.
Nevertheless, by focusing on how antipyretics affect individ-
ual infectivity, we can at least estimate a lower bound on fp
for influenza. Throughout all stages of the calculations
described below, we propagate error estimates by randomly
sampling 10 000 values from the sampling distribution of
each of the estimated parameters (assumed normal unless
otherwise specified), computing the relevant metric with
each set of parameters in the random sample, and finding
the lower 2.5% and upper 97.5% quantiles of the resulting
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Figure 1. The effects of increases in transmission rate (by the factor fp) on the expected proportion of the initially susceptible population that will be infected in a
single influenza epidemic (the final size Z ). (a) The standard final size relation (2.3), for the plausible range of (effective) reproduction number for influenza. (b) The
relative increase in final size resulting from increasing the transmission rate by the factor fp. For example, a 10% increase in the proportion of individuals infected
during an epidemic will arise from a 2% transmission enhancement if R ¼ 1:2, a 6% enhancement if R ¼ 1:5 or a 12% enhancement if R ¼ 1:8. (Online
version in colour.)
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distribution. All computations were done in the R language
[32] (see the electronic supplementary material).

The two components of fp in equation (2.1) ( p and fi) are
independent. Limited information is available concerning the
treatment probability p: parents treat febrile children with
antipyretics in approximately 90% of cases [3], and nurses
treat fever with antipyretics in approximately 70% of cases
[5,6]. We know that adults frequently take analgesics that
are antipyretic, but we have little influenza-specific infor-
mation. On these grounds, we propose a broad distribution
for p (Beta(4,2)), with mean 0.67 (95% CI: 0.28–0.95). (Substi-
tuting a uniform [0,1] distribution for p instead to represent
complete uncertainty does not change the results qualitatively;
see the electronic supplementary material.) We must also
adjust our estimate of p to take into account that only 67%
(95% CI: 58–75%) of individuals show symptoms and only
35% (95% CI: 27–44%) develop a fever ([33]; see the electronic
supplementary material).

To obtain a lower bound on individual transmission
enhancement fi, and hence to complete an estimate of a
lower bound on population transmission enhancement fp
from equation (2.1), we consider two aspects of infectivity
enhancement for which data exist.

First, antipyretics appear to increase viral shedding. To
our knowledge, the only published experiment concerning
the effects of antipyretic treatment on influenza viral shed-
ding was conducted in ferrets (considered the best animal
model for human influenza [34]). The study, conducted by
Husseini et al. [16], considered two strains of influenza
A/H3N2 that differed in virulence. For both strains, and
regardless of whether fever was suppressed by shaving
the ferrets or by administration of an antipyretic drug, the
authors found that ‘significantly more virus was shed in
the nasal washes of ferrets whose febrile response was sup-
pressed and the viral levels decreased less rapidly than in
untreated ferrets or in those in which the treatments were
ineffective’ [16, p. 520]. This study was prompted by an
earlier study from the same group showing that unmedica-
ted ferrets with higher fevers shed less influenza virus [35].
The results are consistent with other studies showing that
antipyretic treatment increases viral shedding in human vol-
unteers infected with rhinovirus [36] and lengthens the
infectious period in children with chickenpox [37]. Moreover,
in a study of human volunteers infected with influenza A,
the number of antipyretic doses received was positively cor-
related with the duration of illness [38]. Some cytokines
reduce viral shedding, so a likely mechanism by which anti-
pyresis increases viral shedding is the suppression of
temperature-dependent cytokine responses to influenza infec-
tion (see the electronic supplementary material, §3.2). Based on
these considerations, we assume that the clinical effects of fever
suppression on nasal shedding in humans infected with influ-
enza virus are similar to the effects measured in ferrets. Based
on inverse-variance weighted mean values for the difference in
the logarithm of viral titres between the antipyretic-treated and
untreated ferrets, we estimate that antipyretic treatment increases
influenza viral titres in nasal droplets by a factor of order 1.78
(95% CI: 1.35–2.35) (see the electronic supplementary material
for further details).

Second, greater viral shedding increases infectivity. This is
unsurprising, but estimating the strength of the effect is chal-
lenging. A recent review [39] describes 30 studies in which
human volunteers were given various doses of a variety of

influenza viruses. To analyse these data, we used a binomial
generalized linear mixed model incorporating random effects
of strain and study [40,41] to estimate the relationship between
log10(dose) and probability of infection. We conclude (see the
electronic supplementary material) that a dose that is larger
by a factor 10 (which we assume would arise from an increase
in viral titres in nasal droplets by the same factor) yields an
increase of 0.28 (95% CI: 0.01–0.54) in the log-odds of infec-
tion. (This effect would correspond to an increase of 0.07
(95% CI: 0.004–0.13) in the proportion infected if we started
from a baseline infection probability of 0.5.)

In order to infer the overall transmission implications,
we need an estimate of the natural infectivity of influenza,
i.e. the probability that a susceptible contacted by an (non-
antipyretic-using) infectious individual will become infected.
We are not aware of direct measurements of this probability,
so we use published estimates [42] of the household second-
ary attack rate (SAR) as a proxy. We used a linear mixed
model incorporating variation among strains and among
studies to estimate the log-odds of the SAR, based on
measurements of antibody response of individuals between
the beginning and end of the influenza season. Based on
the coefficients of this model, we estimate the expected SAR
to be 0.14 (95% CI: 0.07–0.27). As study participants were
not prevented from taking antipyretics, the reported SAR
likely represents an overestimate of the natural infectivity
(which will make our inferences more conservative; see the
electronic supplementary material, §5).

Associating proportional changes in the viral titre of nasal
washes in the ferret study [16] with proportional changes in
viral titres in nasal sprays in the human challenge studies
[39], and taking the household SAR to approximate natural
infectivity, we estimated the antipyretic-induced individual
transmission enhancement factor fi using equation S22 in the
electronic supplementary material. We infer a conservative
lower bound of fi ) 1:06 (95% CI: 1.002–1.14).

Putting together our estimates of the treatment prob-
ability p and the individual transmission enhancement
factor fi using equation (2.1) (details in the electronic sup-
plementary material), we conclude that the current practice
of frequently treating fevers with antipyretic medication has
the population-level effect of enhancing the transmission of
influenza by at least 1% (95% CI: 0.04–3%) (i.e. fp . 1.01
(95% CI: 1.00–1.03)). This estimate does not take into account
the known effect that the infectious period of influenza is also
increased by antipyresis [16], nor does it take into account the
potentially large effect of increasing the rate of contact among
infectious and susceptible individuals because antipyresis
makes infectious individuals feel better.

4. Discussion
To put our lower bound for fp into perspective, consider that
approximately 41 400 (95% CI: 27 100–55 700) deaths per year
are attributed to seasonal influenza epidemics in the United
States [43] (and an order of magnitude more worldwide [44]).
Taken at face value, our results indicate, for example, that if
R ¼ 1:5 then at least 700 deaths per year (95% CI: 30–2100)
(and many more serious illnesses) could be prevented in the
US alone by avoiding antipyretic medication for the treatment
of influenza (see table 1). While subject to large uncertainty,
our estimates in table 1 should be considered conservative, as
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we have ignored concomitant antipyretic-induced increases in
infectious periods and contact rates.

The population-level effects of antipyretic treatment
during influenza pandemics could be especially dramatic. It
has been suggested that widespread use of aspirin in 1918
may have increased disease severity, and consequently death
rates, during the pandemic [45], and experimental research in
humans and other animals suggests that antipyretic use may
increase the risk of death from serious infections [10,46].
Even without this individual-level effect, the population trans-
mission-enhancing effect that we have highlighted here could
have increased the final size of the 1918 pandemic significantly,
suggesting that a non-negligible proportion of the 50–100
million [47] pandemic-related deaths could have been attribu-
table to transmission enhancement from widespread use of
antipyretic medication.

While our theoretical argument that links antipyretic treat-
ment with an increase in epidemic size is straightforward,
estimation of the magnitude of this effect is necessarily indirect,
and our attempt here provides only a crude lower bound. We
have been conservative in every step of our estimation of this
lower bound, but we have not been able to quantify all poten-
tially contributing factors. One further effect that could be
important in principle is transmission of influenza by infected
individuals before they show symptoms; however, evidence
for this effect—and for asymptomatic transmission in gen-
eral—is weak [48] and seems likely to be balanced in our
calculations by ignoring the known lengthening of the infec-
tious period caused by antipyresis [16]. Another potentially
important effect that we have not considered is age-dependent
mixing. Exceptionally high rates of antipyretic treatment in
children [3] might contribute to the disproportionate role that
children play in influenza transmission [26,49]; taking this
into account would increase our estimated lower bound.

Readers who want to consider the impact of including
additional factors, or modifying our estimates, can use figure
1 to approximate the effect of changes to the population trans-
mission enhancement factor fp. Because the estimated absolute
magnitude of fp is fairly small, and because the curves in figure
1(b) are close to linear, most effects will be close to linear as
well. For example, if amelioration of symptoms led to a
lengthening of the infectious period by 20%, the number of
estimated attributable cases would increase by 19.2%.

Experiments and observational studies designed specifi-
cally to estimate the magnitude of transmission enhancement
by antipyresis could give much more precise constraints on
the population-level effects of antipyretic use. In particular,
randomized trials assigning individuals to antipyretic or pla-
cebo treatment could characterize increases in the infectious
period and viral shedding owing to antipyretic drugs, while
challenge experiments could better characterize the relation-
ship between dosage and infection probability. Increases in
contact rates caused by infectious individuals feeling well
enough to go to work, school and other gathering places may
be even more important in practice. These effects would best
be estimated as part of the randomized trials discussed
above, but even observational studies that survey individuals’
symptoms and behaviour and correlate them with variation in
use of medications could be a useful first step; we are beginning
pilot studies of this sort.

