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A light introduction to modelling recurrent
epidemics

David J.D. Earn

Department of Mathematics and Statistics
McMaster University, Hamilton ON L8S 4K1, Canada
earn@math.mcmaster.ca

Summary. Epidemics of many infectious diseases occur periodically. Why?

1 Introduction

There are many excellent books that provide broad and deep introductions to
the mathematical theory of infectious disease epidemics, ranging from mono-
graphs and textbooks [1, 2, 3, 4, 5, 6, 7] to collections of articles from work-
shops and conferences [8, 9, 10, 11, 12]. My goal in this article is to spark an
interest in mathematical epidemiology that might inspire you to dig into the
existing literature (starting with the rest of this book[13]) and, perhaps, to
engage in some research yourself in this fascinating area of science.

I will discuss some famous epidemics that present challenging theoretical
questions, and—without getting bogged down in technical details you can
find elsewhere—I will try to convince you that you can fairly easily build and
analyze simple models that help us understand the complex patterns evident
in these data. Not wishing to give you a false impression of the field, I will also
briefly mention some epidemic patterns that do not appear to be explicable
in terms of simple models (at least, not in terms of simple models we have
thought of!).

Several of the following sections are based in part on an even lighter intro-
duction to the subject of mathematical epidemiology that I wrote for a high
school mathematics magazine [14]. Here, I do not limit myself to high school
mathematics, but I hope the bulk of the article will be easily accessible to you
if you have had an elementary course in ordinary differential equations.

2 Plague

One of the most famous examples of an epidemic of an infectious disease in a
human population is the Great Plague of London, which took place in 1665–
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1666. We know quite a lot about the progression of the Great Plague because
weekly bills of mortality from that time have been retained. A photograph
of such a bill is shown in Figure 1. Note that the report indicates that the
number of deaths from plague (5533) was more than 37 times the number of
births (146) in the week in question, and that wasn’t the worst week! (An
even worse plague occurred in the 14th century, but no detailed records of
that epidemic are available.)

Fig. 1. A bill of mortality for the city of London, England, for the week of 26
September to 3 October 1665. This photograph was taken by Claire Lees at the
Guildhall in London, England, with the permission of the librarian.
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Putting together the weekly counts of plague deaths from all the relevant
mortality bills, we can obtain the epidemic curve for the Great Plague, which
I’ve plotted in the top left panel of Figure 2. The characteristic exponential
rise, turnover and decline is precisely the pattern predicted by the classic
susceptible-infective-recovered (SIR) model of Kermack and McKendrick [15]
that I describe below. While this encourages us to think that mathematical
modelling can help us understand epidemics, some detailed features of the
epidemic curve are not predicted by the simple SIR model. For example, the
model does not explain the jagged features in the plotted curve (and there
would be many more small ups and downs if we had a record of daily rather
than weekly deaths). However, with some considerable mathematical effort,
these “fine details” can be accounted for by replacing the differential equa-
tions of Kermack and McKendrick with equations that include stochastic (i.e.,
random) processes [2]. We can then congratulate ourselves for our modelling
success. . . until we look at more data.

Fig. 2. Epidemic curves for plague in London (left panels) and measles in New York
City (right panels). For plague, the curves show the number of deaths reported each
week. For measles, the curves show the number of cases reported each month. In the
top panels, the small ticks on the time axis occur at monthly intervals.
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The bottom left panel of Figure 2 shows weekly mortality from plague in
London over a period of 70 years. The Great Plague is the rightmost (and
highest) peak in the plot. You can see that on a longer timescale, there was a
complex pattern of plague epidemics including extinctions and re-emergences.
This cannot be explained by the basic SIR model (even if we reformulate it
using stochastic processes). The trouble is likely that we have left out a key
biological fact: there is a reservoir of plague in rodents, so it can persist for
years, unnoticed by humans, and then re-emerge suddenly and explosively. By
including the rodents and aspects of spatial spread in a mathematical model,
it has recently been possible to make sense of the pattern of 17th century
plague epidemics in London [16]. Nevertheless, some debate continues as to
whether all those plagues were really caused by the same pathogenic organism.

