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Abstract

Fred Brauer was an eminent mathematician who studied dynamical systems, especially
differential equations. He made many contributions to mathematical epidemiology, a
field that is strongly connected to data, but he always chose to avoid data analysis.
Nevertheless, he recognized that fitting models to data is usually necessary when
attempting to apply infectious disease transmission models to real public health prob-
lems. He was curious to know how one goes about fitting dynamical models to data,
and why it can be hard. Initially in response to Fred’s questions, we developed a user-
friendly R package, f£itode, that facilitates fitting ordinary differential equations to
observed time series. Here, we use this package to provide a brief tutorial introduction
to fitting compartmental epidemic models to a single observed time series. We assume
that, like Fred, the reader is familiar with dynamical systems from a mathematical
perspective, but has limited experience with statistical methodology or optimization
techniques.
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1 Introduction

In their landmark 1927 paper, Kermack and McKendrick (1927, p.713) (KM)
introduced the now-standard susceptible-infected-removed (SIR) epidemic model,

ds
5 = PSI (la)
dI
5 =BSI -l (1b)
dR
T vl, (Ic)

where S, I and R represent the numbers of individuals who are susceptible, infected
or removed,! B is the transmission rate, and y is the removal (or recovery) rate. In
that original paper, KM [p. 714] also fit their model to plague mortality data from an
epidemic in Bombay (now Mumbai) that occurred about 20 years before their paper
was written.

In the century that has elapsed since publication of KM’s initial paper, the field of
mathematical epidemiology has expanded and matured, and has been the subject of
many books (Bartlett 1960; Bailey 1975; Anderson and May 1991; Andersson and Brit-
ton 2000; Diekmann and Heesterbeek 2000; Brauer and Castillo-Chavez 2001; Brauer
et al. 2019) and review articles (Hethcote 2000; Earn et al. 2002; Earn 2008, 2009).
Researchers have primarily focused on compartmental models like the SIR model, cast
either as differential equations following the tradition of KM, or as stochastic processes
in the tradition of McKendrick (1926) and Bartlett (1960). In recent years, as the power
of computers has grown, some researchers have turned to agent-based models, which
represent each individual as a separate unit that can have unique properties (Eubank
et al. 2004).

Throughout the history of the subject, and regardless of the modelling frameworks
they have exploited, mathematical epidemiologists have frequently attempted to fit—
or at least to compare—their models to observed infectious disease data. Such fits have
often been naive, with limited consideration of their quality. Over the years, however,
there has been a trend towards greater sophistication and statistical rigour in parameter
estimation for infectious disease models; books that explain these methods have begun
to appear in recent decades (Bolker 2008; Bjgrnstad 2018). Careful consideration of
uncertainty is especially important when epidemic models are used for the develop-
ment and analysis of policy options for infectious disease management (Elderd et al.
2006), a challenge that began to absorb the attention of many mathematical epidemi-
ologists as soon as the emergence of SARS-CoV-2 ignited the COVID-19 pandemic
(Brooks-Pollock et al. 2021; Hillmer et al. 2021; Nixon et al. 2022; Howerton et al.
2023).

While visiting the University of British Columbia in 2014-2015, one of us (DE)
had many conversations with Fred Brauer about epidemic models and how they can be
used in practical applications. While he had no desire to analyze data himself, Fred was

! In the words of KM [p. 701] “removed from the number of those who are sick, by recovery or by death”.
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acutely aware that fitting to data is essential if one wishes to apply epidemic models
to real public health problems, and he did want to understand what was involved in
doing so.

Fred’s curiosity inspired us to develop user-friendly software for fitting ordinary
differential equation (ODE) models to observed time series, with the goal of illus-
trating the process and challenges of model fitting to Fred and others like him, i.e.,
individuals who are comfortable with mathematical analysis of ODEs but have little
or no experience with statistics and parameter estimation. Unfortunately, we have lost
the opportunity to present our work to Fred, but it seems fitting (!) to highlight Fred’s
role in the history of this work, and to dedicate this tutorial to his memory.

2 Kermack and McKendrick’s Fit

We begin by revisiting KM’s application of their SIR model (1) to the epidemic of
plague in Bombay in 1905-1906. The observed data (large dots in Fig. 1) were weekly
numbers of deaths from plague.

Referring to their version of Fig. 1, KM [p. 714] argued that “As at least 80 to 90 per
cent. of the cases reported terminate fatally, the ordinate may be taken as approximately
representing [dR/d¢] as a function of z.” Since (non-human) computers did not yet
exist (Campbell-Kelly 2009), and an exact analytical form for this function could not
be found, they proceeded to assume [KM, p.713] that gR (t) <« 1, and derived the
approximate analytical form,

dR
- ~a sech®>(wt — ¢). )

Noting that the basic reproduction number is?

Ro =L 3)

14

where N is the total population size, the assumption that yields KM’s approximation
(2) can be written

R(t) — R(0) 1
- - < — 9 4

N < R “
(KM assumed R(0) = 0); thus, Eq. (2) is a good approximation as long as the pro-
portion of the population that has been infected and removed since the initial time is
much less than 1/Ry.

2 We had originally intended to submit this paper to a collection in honour of Fred’s memory (Kribs and
van den Driessche 2023).

3 Ry is the expected number of secondary cases resulting from a primary case in a wholly susceptible
population (Anderson and May 1991).
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Fig. 1 The plague epidemic in Bombay, 17 December 1905 to 21 July 1906, used as an example by KM
[p. 714]. The data (large dots) were digitized from The Advisory Committee Appointed by the Secretary
of State for India, the Royal Society, and the Lister Institute (1907, Table IX, p.753). Top panel: The KM
approximation (2), as fitted by KM (blue curve) and by us using nls (orange curve, with confidence band
estimated using the Delta method; see Sect.4). The associated parameter estimates are given in Table 1. The
dotted gold curve shows the £itode fit of the SIR model (1), for which the associated parameter estimates
are given in Table 2 [observation errors are assumed to be negative binomially distributed (17)]; this curve
happens to coincide almost exactly with KM’s fit. Bottom panel: The solid gold curve is identical to the
dotted gold curve in the top panel; its confidence band is the £itode confidence band obtained by the
Delta method [the band is shown as a linear interpolation between successive observation times because
the model (1) is fitted to incidence at discrete time points rather than to a continuous curve representation
of the instantaneous death rate]. The light blue curve shows the £itode fit obtained by minimizing the
ordinary least squares (7) [i.e., assuming observation errors are normally (14) distributed with variance o
estimated from the residuals across all observation times]. The dotted orange curve is identical to the solid
orange curve in the top panel. We have separated the two panels because the confidence band overlap would
make the plots difficult to interpret (Color figure online)
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Given Eq. (3), the effective reproduction number at time t = 0 is

S(0)
Re = ﬁ 5)
14
In terms of Re, y, S(0) and 1(0), the parameters in Eq. (2) can be written®
4 21(0)
== —1)2 2 6
w 2\/(726 ) +S(O)Re’ (62)
-1
¢ = arctanh Re , (6b)
2w/y
2 2
and a= &EO) . (6¢)
Y Rg

The values of these parameters that KM estimated for the Bombay plague epidemic are
listed in the KM column of Table 1. Using these values, KM plotted their “calculated”
curve, which we have reproduced in blue in Fig. 1.

