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1. Introduction

Mathematical modelling has contributed significantly to our understanding of the
epidemiology of infectious diseases [AM91], and is beginning to have a substantial
impact on research at the immunological and molecular levels [NM00]. The earliest
mathematical study of an infectious disease was undertaken more than 200 years
ago by Daniel Bernoulli, who attempted to influence public health policy concerning
smallpox [Ber1760, BB04]. Nevertheless, a firm theoretical basis for infectious
disease modelling was not established until the 20th century. Some of the first
analyses provided fundamental insights about thresholds for epidemics to occur
and the incidence patterns that result [Ros11, KM27], while more recent work has
elucidated effects of demographic stochasticity [Bar60, Bai75, Kur80, AB00],
heterogeneity in age, genetics, social and spatial structure [AM91]. The ultimate
goal of most of this work is to contribute to efforts to develop improved strategies
for eradication and control of many infectious diseases.

If we hope to build models that can help predict the effects of changes in
control strategies, we must first demonstrate that models can successfully predict
patterns of epidemics that have been observed in the past. Fortunately, medical and
public health administrators in many countries have kept records of reported deaths
from (and cases of) infectious diseases for decades and, in some places, centuries.
These records, together with immunological and genetic data that have become
available more recently, provide an empirical backbone for the mathematical study
of infectious disease transmission dynamics and control.

These lectures will introduce you to the subject of mathematical epidemiology
from an applied perspective. By “applied” I mean that we will try to make sense
of specific examples of data, and we will try to draw inferences that could influence
decisions of public health policymakers. We will begin with a few examples of epi-
demiological data that present intriguing puzzles, and some elementary statistical
tools for quantifying the patterns in these data. We will then examine two very
different approaches for investigating these patterns — statistical time series mod-
elling and mechanistic mathematical modelling — before considering how we might
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4 2. DESCRIBING EPIDEMICS

predict changes in patterns of epidemics and how we might manipulate infectious
disease dynamics so as to reduce expected morbidity and mortality.

2. Describing epidemics

2.1. Plague

One of the most famous examples of an epidemic of an infectious disease in a human
population is the Great Plague of London, which took place in 1665 [MM04]. We
know quite a lot about the progression of the Great Plague because weekly bills of
mortality from that time have been retained. A photograph of such a bill is shown
in Figure 1. Note that the report indicates that the number of deaths from plague
(5533) was more than 37 times the number of births (146) in the week in question,
and that wasn’t the worst week! An even worse plague — known as the Black

Figure 1. A bill of mortality for the city of London, England, for the
week of 26 September to 3 October 1665. This photograph was taken by
Claire Lees at the Guildhall in London, England, with the permission
of the librarian.
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Death — occurred in the 14th century, but the remaining records of that epidemic
are much less detailed.

Putting together the weekly counts of plague deaths from all the relevant mor-
tality bills, we can obtain the epidemic curve for the Great Plague, which I’ve
plotted in the top left panel of Figure 2. The bottom left panel of Figure 2 shows
weekly mortality from plague in London over a period of 70 years. The Great
Plague is the rightmost (and highest) peak in the plot. You can see that on a
longer timescale, there was a complex pattern of plague epidemics including extinc-
tions and re-emergences. At present, however, we have no direct evidence that all
those plagues were really caused by the same pathogenic organism.

Figure 2. Epidemic curves for plague in London (left panels) and
measles in New York City (right panels). For plague, the curves show
the number of deaths reported each week. For measles, the curves show
the number of cases reported each month. In the top panels, the small
ticks on the time axis occur at monthly intervals.

2.2. Measles and other childhood diseases

A less contentious example is given by epidemics of measles, which are definitely
caused by a well-known virus that infects the respiratory tract in humans and
is transmitted by airborne particles [AM91]. Measles gives rise to characteristic
red spots that are easily identifiable by physicians who have seen many cases, and
parents are very likely to take their children to a doctor when such spots are noticed.
Consequently, the majority of measles cases in developed countries end up in the
office of a doctor (who, in many countries, is required to report observed measles
cases to a central body). The result is that the quality of reported measles case
data is unusually good.



6 2. DESCRIBING EPIDEMICS

An epidemic curve for measles in New York City in 1962 is shown in the top
right panel of Figure 2. The period shown is 17 months, exactly the same length of
time shown for the Great Plague of London in the top left panel. The 1962 measles
epidemic in New York took off more slowly and lasted longer than the Great Plague
of 1665. The bottom right panel of Figure 2 shows reported measles cases in New
York City for a 36 year period, the end of which includes the 1962 epidemic. The
cyclicity in the epidemic pattern is striking and much more regular than the series
of plague epidemics in the bottom left panel.

There are also striking differences between the epidemic patterns of measles and
those of other common childhood diseases. Figure 3 shows examples of sequences of
recorded epidemics of measles, whooping cough, rubella and chicken pox. While all
of these diseases display recurrent epidemics, the detailed structure of the temporal
patterns could hardly be more varied. This is especially puzzling given that all
these diseases are caused by respiratory infections with many clinical similarities,
and all are observed primarily in children.

Figure 3. Reported cases of childhood infectious diseases in Ontario,
Canada. For measles and whooping cough the data are monthly and
begin in 1904. For rubella and chicken pox the data are weekly and
begin in 1924.
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2.3. Influenza

One of the diseases that we encounter most often is influenza, which is a major cause
of morbidity in people of all ages and mortality in the elderly [EDL02, DPV+06].
The strong seasonality of influenza epidemics is clearly evident in the main panel,
(a), of Figure 4, but this plot hides some critical features of influenza incidence
patterns. The plot inset on the top right of panel (a) shows the first 20 years of
data on a much larger vertical scale and emphasizes the true magnitude of the 1918
influenza pandemic. The other panels of this figure show that different indicators of
the “influenza season” are consistent (panel b), that influenza epidemics occur in the
winter in both the northern and southern hemispheres (panel c), that mortality data
mask more complex patterns of incidence of different influenza types and subtypes
(panel d), and that influenza evolves rapidly by a process known as antigenic drift
(panel e) allowing the virus to evade our immune system again within a few years
of infection.