3 Measles

A less contentious example is given by epidemics of measles, which are defi-
nitely caused by a well-known virus that infects the respiratory tract in hu-
mans and is transmitted by airborne particles [3]. Measles gives rise to char-
acteristic red spots that are easily identifiable by physicians who have seen
many cases, and parents are very likely to take their children to a doctor
when such spots are noticed. Consequently, the majority of measles cases in
developed countries end up in the office of a doctor (who, in many countries,
is required to report observed measles cases to a central body). The result is
that the quality of reported measles case data is unusally good, and it has
therefore stimulated a lot of work in mathematical modelling of epidemics.

An epidemic curve for measles in New York City in 1962 is shown in the
top right panel of Figure 2. The period shown is 17 months, exactly the same
length of time shown for the Great Plague of London in the top left panel. The
1962 measles epidemic in New York took off more slowly and lasted longer
than the Great Plague of 1665. Can mathematical models help us understand
what might have caused these differences?

4 The SIR model

Most epidemic models are based on dividing the host population (humans in
the case of this article) into a small number of compartments, each containing
individuals that are identical in terms of their status with respect to the
disease in question. In the SIR model, there are three compartments:

• Susceptible: individuals who have no immunity to the infectious agent, so
might become infected if exposed.

• Infectious: individuals who are currently infected and can transmit the
infection to susceptible individuals who they contact.
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• Removed : individuals who are immune to the infection, and consequently
do not affect the transmission dynamics in any way when they contact
other individuals.

It is traditional to denote the number of individuals in each of these com-
partments as S, I and R, respectively. The total host population size is
N = S + I +R.

Having compartmentalized the host population, we now need a set of equa-
tions that specify how the sizes of the compartments change over time. Solu-
tions of these equations will yield, in particular, I(t), the size of the infectious
compartment at time t. A plot of I(t) should bear a strong resemblance to
observed epidemic curves if this is a reasonable model.

The numbers of individuals in each compartment must be integers, of
course, but if the host population size N is sufficiently large we can treat S,
I and R as continuous variables and express our model for how they change
in terms of a system of differential equations,

dS

dt
= −βSI , (1a)

dI

dt
= βSI − γI . (1b)

Here, the transmission rate (per capita) is β and the recovery rate is γ (so
the mean infectious period is 1/γ). Note that I have not written a differential
equation for the number of removed individuals. The appropriate equation is
dR/dt = γI (outflow from the I compartment goes into the R compartment)
but since R does not appear in equations (1) the equation for dR/dt has no ef-
fect on the dynamics of S and I (formalizing the fact that removed individuals
cannot affect transmission). This basic SIR model has a long history [15] and
is now so standard that you can even find it discussed in some introductory
calculus textbooks [17].

If everyone is initially susceptible (S(0) = N), then a newly introduced
infected individual can be expected to infect other people at the rate βN
during the expected infectious period 1/γ. Thus, this first infective individual
can be expected to infect R0 = βN/γ individuals. The number R0 is called the
basic reproduction number and is unquestionably the most important quantity
to consider when analyzing any epidemic model for an infectious disease. In
particular, R0 determines whether an epidemic can occur at all; to see this for
the basic SIR model, note in equations (1) that I can never increase unless
R0 > 1. This makes intuitive sense, since if each individual transmits the
infection to an average of less than one individual then the number of cases
must decrease with time.