3 How to Fit the Model to the Data

The blue curve in Fig. 1 does appear to provide a reasonable fit to the data, but KM
gave no indication of how their parameter estimates were obtained. Whatever their
process, they must have engaged in some sort of trajectory matching, i.e., adjusting
parameter values until the model—Eq. (2) in their case—is, by some measure, close
to the observed data points. The most obvious metric for this purpose is the Euclidean
distance between the model curve and the data. Thus, a natural objective function to
minimize is

ny

2
D (x(te: 0) = xont0)), @)
=1
where the observed data are the points {(z¢, X, (f¢)) : £ = 1, ..., n;}, 6 is the vector

of parameters, and x(¢; @) is the model; for KM’s problem, the parameter vector is
0 = (a,w, ¢) and the model is given by Eq. (2). (Note that we write x,,,(-) when
referring to observations of the variable x and x(-; -) when referring to the model.)
Choosing this objective function is equivalent to assuming that the x,,,(#;) values are
direct (but noisy) observations of the state variable x (). When the connection between
the dynamical system and our observations is more complicated, we need to define an
explicit observation process; see Sect. 4. Minimizing (7) with respect to § would have
required some heroic arithmetic with a pencil and paper in 1927, but it is a simple task
with the aid of a modern computer.

4 Thereisa typographical error in equation (31) of KM: their factor ,/—¢g should be (—¢) in their equivalent
of the parameter we call a. Bacaér (2012, §3) corrected this error without comment.
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In the following segment of R code, we fit equation (2) to the Bombay plague
data (which are included in the £itode package that we describe below, as a data
frame with columns week and mort). We exploit R’s nonlinear least squares function
(nls), which attempts to minimize the distance (7) to the data, starting from an initial
guess (start).
sech <- function(x) {1l/cosh(x)}

KM_approx <- function(t, a, omega, phi) {a * sech(omega*t - phi) "2}
KM.parameters <- c(a = 890, omega = 0.2, phi = 3.4)
nlsfit <- nls(mort ~ KM approx(week, a, omega, phi),
data = fitode: :bombay,
start = KM.parameters)
nls.parameters <- coef (nlsfit)
print (nls.parameters)

H## a omega phi
## 874.7545749 0.1935916 3.3720557

Above, we chose as our starting value the fitted parameter values of KM. Our least
squares parameter values differ from KM’s by a few percent (see Table 1). The least
squares fitted function is shown in orange in Fig. 1.

Starting from someone else’s fitis not a great way to test the method, but fortunately
the least squares fit for this problem is not very sensitive to the starting value. To pick
reasonable starting values, it often helps to think about the meaning of parameters.
For example, in the case of Eq. (2), it is useful to note that a is the maximum of the
function, and if write wt — ¢ as w(t — 1) then

= @®)

is the peak time (at which the maximum occurs); both a and 7, can be approximated by
looking at the plotted data. Assuming /(0)/S(0) < 1, w is half the initial exponential
growth rate,” so it can be approximated easily by plotting the data on a log scale,
estimating the initial slope, and dividing by 2. Very rough guesses for a, t, and w are
sufficient to converge on the same fit:

a.guess <- 1000
tpeak.guess <- 15
omega.guess <- 1
phi.guess <- omega.guess * tpeak.guess
nlsfit <- nls(mort ~ KM approx(week, a, omega, phi),
data = fitode: :bombay,
start = c(a = a.guess, omega = omega.guess,
phi = phi.guess))
print (nls.parameters <- coef (nlsfit))

## a omega phi
## 874.7550490 0.1935918 3.3720589

However, if you experiment with starting values, you will find that if you pick suffi-
ciently bad starting values, then nls will fail. For example, starting from a = 2000,
tp = 5, and w = 0.1 yields a “singular gradient” error. More interestingly, starting

5 From Eq. (1b), the initial exponential growth rate is 8S(0) — y = y(Re — 1).
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109 Page8o0f32 D.J.D.Earnetal.

from a = 500, f, = 5, and v = 0.1 yields a = 869, » = —0.19, ¢ = —3.48,
which is far from our fitted values and illustrates an important fact: there is not nec-
essarily a unique best fit set of parameters! In this case, the alternative solution exists
because sech?(x) is symmetric about the y axis, but in general, there can be multiple
local minima that cause nonlinear optimizers to converge to points that may or may
not represent equally good fits to the data. The potential existence of multiple local
optima makes fitting to data hard; you need to be cautious, and use common sense, in
interpreting the solutions found by your software (always plot the solutions!). Raue
et al. (2013) give suggestions for how to diagnose and handle multiple optima.

If you know that your parameters should be in a certain range, then you can exclude
values outside that range. For example, to ensure that all the parameters are non-
negative (and exclude the alternative fit above), you would add the nls option

lower = ¢(a = 0, omega = 0, phi = 0)
which would prevent convergence to negative w and ¢. Alternatively, you could write
a=et, w=e% ¢=e2, )

and fit A, €2, and ®, which would guarantee positive a, w, and ¢ without having to con-
strain the values of the fitted parameters. While this last suggestion may just seem like
a cute trick, there is more to it than that. Many more optimization algorithms are avail-
able for unconstrained fitting; numerical parameter values of very small magnitude can
also lead to numerical instability, so it is advantageous to link parameters that must lie
in a given range to unconstrained parameters that can be fit more easily (Bolker 2008,
pp-328-329). In Eq. (9), the link function that converts the parameters to the uncon-
strained scale is log(x). Another common link function is logit(x) = log(x /(1 — x))
(the log-odds function, or the inverse of the logistic function), which converts the unit
interval (0, 1) to (—o0, 00), and is convenient when parameters represent proportions
or probabilities. (Requiring positivity is so common that £itode uses a log link for
all parameters by default.)

If we accept our fit as satisfactory, what can we infer about the dynamics of plague
that KM were attempting to capture with the SIR model (1)? We need to convert the
parameters of KM’s approximation (6) back to the original parameters that are directly
related to the mechanism of disease spread formalized by the model (i.e., 8 and y,
and initial conditions S(0) and 7(0)).