None of the graphs in the figure reveal the most dangerous property of influenza,
that every few decades (three times in the last century) it has undergone major
changes which have left most of the world’s human population suddenly susceptible
to the newly invading strain. All three antigenic shifts in the last century (in 1918,
1957 and 1968) have originated from influenza viruses circulating in aquatic birds,
which is why reports of “bird flu” infecting humans cause serious concern.

2.4. Statistical description of epidemic time series

All of the examples above have in common that epidemics of the disease in question
are recurrent. If we wish to understand these epidemic patterns, then we must
establish a precise way of quantifying the notion of “recurrence”. Methods of time
series analysis [Cha04] provide a standard set of tools to describe the temporal
structure of recurrent epidemics.

The most natural way to begin analysis is with a time plot, like the graphs
shown for each of the diseases discussed above. For a single epidemic, such as the
Great Plague of London shown in top left panel of Figure 2, the time plot is an
excellent descriptor. For recurrent epidemics, it is still the best starting point but
is often difficult to interpret, especially if processes are occurring on a number of
different scales. Figure 5 shows the original time series of cases of measles reported
in England and Wales from 1944 to 1994 (top panel), together with two time plots
of transformed data, which reveal much more structure (and noise) in the later parts
of the time series when the overall number of cases had been greatly reduced as a
result of mass vaccination.

Awareness of noise is important, but noise can mask important features that
take place on longer timescales. For this reason, it is useful to make time plots of
smoothed data, examples of which are shown in Figure 6. The plots shown here
are of the England and Wales measles time series smoothed with a moving average,
i.e., by replacing the original data points xt with averages of nearby points,

xt →
1

2a + 1

a
∑

i=−a

xt+i .(2.1)
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Figure 4. Influenza ecology and evolution. (a) Monthly mortality at-
tributed to pneumonia and influenza (P&I deaths) in the USA in the
20th century. The inset plot shows the period 1910–1930 on a much
larger scale, revealing the magnitude of the three peaks that extend be-
yond the top of the main panel: 1918–1919, 1919–1920 and 1928–1929.
(b) Weekly measures of influenza incidence in the USA: P&I mortal-
ity in 122 cities (black curve), laboratory-confirmed cases (red curve),
and influenza-like illness (ILI activity) on a five-point scale from 0 to
4 (yellow shading). (c) Weekly laboratory-confirmed cases in the UK
(red curve) and Australia (blue curve). (d) Weekly patterns of rela-
tive prevalence of the three major groups of strains (H1N1, blue curve;
H3N2, red curve; B, cyan curve) in the UK. (e) Maximum parsimony
phylogenetic reconstruction of the evolution of the HA1 domain of the
H3N2 subtype of influenza A from 1985 to 1997. The thick line running
from the lower left (*=root) to the upper right (open square) is called
the trunk and represents the successful H3N2 lineage. The vertical lines
indicate the range of isolates from each flu year (1 October to 30 Sep-
tember). [Panels a–d reprinted from Earn et al [EDL02]; copyright
c© (2002), with permission of Elsevier. Panel e reprinted from Fitch
et al [FBBC97]; copyright c© (1997) National Academy of Sciences,
USA.] Panel (d) gives a limited impression of the level of aggregation of
data in the other panels. The coarsest data are those in panel (a), where
the monthly records span periods during which different subtypes of in-
fluenza A have been present in human populations: 1918–1957 (H1N1),
1957–1968 (H2N2), 1968–1977 (H3N2), 1977–present (both H1N1 and
H3N2). Data sources: US Vital Statistics [USVS], US CDC 122
cities data base (http://www.cdc.gov/epo/dphsi/121hist.htm), WHO
FluNet data base (http://qamapserver.who.int/GlobalAtlas/)
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Figure 5. Transformed time plots of measles incidence in England and
Wales from 1944 to 1994.

A moving average is the simplest example of a linear filter,

xt →
∞
∑

i=−∞

λixt+i ,(2.2)

where the weights λi can be nonlinear functions of i [Cha04]. Linear filters are
especially useful for extracting long-term trends that are clouded by noise or sea-
sonality.

A useful way to think about recurrent patterns of epidemics is that the number
of cases or deaths at a given time is correlated with the number at other times in
the past or the future. As is probably familiar to you, given N pairs of observations
of different quantities, {(xi, yi) : i = 1, . . . , N}, the correlation coefficient is defined
to be

r =

∑N
i=1(xi − x̄)(yi − ȳ)

√

∑N
i=1(xi − x̄)2

∑N
i=1(yi − ȳ)2

,(2.3)

where x̄ and ȳ are the means of {xi} and {yi}, respectively. Given a single se-
quence of observations {xt : t = 1, . . . , N}, we can compute the correlation of each
observation with the observation k time steps in the future. Thus, we consider the
pairs of observations {(xt, xk+t) : t = 1, . . . , N − k} and define the autocorrelation
coefficient at lag k to be

rk =

∑N−k
t=1 (xt − x̄1,N−k)(xk+t − x̄k+1,N )

√

∑N−k
t=1 (xt − x̄1,N−k)2

∑N−k
t=1 (xk+t − x̄k+1,N )2

,(2.4)
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Figure 6. Smoothed time plots of measles incidence in England and
Wales from 1944 to 1994.

where x̄1,N−k and x̄k+1,N are the means of first and last N − k observations, re-
spectively. If N is large and k # N then x̄1,N−k $ x̄k+1,N $ x̄, so

rk $

∑N−k
t=1 (xt − x̄)(xk+t − x̄)

√

∑N−k
t=1 (xt − x̄)2

∑N−k
t=1 (xk+t − x̄)2

(2.5a)

$

∑N−k
t=1 (xt − x̄)(xk+t − x̄)
N−k

N

∑N
t=1(xt − x̄)2

.(2.5b)

Because this approximation depends on the assumption that k # N , the factor
N/(N − k) ∼ 1 and is usually ignored, yielding the standard formula

rk $

∑N−k
t=1 (xt − x̄)(xk+t − x̄)

∑N
t=1(xt − x̄)2

.(2.5c)

The factor N/(N −k) increases with k, so ignoring it leads to an artificial reduction
in rk as k increases, but if k is large enough that this could affect any inferences of
interest then a greater concern might be the approximation of the means of the first
and last N − k observations by the mean of all observations. In general, it is worth
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Figure 7. Time series analysis tools applied to measles incidence in
England and Wales from 1944 to 1994. From top to bottom: the time
plot, correlogram, periodogram, and period periodogram.

being aware that if the standard approximation (2.5c) is used then the precision of
the autocorrelation coefficients decreases with lag.