We have shown that—as is well understood for antibiotics
[50]—the use of antipyretics can have subtle and potentially
important negative effects at the population level. Any medical
intervention that aims to relieve the symptoms of an infectious
disease in an individual should also be evaluated in light of
potentially harmful effects at the population level. Practices
that prevent infection (e.g. vaccination), or increase individual
comfort without increasing transmission, are preferable from a
population perspective. We hope that our analysis in this paper
will spur further research to determine more precise estimates
of the effects that we have discussed. Such estimates should
assist in the development of evidence-based guidelines for
antipyretic treatment practices.
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1 Introduction37

This supplement is written in knitr (3), an R (4) package for reproducible research inspired38

by Knuth’s Literate Programming (5). All graphs, computations and statistics are computed at39

the same time that the text is typeset, so everything is exactly reproducible. This document is40

lengthy because it contains (hopefully) pedagogical explanations and statistical code. A few finicky41

details—such as code to read data files and plot graphs—are suppressed in this document, but all42

details are visible in the source code (feversupp.Rnw), which is available upon request from43

earn@math.mcmaster.ca. Readers who have no interest in reproducing our results can skim44

over most of the details.45

One graphics detail perhaps worth noting is that we use the tikz package, which allows us to46

use LATEX within figures.47

require("tikzDevice")

We used R version 2.15.2 (2012-10-26) and package versions:48

## bbmle coefplot2 emdbook gdata ggplot2 lme4
## 1.0.5.2 0.1.3.2 1.3.4 2.12.0 0.9.3.1 1.0-4
## plyr reshape2 tikzDevice
## 1.8 1.2.2 0.6.2

The coefplot2 package must be installed from http://r-forge.r-project.org or49

http://www.math.mcmaster.ca/bolker/R.50

2 Epidemic final size51

The expected final size Z (the proportion of initially susceptible individuals infected during a given52

epidemic) can be expressed explicitly as a function of the reproduction number R using Lambert’s53

W function (6, 7),54

Z(R) = 1 +

1

R

W [�R e

�R
] . (S1)55

This avoids having to solve the implicit final size relation:56

require(emdbook) # implements lambertW
Z <- function(R) {

1+1/R*lambertW(-R*exp(-R))
}

We also define a function for the incremental increase in final size due to an increase in transmission57

rate by factor f:58

2
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dZ <- function(f,R) {

Z(f*R) - Z(R)
}

The relative increase in final size—equation (4) of the main text—is then dZ(f,R)/Z(R). We59

are now able to produce the plot shown in Figure 1 of the main text (plotting code suppressed).60
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3 Antipyretics increase viral shedding62

3.1 Animal model63

Some studies suggest that antipyretic medications may have antiviral properties in laboratory mice64

(8, 9). However, mice do not develop a febrile response to influenza (10), which makes them poor65

models for examining the effects of antipyretic medications on influenza transmission in humans.66

Since we are interested in the effects of suppressing fever on influenza transmission, ferrets are a67

better animal model (10).68

3.2 Immunological mechanism69

With many influenza viruses, viral shedding is inhibited by the interferon-alpha (IFN↵) cytokines,70

which play a key role in the innate immune response to viral infections (11, 12). IFN↵ reduces the71

shedding of influenza virus in guinea pigs (13) and ferrets (14), and it appears to have a similar72

effect in humans (15, 16). Since the production of IFN↵ is enhanced at higher febrile tempera-73

tures (17, 18), fever suppression is likely to increase viral shedding, at least in part, by inhibiting74

the IFN↵ response to influenza.75

3
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3.3 Data from the study of Husseini et al. (1)76

We begin by reading the data:77

Huss1 <- read.Huss( fignum=1, clonename="7a" )
Huss2a <- read.Huss( fignum=2, clonename="7a" )
Huss2b <- read.Huss( fignum=2, clonename="64d" )

All the graphs published by Husseini et al. (1) are replotted here in Figures S1, S2 and S3.78

Because the original data were not available to us, each plotted data point (and associated standard79

error) was extracted from the published graphs.80

Husseini et al. (1) conducted three experiments in which ferrets where infected with one of two81

influenza viruses (clones 7a or 64d of influenza A/Puerto Rico/8/34-A/England/939/69 (H3N2))82

and then followed for 72 hours. In each experiment, some ferrets were treated and others were83

not. Treatment consisted either of shaving before being infected (Figure S1) or administration84

of an antipyretic drug every 3–4 hours (Figures S2 and S3). We analyze only the experiments85

involving the antipyretic drug, since shaving (which reduces core body temperature in ferrets) is86

not a common treatment for human influenza.87

In each experiment, Husseini et al. (1) divided the ferrets into three groups after the trials88

were completed: those that were untreated (blue circles in the figures), treated and responded (red89

squares) and treated but did not respond (black triangles). The upper panels of Figures S1, S2 and90

S3 show the mean rectal temperature in each of the groups during the course of the experiment,91

while the lower panels show the corresponding mean viral titers in each of the groups.92

We denote the sequence of mean viral titers for the untreated group by U

i

and their standard93

errors by �U

i

. Similarly, for the group treated with antipyretics, we denote the mean ± SEM by94

A

i

±�A

i

for the subgroup that “responded” and B

i

±�B

i

for the subgroup that “did not respond”.95

We combine the data from Figures S2 and S3 and treat each data point as independent. Note96

that we must omit NA (“not available”/missing) values that occur because measurements of viral97

titer were not taken at some times when temperatures were measured.98

time <- c( Huss2a$time[!is.na(Huss2a$A)],
Huss2b$time[!is.na(Huss2b$A)] )

A <- c(na.omit(c(Huss2a$A, Huss2b$A))) # treated, responded
B <- c(na.omit(c(Huss2a$B, Huss2b$B))) # treated, did not respond
U <- c(na.omit(c(Huss2a$U, Huss2b$U))) # untreated

(The additional c() outside of na.omit() is used here, and below, for its side effect of drop-99

ping attributes, in this case additional information stored by R about which values were dropped100

— this is purely cosmetic.)101

We restrict attention to measurements made after antipyretic treatment was initiated (18 hours102

post-infection) and before the effects of the final treatment (48 hours post-infection) had worn off.103

104
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tmin <- 18 # hours
tmax <- 54 # hours
A <- A[time>tmin & time<tmax]
B <- B[time>tmin & time<tmax]
U <- U[time>tmin & time<tmax]
t.treat <- time[time>tmin & time<tmax]

3.4 Dose units105

The unit used by Husseini et al. (1) to quantify viral titer was the base 10 logarithm of the number106

of 50% egg bit infectious doses (log10 EBID50), as indicated in Figures S1, S2 and S3. A detailed107

discussion of this method of virus quantification (which is no longer in common use) is given by108

Fazekas de St. Groth and White (19).109

The most common current method of virus quantification yields estimates in units of Tissue110

Culture Infectious Doses (TCID). For example, one TCID50 is the amount of virus that will produce111

infection in 50% of inoculated tissue cultures. Most of the studies reviewed by Yezli and Otter (2)112

(§4 below) used TCID.113

Different methods of virus quantification are not directly comparable. However, for our pur-114

poses we need only quantify proportional changes in viral titers, which avoids the need to convert115

units.116

3.5 Estimation of ¯�117

We now consider the difference in viral titers between groups,118

�

A

i

= A

i

� U

i

, i = 1, . . . , n, (S2a)119

�

B

i

= B

i

� U

i

, i = 1, . . . , n. (S2b)120
121

122

deltaA <- A - U
deltaB <- B - U

The post hoc separation of the “treated” group into “responded” and “did not respond” subgroups123

could represent an inappropriate bias that inflated the effect reported by the authors (1). To be as124

conservative as possible, we combine the two “treated” subgroups by taking the inverse-variance125

weighted mean (which gives greater weight to observations with smaller errors). To do so, we first126

need the relevant variances. The variance of �A
i

is the sum of the variances of A
i

and U

i

, i.e.,127

var
�
�

A

i

�
= var (A

i

) + var (U
i

) = (�A

i

)

2
+ (�U

i

)

2
, (S3)128

and similarly for �B
i

.129
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sem.A <- c(na.omit(c( Huss2a$dA, Huss2b$dA )))
sem.B <- c(na.omit(c( Huss2a$dB, Huss2b$dB )))
sem.U <- c(na.omit(c( Huss2a$dU, Huss2b$dU )))
sem.A <- sem.A[time>tmin & time<tmax]
sem.B <- sem.B[time>tmin & time<tmax]
sem.U <- sem.U[time>tmin & time<tmax]
var.deltaA <- sem.Aˆ2 + sem.Uˆ2
var.deltaB <- sem.Bˆ2 + sem.Uˆ2

We now compute130

�

i

=

✓
�

A

i

var (�A
i

)

+

�

B

i

var (�B
i

)

◆�✓
1

var (�A
i

)

+

1

var (�B
i

)

◆
, (S4)131

and132

var (�
i

) = 1

�✓
1

var (�A
i

)

+

1

var (�B
i

)

◆
. (S5)133

(The justification for the formula for the variance in �

i

is identical to that given for the variance in134

¯

� below.)135

if (any(var.deltaA==0)) stop("some var(deltaA) is zero")
if (any(var.deltaB==0)) stop("some var(deltaB) is zero")
var.delta <- 1/(1/var.deltaA + 1/var.deltaB)
delta <- (deltaA/var.deltaA + deltaB/var.deltaB) * var.delta

The standard error in the mean for each �

i

is ��

i

=

p
var (�

i

),136

sem.delta <- sqrt(var.delta)

We now estimate the average difference between treated and untreated groups, defining ¯

� to be137

the inverse variance weighted mean,138

¯

� =

nX

i=1

�

i

var (�
i

)

,
nX

i=1

1

var (�
i

)

. (S6)139

To compute the error in ¯

�, note that since the individual variances var (�
i

) are constants, we have140

var

 
nX

i=1

�

i

var (�
i

)

!
=

nX

i=1

var (�
i

)

[var (�
i

)]

2
=

nX

i=1

1

var (�
i

)