@ Springer
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The nonlinear algebraic relationships specified by Eq. (6) can be inverted®
analytically’ (Bacaér 2012, §3), to obtain

Re=14 2 wI(0) sinh(¢) cosh(¢) ’ (10a)
a
= M , (10b)
Re — 1
_ 2RZ1(0)sinh’*¢
S(O) = W (]OC)

Since there are four original parameters (8, y, S(0), 1(0)) and only three parameters
in KM’s approximation (2) (a, w, ¢), one of the four original parameters needs to be
specified separately; in Eq. (10) above we have taken this to be the initial prevalence
1(0). From Eq. (10), we can compute the transmission rate,

R
=, (n
S(0)
and the mean intrinsic generation interval (Champredon and Dushoff 2015),
T, = ! (12)
=

which is the same as the mean infectious period in this simple model (Pybus et al.
2001; Roberts and Heesterbeek 2007; Wallinga and Lipsitch 2007; Krylova and Earn
2013; Champredon et al. 2018). Table 1 lists the values of the parameters as estimated
by KM and by us using nls.

Correctly Handling Weekly Mortality We have glossed over the fact that we have
fitted observed weekly mortality to the instantaneous rate, dR/dt (2), which is not
observed. We did this because it is what KM did, and we wanted to be able to compare
formal nonlinear least squares fits to KM’s results®. Weekly mortality reported at time
t¢ should really be modelled as the aggregation of dR/dr over the preceding week,
i.e., it would be better to define

“ dR
1 0) = —d 13
x(t¢; 0) /tH i t (13a)
t
=/[ asech’(wt — ¢) dt (13b)
tp—1
= Z(tanh (0t — ¢) — tanh (@ 1p_; — ¢)). (13¢)
w

% Our expressions are slightly different from those of Bacaér (2012, eq. (3)) because we have corrected
a minor error. At the start of §3 of Bacaér (2012), in the expression for Q, the term 2R yg/xg should be
2R? Y0/X0; this missing square is propagated through to the inversion formulae.

7 In (common) situations in which nonlinear algebraic equations cannot be solved analytically, they can
still be solved numerically, for example with the nlegslv package in R.

8 In his reanalysis of KM’s results, Bacaér (2012) also retained this conceptual error.
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109  Page 10 of 32 D.J.D.Earnetal.

Indeed, whether we are fitting to mortality or incidence or another instantaneous rate,
we should be integrating over the observation interval, which is precisely what we do
below when fitting to the ODEs directly. In addition, we really ought to consider the
fact that not all infections end in death—we have followed KM in assuming that the
infection fatality proportion is 100%. Similarly, when analyzing incidence data, the
reporting proportion ought to be taken into account.

4 Uncertainty

To this point, we have addressed only an optimization problem. We solved it using
the method of nonlinear least squares, which yields estimates of the values of the
parameters of the model (2). But our best estimates are just that: estimates, not known
values of the parameters.

To quantify uncertainty in our estimates, we need a statistical framework. The
typical output of such a framework is a confidence interval (CI) within which our
best estimate lies. For example, the final column of Table 1 lists 95% CIs on our nls
parameter estimates, and the light orange shaded region in the top panel of Fig. 1 is a
95% confidence band, which shows CIs for each point of the fitted model curve.

To understand how to estimate Cls, we will start by thinking about our observa-
tion model, the probability of observing the data {x,,(f¢)} given the model trajectory
x(t; 0). We imagine that the model—for now, KM’s approximation (2)—is a per-
fect representation of reality, and we consider the deviations from the model curve in
Fig. 1 to be observation errors. A simple observation model assumes that the obser-
vation error for each data point is independent and identically distributed (iid), and
drawn from a Normal distribution with zero mean and standard deviation o equal to
the standard deviation of the residuals (the differences between the model curve and
the observed data). Then the joint probability density p of the data given the model is

p(data | model) = p({xq,(2e)} | €) (14a)
11/ tim P(x(te; ) < xa(te) < x(103 0) + Axy) (14b)
i Axg—0 Axy

L 1 (x(1¢: 0) —xobs(tz))2
e

Note that we write P for the probability measure and p for the probability density
above. We use a probability density function here because the Normal is a contin-
uous distribution; we would use a probability mass function for a discrete response
distribution such as the Poisson. In practice, we don’t have to worry about this dis-
tinction when we are estimating the parameters of an epidemic model (the elements
Axg will always appear as constant multipliers or divisors and don’t affect any of
our conclusions). Consequently, in the interests of brevity, below we interpret p as
either probability mass or probability density, depending on whether the associated
distribution is discrete or continuous, and refer simply to “probability”.
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Using these assumptions we can adopt a maximum likelihood framework, where
we consider parameter values that maximize the probability of observing the data (14)
to be the best (Bolker 2008). We define the likelihood L of a set of parameter values
0 as

L6) = p({xa. (1)} | 0). 15)

Maximizing £ with respect to 6 or, equivalently, minimizing the negative log-
likelihood, yields an estimate,

6 = arg max £(6) (16a)

0

= arg min (— log E(O)) (16b)
0

= arg min <Z (x(te; 0) — x,,(10) )2 + constant) (16¢)
4 =1

= argmin ) _ (x(t¢; 0) — xu(t0))” (16d)
0 =i

which—Ilo and behold—agrees exactly with (7), the ordinary least squares (OLS)
solution! The standard way of expressing this is to say that the OLS solution g is
the maximum likelihood estimate (MLE) of @, under the assumption of independent,
identically distributed (i.e., mean-zero, constant-variance) Normal observation errors
in the time series.

Having introduced the idea of maximum likelihood, we can do better by making
a more realistic assumption about the error distribution. We will then end up with a
different likelihood function to maximize, and obtain a different 0 , but the basic idea
is the same.

So what is a better assumption about the observation error distribution, and how can
we use the likelihood function to estimate uncertainty in 6 and on the fitted trajectory?

Our data are actually non-negative, discrete counts of deaths (or cases in other epi-
demiological contexts), so a continuous, real-valued Normal distribution is somewhat
unrealistic. More importantly, we expect (and can see in the plots of our fitted curves)
that the magnitude of error in the observations will vary over the course of the epi-
demic; the error might be £2 at the beginning of the epidemic when mortality is low
and £50 at the peak.

We could address both of these problems by using a Poisson distribution of obser-
vations with mean equal to the fitted model trajectory [Eq. (1c) or Eq. (2)]. This
approach handles discrete observations and allows the variance to change as a function
of the mean. However, the Poisson distribution assumes equidispersion—the variance
is equal to the mean—while typical observation errors are overdispersed, meaning
that the variance is greater than the mean. Ignoring overdispersion will underestimate
the uncertainty in the parameters and lead to overly narrow confidence intervals on
parameters and predictions (Li et al. 2018). The negative binomial distribution is the
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109  Page 12 of 32 D.J.D.Earnetal.

most common way to generalize the Poisson to allow for overdispersion (Lindén and
Mintyniemi 2011), although other distributions such as the generalized Poisson are
occasionally used (Brooks et al. 2019; Kim et al. 2022).