So, how do we obtain I(t) from the SIR model?
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5 Solving the basic SIR equations

If we take the ratio of equations (1) we obtain

dI

dS
= −1 +

1
R0S

, (2)

which we can integrate immediately to find

I = I(0) + S(0)− S +
1

R0
ln [S/S(0)] . (3)

This is an exact solution, but it gives I as a function of S, not as a function
of t. Plots of I(S) for various R0 show the phase portraits of solutions (Figure
3) but do not give any indication of the time taken to reach any particular
points on the curves. While the exact expression for the phase portrait may
seem like great progress, it is unfortunately not possible to obtain an exact
expression for I(t), even for this extremely simple model.

In their landmark 1927 paper, Kermack and McKendrick [15] found an
approximate solution for I(t) in the basic SIR model, but their approximation
is valid only at the very beginning of an epidemic (or for all time if R0 is
unrealistically close to unity) so it would not appear to be of much use for
understanding measles, which certainly has R0 > 10.

Computers come to our rescue. Rather than seeking an explicit formula
for I(t) we can instead obtain an accurate numerical approximation of the
solution. There are many ways to do this [18], but I will briefly mention
the simplest approach (Euler’s method), which you can implement in a few
minutes in any standard programming language, or even a spreadsheet.

Over a sufficiently small time interval ∆t, we can make the approximation
dS/dt ' ∆S/∆t, where ∆S = S(t+∆t)−S(t). If we now solve for the number
of susceptibles a time ∆t in the future, we obtain

S(t+∆t) = S(t)− βS(t)I(t)∆t . (4a)

Similarly, we can approximate the number of infectives at time t+∆t as

I(t+∆t) = I(t) + βS(t)I(t)∆t− γI(t)∆t . (4b)

Equations (4a) and (4b) together provide a scheme for approximating solu-
tions of the basic SIR model. To implement this scheme on a computer, you
need to decide on a suitable small time step ∆t. If you want to try this, I
suggest taking ∆t to be one tenth of a day. I should point out that I am
being extremely cavalier in suggesting the above method. Do try this, but be
forewarned that you can easily generate garbage using this simple approach
if you’re not careful. (To avoid potential confusion, include a line in your pro-
gram that checks that S(t) ≥ 0 and I(t) ≥ 0 at all times. Another important
check is to repeat your calculations using a much smaller ∆t and make sure
your results don’t change.)
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Fig. 3. Phase portraits of solutions of the basic SIR model (1) for a newly invading
infectious disease. The curves are labelled by the value of the basic reproduction
number R0 (2, 4, 8 or 16). For each curve, the initial time is at the bottom right
corner of the graph (I(0) ' 0, S(0) ' N). All solutions end on the S axis (I → 0
as t → ∞). A simple analytical formula for the phase portrait is easily derived
(equation 3); from this it is easy to show that limt→∞ S(t) > 0 regardless of the
value of R0 (though, as is clear from the phase portraits plotted for R0 = 8 and 16,
nearly everyone is likely to be infected eventually if R0 is high).

In order for your computer to carry out the calculations specified by equa-
tions (4), you need to tell it the parameter values (β and γ, or R0, N and γ)
and initial conditions (S(0) and I(0)). For measles, estimates that are inde-
pendent of the case report data that we’re trying to explain indicate that the
mean infectious period is 1/γ ∼ 5 days and the basic reproduction number is
R0 ∼ 18 [3]. The population of New York City in 1960 was N = 7, 781, 984.
If we now assume one infectious individual came to New York before the
epidemic of 1962 (I(0) = 1), and that everyone in the city was susceptible
(S(0) = N), then we have enough information to let the computer calculate
I(t). Doing so yields the epidemic curve shown in the top panel of Figure 4,
which does not look much like the real data for the 1962 epidemic in New
York. So is there something wrong with our model?
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Fig. 4. Epidemic curves for measles in New York City, generated by the basic SIR
model. The curves show the number of infectives I(t) at time t. In the top two panels,
the small ticks on the time axis occur at monthly intervals. The parameter values
and initial conditions are discussed in the main text, except for the initial proportion
susceptible used to generate the bottom two panels (S(0)/N = 0.065). This initial
condition was determined based on the SIR model with vital dynamics, as specified
by equations (5). The proportion susceptible at equilibrium is Ŝ = 1/R0 = 1/18 '
0.056. At the start of each epidemic cycle that occurs as the system approaches the
equilibrium, the proportion susceptible must be higher than Ŝ.