. (S7)141

Hence the variance in ¯

� is142

var
�
¯

�

�
=

nX

i=1

1

var (�
i

)

,"
nX

i=1

1

var (�
i

)

#2
(S8a)143

= 1

,
nX

i=1

1

var (�
i

)

, (S8b)144

145
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and the standard error in ¯

� is146

�

¯

� =

q
var
�
¯

�

�
. (S9)147

if (any(var.delta==0)) stop("some var(delta) is zero")
harmonic.sum <- function(x) 1/(sum(1/x))
var.delta.bar <- harmonic.sum(var.delta)
(delta.bar <- sum(delta/var.delta)*var.delta.bar)

## [1] 0.2498

(sem.delta.bar <- sqrt(var.delta.bar))

## [1] 0.06154

Thus, we estimate that the average increase in viral titer induced by antipyretic medication is148

¯

� ' 0.25± 0.062 log10 EBID50 . (S10)149

Rather than a standard error, it will be more convenient to have a confidence interval on ¯

�:150

delta.bar.lwr <- delta.bar - 1.96*sem.delta.bar
delta.bar.upr <- delta.bar + 1.96*sem.delta.bar

¯

� ' 0.25 [0.129, 0.37] log10 EBID50 . (S11)151

More intuitively, antipyresis causes viral titer in nasal washes to increase by a factor of order152

ten.to.the.delta.bar <- 10ˆdelta.bar
ten.to.the.delta.bar.lwr <- 10ˆdelta.bar.lwr
ten.to.the.delta.bar.upr <- 10ˆdelta.bar.upr
round(ten.to.the.delta.bar,2)

## [1] 1.78

10

�̄

= 1.78 [1.35, 2.35] . (S12)153

Note here that 10�̄ is dimensionless, because ¯

� is a difference (each term of which has the same154

unit). Hence exponentiation converts the difference to a ratio, in which the units cancel out.155
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4 Greater viral shedding increases infectivity156

4.1 Data from the review of Yezli and Otter (2)157

We begin by reading the data from Table 1 of Yezli and Otter (2). These data are plotted in158

Figure S4.159

require("gdata") # enable reading of Excel spreadsheets
Yezli <- read.xls("data/Yezli2011_Table1.xlsx")
nexpts <- nrow(Yezli) ## number of distinct experiments listed
nstudies <- length(unique(Yezli[,"Reference"])) ## distinct studies
nstrains <- length(unique(Yezli[,"Influenza.strain"])) ## distinct strains
nreport <- sum(!is.na(Yezli[,"P.infected"]))

## experiments that reported proportion infected

This table reports 34 experiments from 30 studies, which involved a total of 20 distinct influenza160

strains. In 2 experiments, the proportion of individuals who were infected was not given, so we161

exclude these:162

## utility function: subset() does not automatically
## remove unused/empty levels
dsubset <- function(x,...) droplevels(subset(x,...))
Yezli <- dsubset(Yezli,!is.na(P.infected))

Here, droplevels() removes empty levels everywhere in the data frame, hence in particular163

removes the 2 levels associated with strains for which proportion infected was not given. We also164

drop studies that (unusually) used eggs rather than tissue culture to quantify virus:165

Yezli <- dsubset(Yezli,Dose.unit=="TCID50")
nreport <- sum(!is.na(Yezli[,"P.infected"]))

This leaves only 17 of the original 20 influenza strains. The remaining list of strains in Table 1 of166

Yezli and Otter (2011) for which the associated study reported the proportion infected is:167

unique(Yezli$Influenza.strain)
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## [1] A/Alaska/6/77 (H3N2)
## [2] A/California/10/78 (H1N1)
## [3] A/England/42/72 (H3N2)
## [4] A/England/40/83 (H3N2)
## [5] A2/Bethesda/10/63 (H2N2)
## [6] A/Equi 2/Miami/1/63 (H3N8)
## [7] A2/Hong Kong/1/68 (H3N2)
## [8] A/Kawasaki/9/86 (H1N1)
## [9] A/Korea/1/82 (H3N2)
## [10] A2/Rockville/1/65
## [11] A/Shangdong/9/93 (H3N2)
## [12] A/Texas/36/91 (H1N1)
## [13] A/Texas/1/85 (H1N1)
## [14] A/University of Maryland/1/70 (H3N2)
## [15] A/Victoria/3/75 (H3N2)
## [16] B/Panama/45/90
## [17] B/Yamagata/16/88
## 17 Levels: A/Alaska/6/77 (H3N2) ... B/Yamagata/16/88

Of these 17 strains, some were used in more than one experiment:168

(multi.expt.strains <- names(which(table(Yezli$Influenza.strain)>1)))

## [1] "A/England/42/72 (H3N2)" "A/Equi 2/Miami/1/63 (H3N8)"
## [3] "A/Kawasaki/9/86 (H1N1)" "A/Texas/36/91 (H1N1)"
## [5] "A2/Bethesda/10/63 (H2N2)" "A2/Rockville/1/65"
## [7] "B/Yamagata/16/88"

Yezli and Otter (2) report a single dose for most experiments but report a range of doses for the169

following experiments:170

Yezli.dose.range <- Yezli[Yezli[,"Low.dose"] != Yezli[,"High.dose"],]
Yezli.dose.range[,c("Influenza.strain","Low.dose","High.dose","Dose.unit",

"P.infected")]

## Influenza.strain Low.dose High.dose Dose.unit P.infected
## 7 A2/Bethesda/10/63 (H2N2) 80000 180000 TCID50 1.0000
## 9 A/Equi 2/Miami/1/63 (H3N8) 40000 200000 TCID50 0.6364

Our analysis is based on doses on a logarithmic scale, so we replace the ranges in these 2 experi-171

ments with midpoints of their logarithms, and save this new variable in our data frame:172
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Yezli <- transform(Yezli,
log10dose=(log10(Low.dose)+log10(High.dose))/2)

For each experiment, we want to predict the proportion infected:173

pinfected <- Yezli[,"P.infected"]

Figure S4 shows the data (pinfected vs log10dose). Strains that were used in multiple174

experiments are colour-coded as indicated.175

col.list <- c("red","blue","brown","cyan","magenta","orange","yellow")
stopifnot(length(col.list) == length(multi.expt.strains))
names(col.list) <- multi.expt.strains

4.2 Completely naı̈ve linear regression176

Although technically inappropriate (since the response variable is a proportion) we begin with a177

simple linear regression of log10dose against pinfected.178

fit.lm <- lm( P.infected ˜ log10dose, data=Yezli )
coef(summary(fit.lm))

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.62714 0.11007 5.698 3.662e-06
## log10dose 0.03278 0.01983 1.654 1.090e-01

slope.lm <- coef(summary(fit.lm))[2]
sem.slope.lm <- coef(summary(fit.lm))[4]

Although this linear regression is not significant at p < 0.05 (Pr(> |t|) = 0.109), we proceed to179

use it as a pedagogical exercise. The fitted slope of the linear regression is180

a = 0.033± 0.02 . (S13)181

Confidence bands on the linear regression are obtained as follows.182

## Create a new data frame with log10dose values
## increasing in sequence over the range of interest:
pframe <- data.frame( log10dose=seq(0,10,length=50) )
## Compute a matrix with columns fit,lwr,upr for each log10dose
## value in pframe:
ci.lm <- predict(fit.lm, interval="confidence",newdata=pframe)
## Combine as matrix with columns log10dose,fit,lwr,upr for plotting:
confbands.lm <- cbind(as.vector(pframe),ci.lm)

Figure S4(b) shows the linear fit (heavy black line) and associated confidence bands (grey).183
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4.3 Naı̈ve logistic regression184

Our aim is to fit a model that predicts the proportion infected (P.infected) for a given dose185

of virus (log10dose). This dose-response problem (with a proportional response) is a standard186

setting for the application of logistic regression (20–22). If our data were based on a single study187

involving a single influenza strain, and only the infectious dose varied among trials, then a simple188

logistic regression would be appropriate. The data that we have are more complicated since they189

come from many different studies involving many different influenza strains (2); some studies190

include more than one strain, and some strains are included in more than one study. In §4.4 we191

account for this variation by constructing a generalized linear mixed model (23) (GLMM). As it192

turns out, the predictions made by a simple logistic regression are very similar to those from a193

more sophisticated GLMM applied to our data.194

In this section, we present a simple logistic regression, which will be more familiar to most195

readers and is based on standard theory (20–22).196

A logistic regression is a particular type of generalized linear model (GLM), namely a binomial197

regression in which the link function is the logit,198

logit(y) = log

✓
y

1� y

◆
. (S14)199

The logit converts probabilities to log-odds, whereas the inverse-logit (the logistic function, y =200

1/(1 + e

�x

)) converts log-odds to probabilities. R’s built in qlogis() function implements the201

logit, while plogis() implements the inverse-logit or logistic function.202

There are two equivalent ways to specify a binomial regression using R’s glm() function:203

1. The response variable can be expressed as a two-column matrix containing successes and204

failures. In our case, the R syntax for the model is205

cbind(N.infected,N.total-N.infected) log10dose. (S15)206

2. The response variable can be expressed as the proportion of successes. In this case, the sizes207

of the samples must be specified. The R syntax for the model is208

P.infected log10dose (S16a)209

and the sample sizes are specified with the argument210

weights=N.total. (S16b)211

We use the second option, which is slightly more readable:212

fit.glm <- glm( P.infected ˜ log10dose, weights=N.total,
family=binomial(link="logit"), data=Yezli )
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summary(fit.glm)

##
## Call:
## glm(formula = P.infected ˜ log10dose, family = binomial(link = "logit"),
## data = Yezli, weights = N.total)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.619 -1.598 0.606 1.823 3.534
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.1870 0.3145 0.59 0.55
## log10dose 0.2437 0.0606 4.02 5.8e-05 ***
## ---
## Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 116.95 on 30 degrees of freedom
## Residual deviance: 100.81 on 29 degrees of freedom
## AIC: 167
##
## Number of Fisher Scoring iterations: 5