The probability mass function for the negative binomial distribution (for counts
x=0,1,2,...)1is

‘ S Tk+x) (kN
NBOG ) = T <k+u> <k+u> ' a7

The predicted variance of a particular observation x,,,(¢) is given by (1 + we/k),
where (¢ (#) = x(t¢; 0) is the model evaluated at the 2™ observed data point [cf: (7)
and (13)]. The maximum likelihood estimate is, therefore,

6 = argmin Z (— log I (X, (1) + k) + log T" (k) + 1og(x,, (£¢)!)
=1 (18)

k e (0)
e () e ()

Here, the overdispersion parameter k also needs to be estimated alongside 6 to max-
imize the likelihood. This is different from the likelihood associated with Normal
errors, where o2 can be either computed as the variance of the residuals across the
full time series or estimated jointly with model parameters.

Regardless of the form of the likelihood function, we can use it to obtain CIs on
the MLE 6. A relatively simple approach is to use the the curvature of —log £(8)
at 0 to infer parameter values of a multivariate Normal distribution for 6. At 0 , the
shape of — log L is described by its Hessian matrix (the matrix of second order partial
derivatives of — log £, also known as the Fisher information matrix), and the inverse
of the Hessian is the variance-covariance matrix Cov(@) that specifies the desired
multivariate Normal with mean . This relationship between Cov (@) and the Hessian of
— log L is, admittedly, not obvious! See Bolker (2008, §6.5) for a heuristic explanation
or Wasserman (2010, §§9.7, 9.10) for a rigorous (if terse) explanation.

The diagonal elements of Cov(#) are the (estimated) variances of the parameter
estimates, so we can take their (positive) square roots to get the standard error (SE)
and compute approximate 95% confidence intervals by adding +1.96 SE to ) (£1.96
represents arange containing 95% of the probability of a standard Normal distribution).
To obtain CIs on functions of the fitted parameters (e.g., Ro or y if our model is KM’s
approximation (2)), we build on the idea that if the error in a parameter a is Aa,
then the associated error in a (differentiable) function g(a) is Ag ~ g’(a)Aa. Given
a (smooth) nonlinear function g(@) of the parameters, the Delta Method (Dorfman
1938; Ver Hoef 2012) expands Var(g(#)) to first order about é, which gives us the
variance-covariance matrix of g(0) (Bolker 2008, §7.5.2; Wasserman 2010, §9.9). In
particular, the variance of g(#) is
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Var(g(9)) ~ Var[g(9) + (V,2)(6) - (0 — 6)] (192)
= Var[(V,8)() - (0 — 6)] (19b)
—E[(%)®) - 6 —6))*] (19¢)
=E[(%2)©@)"©® —6)©® - 6)'(%,2))] (19d)
= (%)@ E[0 -0 -] (%0 (19)
= (%8)6)" Cov(8) (V,£)(H) (19f)

We can again get the 95% Cls by taking square roots and computing g(é) + 1.96SE.

Given a fit of KM’s approximation (2) to the time series data, which yields 6 =
(a,w, é), we can apply the Delta method (19) to the nonlinear relationships (10) to
obtain CIs on g(é) = (7/3\6, v, ?(O\)). This is precisely how we obtained the CIs on the
derived parameters listed in Table 1. Perhaps less obviously, we can also use the Delta
method to obtain CIs on the fitted trajectory at each observation time #, (and hence
obtain a confidence band) by considering g(@) = x(#;; ). This is how we obtained
the confidence band for the nonlinear least squares fit (light orange) shown in Fig. 1.

Better confidence intervals can be obtained using the profile likelihood, which is
calculated by fixing a set of model parameters to specific values and fitting the remain-
ing parameters to maximize the likelihood (Bolker 2008, §7.5.1). By calculating the
profile likelihood across a range of parameter values, we obtain the profile likelihood
surface, from which confidence intervals can be estimated using the likelihood ratio
test (Bolker 2008, §6.4.1.1). While profile likelihoods generally give more accurate
estimates of confidence intervals, calculating the profile likelihood can be challenging,
if not practically impossible, for derived parameters or epidemic trajectories (Bolker
2008, §7.5.1.2). Consequently, we rely on the Delta Method here.

5 Fitting the ODE

Until now, we have focused on fitting KM’s approximation (2) rather than actual solu-
tions of the SIR model (1). If we had an exact analytical solution of the SIR ODE (1)
then we could proceed as above, replacing the approximate analytical expression (2)
with the exact formula. Since we do not have an exact solution, we instead rely on
numerical solutions of the ODE. Fitting numerical solutions of ODEs to data intro-
duces significant coding/computational challenges, but conceptually the problem is
the same as if we did have an analytical formula. We can still use the Delta method (19)
to estimate uncertainty, but calculating the gradient (V, g) (@) is not straightforward if
g 1s a numerical solution of an ODE; we must simultaneously solve a set of sensi-
tivity equations (Raue et al. 2013, Eq. (6)) alongside the main differential equations.
Sensitivity equations define the time derivatives of the gradients of trajectories with
respect to the parameters. They can easily be derived using the chain rule; if we write
a generic, autonomous ODE for x (¢; @) as
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d
T = f0).  x(0.0)=x0). (20)

then the sensitivity equations are

d N x50y
g (% 0) =%(=5=) =% (f&.0) (21a)
=V.f(x,0)Vx(t;0)+V,f(x,0). (21b)

If x and 6 are n- and n;dimensional, respectively, then the n n, sensitivities S;;(t)
are given by the n, x n, sensitivity matrix,

S(1) = V,x(z; 0). (22)
Eq. (21) defines a set of n_n, differential equations for S;;,

ds

3 = [N 0]+ Y7 0)]. (23a)

which can be solved jointly with the original ODEs (20) for the state variables (x) by
specifying initial conditions

S(0) = V,(x0(9)). (23b)

We can then use a further chain-rule step to compute the (total) derivative of the
log-likelihood of the observations with respect to the parameters. To get this right, it
helps to make explicit the dependence on the trajectory (x) versus dependence on the
parameters (@, by which we will now mean all parameters, including parameters of
the trajectory model and of the observation process model). For a general function
®(x, 0), the total derivative with respect to 6 is

d®
15 = Ve Yt e. (24)

To apply this formula to the log-likelihood, it is helpful to make dependence on the
trajectory x explicit. Consistent with our notation above [e.g., Eq. (7)], we write x ()
for the observations at times t; € {t1, t2, ..., t,,}, making it easier to distinguish them
from the fitted model trajectory evaluated at these times, x (¢¢; €). Then

dlog£(6) d
OgT() _ @(loglp({xobs(tg) =1, ) (3 0), 6)) (252)
d, &
= @(logﬂ D(xan(t0) | 213 0), 6)) (25b)
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n;

d
<5 2 (loep(x.u(t0) | x(1:0). 0)) (25¢)

14

=1
d
d

0 (10g}p{(x, 0))

ny
=1
[abbreviating p, (x, 0) = P (x4 (7) | x(t¢; 0), 0)] (25d)

=
oy

1

= — |V L0V, v, ,0 25
ez—; lpg(x,é’)( wP (6, 07N X 4 Wb, (¥ )) x=x(1:0) (25¢)
ny

= — |V ,0)S(1, V, ,0 , 25f
3 oy (TP SO TR 0)| s

where we typically assume the probability distribution
nX
D(Xun(te) | X (15 0), 0) = [ [ NBCroni(t0); xi(2e,6), 6). (26)

i=1

We have slightly abused notation here, compared with Eq. (17); we have written 0
rather than k as the final argument of the negative binomial distribution, since there
might be a different k for each observed variable x;, and we collect all parameters
into the single vector 8. (The examples we discuss in this paper involve only a single
observed time series, son, = 1.)