A plot of the autocorrelation as a function of lag is known as the correlogram
of the time series (see the second panel of Figure 7). The correlogram is a valuable
indicator of the nature of the serial dependence in a time series. Nevertheless, since
we are often more interested in the periodicities in the time series than in the degree
to which correlation decays with lag, a frequency representation of the correlogram
is usually preferred. The discrete Fourier transform of the correlogram is called the
periodogram,

I(ωp) =
1

π

(

r0 + 2
N−1
∑

k=1

rk cosωpk
)

,(2.6)

where ωp = 2πp/N , p = 1, . . . , N/2. The periodogram can also be written directly
in terms of the original time series. For example,

I(ωp) =
1

πNvar[xt]

∣

∣

∣

∣

∣

N
∑

t=1

xte
iωpt

∣

∣

∣

∣

∣

2

.(2.7)
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You may wonder why this quantity is of greater interest than the Fourier transform
of {xt}. The answer is simply that it has a much more natural interpretation. Unlike
the Fourier transform of {xt}, the periodogram partitions the variance in {xt}, i.e.,
I(ωp) is the proportion of the variance associated with the harmonic cosωpt (hence
∑N/2

p=1 I(ωp) = 1). Thus, while the positions of the peaks in the periodogram will
coincide with those in the Fourier transform of {xt}, the magnitude of these peaks
is much easier to interpret in the periodogram.

In spite of its name, the periodogram is a function of frequency. It is often more
convenient to plot it as a function of period, in which case it is called the period
periodogram. Figure 7 shows the time plot, correlogram, periodogram and period
periodogram for the measles case series in England and Wales. Note that while it
is easiest to identify the periods of the peaks from the period periodogram, the area
under the plotted curve is not straightforward to interpret. Area under the normal
(frequency) periodogram for a range of frequencies is equal to the proportion of the
variance of the time series associated with those frequencies.

Although the time series that we analyze contain discrete data points that are
separated in time, the underlying processes occur in continuous time. We therefore
think of the correlogram as an estimate of the underlying continuous autocorrelation
function and of the periodogram as an estimate of the underlying (continuous)
power spectral density or power spectrum, which is defined for all frequencies (all
ω > 0 rather than only ωp = 2πp/N for p = 1, . . . , N/2).

Because any observed time series that we analyze must be finite, the autocor-
relation function is always less well sampled at longer lags (at lag k, the number
of pairs of points being compared is N − k). Consequently, one might wish to put
greater weight on the coefficients at shorter lags, which can be achieved by linearly
filtering the autocorrelation coefficients in the calculation of the periodogram, i.e.,
by replacing Eq. (2.6) with

I(ωp) =
1

π

(

λ0r0 + 2
M
∑

k=1

λkrk cosωpk
)

.(2.8)

Here, the set of weights {λk} is called the lag window and M is known as the
truncation point. Weighting coefficients “appropriately” is a bit of a black art, but
a ubiquitous filter is the Tukey window,

λk =
1

2

(

1 + cos
πk

M

)

, k = 0, 1, . . . , M .(2.9)

You can gain valuable intuition by applying this procedure to a time series of
interest and looking at the effects of adjusting the truncation point (M). A variety
of procedures for estimating the power spectrum of a time series are discussed and
compared by Chatfield [Cha04].

A serious limitation of the periodogram is that it does not account for changes
in the structure of a time series over time. If different segments of a time series
correspond to different external conditions (such as different birth rates) then we
must break up the time series ourselves before computing the periodogram. More
sophisticated spectral methods that overcome this limitation do exist. Wavelet
analysis [TC98, Nie01, GBK01] provides a method for frequency decomposition
that is local in time, so you can see changes in the spectrum over time without
having to identify distinct temporal segments yourself.
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2.5. Exercises

The best way to learn the techniques described above is to try to apply them to an
interesting time series.

(1) Download a time series of recurrent epidemics from the International In-
fectious Disease Data Archive [IIDDA]. Nice examples to try first are
the monthly incidence of measles in New York City from 1928 to 1964 or
the weekly incidence of measles in England and Wales from 1944 to 1994.

(2) Analyze the time series as a whole by constructing (i) time plots of raw
and transformed data, (ii) correlograms, (iii) periodograms, (iv) period
periodograms. Calculate the periodograms with and without a Tukey
window, and examine the effects of different truncation points.

(3) Repeat these analyses for segments of the time series that look different
by eye.

(4) Is there evidence for: Frequency components not evident by eye? Changes
in the frequency structure over long time scales? If so, why might this
have occurred? What if you remove trend and/or seasonality?

(5) If you’re ambitious, explore the time series using wavelet analysis, e.g., via
the Matlab Wavelet Toolbox or Torrence and Compo’s software [TC98]
available at http://atoc.colorado.edu/research/wavelets/.

If you are so inclined, there are enough time series on the IIDDA web site to keep
you busy making interesting discoveries for a long time. You can also find scripts
on the IIDDA web site that will enable you to do all the analyses suggested in
the exercises without programming anything yourself, but I encourage you to write
your own code — you will learn more that way.

3. Modelling epidemics

As we have seen, the character of epidemic patterns differs for different diseases and
even for the same disease in different places or at different times. Can models help
us predict these differences, forecast future epidemics, or develop an understanding
of the mechanisms responsible for the various patterns? Specifically, can models
help us understand the structure of an epidemic time series as displayed by the
time plot, correlogram or periodogram?

It is not clear at the outset how we should even begin trying to develop po-
tentially useful models. Where you start will depend on what background and
experience you have with other problems. I will discuss two standard approaches,
which have their own strengths and weaknesses. The first approach is useful if you
have little to go on beyond a time series of cases or deaths that you would like
to understand, while the second approach is generally more powerful if you have
more knowledge of how the fundamental biological processes might be related to
observed events and some information in addition to a case or death time series.