(slope.glm <- coef(summary(fit.glm))["log10dose","Estimate"])

## [1] 0.2437

## OR slope.glm <- coef(fit.glm)["log10dose"]
(sem.slope.glm <- coef(summary(fit.glm))["log10dose","Std. Error"])

## [1] 0.06062

We now make predictions based on this logistic regression.213

4.3.1 Prediction from logistic regression214

Assume the sampling distribution of the intercept and slope parameters above is bivariate normal.215

Generate samples:216
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## generate a 1000x2 matrix:
my.sample <- mvrnorm(1000,mu=coef(fit.glm),Sigma=vcov(fit.glm))
summary(my.sample)

## (Intercept) log10dose
## Min. :-1.2841 Min. :0.0049
## 1st Qu.:-0.0546 1st Qu.:0.2068
## Median : 0.1836 Median :0.2482
## Mean : 0.1748 Mean :0.2464
## 3rd Qu.: 0.3862 3rd Qu.:0.2855
## Max. : 1.4517 Max. :0.5229

4.3.2 Confidence bands for logistic regression217

Obtaining confidence bands on our fit is slightly more complicated than for the naı̈ve linear re-218

gression (§4.2). Unlike predict.lm(), predict.glm() has no interval argument, so219

we must actually compute the 95% confidence intervals ourselves from the standard errors at each220

point we require (which were defined as pframe in §4.2):221

ci.glm <- predict( fit.glm, se.fit=TRUE, newdata=pframe )
ci.glm$lwr <- ci.glm$fit - 1.96*ci.glm$se.fit
ci.glm$upr <- ci.glm$fit + 1.96*ci.glm$se.fit
## translate back to the probability scale:
pglm <- lapply(ci.glm[c("fit","lwr","upr")],plogis)
confbands.glm <- cbind( as.vector(pframe), pglm )

To obtain the predicted proportion infected (and standard error or confidence interval) for any given222

dose we would simply redefine pframe in the above. For example, to obtain predicted proportion223

infected for a dose of 100 TCID50) we would set224

pframe <- data.frame( log10dose=2 )

Note that the newdata passed to predict() must have the same name (log10dose) as the225

original data in order to replace it in the prediction.226

4.4 Generalized Linear Mixed Models227

4.4.1 Why GLMMs?228

If the data plotted in Figure S4 had come from a single experiment in which the experimenter229

had many treatments involving the same influenza strain but different doses, and looked for the230

response in terms of proportion infected, then the simple logistic regression we performed would231

be appropriate. In fact, the data that Yezli and Otter (2) summarize come from many different232

studies, and involve many different influenza strains. To account for this properly, we require a233

generalized linear mixed model (23).234
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4.4.2 Fitting235

Logistic regression with strain as a random effect We first fit a logistic (binomial) regression236

with strain as a random effect. We use weights to specify the number of subjects per trial and237

nAGQ=8 to specify that we want to fit the model using Gauss-Hermite quadrature with 8 quadrature238

points (this is slightly more accurate than the default method, Laplace approximation).239

library(lme4pkg,character.only=TRUE)

For the benefit of readers unfamiliar with R’s formula notation for GLMMs, we note: On the240

RHS of the vertical bar | is the grouping variable. On the LHS of | is the parameter that varies241

across groups. Parameter 1 refers to the intercept (the LHS is interpreted according to R’s formula242

language [Wilkinson-Rogers notation: see the Introduction to R (24, p.76) for basic information]).243

Any predictor variable can be on the LHS. Any factor can be on the RHS.244

fit.glmm.bystrain <- glmer(P.infected˜log10dose+(1|Influenza.strain),
weights=N.total,family=binomial,data=Yezli)

fixef(fit.glmm.bystrain)

## (Intercept) log10dose
## 0.1584 0.2815

summary(fit.glmm.bystrain)

14



Fever Suppression – ELECTRONIC SUPPLEMENTARY MATERIAL Earn, Andrews & Bolker

## Generalized linear mixed model fit by maximum likelihood [glmerMod]
## Family: binomial ( logit )
## Formula: P.infected ˜ log10dose + (1 | Influenza.strain)
## Data: Yezli
##
## AIC BIC logLik deviance
## 152.65 156.95 -73.32 146.65
##
## Random effects:
## Groups Name Variance Std.Dev.
## Influenza.strain (Intercept) 0.786 0.887
## Number of obs: 31, groups: Influenza.strain, 17
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.1584 0.5604 0.28 0.7774
## log10dose 0.2815 0.0965 2.92 0.0035 **
## ---
## Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
##
## Correlation of Fixed Effects:
## (Intr)
## log10dose -0.884

The components of fixef(fit) are the intercept and slope of the fixed effect model. The output245

slope is 0.2815. This is the change in log odds of infection for a one-unit change in log10dose.246

Logistic regression with strain and observation as a random effects In principle, there could247

be an interaction between infective dose and strain (i.e. different strains could have different rela-248

tionships between dose and infectivity), but we won’t see that because there are so few data points249

for each strain (in many cases only one datum per strain). We could include this term in the model250

anyway, but the interaction will probably be estimated as zero because of lack of information.251

Another assumption we are making is that each outcome is a binomial draw, i.e., each individ-252

ual is identical. The easy way around this (in other words, to allow for overdispersion) is to attempt253

to fit an observation-level random effect, i.e., each study as a random effect and/or each research254

group as a random effect. One easy solution is to add a variable to the data frame that identifies255

each experiment:256

Yezli$obs <- 1:nrow(Yezli)
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fit.glmm.bystrainobs <- glmer(P.infected˜log10dose+
(1|Influenza.strain)+(1|obs),
weights=N.total,family=binomial,data=Yezli)

fixef(fit.glmm.bystrainobs)

## (Intercept) log10dose
## 0.5308 0.2217

summary(fit.glmm.bystrainobs)

## Generalized linear mixed model fit by maximum likelihood [glmerMod]
## Family: binomial ( logit )
## Formula: P.infected ˜ log10dose + (1 | Influenza.strain) + (1 | obs)
## Data: Yezli
##
## AIC BIC logLik deviance
## 141.87 147.61 -66.94 133.87
##
## Random effects:
## Groups Name Variance Std.Dev.
## obs (Intercept) 1.11e+00 1.053305
## Influenza.strain (Intercept) 1.43e-10 0.000012
## Number of obs: 31, groups: obs, 31; Influenza.strain, 17
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.531 0.717 0.74 0.459
## log10dose 0.222 0.130 1.71 0.087 .
## ---
## Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
##
## Correlation of Fixed Effects:
## (Intr)
## log10dose -0.944

(We can no longer use nAGQ=8 in glmer but must revert to Laplace approximation because257

glmer only implements Gauss-Hermite quadrature for models with a single random effect.) This258

model assigned all the among-strain variation to among-study variation and increased the p value259

to just better than 0.05.260

Logistic regression with strain and study as a random effects Now we try a slight variation,261

using study (Reference) rather than observation as the random effect:262
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fit.glmm.bystrainref <- glmer(P.infected˜log10dose+
(1|Influenza.strain)+(1|Reference),
weights=N.total,family=binomial,data=Yezli)

fixef(fit.glmm.bystrainref)

## (Intercept) log10dose
## 0.3071 0.2792

summary(fit.glmm.bystrainref)

## Generalized linear mixed model fit by maximum likelihood [glmerMod]
## Family: binomial ( logit )
## Formula: P.infected ˜ log10dose + (1 | Influenza.strain) + (1 | Reference)
## Data: Yezli
##
## AIC BIC logLik deviance
## 133.57 139.30 -62.78 125.57
##
## Random effects:
## Groups Name Variance Std.Dev.
## Reference (Intercept) 1.08e+00 1.04e+00
## Influenza.strain (Intercept) 7.02e-11 8.38e-06
## Number of obs: 31, groups: Reference, 27; Influenza.strain, 17
##
## Fixed effects:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.307 0.724 0.42 0.672
## log10dose 0.279 0.135 2.06 0.039 *
## ---
## Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
##
## Correlation of Fixed Effects:
## (Intr)
## log10dose -0.939

The variance is again assigned entirely to reference rather than to influenza strain (although this is263

likely to be a rather fragile result).264

4.4.3 Selecting the best GLMM265

Although it is far from a perfect metric, the Akaike Information Criterion (25, 26) (AIC) suggests266

(fairly strongly: �AIC > 2 represents a substantial change in expected predictive ability) that we267

should use the third model.268
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library("bbmle")
AICtab(fit.glmm.bystrain,fit.glmm.bystrainobs,fit.glmm.bystrainref)

## dAIC df
## fit.glmm.bystrainref 0.0 4
## fit.glmm.bystrainobs 8.3 4
## fit.glmm.bystrain 19.1 3

The point estimates are not terribly different in any case:269

●

●

●

bystrain

bystrainobs

bystrainref

0.0 0.2 0.4
Estimate

270

The slope estimates plotted above are:271

## Estimate lwr upr
## bystrain 0.282 0.092 0.471
## bystrainobs 0.222 -0.032 0.476
## bystrainref 0.279 0.014 0.544

The slope estimates don’t vary that much (from 0.2217 to 0.2815), but the lower confidence inter-272

vals range from -0.0324 to 0.0923.273

The equivalent of the uncertainty in the effect of increasing from the baseline dose by one274

log10 dose unit is as follows (we have to use fixef rather than coef to extract the fixed-effect275

parameters: coef extracts the estimated parameters for each random-effect level (strain)).276

## generate a 1000x2 matrix:
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my.sample <- as.data.frame(mvrnorm(1000,mu=fixef(fit.glmm.bystrainref),
Sigma=vcov(fit.glmm.bystrainref)))

meandose <- mean(Yezli$log10dose)
## predicted infectivity at mean dose:
inf0 <- with(my.sample,plogis((Intercept)+meandose*log10dose))
## predicted infectivity at (mean dose+1):
inf1 <- with(my.sample,plogis((Intercept)+(meandose+1)*log10dose))
change.in.inf <- (inf1-inf0)
c(mean=mean(change.in.inf),quantile(change.in.inf,c(0.025,0.975)))