Integrating the sensitivity equations (23) in parallel with the ODEs (20) is a compu-
tationally efficient and numerically stable way to calculate the overall gradients of the
log-likelihood with respect to the parameters, which makes nonlinear estimation more
robust and efficient. We can also use these gradients to calculate CIs using the Delta
method. Raue et al. (2013) give a detailed comparison between using the sensitiv-
ity equations and computing gradients by finite-difference approximations. Bjgrnstad
(2018, Chapter 9) also gives an introduction to trajectory matching.

The fitode package’ does all of this computational work under the hood, and
makes it as easy for a user to fit an ODE to data as it was for us to use nls above to fit
a curve based on an analytical formula. We begin illustrating the use of the package
by fitting the SIR model (1) to the Bombay plague epidemic.

We first load the package

library (fitode)

and define a model object:

9 fitode is available on CRAN, and can be installed via install.packages ("fitode").
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SIR_model <- odemodel (
name="SIR model",
model=1ist (

S ¥ - beta * S * I,
I ~ beta * S * I - gamma * I,
R 7 gamma * I
)
observation = list(
mort ~ dnbinom(mu = R, size = k)

) 5
diffnames="R",
initial=1list (

S ~ S0,
I ~ 10,
R~O0
)
par=c("beta", "gamma", "SO0", "IO0", "k")

)

In the model definition above:

model specifies the vector field given by the ODE (1).

observation specifies the observation model: the observed data (mort) are
assumed to arise from sampling from the negative binomial distribution
[dnbinom, Eq. (17)] with overdispersion parameter k. Ordinary least squares
(normally distributed observation errors) can be implemented by changing the
observation argument to mort ~ ols (mean = R). The mean of the dis-
tribution is given by the incidence derived from the fitted model trajectory [Eq.
(13a)],

w dR
u(te)=/ S8 dr = Ruo — Raey), @7)
fe—1

Fitting to such differences, useful whenever the observations represent accu-
mulated values of processes (such as infections, recoveries, or deaths) between
observation times, is implemented by using the di f fnames argument to specify
the state variable for which consecutive differences are to be used (so, if the focal
variable is R then fitode fits to R(t;) — R(t¢—1) rather than R(t;)).

initial specifies the initial conditions, expressed as numbers (or densities) of
individuals.

par refers to the parameters to be fitted: 8, y, initial conditions S(0) and 7 (0), and
the overdispersion parameter k. Note that R(0) = 0 is assumed above, so the total
population size is N = S(0) + 1(0). Often, N is known so we would instead set
R(0) =N — S(0) — 1(0).

Since we are taking the difference (f¢) = R(t¢) — R(ty—1) to calculate the mortality
trajectory,'” we have to add an extra row representing 7o to the data set in order to
compute p(t1) = R(t1) — R(#p):

10 Modelers often fit trajectories to cumulative curves. However, doing so is ill-advised because points in
a cumulative time series are not independent, making it difficult to define CIs (King et al. 2015).
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bombay2 <- rbind(
c (times=bombaySweek[1l] -
diff (bombayS$week) [1], mort=NA),
bombay
)

Taking our previous parameter estimates from nls as starting values (and choosing
a starting value for k), we can fit the model by calling the £itode function:

SIR_start <- c(beta=beta.nls, gamma=gamma.nls,
I0=I0.KM, S0=S0.nls, k=50)
SIR_fit <- fitode( model = SIR model, data = bombay2,
fixed = list (gamma=gamma.nls),
start = SIR_start, tcol = "week" )

In the fitting function above:

model specifies the ODE model to be fitted.

data specifies the data.

fixed specifies parameter values to be fixed (and therefore not estimated); above,
we chose to assume that the recovery rate y is known (due to parameter
unidentifiability'!).

start specifies the starting parameter set for the optimization.

tcol specifies the name of the time column of the data frame.

2

The resulting fits are plotted in Fig. 1 and summarized in Table 2. The estimated param-
eter values (the coefficients of the model) can be obtained via coef (SIR_fit).
The coefficients together with associated confidence intervals are obtained via
confint (SIR_fit), which can also provide confidence intervals for derived
parameters using the Delta method. Note that fitode gives discrete predictions
(rather than smooth curves) because we are calculating mortality at discrete (weekly)
time intervals using Eq. (27).

6 Cautionary Remarks Concerning Fits to Bombay Plague

We have highlighted the Bombay plague data because of their prominent role in KM’s
paper (Kermack and McKendrick 1927) and, consequently, for the history of mathe-
matical epidemiology. However, while they provide an interesting example with which
to illustrate the process of fitting an epidemiological model to data, modelling plague
dynamics with the simple SIR model is, at best, difficult to justify: Bacaér (2012)

1 1n short, unidentifiability of y means that we can obtain nearly identical fits across a wide range of
y. While it is possible to fit the model without fixing y, the resulting estimates are sensitive to starting
conditions and numerically unstable, preventing a reliable calculation of the Hessian matrix and therefore
precluding estimation of confidence intervals. These issues could be addressed alternatively by fixing a
different parameter instead and estimating y. We typically choose to fix y because the mean duration of
infection (1/y) can often be estimated from independent data sources; here, to make comparisons of fits
easier to interpret, we have fixed y to the value we estimated via nls fits of the KM approximation (2).

121y general, worse models (providing a poorer or less identifiable fit to the data) and worse data (fewer
data points and more noise) will increase the sensitivity of fits to the starting values.
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argues that the trajectory of the Bombay plague epidemic was primarily governed by
seasonality rather than SIR dynamics. Indeed, KM themselves recognized that their
model involves a sequence of optimistic assumptions, which they admitted were not
“strictly” satisfied:

“We are, in fact, assuming that plague in [humans] is a reflection of plague in
rats, and that with respect to the rat (1) the uninfected population was uniformly
susceptible; (2) that all susceptible rats in the island had an equal chance of
being infected; (3) that the infectivity, recovery, and death rates were of constant
value throughout the course of sickness of each rat; (4) that all cases ended
fatally or became immune; and (5) that the flea population was so large that the
condition approximated to one of contact infection. None of these assumptions
are strictly fulfilled and consequently the numerical equation can only be a very
rough approximation. A close fit is not to be expected, and deductions as to the
actual values of the various constants should not be drawn.” — KM [p.715]

Given the mental gymnastics required to motivate applying the SIR model to plague
transmission, it is surprising that KM did not choose to examine a more obviously suit-
able disease. The surprise is especially extreme given that the most salient infectious
disease epidemic in the 1920s would have been the 1918 influenza pandemic, which
did involve direct human-to-human transmission, and for which much more detailed
data were available at the time (Rogers 1920; Frost 1920; Eichel 1923).