No, but there is something very wrong with our initial conditions. The bot-
tom right panel of Figure 2 shows reported measles cases in New York City
for a 36 year period, the end of which includes the 1962 epidemic. Evidently,
measles epidemics had been occuring in New York for decades with no sign of
extinction of the virus. In late 1961, most of New York’s population had al-
ready had measles and was already immune, and the epidemic certainly didn’t
start because one infectious individual came to the city. The assumptions that
I(0) = 1 and S(0) = N are ridiculous. If, instead, we take I(0) = 123 ∗ (5/30)
(the number of reported cases in September 1961 times the infectious period
as a proportion of the length of the month) and S(0) = 0.065 ∗ N , then we
obtain the epidemic curve plotted in the middle panel of Figure 4, which is
much more like the observed epidemic curve of Figure 2 (top right panel).
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This is progress—we have a model that can explain a single measles epi-
demic in New York City—but the model cannot explain the recurrent epi-
demics observed in the bottom right panel of Figure 2. This is not because we
still don’t have exactly the right parameter values and initial conditions: no
parameter values or initial conditions lead to recurrent epidemics in this simple
model. So, it would seem, there must be some essential biological mechanism
that we have not included in our model. What might that be?

Let’s think about why a second epidemic cannot occur in the model we’ve
discussed so far. The characteristic turnover and decline of an epidemic curve
occurs because the pathogen is running out of susceptible individuals to in-
fect. To stimulate a second epidemic, there must be a source of susceptible
individuals. For measles, that source cannot be previously infected people,
because recovered individuals retain lifelong immunity to the virus. So who is
it?

Newborns. They typically acquire immunity from their mothers, but this
wanes after a few months. A constant stream of births can provide the source
we’re looking for.

6 SIR with vital dynamics

If we expand the SIR model to include B births per unit time and a natural
mortality rate µ (per capita) then our equations become

dS

dt
= B − βSI − µS , (5a)

dI

dt
= βSI − γI − µI . (5b)

The timescale for substantial changes in birth rates (decades) is generally
much longer than a measles epidemic (a few months), so we’ll assume that
the population size is constant (thus B = µN , so there is really only one new
parameter in the above equations and we can take it to be B). As before, we
can use Euler’s trick to convert the equations above into a scheme that enables
a computer to generate approximate solutions. An example is shown in the
bottom panel of Figure 4, where I have taken the birth rate to be B = 126, 372
per year (the number of births in New York City in 1928, the first year for
which we have data). The rest of the parameters and initial conditions are as
in the middle panel of the figure.

Again we seem to be making progress. We are now getting recurrent epi-
demics, but the oscillations in the numbers of cases over time damp out, even-
tually reaching an equilibrium (Ŝ, Î). Of course, the bottom plot in Figure 4
shows what happens for only one set of possible initial conditions. Perhaps for
different initial conditions the oscillations don’t damp out? If you try a differ-
ent set of initial conditions—or lots of different sets of initial conditions—then
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I guarantee that you will see the same behaviour. The system will always un-
dergo damped oscillations and converge to (Ŝ, Î). How can I be so sure, you
might ask?

First of all, by setting the derivatives in equations (5) to zero, you can easily
calculate (in terms of the model’s parameters) expressions for Ŝ and Î that are
positive (hence meaningful) provided R0 > 1. Then, by linearizing equations
(5) about the equilibrium and computing the eigenvalues of the Jacobian
matrix for the system, you will find that the equilibrium is locally stable
(the eigenvalues have negative real parts) and approach to the equilibrium is
oscillatory (the eigenvalues have non-zero imaginary parts) [3, 7]. But maybe
if we are far enough from the equilibrium undamped oscillations are possible?