## mean 2.5% 97.5%
## 0.030175 0.001557 0.056676

summary(my.sample)

## (Intercept) log10dose
## Min. :-1.917 Min. :-0.136
## 1st Qu.:-0.181 1st Qu.: 0.184
## Median : 0.286 Median : 0.281
## Mean : 0.313 Mean : 0.279
## 3rd Qu.: 0.827 3rd Qu.: 0.373
## Max. : 2.429 Max. : 0.649

Yezli.coeftab <- coef(summary(fit.glmm.bystrainref))["log10dose",c("Estimate","Std. Error")]

## 1-unit change from baseline log-odds of 0 (=prob 0.5)
change.in.inf <- plogis(my.sample$log10dose)-0.5
yezli.change.sum <- c(est=mean(change.in.inf),

setNames(quantile(change.in.inf,c(0.025,0.975)),
c("lwr","upr")))

## get rid of "Estimate" name so it doesnt
## contaminate names in the next step:
Yezli.coeftab <- unname(Yezli.coeftab)
yezli.slope <- c(est=Yezli.coeftab[1],

lwr=Yezli.coeftab[1]-1.96*Yezli.coeftab[2],
upr=Yezli.coeftab[1]+1.96*Yezli.coeftab[2])

4.4.4 The “divide by four” rule277

The slope that we have computed with GLMMs is the slope on the linear scale, not the logit scale,278

i.e., the slope is � where the fitted curve is logit(y) = ↵+�x. At the point on the logit scale where279

the probability is 0.5, the slope of the fitted curve is �/4, and the line with this slope through that280
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point is an excellent approximation for quite a wide range of probabilities. This is the basis of281

the “divide by 4” rule (22, p.82), which is often used to approximate the logit by a straight line,282

y = 0.5 + ax.283

slope <- Yezli.coeftab[1]/4
sem.slope <- Yezli.coeftab[2]/4

This yields284

a = 0.0698± 0.0338 . (S17)285

The validity of the “divide by 4” rule is suggested by this plot:286

curve(plogis(x),xlim=c(-5,5), xlab="$x$", ylab="$y$", cex.lab=2, las=1)
curve(0.5 + x/4 ,add=TRUE,col="red")
grid(col="grey")
legend.text <- c("$\\textrm{logit}(y)=x\\qquad[y=1/(1+eˆ{-x})]$",

"$y=\\frac12 + \\frac14x$")
legend("topleft", legend=legend.text, col=c("black", "red"),

lty=1, bty="n", lwd=2)
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287

Below (§6.1.3) we compare predictions based on the divide-by-four rule with those obtained using288

the exact nonlinear relationship.289

4.4.5 Confidence intervals on predictions290

As above, let’s assume the sampling distribution of the glmer parameter estimates is really mul-291

tivariate normal, with variance-covariance matrix given by:292
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(vv <- vcov(fit.glmm.bystrainref))

## 2 x 2 Matrix of class "dpoMatrix"
## (Intercept) log10dose
## (Intercept) 0.52457 -0.09195
## log10dose -0.09195 0.01828

Then we can generate a distribution of slopes and intercepts as follows:293

library(MASS)
pardist <- mvrnorm(1000,mu=fixef(fit.glmm.bystrainref),Sigma=vv)
summary(pardist)

## (Intercept) log10dose
## Min. :-1.994 Min. :-0.129
## 1st Qu.:-0.155 1st Qu.: 0.180
## Median : 0.315 Median : 0.278
## Mean : 0.310 Mean : 0.277
## 3rd Qu.: 0.828 3rd Qu.: 0.368
## Max. : 2.524 Max. : 0.755

We now use the prediction frame pframe from above, which contains a variable log10dose294

with the desired range of values for prediction:295

X <- model.matrix(˜log10dose,data=pframe)
predmat <- X %*% t(pardist)
GLMMbands1 <- t(apply(predmat,1,quantile,c(0.025,0.975)))
confbands.glmm <- with(pframe,cbind(log10dose,

fit=plogis(fixef(fit.glmm.bystrainref)[1]+
fixef(fit.glmm.bystrainref)[2]*log10dose),

lwr=plogis(GLMMbands1[,1]),
upr=plogis(GLMMbands1[,2])))

5 Influenza natural infectivity296

¯

� is the mean increase in viral titer caused by antipyresis, while a is the slope of the putative297

linear relationship between viral titer and infectivity. Thus the product a¯� tells us by how much298

antipyresis increases infectivity. The scale on which this increase is measured is the proportion299

infected. The relative impact of this change depends on the proportion infected in the absence of300

antipyresis, which we think of as the “natural infectivity” of the pathogen and write as I.301

We do not have direct estimates of I for influenza, but we attempt to approximate it as fol-302

lows. One quantity that has often been estimated for influenza is the secondary attack rate (SAR)303
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within a household, i.e., the proportion of co-habiting individuals who are infected by a primary304

(index) case that enters the household. The SAR in a household provides a reasonable estimate305

of the natural infectivity under the assumption that individuals who live together will come into306

contact with the index case. Estimates of the SAR that we are aware of have not controlled for307

use of antipyretics, so the reported SAR can be expected to be higher than the true SAR in the ab-308

sence of antipyresis (making our further analysis conservative). However, SAR measurements can309

be confounded by pre-existing immunity in some household members, which would lower SAR310

estimates. We therefore restrict attention to studies that controlled for pre-existing immunity.311

Yang et al. (27, Table S8) provide estimates of the the SAR in households for influenza, based312

on their own study of the 2009 pandemic (pH1N1) and work of others on seasonal influenza epi-313

demics and previous pandemics.314

SAR.table <- read.csv("data/Yang+2009_TableS8.csv")
nrow(SAR.table)

## [1] 27

colnames(SAR.table)

## [1] "Strain" "Year"
## [3] "Reference.Number" "Article"
## [5] "Based.on.References" "SAR"
## [7] "SAR.lwr" "SAR.upr"
## [9] "Household.Size" "Type.of.Confirmation"
## [11] "Data.Source" "Independent.Sample"
## [13] "Independent.Sample.Comment" "Other.Comments"

SAR.table <- within(SAR.table, {

Article <- as.character(Article)
Article[1] <- "Yang 2009"
Article <- factor(Article)

})

The table lists SAR as percentages, but for our convenience we convert to proportions.315

SAR.table <- transform(SAR.table,
SAR = SAR/100,
SAR.lwr = SAR.lwr/100,
SAR.upr = SAR.upr/100)

We will transform to the logit scale, and back-calculate SEM from the difference between the316

lower and upper CI (we will disregard the fact that some CI seem to be symmetric on the original317

scale, while others are symmetric on the logit scale).318

There a few studies without confidence intervals; we will replace these NA values with the319

mean of the rest of the values.320
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na_mean <- function(x) {

x[is.na(x)] <- mean(x,na.rm=TRUE)
x

}

SAR.table <-
within(SAR.table,

{

SAR.sem <- na_mean((SAR.upr-SAR.lwr)/(2*1.96))
logit.SAR <- qlogis(SAR)
logit.SAR.lwr <- qlogis(SAR.lwr)
logit.SAR.upr <- qlogis(SAR.upr)
logit.SAR.sem <- na_mean((logit.SAR.upr-logit.SAR.lwr)/(2*1.96))

})

Now we check the results look sensible:321

summary(subset(SAR.table,
select=c(SAR,SAR.lwr,SAR.upr,
logit.SAR.lwr,logit.SAR.upr,logit.SAR.sem)))

## SAR SAR.lwr SAR.upr logit.SAR.lwr
## Min. :0.040 Min. :0.0100 Min. :0.080 Min. :-4.595
## 1st Qu.:0.118 1st Qu.:0.0667 1st Qu.:0.151 1st Qu.:-2.638
## Median :0.180 Median :0.1118 Median :0.236 Median :-2.072
## Mean :0.194 Mean :0.1278 Mean :0.246 Mean :-2.192
## 3rd Qu.:0.267 3rd Qu.:0.1688 3rd Qu.:0.299 3rd Qu.:-1.595
## Max. :0.430 Max. :0.3900 Max. :0.510 Max. :-0.447
## NAs :3 NAs :3 NAs :3
## logit.SAR.upr logit.SAR.sem
## Min. :-2.442 Min. :0.0691
## 1st Qu.:-1.732 1st Qu.:0.1379
## Median :-1.175 Median :0.1909
## Mean :-1.240 Mean :0.2429
## 3rd Qu.:-0.854 3rd Qu.:0.2496
## Max. : 0.040 Max. :0.9858
## NAs :3

5.1 Inverse variance weighted mean322

The naı̈ve inverse variance weighted mean is:323
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SAR.var <- SAR.table$SAR.semˆ2
natinf.var <- 1/sum(1/SAR.var)
natinf <- sum(SAR.table$SAR/SAR.var) * natinf.var

and the CI on this quantity is324

(natinf.sem <- sqrt(natinf.var))

## [1] 0.003696

(natinf.lwr <- natinf - 1.96*natinf.sem)

## [1] 0.1501

(natinf.upr <- natinf + 1.96*natinf.sem)

## [1] 0.1646

I = 0.1574 [0.1501, 0.1646] (S18)325

Since I is a probability, it cannot be normally distributed. However, the log-odds of infection,326

logit(I) = log

✓
I

1� I

◆
, (S19)327

can reasonably be assumed to be normally distributed.328

logit.natinf <- qlogis(natinf)
logit.natinf.lwr <- qlogis(natinf.lwr)
logit.natinf.upr <- qlogis(natinf.upr)

logit(I) = �1.678 [�1.734,�1.624] (S20)329

On the logit scale, the confidence interval above is symmetric:330

logit.natinf.upr - logit.natinf

## [1] 0.05364

logit.natinf - logit.natinf.lwr

## [1] 0.05569

We can now infer a standard error on logit(I):331
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(sem.logit.natinf <- ( logit.natinf.upr - logit.natinf.lwr ) / (2 * 1.96))