7 Influenza in Philadelphia, October 1918

Deaths caused ultimately by influenza are often attributed to pneumonia (Earn et al.
2002), so influenza mortality studies typically combine pneumonia and influenza
(P&I). Among published tables summarizing P&I mortality during the 1918 pandemic,
a particularly valuable example concerns the main wave in the city of Philadelphia
(Rogers 1920). These data are exceptional because they are restricted to a single, large
city, and because they provide daily counts that capture the detailed temporal pattern
(large dots in Fig. 2).

As for Bombay plague, we can fit KM’s approximation (2) to the Philadelphia
influenza epidemic using nonlinear least squares, which yields the orange curve in
Fig.2. While this nls fit does not look unreasonable at a glance, the fitted parameter
values (Table 3) are absurd, including a basic reproduction number Ro & 2500 and a
mean generation interval T, ~ 1.5 years.

Matching numerically computed trajectories of the exact SIR model using £itode
gives a fit—the solid gold curve in Fig.2—that is visually similar to the (orange) fit
of KM’s approximation, but provides much more realistic parameter estimates (Table
4); in particular, Rg ~ 6.4 and T, ~ 4.3 days.

If we convert the £itode estimates of the SIR parameters to the parameters of
KM'’s approximation, we obtain the dotted gold curve in Fig.2, which grossly under-
estimates the magnitude of the epidemic (the epidemic peak occurs much too soon).
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Fig. 2 The main wave of the 1918 influenza epidemic in the city of Philadelphia, 1 September 1918
to 31 December 1918 (Rogers 1920; Goldstein et al. 2009). Reported daily deaths from pneumonia and
influenza (P&I) are shown with large dots. The orange curve and corresponding confidence band show a
nonlinear least squares (nls) fit of KM’s approximation (2); the parameter estimates are given in Table 3.
The solid gold curve and corresponding confidence band show the £itode fit of the SIR model (1), for
which the parameter estimates are given in Table 4. The dotted gold curve shows the KM approximation
using the parameters estimated with £itode (Color figure online)

Table 4 Fits of numerical SIR model solutions to Philadelphia flu (see Fig.2)

Symbol Units nbinom 95% CI
Estimated parameter
Transmission rate B ﬁ 0.0124 (0.0119, 0.0128)
Recovery rate y ﬁ 85.6 (75.9, 96.5)
Initial susceptibles S(0) - 15,300 (14,500, 16,200)
Initial prevalence 1(0) - 3.05 (2.32,4.01)
Overdispersion parameter k - 157 (44.2, 557)
Assumed parameter
Effective population size N - 44,221 -
Derived parameter
Effective reproduction number Re - 2.21 (2.02,2.4)
Mean generation interval Tg days 4.27 (3.75,4.78)
Basic reproduction number Ro - 6.38 (5.53,7.24)

Parameter estimates are based on £itode fits of the SIR model (1) to reported P&I mortality during the
main wave of the 1918 influenza pandemic in the city of Philadelphia. As in Table 3, in order to derive an
estimate of R, we assume an effective population size that accounts for the data representing deaths rather
than cases

The KM approximation (2) is good initially, but becomes poorer and poorer over time
as the underlying assumption on which it is based (4) becomes less and less valid.
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8 Fitting the Deterministic SIR Model to Stochastic Simulations

The most compelling tests of estimation methods involve fitting models to data that
have been generated from a known model, so we know the true underlying values of
the parameters we are trying to estimate.

The most basic test is essentially a consistency check: in the context of the SIR
model, we choose initial conditions (S(0), /(0)) and parameter values (Ro, 1), com-
pute the associated trajectory by solving Eq. (1) numerically, and then use £itode
to estimate the parameters. At least if we choose starting values reasonably close to
the correct underlying values, £itode should converge to those values.

The next level of testing is to take our numerically computed solution and artificially
“observe” it with error, i.e., using a noise distribution that we specify. For example, we
could take observation errors to be negative binomially distributed with overdispersion
parameter k, and then use £itode to estimate k together with the other parameters
(8(0), 1(0), Ro, Ty).

A still more stringent test is to simulate data from a model that is more complex
and realistic than the idealized model that we want to fit, and then see if we can
nevertheless recover parameters that correspond to those of our idealized model (e.g.,
‘Ro and T for the SIR model). We will take a step in this direction in this section by
fitting the deterministic SIR model (1) to data generated by a fully stochastic version
of the model.

The standard stochastic SIR model (Andersson and Britton 2000) can be defined by
interpreting the individual terms in Eq. (1) as event rates for stochastic processes in a
population of N individuals [in the limit N — oo the stochastic model approaches the
ODEs (1); see Ethier and Kurtz (1986)]. Realizations of this discrete-state model can be
generated exactly using the Gillespie algorithm (Gillespie 1976), or approximately (as
we do here) using the “t-leaping” approach (Gillespie 2001), which is implemented
in the adaptivetau R package (Johnson 2023). The demographic stochasticity
that these algorithms simulate is essential to capture real effects that occur when the
number of infected individuals is small (especially the possibility that an epidemic
can burn out (Parsons et al. 2024)).

In Fig. 3, the simulated data points show a single realization of the stochastic SIR
model with initial state (S(0), 7(0), R(0)) = (1998, 2, 0), basic reproduction number
Ro = 35, and mean generation interval Ty = —1' = 1 week. In the top panel, dR/d¢
[Eq. (1c)] with the correct initial conditions and parameter values is shown with solid
green, and the KM approximation (2) based on those parameter values is shown with
dotted green. The f£1tode fit [based on f (dR/dr) dr] and confidence band are shown
in gold. The time shift between the deterministic solution and the stochastic realization
arises because the stochastic model captures the demographic noise (which causes a
randomly distributed delay until the tipping point is reached, i.e., until the epidemic
takes off in a roughly deterministic fashion).

As expected, with the correct parameter values, KM’s approximation (2) fails once
the requirement (4) that R(¢)/N < 1/Ry is violated. We can, of course, find values of
the parameters (a, @, ¢) such that the function a sech?(wt — ¢) [Eq. (2)] more closely
matches the shape of the full simulated epidemic. Using nonlinear least squares (nls)
as in previous sections, we obtain visually reasonable agreement (Fig. 3, bottom panel,
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Fig. 3 Deterministic fits to daily incidence generated by a stochastic SIR simulation with initial state
(S(0), 1(0), R(0)) = (1998, 2, 0), basic reproduction number Ry = 5, and mean generation interval
Ty = 1 week. The simulated data points show the numbers of newly recovered individuals each day. In
both panels, the gold curve and confidence band show the f£itode fit to the simulated data. Top panel:
The solid green curve shows the solution of deterministic SIR model (1) with the initial conditions and
parameters used for the stochastic simulation. The dotted green curve shows the KM approximation (2)
to this deterministic trajectory. The time shift between the green and gold curves arises because there is a
random delay until the stochastic trajectory begins to grow exponentially. Bottom panel: The orange curve
shows the KM approximation (2), fitted to the stochastic simulation usingnls. Since the KM approximation
is symmetric about its maximum, it is impossible to obtain a good fit in situations like this, where the rise
of the epidemic is faster than the fall (Color figure online)

orange curve; Table 5). This nls fit cannot be improved further because the function
we are fitting (2) is symmetric about its peak, whereas the rise is steeper than the fall
in the simulated epidemic. It is also worth emphasizing that the parameter values that
yield the orange curve in Fig. 3 are far from the true parameters that were used in the
simulation (Table 5).