3.1. Statistical modelling

Epidemic processes are ultimately stochastic. They depend on contacts between
individuals (which occur randomly at least to some extent) and infections (which
occur upon contact with some probability less than 1). We can build a statistical
model using nothing but the fact there there is a stochastic process involved, and
that the observed data we have are in the form of a time series {xt}.
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As a first attempt, we could imagine that the number of cases at time t, Xt, is
simply a random variable with a known distribution. Our model for the epidemic
process would then be simply

Xt = µ + Zt ,(3.1)

where µ is the time average number of cases and Zt is a sequence of independent and
identically distributed (IID) random variables with zero mean. The parameters of
this model are µ and the moments (of order 2 and higher) of the distribution of Zt.
We could then fit the model parameters to the mean, variance, etc. of our observed
data. This might be a reasonable model for the importation of new, infectious
individuals into a focal community, but it clearly fails to take into account that
infection is transmitted from one individual to another, so there must be some
correlation between the number of individuals in the focal community who are
infected now and the number who will be infected in the near future.

So, imagine that the time series is generated by random processes, but that
successive data points are correlated. For example, perhaps the data are generated
by an autoregressive or “AR(p)” process,

Xt − µ = α1(Xt−1 − µ) + α2(Xt−2 − µ) + · · · + αp(Xt−p − µ) + Zt ,(3.2)

where the αi are constants that determine the degree of correlation along the time
series and Zt is as in Eq. (3.1). Alternatively, the data might be generated by a
moving average or “MA(q)” process,

Xt − µ = β0Zt + β1Zt−1 + · · · + βqZt−q ,(3.3)

where the βi are constants that define a weighted average. More generally, the data
might be generated by an autoregressive moving average or “ARMA(p, q)” process,

Xt − µ =α1(Xt−1 − µ) + α2(Xt−2 − µ) + · · · + αp(Xt−p − µ)(3.4a)

+ β0Zt + β1Zt−1 + · · · + βqZt−q .(3.4b)

Of course, that the data might be generated by such a process is not especially
enlightening. Can we identify a “good” model of our data from the infinite class of
ARMA(p, q) processes?

You can develop some intuition about time series models by plotting the cor-
relogram and periodogram for a variety of ARMA(p, q) processes with specific pa-
rameter values. The autocorrelation function of a first-order AR process declines
exponentially, while the autocorrelation of an MA(q) process drops to zero at lag
q. Unfortunately, for a more general ARMA(p, q) the theoretical autocorrelation
function is complicated so, unless the correlogram of our observed time series is as
simple as that of a pure AR(1) or MA(q) process, we need a quantitative method
to identify the best ARMA(p, q) model.

But what do we mean by a “best” model? The usual answer is the most
parsimonious model, i.e., the model that gets as close as possible to the data using
the fewest parameters. If we think an observed time series {xt} was generated by
an AR(p) process then we can attempt to find the best model by minimizing the
residual sum of squares,

S =
N

∑

t=p+1

[(xt − µ) − α1(xt−1 − µ) − · · ·− αp(xt−p − µ)]2 .(3.5)
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If we compute the least-squares fit for a range of orders (p) and plot S against p, we
will likely find that there are diminishing returns for increasing the order beyond a
certain point, which might suggest a “most parsimonious” AR(p) model. Of course,
this model can be considered “best” only within the constraint that the distribution
of noise (Zt) is taken as given. Experience shows, moreover, that fewer parameters
are typically required to model a process as ARMA(p, q) rather than pure AR(p)
or MA(q) processes. So we really need to compute the residual sum of squares for
ranges of p and q and for a variety of possible noise distributions, and consider the
number of parameters involved in each model. This is not straightforward. We
really need a quantitative criterion that we can apply blindly to a wide variety of
models. Unsurprisingly, the development of such a criterion is something to which
statisticians have devoted much time and effort.

We know that statistical models involving more parameters will generally yield
fits that are closer — in the least squares sense — to observed data. We need a
formal away to penalize models for using more parameters so we can arrive at an
objective measure of the statistical significance of the fit. There are many ways
to do this, the most common being the Akaike Information Criterion (AIC). The
AIC depends on the notion of the likelihood of the model given the data, which
is defined to be the probability of observing the data given the model. If L(θ|xt)
denotes the likelihood of the model with parameter values θ, given the observed
time series {xt}, then the AIC is

AIC = −2 ln [max
θ

L(θ|xt)] + 2k ,(3.6)

where k is the number of independent parameters that are fitted for the model being
assessed (i.e., the dimension of the vector θ). By choosing the model with the lowest
value of the AIC we balance the closeness of the fit (maximum likelihood) with the
complexity of the model (minimum number of parameters). It is often assumed that
measurement errors in the data are normally distributed about the “true” model, in
which case maximizing the likelihood is equivalent to minimizing the residual sum
of squares [PTVF92] (e.g., Eq. 3.5 for an AR(p) model). With this assumption,
Eq. (3.6) becomes

AIC = N ln(S/N) + 2k ,(3.7)

where N is the number of observations in the time series.
Once we have arrived at a “best fit” model, we can use it to forecast future

observations. The natural way to test this procedure is to fit a model to part of
the observed time series and then use the resulting fit to predict the remainder of
the data. How successful is this likely to be for an infectious disease time series like
one of those discussed above?

The answer depends on which time series we are interested in and which seg-
ment of the data we start with. Consider, for example, weekly chicken pox in
Ontario (Figure 3). If we fit an ARMA(p, q) model using the first 20 years of the 50
year time series and then use the model to forecast the remaining 30 years of data,
we can expect to do reasonably well. On the other hand, if we fit an ARMA(p, q)
model to the New York City monthly measles reports from 1928 to 1945 (top right
panel of Figure 2), we will fail miserably at predicting the monthly case reports
from 1946 to 1964. The reason is that the first and second halves of the New York
City measles time series have completely different structure (apparently irregular
until 1945 and strictly biennial after 1945). We cannot expect to predict the second
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half given only the first half. We need further information — such as the fact that
the birth rate rose dramatically after 1945 — and we need to know how to alter
our fitted ARMA(p, q) model in light of this information. Unfortunately, we will
never have the information required to alter the fitted parameters of our statistical
time series model, because the parameters of the model have no biological meaning.
This is a serious problem that is not easy to overcome.