## [1] 0.02789

However, we will shortly replace these inverse-variance-weighted mean estimates with estimates332

derived from a GLMM analysis (next section).333

5.2 GLMM estimate334

ggplot preliminaries:335

library(ggplot2)
library(proto) ## need this for hacked horizontal linerange
library(grid)
source("geom-linerangeh.R")
theme_set(theme_bw())
zmargin <- theme(panel.margin=unit(0,"lines"))
library(scales)

We can now reproduce (more or less) the plot in the original paper (27, Fig.1):336

ggplot(SAR.table,
aes(x=SAR,y=Year,colour=Article,shape=Type.of.Confirmation))+

facet_grid(Strain˜.,scales="free_y",space="free")+
geom_point() +## position=position_dodge(height=1))
geom_linerangeh(aes(xmin=SAR.lwr,xmax=SAR.upr))+
zmargin+
scale_x_continuous(trans=logit_trans(),

breaks=c(0.01,0.025,0.05,0.1,0.25,0.5))
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## use explicit breaks argument here (compensate for ggplot bug)

26



Fever Suppression – ELECTRONIC SUPPLEMENTARY MATERIAL Earn, Andrews & Bolker

Note that the x axis is drawn on a logit scale. Although not true for all data points, we assume338

for simplicity that all the confidence intervals shown in the graph above are symmetric on the logit339

scale (i.e., the SEM is half of the confidence interval width on the logit scale, divided by 1.96). We340

can then fit a linear mixed model (LMM) on the logit scale. We consider four flavors of LMM,341

with different combinations of the random effects (year, strain, article):342

yang.lmm.ysa <- lmer(logit.SAR˜Type.of.Confirmation-1+
(1|Year)+(1|Strain)+(1|Article),
data=SAR.table,weights=1/logit.SAR.semˆ2)

yang.lmm.ys <- update(yang.lmm.ysa, .˜.-(1|Article))
yang.lmm.sa <- update(yang.lmm.ysa, .˜.-(1|Year))
yang.lmm.s <- update(yang.lmm.sa, .˜.-(1|Article))

These models are essentially indistinguishable in their goodness of fit (so their AIC values vary343

only by 2 or 4 units because the models have different numbers of parameters):344

mlist <- list(YSA=yang.lmm.ysa,YS=yang.lmm.ys,SA=yang.lmm.sa,S=yang.lmm.s)
library(bbmle)
AICtab(mlist)

## dAIC df
## S 0 5
## YS 2 6
## SA 2 6
## YSA 4 7

Variance components:345

## Year Article Strain
## YSA 0 0 0.01
## YS 0 NA 0.01
## SA NA 0 0.01
## S NA NA 0.01

The bottom line is that including only an effect of Strain seems adequate.346

We decided that it made most sense to use the LAB results (difference in seroprevalence be-347

tween the beginning and the end of the influenza season), as this gives the best estimate of the348

actual attack rate (although it does not necessarily distinguish between clinical and subclinical349

infections).350

Comparing the results (on the log-odds scale): LAB confirmations give the lowest values.351

(cc <- coef(summary(yang.lmm.s)))
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## Estimate Std. Error t value
## Type.of.ConfirmationILI -1.528 0.04875 -31.34
## Type.of.ConfirmationILI-LAB -1.512 0.06531 -23.15
## Type.of.ConfirmationLAB -1.793 0.05278 -33.97

Estimates and confidence intervals on the raw, or back-transformed, scale, i.e. these are actual352

attack rates:353

cc2 <- cbind(est=cc[,1],lwr=cc[,1]-1.96*cc[,2],upr=cc[,1]+1.96*cc[,2])
cc3 <- plogis(cc2)
rownames(cc3) <- gsub("Type.of.Confirmation","",rownames(cc2))
round(cc3,2)

## est lwr upr
## ILI 0.18 0.16 0.19
## ILI-LAB 0.18 0.16 0.20
## LAB 0.14 0.13 0.16

However, these confidence intervals only include the parametric uncertainty. We want to com-354

pute confidence intervals for the within-household attack rate: we should certainly allow for vari-355

ation among strains (because we do not know in advance which strain will be prevalent in a given356

year). It is an open question whether we should include the residual variation in our uncertainty357

calculation (i.e. whether we should compute confidence or prediction intervals. Which we choose358

depends on whether we interpret the residual variance as being due mostly to measurement (sam-359

pling) error — in which case the variance would decrease if we collected larger data sets (in which360

case we would compute confidence intervals, omitting the residual variation) — or due mostly361

to process error (e.g. variation in unmeasured covariates), which would remain approximately the362

same for larger data sets (in which case we would compute prediction intervals, including the resid-363

ual variation). In trying to compute conservative estimates of uncertainty, we will use prediction364

intervals.365

The variance components due to among-strain variation, residual variation, and parameter un-366

certainty (which is dominated by the residual variation):367

type <- "Type.of.ConfirmationLAB"
vv <- c(c(unlist(VarCorr(yang.lmm.s))),

resid=attr(VarCorr(yang.lmm.s),"sc")ˆ2,
param=cc[type,"Std. Error"]ˆ2)

vv <- c(vv,tot=sum(vv))
print(vv)

## Strain resid param tot
## 0.010394 0.151844 0.002786 0.165024
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c4 <- cc[type,"Estimate"]
sdtot <- unname(sqrt(vv["tot"]))
c5 <- c(est=c4,lwr=c4-1.96*sdtot,upr=c4+1.96*sdtot)
c6 <- plogis(c5)

Rename for export:368

logit.natinf <- c4
sem.logit.natinf <- sdtot
natinf.glmm <- c6["est"]
natinf.glmm.lwr <- c6["lwr"]
natinf.glmm.upr <- c6["upr"]

6 Estimating the transmission enhancement factor369

6.1 The individual level effect: fi370

Given increase of shedding due to antipyretics (¯�: §3), the effect of increasing shedding on infection371

(a: §4), and the natural infectivity (I: §5), the individual transmission enhancement factor based372

on the divide-by-4 rule (§4.4.4) is373

fi =
I + a

¯

�

I

= 1 +

a

¯

�

I

. (S21)374

Avoiding the linearization/divide-by-4 rule, the precise (nonlinear) relationship is375

fi =
logistic(a0((logit(I)� b

0
)/a

0
)

¯

� + b

0
)

I

=

logistic(logit(I) + a

0
¯

�)

I

(S22)376

(here we are using a

0 to denote the estimate of the slope on the logit scale (= 4a), and b

0 to estimate377

the intercept (although as shown above it doesn’t actually enter the final calculation). Note that fi378

is a decreasing function of I, since379

@fi

@I

= �

e

a

0
�̄

(e

a

0
�̄

� 1)

[1 + (e

a

0
�̄

� 1)I]

2
< 0 . (S23)380

Consequently, an overestimate of I yields an underestimate of fi.381

Our estimates of the means and standard errors of ¯�, a, a0, and logit(I) are:382

a = 0.0698± 0.0338 (S24a)383

a

0
⇡ 4a = 0.2792± 0.1352 (S24b)384

¯

� = 0.2498± 0.0615 (S24c)385

logit(I) = �1.7932± 0.4062 (S24d)386
387
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Using the mean values, the graphical relationship between I and fi is:388
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389

Note that the exact relationship is much closer to linear than the relationship obtained with the390

(linearized) divide-by-four rule.391

To obtain a point estimate and confidence interval for fi based on the divide by four rule, we392

sample from normal distributions for a, ¯� and logit(I) defined by the means and standard errors393

above, and use them to estimate a sample of the distribution of Equation (S21). Similarly, to394

estimate fi based on the nonlinear relationship given by Equation (S22), we begin by sampling395

from normal distributions for a0, ¯� and logit(I).396

6.1.1 Linearized/divide-by-4 method397

Remember that plogis() is the logistic function, logit�1
(y) = 1/(1 + e

�y

), and qlogis() is398

the logit.399

sample.size <- 10000

30



Fever Suppression – ELECTRONIC SUPPLEMENTARY MATERIAL Earn, Andrews & Bolker

a.sample <- rnorm( sample.size, slope, sem.slope )
delta.bar.sample <- rnorm( sample.size, delta.bar, sem.delta.bar )
natinf.sample <- plogis( rnorm( sample.size, logit.natinf,

sem.logit.natinf ) )
fi.sample <- 1 + a.sample*delta.bar.sample / natinf.sample
(median.fi <- median( fi.sample ))

## [1] 1.114

mean( fi.sample )

## [1] 1.131

(ci.fi <- quantile( fi.sample , c(0.025,0.975) ))

## 2.5% 97.5%
## 1.006 1.354

fi = 1.114 [1.006, 1.354] (S25)400

6.1.2 Nonlinear Method401

We use suffix ‘p’ (for “prime”) to denote estimates with nonlinearity (ap vs a, fip vs fi, etc.).402

ap.sample <- rnorm( sample.size, Yezli.coeftab[1], Yezli.coeftab[2])
fip.sample <- plogis(qlogis(natinf.sample) + ap.sample*delta.bar.sample) /

natinf.sample
(median.fip <- median( fip.sample ))

## [1] 1.058

mean( fip.sample )

## [1] 1.061

(ci.fip <- quantile( fip.sample , c(0.025,0.975) ))

## 2.5% 97.5%
## 1.002 1.141
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6.1.3 Comparison of Linearized and Nonlinear methods403