The excellent fit of the deterministic trajectory that £itode finds (gold in Fig. 3)
is achieved by estimating an initial prevalence that is only a third of the true initial
prevalence, thereby mimicking the stochastic delay with the deterministic model; all
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Table 6 Fits of numerical (deterministic) SIR model solutions to an epidemic simulated using the standard
stochastic SIR model (Andersson and Britton 2000) (see Sects. 8 and 3)

Symbol Units True nbinom 95% CI
Estimated parameter
Transmission rate B ﬁ 0.13 0.131 (0.119, 0.144)
Recovery rate y @ 1 0.971 (0.884, 1.07)
Initial susceptibles S(0) - 1998 2000 (1900, 2110)
Initial prevalence 1(0) - 2 0.605 (0.306, 1.2)
Overdispersion parameter k - - 251 (19.6, 3226.6)
Derived parameter
mean generation interval Tg days 7 7.21 (7.92, 6.56)
Effective reproduction number Re - 4.995 5.2 (4.44,5.95)
Basic reproduction number Ro - 5 5.19 (4.37,6.01)

Parameter estimates we obtained using £itode to fit the SIR model (1) to the simulated data, assuming
deviations from the deterministic curve were generated by negative binomially (17) distributed observation
errors

other parameter estimates are nearly identical to the true parameter values used to
generate the stochastic trajectory (Table 6).

9 Discussion

We have presented a basic theoretical and practical introduction to standard meth-
ods for fitting dynamical models to time series, in the context of infectious disease
epidemiology. We explained how to use nonlinear least squares (nls) to fit a given
function to a time series, and illustrated the approach using the Kermack and McK-
endrick (KM) analytical approximation (2) to the solution of the standard SIR model
(1). We also explained how to fit solutions of ordinary differential equations (ODEs)
to a time series—using our R package fitode—and obtain parameter estimates
and confidence intervals, regardless of whether analytical solutions of the ODEs are
available.

fitode is flexible enough to handle most compartmental epidemiological and
ecological models (Brauer and Castillo-Chavez 2001; Brauer and Kribs 2016; Brauer
et al. 2019), including non-autonomous models, such as seasonally forced epidemic
models (London and Yorke 1973; Earn et al. 2000; He and Earn 2007, 2016; Papst
and Earn 2019). We hope the package will be useful for many readers, not only as a
pedagogical tool but also to fit models to novel data. Potential applications abound
(we have ourselves used £itode’s predecessor, £itsir, to study music popularity
(Rosati et al. 2021)).

We focused here on three illustrative examples of epidemic time series. The first
was the reported weekly mortality from plague in Bombay in 1906 (Fig. 1), which was
examined by KM in their original paper (Kermack and McKendrick 1927). Although
historically important, it is certainly debatable whether we can trust any inferences we
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Fig. 4 Unidentifiability of the mean generation interval Ty (or, equivalently, the per capita removal rate
y) for the Bombay plague epidemic shown in Fig.1. A The profile likelihood—briefly discussed at the
end of Sect.4—is calculated by fixing y to a series of given values and, for each value, maximizing the
likelihood by estimating all other parameters (Bolker 2008). (The maximum value is shifted to 0 without
loss of generality.) A flat profile-likelihood surface indicates parameter unidentifiability, meaning that we
can obtain very similar fits across a wide range of values of the focal parameter (). B-E The corresponding
best parameter estimates for a given value of y

might draw from fitting the simple SIR model (1) to these plague data. As we quoted in
Sect. 6, to justify the application of their SIR model to these data, KM highlighted five
implicit assumptions, any or all of which might be violated. Furthermore, Bacaér found
that over the longer term seasonal epidemics of plague occurred in Bombay every year
from 1897 to 1911 (Bacaér 2012, Fig. 2), suggesting that the 1906 epidemic was just
one in a long sequence of epidemics that were “driven by seasonality” (Bacaér 2012,
p-403). Of course, other mechanisms (e.g., heterogeneity in contact patterns) might
play a role as well.

To obtain a deeper understanding of the Bombay plague epidemic, we could for-
mulate a variety of models, fit them to the data using £itode or other software, and
use a statistical framework for model selection (Burnham and Anderson 2002) to rank
the relative importance of the various mechanisms included in the sequence of models
(see, e.g., He et al. (2013) for an example of using this approach to understand the
occurrence of three distinct waves in the 1918 influenza pandemic). Alternatively, we
could formulate one model that included all of the processes and attempt to measure
their relative importance by comparing the magnitudes of parameters (Bolker 2024).
We have not attempted such a study here, since our goal was simply to explain and
illustrate the fitting methodology. However, it is worth highlighting that our analysis
using the SIR model did reveal a computational challenge that—in the absence of
additional information about the Bombay plague outbreak—would likely limit how
much can be learned from a model selection exercise: the mean generation interval
(Ty) appears to be unidentifiable, i.e., difficult to estimate reliably from the reported
weekly plague deaths alone (see Fig.4).
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Our second example was the main wave of the 1918 influenza pandemic in the
city of Philadelphia, for which daily mortality from pneumonia and influenza (P&I)
was reported (Fig.2). Again we fitted a numerical solution of the SIR model (1) using
fitode, and KM’s analytical approximation (2), but found—unlike the situation for
Bombay plague—that only the £itode fit yielded plausible parameter estimates (see
Tables 3 and 4).

Finally, we conducted a kind of test that truly makes most sense to perform before
fitting to a real, empirically observed time series: we fit models to a simulation that we
ran, so we knew the parameter values used to generate the simulated “observations”.
The simulation was a realization of the stochastic SIR model, to which, again, we fit
both the deterministic SIR model (1) using £itode and KM’s analytical approxima-
tion (2) using nls. At a glance, both provide visually reasonable fits (Fig. 3, bottom
panel) but KM’s approximation cannot represent the asymmetry about the peak in
the epidemic curve and yields absurd parameter values, whereas £itode estimates
an epidemic curve with the correct shape and the correct values of the underlying
disease-related parameters (Tables 5, 6). (We did find a discrepancy in the estimates of
initial conditions; this was driven by the failure of the stochastic outbreak simulation
to take off immediately. A lower initial prevalence is the only mechanism by which
the deterministic model can capture the delayed onset of the epidemic. In practice,
modelers fitting to epidemic time series by trajectory matching usually pick an “epi-
demic window” that corresponds to the part of the epidemic that can be reasonably
captured by a deterministic model (Earn et al. 2020).)