No, we can prove rigorously that the equilibrium (Ŝ, Î) is globally asymp-
totically stable, i.e., all initial conditions with S(0) > 0 and I(0) > 0 yield
solutions that converge onto this equilibrium. One way to see this is to scale
the variables by population size (S → S/N , I → I/N) and consider the
function

V (S, I) = S − Ŝ logS + I − Î log I , S, I ∈ (0, 1). (6)

With a little work you can show that the time derivative of V along solutions
of the model, i.e., ∇V · (dS/dt, dI/dt) with dS/dt and dI/dt taken from equa-
tions (1), is strictly negative for each S, I ∈ (0, 1). V is therefore a Lyapunov
function [19] for the basic SIR model. The existence of such a V ensures the
global asymptotic stability of the equilibrium (Ŝ, Î) [19].

Finding a Lyapunov function is generally not straightforward, but func-
tions similar the one given in equation (6) have recently been used to prove
global stability of equilibria in many epidemic models [20]. The upshot for
our present attempt to understand measles dynamics is that this rigorous ar-
gument allows us to rule out the basic SIR model: it cannot explain the real
oscillations in measles incidence in New York City from 1928 to 1964, which
showed no evidence of damping out. Back to the drawing board?

7 Demographic stochasticity

One thing we have glossed over is the presence of noise. While it is true that
for sufficiently large population size N it is reasonable to treat S and I as
continuous variables, it is not true that the true discreteness of the number of
individuals in each compartment has no observable effect. This was recognized
by Bartlett [1] who found that a relatively small amount of noise was sufficient
to prevent the oscillations of the basic SIR model from damping out. Whether
we recast the SIR model as a stochastic process [2, 21] or simply add a small
noise term to the deterministic equations, we can sustain the oscillations that
damp out in the bottom panel of Figure 4.

Again, this is progress that has arisen from an important mechanistic
insight. But we are left with another puzzle. If you look carefully at the New
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York City measles reports in the bottom right panel of Figure 2 you’ll see that
before about 1945 the epidemics were fairly irregular, whereas after 1945 they
followed an almost perfect two-year cycle. Even with oscillations sustained
by noise, the SIR model cannot explain why the measles epidemic pattern
in New York City changed in this way. Have we missed another important
mechanism?

8 Seasonal forcing

So far, we have been assuming implicitly that the transmission rate β (or,
equivalently, the basic reproduction number R0) is simply a constant and, in
particular, that it does not change in time. Let’s think about that assumption.
The transmission rate is really the product of the rate of contact among
individuals and the probability that a susceptible individual who is contacted
by an infectious individual will become infected. But the contact rate is not
constant throughout the year. To see that, consider the fact that in the absence
of vaccination the average age at which a person is infected with measles is
about five years [3], hence most susceptibles are children. Children are in
closer contact when school is in session, so the transmission rate must vary
seasonally.

A crude approximation of this seasonality is to assume that β varies sinu-
soidally,

β(t) = β0(1 + α cos 2πt) . (7)

Here, β0 is the mean transmission rate, α is the amplitude of seasonal variation
and time t is assumed to be measured in years. If, as above, β is assumed to
be a periodic function (with period one year) then the SIR model is said
to be seasonally forced. We can still use Euler’s trick to solve the equations
approximately, and I encourage you to do that using a computer for various
values of the seasonal amplitude α (0 ≤ α ≤ 1).

You might think that seasonal forcing is just a minor tweak of the model. In
fact, this forcing has an enormous impact on the epidemic dynamics that the
model predicts. If you’ve ever studied the forced pendulum then you might
already have some intuition for this. A pendulum with some friction will
exhibit damped oscillations and settle down to an equilibrium. But if you tap
the pendulum with a hammer periodically then it will never settle down and
it can exhibit quite an exotic range of behaviours including chaotic dynamics
[22, 23] (oscillations that look random). Similarly complex dynamics can occur
in the seasonally forced SIR model.