Density plots of our estimated distributions for fi are shown below, with the medians marked by404

vertical lines (the horizontal axis has been trimmed slightly to show the central portion of the405

densities more clearly).406

library(ggplot2)
d0 <- data.frame(type=rep(c("divide.by.4","nonlinear"),each=sample.size),

value=c(fi.sample,fip.sample))
d1 <- data.frame(type=c("divide.by.4","nonlinear"),

value=c(median.fi,median.fip))
ggplot(d0,aes(x=value))+

geom_density(alpha=0.5,aes(fill=type),colour=NA)+
labs(title="Estimated Distribution of $f_{\\rm i}$",

x="$f_{\\rm i}$", y="density")+
geom_vline(data=d1,aes(colour=type,xintercept=value))+
xlim(c(0.9,1.6))
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407

The distribution based on the full nonlinear expression has a somewhat lower median, but also408

much lower uncertainty (hence a larger lower bound).409

6.2 The population level effect: fp410

6.2.1 Informative distribution of p411

We argue in the main text that, although we have extremely little information about the treatment412

probability (the probability that an individual will use antipyretic medication when febrile with413
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influenza), its uncertainty is reasonably represented by a Beta distribution with shape parameters 4414

and 2:415

par(las=1,bty="l",cex=2)
curve(dbeta(x,4,2),from=0,to=1,xlab="Probability of treatment $p$",

lwd=2,
ylab="Probability density")

curve(dbeta(x,1,1),lwd=2,col="red",add=TRUE)
curve(dbeta(x,4/3,2/3),lwd=2,col="blue",add=TRUE)
legend("topleft",c("Beta(4,2)","Beta(1,1)","Beta(4/3,2/3)"),

lwd=2,lty=1,col=c("black","red","blue"),cex=0.6,bty="n")
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416

shape1 <- 4
shape2 <- 2
p.lwr <- qbeta(0.025,shape1,shape2)
p.upr <- qbeta(0.975,shape1,shape2)
p.median <- qbeta(0.5,shape1,shape2)
p.mean <- shape1/(shape1+shape2)

The mean is 0.67; the lower 2.5% quantile, median, and upper 97.5% quantile are 0.28, 0.69, and417

0.95, respectively.418
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6.2.2 Flat distribution of p419

Alternatively, we could simply claim that we have no information about p, and that we will use420

a uniform distribution (equivalently a Beta(1, 1) distribution) to represent this ignorance. Making421

this change decreases the mean value of p from 2/3 to 1/2 as well as increasing the variance; as yet422

another alternative (not pursued here) we could increase the variance while preserving the mean,423

e.g. by using Beta(4/3,2/3) . . .424

shape1U <- 1
shape2U <- 1
p.lwr.U <- qbeta(0.025,shape1U,shape2U)
p.upr.U <- qbeta(0.975,shape1U,shape2U)
p.median.U <- qbeta(0.5,shape1U,shape2U)
p.mean.U <- shape1U/(shape1U+shape2U)

The mean is 0.5; the lower 2.5% quantile, median, and upper 97.5% quantile are 0.02, 0.5, and425

0.975, respectively.426

6.3 Fraction symptomatic and febrile427

Not everyone who gets influenza has a fever — not all infected (and infectious) individuals even428

have symptoms. These phenomena will change our estimates in two ways. (1) Asymptomatic429

individuals are not counted in the treatment fractions estimated above. (2) Antipyretics will pre-430

sumably have little or no effect on the viral shedding rate in individuals without fever. To the431

extent that antipyretic use is independent of fever, and of symptoms generally, the effective treat-432

ment fraction will be reduced by the fraction of individuals that actually have fever. We are making433

an extremely conservative assumption here; even though individuals without fever may take an-434

tipyretics that are included in over-the-counter medication that also addresses other symptoms,435

we would expect a positive correlation between fever and antipyretic use, and especially between436

symptoms and use of medication!437

Proceeding with these assumptions however — assuming independence of antipyretic treat-438

ment and fever, but that only symptomatic individuals are included in our treatment fraction p439

above, to get the fraction of infected individuals that have fever and are treated with antipyretics,440

we need441

effective treatment = p ·

symptomatic
infected

·

febrile
infected

(S26)

Carrat et al. (28) provide the data we need for this correction. They performed a meta-analysis442

of infection trials on healthy volunteers, estimating the average probability, across studies and443

strains of influenza, of infectiousness (frequency of an influenza-positive nasal wash on at least444

one occasion at least one day after inoculation in their Table 1); proportion who developed any445

symptoms (“clinical illness” in their Table 2); and proportion who developed a fever (their Table 4:446

defined as a temperature > 100 deg F or > 37.8C).447

We transcribed the data from Tables 1, 2, and 4:448
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Percentage infected/infectious:449

## est lwr upr
## A/H1N1 93.1 88.5 95.9
## A/H3N2 92.5 85.8 96.1
## A/H2N2 84.3 64.9 94.0
## B 81.5 67.0 90.5
## All 90.0 85.6 93.1

Percentage with symptoms:450

## est lwr upr
## A/H1N1 70.8 50.4 85.2
## A/H3N2 64.5 54.6 73.3
## A/H2N2 77.9 55.1 91.0
## B 57.4 35.2 76.9
## All 66.9 58.3 74.5

Percentage with fever:451

## est lwr upr
## A/H1N1 37.0 24.6 51.3
## A/H3N2 40.6 30.9 51.1
## A/H2N2 100.0 69.2 100.0
## B 7.5 3.2 16.9
## All 34.9 26.7 44.2

As before, we use these results by taking the estimate and confidence intervals on the over-452

all average values (“All” row); scaling from percentages to proportions, logit-transforming them453

and, assuming the sampling distribution is Normally distributed on the logit scale, taking � =454

(upper� lower)/3.92; generating Normally distributed random deviates with the appropriate mean455

and variance; and logistic-transforming back to the original scale. The following function executes456

this strategy for various tables.457

getsamp <- function(i,n=1000,sc=100) {
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qupr <- qlogis(i$upr/sc)
qlwr <- qlogis(i$lwr/sc)
qest <- qlogis(i$est/sc)
halfint <- c(qupr-qest,qest-qlwr)
if (abs(diff(halfint)/mean(halfint))>0.1)

warning("asymmetric CI on logit scale")
qdist <- diff(qnorm(c(0.025,0.975)))
qsd <- (qupr-qlwr)/qdist
plogis(rnorm(n,qest,qsd))

}

isamp <- getsamp(infrate["All",])
csamp <- getsamp(clinrate["All",])
fsamp <- getsamp(fevrate["All",])
t.sample <- csamp*fsamp/(isampˆ2)

par(las=1,bty="l")
hist(t.sample,col="gray",breaks=50,

main="Asymptomatic/afebrile correction")
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t.lwr <- quantile(t.sample,0.025)
t.median <- quantile(t.sample,0.5)
t.upr <- quantile(t.sample,0.975)
t.mean <- mean(t.sample)

The mean is 0.29; the lower 2.5% quantile, median, and upper 97.5% quantile are 0.21, 0.29, and459

0.39, respectively.460

6.3.1 Conclusions461

For most of these conclusions we use the informative distribution. The estimate of fi we reached462

in Equation (S25) is a lower bound because we have ignored lengthening of infectious periods and463

increased contact due to feeling better. Thus, a crude lower bound on the population level effect of464

suppressing fever is465
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fpop <- 1 + (median.fip-1)*p.mean*t.mean

p.sample <- rbeta(sample.size,shape1,shape2)
fpop.sample <- 1 + (fip.sample-1)*p.sample*t.sample
fpop.lwr <- quantile(fpop.sample,0.025)
fpop.upr <- quantile(fpop.sample,0.975)

fp = 1.011 [1, 1.031] (S27)466

Alternately, we can use the uniform distribution results:467

fpop.U <- 1 + (median.fip-1)*p.mean.U*t.mean
p.sample.U <- rbeta(sample.size,shape1U,shape2U)
fpop.sample.U <- 1 + (fip.sample-1)*p.sample.U*t.sample
fpop.lwr.U <- quantile(fpop.sample.U,0.025)
fpop.upr.U <- quantile(fpop.sample.U,0.975)

Conclusion: Antipyretics yield an increase in viral shedding that causes an increase in trans-468

mission of about 1.1%, with a 95% CI of 0.04–3%. Since we have ignored both lengthening of469

infectious periods and increases in contact, the increase in transmission is probably underestimated.470

Using the uniform distribution: 1%, [95% CI 0.005–3%].471

7 Computing attributable deaths472

Finally, we compute the predicted annual number of influenza deaths in the United States that we473

infer are caused by mass use of antipyretic medication:474

Z(fpR0)� Z(R0)

Z(fpR0)
⇥ (estimated influenza deaths in the US) . (S28)475

This prediction depends on R0, so we save the predictions for three R0 values in the plausible476

range for influenza (we order the three R0 values to be decreasing so the resulting prediction of477

deaths goes from the lowest to the highest). The estimate of annual influenza deaths in the United478

States is from Dushoff and co-workers (29).479

all.US.deaths <- 41400
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semUSdeaths <- (55700-all.US.deaths)/1.96
#####R0 <- c(High=1.8,Mid=1.5,Low=1.2)
R0 <- c(Low=1.2,Mid=1.5,High=1.8)
(mortprop <- dZ(fpop,R0) / Z(fpop*R0))

## Low Mid High
## 0.04899 0.01811 0.01013

US.deaths <- all.US.deaths * mortprop
## round to nearest 100
100*round(US.deaths/100)

## Low Mid High
## 2000 700 400

The effect of a 20% increase in fpop is very nearly linear:480

rIncr <- 1+(fpop-1)*1.2
incrMortprop <- dZ(rIncr,R0["Mid"]) / Z(rIncr*R0["Mid"])
(fpopIncrPct <- (incrMortprop/mortprop["Mid"]-1)*100)

## Mid
## 19.19

To get CIs on the estimated percentages of deaths attributable to antipyretic use, we propagate481

all the errors through the calculations, assuming all are normally distributed, and calculate the482

percentages for a large sample.483

mortprop.sample <-
sapply(R0, function(x) dZ(fpop.sample,x) / Z(fpop.sample*x))

mortprop.CI <- t(apply(mortprop.sample,2,quantile,c(0.025,0.975)))
dimnames(mortprop.CI) <- list(R0=names(R0),c("lwr","upr"))
mortprop.CI