KM’s approximation (2) estimates the simulation parameters badly because the
assumption on which it is based (4) is strongly violated in the simulation (Fig. 3).
Consequently, the parameters of the KM approximation cannot be interpreted biolog-
ically or mechanistically. More generally, a purely phenomenological model with the
same number of parameters can sometimes fit a stochastic simulation just as closely
or even closer than the deterministic limit of the model that generated the data (Rosati
et al. 2021); a good fit is not, on its own, sufficient to conclude that a model matches
the underlying processes of a dynamical system.

While £itode provides a relatively easy way to specify ODEs and estimate their
parameters from data, any programming language will work to implement the steps we
have outlined above, including both free general-purpose languages such as Python
(Batista and da Silva 2022; Gupta 2023) or commercial, domain-specific tools such as
MATLAB (Chowell 2017) or Berkeley Madonna (Zha et al. 2020). As long as a language
provides tools for integrating arbitrary sets of ODEs (e.g., MATLAB’s ode45) and
optimizing nonlinear functions (e.g., MATLAB’s fminunc or 1sgnonlin),itcan be
used to estimate parameters of ODEs. However, £1tode’s simple interface, automatic
derivation of sensitivity equations, flexible specification of observation models, and
provision of confidence intervals make it both convenient and powerful.

Beyond the basics that we have discussed here, £itode contains a number of
useful advanced features. In particular, £itode can

fit to multiple data streams: fitode is notlimited to fitting a trajectory to a single

state variable, such as incidence or prevalence of infected individuals. For example,
during the later stages of the COVID-19 pandemic modelers often had access to
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time series of case reports, hospitalization reports, and wastewater sampling for
the same geographic region. If we build a model that includes state variables for
hospitalized individuals and for virus concentrations in wastewater, £itode can
fit the model’s parameters using all of the available data (as in Nourbakhsh et al.
(2022)).

compute confidence intervals via importance sampling: While the Delta method
can compute confidence intervals for derived quantities such as predicted trajecto-
ries, it rests on strong and sometimes unreliable assumptions. A more accurate but
computationally expensive approach starts by sampling parameter sets randomly
from a multivariate normal distribution with a mean and covariance matrix drawn
from the maximum likelihood fit. For each set of parameters in the ensemble,
fitode computes the likelihood and a predicted trajectory (or some quantity
such as the total size of the epidemic); an average value and confidence intervals
are derived from weighted moments (means) or quantiles (medians or extremes
such as 10th and 90th percentiles).

specify priors and apply Bayesian inference: Unlike maximum likelihood appro-
aches, which seek to estimate the best-fitting parameter set, Bayesian methods aim
to estimate a distribution of parameters (also known as the posterior distribution)
that are consistent with our previous knowledge about the system (encapsulated
in prior distributions) as well as the observed data. These approaches are gener-
ally better at handling parameter uncertainties (Elderd et al. 2006) but are usually
much more computationally expensive. £itode allows the user to specify prior
distributions on parameters; these priors can either reflect previous knowledge of a
disease system, or can be used to regularize a fitting procedure by downweighting
extreme values of parameters (Lemoine 2019), which can help mitigate problems
with identifiability (see below). Bayesian modelers typically use Markov Chain
Monte Carlo algorithms to explore the parameter space and approximate the target
distribution. £itode implements a simple Metropolis-Hasting sampler (Bolker
2008, §7.3.1). (The Stan platform provides a much more powerful Bayesian sam-
pling algorithm using sensitivity equations, built on top of a fully general system
for specifying ODEs; however, this tool requires significantly more computational
and statistical background to use effectively (Grinsztajn et al. 2021).)

Even with these extensions, modelers may face many challenges when fitting ODEs
to data with the £itode package, as with fitting any nonlinear model to data. For
example, it is often difficult to ensure that the model has converged properly or reached
its true maximum. More generally, when they first start attempting to fit models to
data, naive and optimistic epidemic modelers often run into problems of structural
identifiability (the impossibility of estimating particular sets of parameters from data,
regardless of how much data is available (Tuncer and Le 2018; Chowell et al. 2023))
and practical identifiability (the impossibility of reliably estimating parameters from
a particular small, noisy data set (Gallo et al. 2022; Chowell et al. 2023)). In addition
to the rigorous methods described by Chowell et al. (2023), using a multistart method
(performing optimization from multiple starting conditions (Raue et al. 2013)), or
plotting likelihood surfaces, can help diagnose these problems. Using different opti-
mization methods or reparameterizing the model can also help (Raue et al. 2013;
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Bolker et al. 2013). We encourage users of £itode who encounter these or other
fitting challenges to open issues via the £itode GitHub repository (https://github.
com/parksw3/fitode).

As its name suggests, £itode is limited to fitting ODEs to time series. Conse-
quently, by design, £itode ignores process error, i.e., random variability that affects
both current and future steps of the trajectory—as opposed to observation error, which
arises from imperfect measurements or reporting and is usually assumed to be inde-
pendent of the trajectory itself. A key component of process error is the demographic
stochasticity that is inherent to the discrete-state stochastic SIR model discussed above
(and to any real host-pathogen system). Parameters of models can also be subject to
process error; for example, the transmission rate might depend on random fluctuations
in weather. Properly accounting for process error can be critical for accurately quan-
tifying uncertainties in parameter estimates and model forecasts (King et al. 2015;
Taylor et al. 2016; Li et al. 2018); however, the required statistical and computational
procedures are significantly more challenging than the approaches considered here.
Popular R packages that can fit models with process error include pomp (King et al.
2016) and mcstate (FitzJohn et al. 2024).

10 Closing Remarks: From Fred Brauer to fitode

The idea of digging into data seemed like punishment to Fred Brauer, but while he
never—to our knowledge—did any data analysis himself, he did develop a sincere
appreciation for the value of data in epidemiological research. Fred’s curiosity—
about how dynamical models can be fit to data, and why it is hard—convinced us that
it would be worth writing a paper (and accompanying software) that could draw more
dynamicists working on epidemic models into the world of data.

We have provided two answers to Fred’s question of “how” to fit models to data
(vianls or f£itode), and through examples we have hinted at some of the reasons
“why” such fitting can be very difficult. A true understanding of “why it is hard” is
something that builds over time with experience, but the key points are that finding
optima of a complex multi-dimensional function is hard enough on its own (Raue et al.
2013), and estimating statistically meaningful uncertainty in those optima is extremely
challenging (Elderd et al. 2006; Li et al. 2018).

Fred would never have used f£itode, but would have delighted in seeing it demon-
strated and in discussing the theoretical background on model fitting that we have
presented in this paper. We hope that others like him, as well as students and researchers
who actually do want to dig into data, will benefit from this exposition.
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