Importantly, with seasonal forcing the SIR model displays undamped os-
cillations (and it does this, incidentally, even in the absense of stochasticity).
More than that, for different parameter values, the seasonally forced SIR
model can produce all the different types of oscillatory measles patterns I
have ever seen in real data. So are we done?
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No. As noted in the previous section, the observed measles epidemics in
New York City show very clearly that the dynamical pattern changed over
time (bottom right panel of Figure 2) and other significant qualitative changes
have been observed in measles case series in other places [24]. How can we
explain changes over time in the pattern of measles epidemics?

9 Slow changes in susceptible recruitment

Once again, the missing ingredient in the model is a changing parameter value.
This time it is the birth rate B, which is not really constant. Birth rates
fluctuate seasonally, but to such a small extent that this effect is negligible.
What turns out to be more important is the much slower changes that occur in
the average birth rate over decades. For example, in New York City the birth
rate was much lower during the 1930s (the “Great Depression”) than after
1945 (the “baby boom”) and this difference accounts for the very different
patterns of measles epidemics in New York City during these two time periods
[24].

A little more analysis of the SIR model is very useful. Intuitively, reducing
the birth rate or increasing the proportion of children vaccinated both affect
the rate at which new susceptible individuals are recruited into the population.
In fact, it is possible to prove that changes in the birth rate have exactly the
same effect on disease dynamics as changes of the same relative magnitude in
the transmission rate or the proportion of the population that is vaccinated
[24]. This equivalence makes it possible to explain historical case report data
for a variety of infectious diseases in many different cities.

Interestingly, it turns out that while most aspects of the dynamics of
measles can be explained by employing seasonal forcing without noise, both
seasonal forcing and stochasticity are essential to explain the dynamics of
other childhood diseases [25].

10 Not the whole story

I should emphasize that while the seasonally forced SIR model is adequate
to explain observed incidence patterns for childhood diseases, it is definitely
not adequate for many other diseases that display recurrent epidemics. An
important example is influenza (Figure 5). Influenza viruses evolve in ways
that evade the human immune system within a few years, making it possi-
ble for each of us to be infected by influenza many times. Influenza models
must take into account the simultaneous presence in the population of many
different strains that interact immunologically and compete for human hosts.
The epidemic pattern shown in Figure 5 bears some similarities to the measles
pattern shown in Figure 2, and the effects of seasonal forcing help explain this
and other influenza patterns to some extent [26]. But we are far from having
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a simple model that can account for both the annual incidence patterns of
influenza in humans and the evolution of the virus [27].

Fig. 5. Monthly mortality attributed to pneumonia and influenza (P&I deaths) in
the USA in the 20th century. The inset plot shows the period 1910–1930 on a much
larger scale, revealing the magnitude of the three peaks that extend beyond the top
of the main panel: 1918–1919, 1919–1920 and 1928–1929. Mortality before 1934 is
underestimated. It is traditional to combine pneumonia and influenza because many
deaths categorized as having pneumonia as the underlying cause are triggered by an
influenza infection.

11 Take home message

One thing that you may have picked up from this article is that successful
mathematical modelling of biological systems tends to proceed in steps. We
begin with the simplest sensible model and try to discover everything we can
about it. If the simplest model cannot explain the phenomenon we’re trying
to understand then we add more biological detail to the model, and it’s best
to do this in steps because we are then more likely to be able to determine
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which biological features have the greatest impact on the behaviour of the
model.

In the particular case of mathematical epidemiology, we are lucky that
medical and public health personnel have painstakingly conducted surveillance
of infectious diseases for centuries. This has created an enormous wealth of
valuable data [28] with which to test hypotheses about disease spread using
mathematical models, making this a very exciting subject for research.
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