You might hope that you could do better with a more sophisticated time series
model. ARMA(p, q) models are relatively simple and you can often obtain better
fits to data (with lower AIC) using more elaborate statistical models [Scu03]. In
particular, a time series analyst would probably advise you to first fit trends and
cycles to the observed data and remove these features before attempting to fit
an ARMA(p, q) or more sophisticated model. But this emphasizes the problem,
because we are usually more interested in understanding trends and changes in
cyclicity than in modelling small stochastic fluctuations in detail.

Ultimately, statistical time series models are useful as forecasting tools only if
the underlying stochastic processes are stationary, which means roughly speaking
that the processes are identical for the period during which the parameters are fit
and the period over which predictions are sought. If external conditions change in
a way that affects the processes that generate the data we observe, then we need a
different modelling tool.

Much more detail on statistical modelling of time series can be found in the
excellent text by Chatfield [Cha04].

3.2. Mechanistic modelling

A fundamental problem with statistical time series models is that they use the
observed time series itself to estimate parameters. It would be much better to
have a model that we can parameterize from independently collected data and
then explore whether that model can explain the observed time series. This more
desirable approach can be pursued only if we have a lot more information than
the time series we are trying to explain. Fortunately, when studying time series of
infectious disease epidemics this is precisely the situation in which we usually find
ourselves.

Rather than beginning with a time series, let’s consider what we know about the
biological processes that must ultimately give rise to the observed cases or deaths,
i.e., the mechanisms of disease transmission and spread. To be specific, think about
a childhood disease such as measles or chicken pox. Initially, perhaps after a period
of maternally-acquired immunity has waned, each individual is susceptible to the
disease in question. If some individuals in the population have been exposed to
the disease-causing agent and are currently at the infectious stage then they can
transmit the pathogen to susceptible individuals. For typical childhood diseases,
recovery entails essentially lifelong immunity, so regardless of whether infected in-
dividuals eventually recover or die, we can consider them to be removed from the
transmission process.

We are thus naturally led to a simple model in which the host population
(humans) is divided into three compartments, each containing individuals who are
identical in terms of their status with respect to the disease in question. In this
“SIR model”, which is depicted as a flow chart in Figure 8, the three compartments
are:
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• Susceptible: individuals who have no immunity to the infectious agent, so
might become infected if exposed.

• Infectious: individuals who are currently infected and can transmit the
infection to susceptible individuals who they contact.

• Removed : individuals who are immune to the infection, and consequently
do not affect the transmission dynamics in any way when they contact
other individuals.

It is traditional to denote the number of individuals in each of these compartments
as S, I and R, respectively. The total host population size is N = S + I + R.

  







  

Figure 8. The basic SIR model. Individuals in the host population are
in one of three possible states: Susceptible, Infectious, or Removed. The
rates of flow between compartments are specified relative to the number
of individuals in the state in question. The differential equation version
of this model is given in Eq. (3.8).

Having compartmentalized the host population, we now need a set of equations
that specify how the sizes of the compartments change over time. Solutions of these
equations will yield, in particular, I(t), the size of the infectious compartment at
time t. A plot of I(t) should bear a strong resemblance to observed epidemic curves
if this is a reasonable model.

The numbers of individuals in each compartment must be integers, of course,
but if the host population size N is sufficiently large we can treat S, I and R
as continuous variables and express our model for how they change in terms of a
system of differential equations,

dS

dt
= −βSI ,(3.8a)

dI

dt
= βSI − γI .(3.8b)

Here, the transmission rate (per capita) is β and the recovery rate is γ (so the
mean infectious period is 1/γ). In writing Eqs. (3.8) we are assuming implicitly
that contacts among individuals are random and, moreover, that the population
is homogeneously mixed (like an ideal gas). Note that we do not need a differen-
tial equation for the number of removed individuals. The appropriate equation is
dR/dt = γI (outflow from the I compartment goes into the R compartment) but
since R does not appear in equations (3.8) the equation for dR/dt has no effect
on the dynamics of S and I (formalizing the fact that removed individuals can-
not affect transmission). This basic SIR model has a long history [KM27] and is
now so standard that you can even find it discussed in some introductory calculus
textbooks [HHGL+06].

If everyone is initially susceptible (S(0) = N), then a newly introduced infected
individual can be expected to infect other people at the rate βN during the expected
infectious period 1/γ. Thus, this first infective individual can be expected to infect
R0 = βN/γ individuals. The number R0 is called the basic reproduction number
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and is unquestionably the most important quantity to consider when analyzing any
epidemic model for an infectious disease. In particular, R0 determines whether an
epidemic can occur at all; to see this for the basic SIR model, note in equations
(3.8) that I can never increase unless R0 > 1. This makes intuitive sense, since
if each individual transmits the infection to an average of less than one individual
then the number of cases must decrease with time.

Intuitively, if you introduce a pathogen with R0 > 1 into a fully susceptible
population then you expect the number of cases to grow exponentially until a large
fraction of the susceptible have been infected. The epidemic curve must eventually
turn over. Simple analyses of the basic SIR equations (3.8) with R0 > 1 show that
the SIR model does exactly this (see exercises below). But it is also easy to show
that Eqs. (3.8) always lead to exactly one maximum in I(t) so we can never predict
more than one epidemic. This means that the basic SIR model cannot account for
the recurrent epidemics described above. In fact, it can’t even explain persistence
of a disease in a population. We must include more structure in our model, which
we can do by considering more carefully the biological processes involved.

One aspect of disease transmission that we have ignored is that there is a de-
lay between the moment at which an individual is infected and the beginning the
period of infectiousness (the latent period). To account for this delay, an exposed
compartment is usually added (“exposed” individuals are infected but not yet in-
fectious), yielding an “SEIR model”. In this way, we introduce one more equation
and one more parameter, the rate (σ) of flow from the exposed to the infectious
compartment. The mean latent period (1/σ) can often be estimated, so adding this
parameter doesn’t get us into trouble, but the dynamics of the basic SEIR model
are almost identical to the SIR model. We still cannot explain persistence, let alone
cyclical recurrence. We are still missing something fundamental.