##
## R0 lwr upr
## Low 0.0019572 0.12313
## Mid 0.0007020 0.04780
## High 0.0003902 0.02707

Sample from the distribution of US deaths, propagate that uncertainty, and output the result:484
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US.deaths.sample <- rnorm(sample.size,all.US.deaths,semUSdeaths)
attrib.deaths.sample <- sweep(mortprop.sample,1,FUN="*",US.deaths.sample)
attrib.deaths.CI <- t(apply(attrib.deaths.sample,2,quantile,c(0.025,0.975)))
dimnames(attrib.deaths.CI) <- dimnames(mortprop.CI)
## round to nearest 10/100 ...
smvals <- 2:3
attrib.deaths.CI[smvals] <- 10*round(attrib.deaths.CI[smvals]/10)
attrib.deaths.CI[-smvals] <- 100*round(attrib.deaths.CI[-smvals]/100)
attrib.deaths.CI

##
## R0 lwr upr
## Low 100 5300
## Mid 30 2100
## High 10 1200

8 Save results to a file for inclusion in main paper485

We save our estimates to a file in a format that can be input by LATEX in the main text of the paper.486

We begin by writing a dated header to the file.487

fn <- "feverestimates.tex"
cat(file=fn,"% Estimates computed in feversupp.Rnw,", date(), "\n")

Next, we write the results as computed (to two decimal places). Some results are expressed as488

dimensionless factors (fi, fp, 10�̄), whereas others are expressed as proportions (I) and still others489

have units (¯�, a). (The nvec() function constructs a vector which will have names corresponding490

to the names of the variables specified: see feversuppfuns.R.)491

results.factor <- nvec(ten.to.the.delta.bar,
ten.to.the.delta.bar.lwr,
ten.to.the.delta.bar.upr,
find=median.fip,
findlwr=ci.fip[1], findupr=ci.fip[2],
fpop, fpop.lwr, fpop.upr,
fpop.U, fpop.lwr.U, fpop.upr.U)

## now remove dots and append "val"
paste0 <- function(...,sep="") {paste(...,sep=sep)}
renamefun <- function(x) {

setNames(x,paste0(gsub("\\.","",names(x)),"val"))
}

results.factor <- renamefun(results.factor)

40



Fever Suppression – ELECTRONIC SUPPLEMENTARY MATERIAL Earn, Andrews & Bolker

results.proportion <-
renamefun(nvec(natinf.glmm, natinf.glmm.lwr, natinf.glmm.upr))

results.other <- renamefun(nvec(delta.bar, sem.delta.bar, slope, sem.slope))
results.yezli <- renamefun(nvec(yezli.change.sum,yezli.slope))

results <- c(results.factor, results.proportion,
results.other, results.yezli)

cat(file=fn,append=TRUE,sep="\n",
sprintf("\\newcommand{\\%s}{%4.2f}", names(results),

as.vector(results)))
round(results,2)

## tentothedeltabarval tentothedeltabarlwrval tentothedeltabaruprval
## 1.78 1.35 2.35
## findval findlwrval finduprval
## 1.06 1.00 1.14
## fpopval fpoplwrval fpopuprval
## 1.01 1.00 1.03
## fpopUval fpoplwrUval fpopuprUval
## 1.01 1.00 1.03
## natinfglmmval natinfglmmlwrval natinfglmmuprval
## 0.14 0.07 0.27
## deltabarval semdeltabarval slopeval
## 0.25 0.06 0.07
## semslopeval yezlichangesumestval yezlichangesumlwrval
## 0.03 0.07 0.00
## yezlichangesumuprval yezlislopeestval yezlislopelwrval
## 0.13 0.28 0.01
## yezlislopeuprval
## 0.54

We also save the factor results as percentage increases and the proportion results as percentages,492

since the main text sometimes expresses the results this way.493

percentages <- c( (results.factor-1)*100, results.proportion*100 )
names(percentages) <- sub("val","pct",

names(c(results.factor,results.proportion)))
cat(file=fn,append=TRUE,sep="\n",

sprintf("\\newcommand{\\%s}{%.0f}", names(percentages),
as.vector(percentages)))
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round(percentages)

## tentothedeltabarpct tentothedeltabarlwrpct tentothedeltabaruprpct
## 78 35 135
## findpct findlwrpct finduprpct
## 6 0 14
## fpoppct fpoplwrpct fpopuprpct
## 1 0 3
## fpopUpct fpoplwrUpct fpopuprUpct
## 1 0 3
## natinfglmmpct natinfglmmlwrpct natinfglmmuprpct
## 14 7 27

cat(file=fn,append=TRUE,sep="\n",
sprintf("\\newcommand{\\%s}{%.2f}",

paste0("ptreat",c("mean","lwr","upr")),
c(p.mean,p.lwr,p.upr)))

cat(file=fn,append=TRUE,sep="\n",
sprintf("\\newcommand{\\%s}{%.2f}",

paste0("pasymp",c("mean","lwr","upr")),
c(t.mean,t.lwr,t.upr)))

494

cat(file=fn,append=TRUE,sep="\n",
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sprintf("\\newcommand{\\%s}{%.0f}",
c("allUSdeaths","allUSdeathslwr","allUSdeathsupr"),
c(all.US.deaths, 27100, 55700)))

cat(file=fn,append=TRUE,sep="\n",
sprintf("\\newcommand{\\%s}{%.1f}",

c("RnLow", "RnMid", "RnHigh"),
R0))

cat(file=fn,append=TRUE,sep="\n",
sprintf("\\newcommand{\\%s}{%.0f}",

c("mortpctLow", "mortpctMid", "mortpctHigh"),
mortprop*100))

US.deaths <- 100*round(US.deaths/100)
cat(file=fn,append=TRUE,sep="\n",

sprintf("\\newcommand{\\%s}{%.0f}",
c("USdeathsLow", "USdeathsMid", "USdeathsHigh"),
US.deaths))

cat(file=fn,append=TRUE,sep="\n",
sprintf("\\newcommand{\\%s}{%.1f}",

"fpopIncrPct",fpopIncrPct))

## utility function to collapse a matrix to a vector and
## assign relevant names
mat.to.vec <- function(x,prefix="") {

vec <- c(x)
names(vec) <- paste0(prefix,

outer(rownames(x),colnames(x),
paste0))

vec
}

## calculate mort pct CI and output ...
mortpctCIvec <- mat.to.vec(100*mortprop.CI,"mortpct")
cat(file=fn,append=TRUE,sep="\n",

sprintf("\\newcommand{\\%s}{%.1f}",
names(mortpctCIvec),
mortpctCIvec))

attribdeathsCIvec <- mat.to.vec(attrib.deaths.CI,"attribdeaths")
cat(file=fn,append=TRUE,sep="\n",

sprintf("\\newcommand{\\%s}{%.0f}",
names(attribdeathsCIvec),
attribdeathsCIvec))
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cat(file=fn,append=TRUE,sep="\n",
sprintf("\\newcommand{\\%s}{%.0f}",

"samplesize", sample.size))

Now we override a few of the definitions to get more precise lower bounds (ll. 115; 126; 131495

⇥2). We need \yezlislopelwrval, \findlwrval, \fpoplowrpct, \fpoplwrval.496

## values -- need 3 significant digits
lwrbounds1 <- c(results.yezli["yezlichangesumlwrval"],

results.factor[c("findlwrval","fpoplwrval")])
cat(file=fn,append=TRUE,

sep="\n",
sprintf("\\renewcommand{\\%s}{%4.3f}",

names(lwrbounds1),lwrbounds1))
lwrbounds2 <- percentages["fpoplwrpct"]
cat(file=fn,append=TRUE,

sep="\n",
sprintf("\\renewcommand{\\%s}{%4.2f}",

names(lwrbounds2),lwrbounds2))
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Figure S1: Data replotted from Figure 1 of Husseini et al. (1). Original caption: “Effect of shaving on mean in-
creases in rectal temperature (top) and mean viral titers in nasal washes (bottom) of ferrets inoculated intranasally
with 106 50% egg bit infectious doses (EBID50) of clone 7a of the recombinant influenza virus A/Puerto Rico/8/34-
A/England/939/69 (H3N2). Animals that responded to shaving (squares) did not have a febrile response (three ferrets;
group 1), whereas animals that did not respond to shaving (triangles) (six ferrets; group 2) had a febrile response
similar to that of animals that were not shaved (circles) (six ferrets; group 3). The bars represent SEM.”
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Figure S2: Data replotted from the left panels of Figure 2 of Husseini et al. (1). Original caption: “Effect of sodium
salicylate on mean increases in rectal temperature (top) and mean viral titers in nasal washes (bottom) of ferrets
inoculated intranasally with clone 7a. . . ” See caption to Figure S1. Sample sizes: responded to treatment (8), did not
respond to treatment (3), untreated (11). The time period highlighted in grey corresponds to the data we used in this
paper (i.e., when the animals were under the influence of antipyretic medication).
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Figure S3: Data replotted from the right panels of Figure 2 of Husseini et al. (1). Original caption: “Effect of sodium
salicylate on mean increases in rectal temperature (top) and mean viral titers in nasal washes (bottom) of ferrets
inoculated intranasally with clone 64d. . . ” See caption to Figure S1. Sample sizes: responded to treatment (6), did
not respond to treatment (3), untreated (7). The time period highlighted in grey corresponds to the data we used in this
paper (i.e., when the animals were under the influence of antipyretic medication).
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Figure S4: Data from the meta-analysis summarized in Table 1 of the review of Yezli and Otter (2). (a) The data, with
colour-coding for strains that were used in more than one experiment. (b) Completely naı̈ve linear regression and 95%
confidence bands (§4.2). (c) Naı̈ve logistic regression (§4.3). (d) Generalized linear mixed model (§4.4).
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