The key element that is absent from our discussion so far is a source of suscep-
tible individuals, the most obvious being births. If we are considering timescales
over which births are important then we also need to account for deaths (from
causes other than the disease in question). The streams of births and deaths to-
gether are known as the vital dynamics of the system. Of course, only births of
individuals who are not immune affect the transmission dynamics of the disease
in question. For the childhood diseases I have mentioned, many young children
are vaccinated before ever being exposed to the associated pathogens, so we can
consider the proportion of the population who has been vaccinated to have been
born into the removed compartment. If the birth rate is ν (“nu for natality”), the
per capita death rate is µ (“mu for mortality”) and the proportion vaccinated is p,
then we arrive at the “SEIR model with vital dynamics and vaccination” depicted
as a flow chart in Figure 9. Expressing this model using differential equations we
obtain

dS

dt
= ν(1 − p) − βSI − µS ,(3.9a)

dE

dt
= βSI − σE − µE ,(3.9b)

dI

dt
= σE − γI − µI ,(3.9c)

dR

dt
= νp + γI − µR .(3.9d)
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Figure 9. The SEIR model with vital dynamics and vaccination. This
expands the model depicted in Figure 8 to include a class of individuals
who have been Exposed to the pathogen and are currently infected, but
are not yet infectious. In addition, births occur at rate ν, deaths occur
at per capita rate µ, and the rate at which exposed individuals become
infectious is σ (so 1/σ is the mean latent period, the mean time from the
moment of initial infection to the beginning of the infectious period).
This model is represented as a system of differential equations in
Eq. (3.9).

If births exactly balance deaths (ν = µN) then the population size (N = S+E+I+
R) is constant and one of these equations is superfluous. In this expanded model,
the basic reproduction number R0 is still approximately, but no longer exactly,
βN/γ (see exercises below).

Equilibrium and stability analyses of Eqs. (3.9) lead to important conclusions.
For any parameter set, there is always at least one equilibrium, the disease free
equilibrium or DFE corresponding to no infected individuals at all (E = I = 0). If
R0(1 − p) < 1 then the DFE is globally asymptotically stable. If R0(1 − p) > 1
then the DFE is unstable and there is a second equilibrium, the endemic equilibrium
corresponding to a constant number of exposed and infected individuals (E > 0 and
I > 0), which is globally asymptotically stable [LM95, KM04].

The existence of a globally stable endemic equilibrium immediately provides
an explanation for persistence of infectious diseases. However, it is the condition
for global stability of the DFE that is in fact most important. Since the proportion
vaccinated is under our control, we can re-arrange the condition R0(1 − p) < 1 to
find a critical vaccination proportion,

pcrit = 1 −
1

R0
,(3.10)

above which the disease cannot persist. Consequently, if we can estimate R0 for
a given disease then we can also estimate the threshold vaccination level that we
must reach in order to eradicate the infection. This is probably the single most
important conclusion that has been drawn from mathematical analysis of epidemic
models, and it helps us understand why smallpox (with R0 ∼ 4) was successfully
eradicated in the 1970s, while measles (with R0 ∼ 20) is still with us. But from the
point of view of our present discussion, the critical vaccination level is just a bonus.
We were actually aiming to understand something else, the recurrent pattern of
epidemics seen in most of the data we discussed.
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A standard local stability analysis (see exercises below) reveals that the endemic
equilibrium is normally approached by damped oscillations with period

T = 2π

√

1/σ + 1/γ

ν(R0 − 1)
(3.11)

This suggests an explanation of cyclical epidemic patterns and a method to predict
the inter-epidemic period. However, as the examples discussed above show, epi-
demic cycles seen in practice are often undamped, and the inter-epidemic period
can change over time and differ from place to place. So, what are we missing?

3.3. Demographic stochasticity

One thing we have glossed over is the presence of noise. While it is true that
for sufficiently large population size N it is reasonable to treat S, E, I and R as
continuous variables, it is not true that the genuine discreteness of the number of
individuals in each compartment has no observable effect.

If we re-cast the SEIR model as a stochastic process [Bai75] then our ability
to derive conclusions analytically rapidly evaporates. Fortunately, we can simulate
stochastic models on a computer and numerically explore the significance of demo-
graphic noise. Gillespie [Gil76] showed that a simple algorithm provides rigorously
correct realizations of the sorts of stochastic processes that arise from systems like
the SIR and SEIR models that concern us here. So, we can run many realizations
and infer the expected behaviour of genuinely stochastic epidemics.

Gillespie’s algorithm works as follows. Let a1, a2, . . . , be the rates at which
the various processes occur. For example, a1 might be the birth rate, a2 might
be the rate of going from susceptible to exposed, a3 might be the rate of going
from infectious to removed (recovering) and so on. Let a0 be the overall event rate,
i.e., a0 =

∑

i ai, so the average time between events is 1/a0. If the transitions
between the various states are Poisson processes then the time spent in any given
state is exponentially distributed and the probability that the next event occurs
between times t and t + dt is a0e−a0tdt. If we let u = e−a0t then u ∈ [0, 1] and
du = a0e−a0tdt, so u is uniformly distributed in [0, 1]. Thus, the time t to the
next event can be obtained by sampling u from a uniform distribution in [0, 1] and
setting t = 1

a0
ln(1/u). The nature of the event is then determined by sampling a

point from a uniform distribution on [0, a0] and setting the event to type i if the
uniform deviate lies in the ith interval in the following list.

[0, a1), [a1, a1 + a2), . . . , [a1 + · · · + ai−1, a1 + · · · + ai), . . .(3.12)

Using Gillespie’s algorithm, we can easily confirm the discovery made 50 years
ago by Bartlett [Bar57] that a relatively small amount of noise is sufficient to
prevent the oscillations of the SIR model from damping out. In the stochastic SIR
model [Bai75, Gil76] demographic noise sustains the oscillations that damp out
in the deterministic model (Figure 10).

Again, this is progress that has arisen from an important mechanistic insight.
But we are left with another puzzle. If you look carefully at the New York City
measles reports in the bottom right panel of Figure 2 you’ll see that before about
1945 the epidemics were fairly irregular, whereas after 1945 they followed an almost
perfect two-year cycle. Even with oscillations sustained by noise, the SIR model
cannot explain why the measles epidemic pattern in New York City changed in this
way. Have we missed another important mechanism?
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Figure 10. Simulations of the SEIR model model with vital dynamics,
for a population of 5 million individuals. The birth and death rates are
ν = µ = 0.02, the basic reproduction number is R0 = 17, and the mean
latent and infectious periods are 8 and 5 days, respectively. In both pan-
els, the heavy solid red line is the solution of the deterministic model
(3.9). The top panel also shows a single realization of the associated sto-
chastic process computed with the Gillespie algorithm; it is clear that
a small amount of noise prevents the deterministically damped oscilla-
tions from decaying. The bottom panel shows 10 Gillespie realizations
starting from the same initial conditions.

3.4. Seasonal forcing

So far, we have been assuming implicitly that the transmission rate β (or, equiva-
lently, the basic reproduction number R0) is simply a constant and, in particular,
that it does not change in time. Let’s think about that assumption. The trans-
mission rate is really the product of the rate of contact among individuals and the
probability that a susceptible individual who is contacted by an infectious individ-
ual will become infected. But the contact rate is not constant throughout the year.
To see that, consider the fact that in the absence of vaccination the average age
at which a person is infected with measles is about five years [AM91], hence most
susceptibles are children. Children are in closer contact when school is in session,
so the transmission rate must vary seasonally.

A crude approximation of this seasonality is to assume that β varies sinusoidally,

β(t) = 〈β〉(1 + α cos 2πt) .(3.13)

Here, 〈β〉 is the mean transmission rate, α is the amplitude of seasonal variation
(0 ≤ α ≤ 1) and time t is assumed to be measured in years. If, as above, β is
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assumed to be a periodic function (with period one year) then the SIR model is
said to be seasonally forced.

You might think that seasonal forcing is just a minor tweak of the model.
In fact, this forcing has an enormous impact on the epidemic dynamics that the
model predicts. If you’ve ever studied the forced pendulum then you might already
have some intuition for this. A pendulum with some friction will exhibit damped
oscillations and settle down to an equilibrium. But if you tap the pendulum with
a hammer periodically then it will never settle down and it can exhibit quite an
exotic range of behaviours including chaotic dynamics [Gle87, Str94] (oscillations
that look random). Similarly complex dynamics can occur in the seasonally forced
SIR model.

Importantly, with seasonal forcing the SIR model displays undamped oscilla-
tions, even in the absense of stochasticity. More than that, for different parameter
values, the seasonally forced SIR model can produce all the different types of oscil-
latory measles patterns that have ever been seen in real data. The range of possible
dynamical behaviour is summarized by the bifurcation diagram shown in Figure 11.

We are definitely making good progress. With a fixed set of parameters we
can explain epidemic cycles of many different periods (whereas, for given set of
parameters, the unforced model always predicted the same oscillation period given
by Eq. (3.11)). However, as noted in the previous section, the observed measles
epidemics in New York City show very clearly that the dynamical pattern changed
over time (bottom right panel of Figure 2) and other significant qualitative changes
have been observed in measles case series in other places [ERBG00]. How can we
explain changes over time in the pattern of epidemics?

If you are familiar with chaotic dynamics, then one possible solution might
occur to you, namely intermittency [PST93]. Some chaotic dynamical systems
appear to switch randomly from one type of oscillation to another. Perhaps tran-
sitions from cycles of various kinds to irregular epidemics are manifestations of
intermittency in a system that is fundamentally chaotic? It has been proposed
that measles dynamics are chaotic [SK85, OS90, SKTO93], but there is a seri-
ous problem with the chaotic solutions of the seasonally forced SIR model: as is
evident from Figure 11, they often reach absurdly small infected populations (e.g.,
proportion infected < 10−15). In practice, this means that if the epidemic pattern
is chaotic then the pathogen can be expected to go extinct in a relative short time,
which is not observed.

What biological mechanism that we have not yet included might repair the in-
correct prediction of rapid extinction? One possibility might be that the population
is not really homogeneously mixed. In particular, young children mix a lot more
with others of their own age than they do with teenagers or adults. The influence of
age-dependent contact structures on measles dynamics was investigated by Schen-
zle [Sch84], who developed a realistically age-structured (RAS) model involving
84 differential equations (SEIR in each of 21 age classes). Analysis of this model
showed that it did seem to avoid predicting rapid extinctions and that it seemed to
explain the detailed temporal dynamics of individual measles time series [BG93].

However, later analysis indicated that the critical ingredient in the RAS model
was not really that contact rates are age structured, but that they are higher during
school terms [ERBG00]. This may seem like a step backwards — after all, the
point of introducing seasonal forcing was precisely to model the seasonal variation
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Figure 11. Bifurcation diagram for the sinusoidally forced SIR model
with R0 = 18, 1/γ = 5 days, µ = 0.02 yr−1. The seasonal amplitude α
is defined by Eq. (3.13). For each value of α, the sinusoidally forced SIR
equations were integrated using the standard fourth order Runge-Kutta
scheme [PTVF92] with a time-step of 0.5 day. After ignoring a 1000
year transient, the proportion of the population that was infectious (I)
was plotted once a year for 200 years. Thus, a single point above a given
value of α indicates an annual cycle, two points correspond to a biennial
cycle, etc., and a broad band of points indicates aperiodic behaviour
(chaos). Because only one solution is plotted for each α, this bifurcation
diagram is incomplete. For some ranges of α there are, in fact, multiple
co-existing stable cycles [SS83].

in contact rates due to school terms. But the true variation in contact rates is
not sinusoidal. Schenzle’s RAS model includes not only 21 age classes, but genuine
term-time forcing, i.e., rather than Eq. (3.13), the RAS model uses

β(t) =

{

βH school days,

βL non-school days.
(3.14)
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i.e., the transmission rate is high on days when school is in session (βH) and low
otherwise (βL). For the purposes of comparing results with those obtained with the
sinusoidally forced model, it is more convenient to express the term-time forcing
function in terms of the mean transmission rate 〈β〉 and the amplitude of seasonal
forcing α. If ps is the proportion of days in school then the mean transmission rate
is

〈β〉 = psβH + (1 − ps)βL(3.15)

and we define the amplitude of seasonality to be

α =
1

2

(βH − βL

〈β〉

)

.(3.16)

In terms of 〈β〉 and α we can write the transmission rate

β(t) =

{[

(1 + 2(1− ps)α
]

〈β〉 school days,
[

1 − 2psα
]

〈β〉 non-school days.
(3.17)

This form for β(t) is more convenient than (3.14) because it is 〈β〉 that corresponds
to β in the unforced model (for which α = 0). Note that since β(t) ≥ 0, it is clear
from equation (3.17) that the range over which the seasonal amplitude α can be
varied is

0 ≤ α ≤
1

2ps
.(3.18)

At the extreme of α = 1/2ps, βL = 0, i.e., β(t) = 0 on non-school days. As an
example, note that if we apply Eq. (3.18) to England and Wales, where a typical
year contains 198 school days, we must have 0 ≤ α ≤ 365/396 $ 0.9217.

In terms of its ability to account for observed measles dynamics, the term-time
forced SEIR model is just as successful as the full RAS model, and avoids the need
to estimate—or guess the values of—many new parameters [ERBG00]. The model
predicts that the disease will persist and it reproduces many detailed features of the
biennial pattern of measles epidemics observed in New York City and London. But
it does perhaps too good a job of reproducing this behaviour! No other epidemic
patterns are predicted, so we are back to a situation in which we cannot explain
changes in the cyclical structure of the time series. We will need to think again if
we want to predict the observed dynamical transitions.

3.5. Exercises

If you are not familiar with the notions of local and global asymptotic stability, or
you need to refresh your memory, you can consult any standard text on dynamical
systems (e.g., [GH83, Str94, Wig03]) or mathematical ecology (e.g., [BCC01]).

(1) Find an exact analytical formula for the phase portrait of solutions to the
basic SIR equations (3.8). Hint: Consider dI/dS.

(2) In the basic SIR model (3.8), show that the number of cases must even-
tually decrease, regardless of initial conditions or parameter values.

(3) Consider the SIR and SEIR models with vital dynamics, but without
vaccination.
(a) Use biological reasoning to derive an exact expression for R0 and

show that R0 $ βN/γ. Hint: Consider the average length of time
spent in each compartment.
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(b) Prove that there is always a disease free equilibrium (DFE) and there
is an endemic equilibrium if and only if R0 > 1.

(c) Show that the DFE is globally asymptotically stable if R0 < 1 and
unstable if R0 > 1. Show that the endemic equilibrium is locally
asymptotically stable if R0 > 1, and that for parameter values that
could correspond to a childhood disease the equilibrium is approached
by damped oscillations (the relevant eigenvalue has a non-zero imag-
inary part) with period given by Eq. (3.11).

(4) Use a numerical ODE solver to explore solutions of the sinusoidally forced
SIR model for measles (R0 = 18, mean infectious period 1/γ = 5 days)
for a range of seasonal forcing amplitudes. Compare the character of the
solution with what you would have guessed from the bifurcation diagram
in Figure 11.

4. Predicting epidemics

We have converged on a model—the term-time forced SEIR model—that does an
excellent job of reproducing measles dynamics in a few places at particular times
(e.g., New York City from 1945 to 1964, bottom right panel of Figure 2). To explain
the occurrence of different measles patterns in other places and at other times, we
do not need to include more structure in our model. We simply need to recognize
that we have assumed implicitly that all the parameters of the model are fixed
constants, whereas some of these parameters might change over time for reasons
that are external to the process of disease transmission. In particular, the birth
rate (ν) is not constant, and neither is the proportion of the population that is
vaccinated (p).

We might, therefore, be able to predict different dynamics based on different
birth rates and vaccination levels. Before attempting to do so, however, it is ex-
tremely useful to note [ERBG00] that changes in ν or p are equivalent—in terms
of their dynamical influence—to changes in the mean transmission rate 〈β〉 (or,
alternatively, the basic reproduction number R0). To see this, suppose that a pro-
portion of newborns is vaccinated (after maternally acquired immunity wanes) so
p > 0 in Eqs. (3.9a) and (3.9d). Now consider a simple change of variables,

S = S′(1 − p) , E = E′(1 − p) , I = I ′(1 − p) , R = R′(1 − p) +
ν

µ
p .

(4.1)

The dynamical equations for the primed variables are exactly the SEIR equations
(3.9) without vaccination, except that the transmission rate β is everywhere replaced
by β(1 − p). Thus, except for an overall reduction in the number of cases, when a
proportion of a population is vaccinated the dynamics are identical to those of an
unvaccinated SEIR system with a smaller mean transmission rate, 〈β〉 → 〈β〉(1−p).

Since the birth rate ν enters Eq. (3.9a) in exactly the same place as vaccination,
a similar argument applies to changes in birth rate. A change in birth rate from ν
to ν′ is dynamically equivalent to a change in mean transmission rate from 〈β〉 to
〈β〉(ν′/ν). More generally, if the birth rate changes from ν to ν′ and the vaccination
proportion changes from p to p′ then the resulting dynamics are identical to those
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based on no change in ν or p but a change in the mean transmission rate,

〈β〉 → 〈β〉
(1 − p′)

(1 − p)

ν′

ν
.(4.2)

This strongly suggests that we will be able to predict changes in dynamics based
on demographic data (which tell us how ν and p change with time) and a single
bifurcation diagram, where the control parameter is the mean transmission rate 〈β〉.
The predicted dynamics will depend on the susceptible recruitment rate, ν(1 − p).

Figure 12. The main panel is the bifurcation diagram for the term-
time forced SEIR model, showing incidence on 1 January, normalized
by (constant) population size; the control parameter is the mean trans-
mission rate 〈β〉. The fixed parameter values are 1/γ = 5 days, 1/σ = 8
days, µ = ν/N = 0.02 yr−1 and α = 0.25 (Eq. (3.17)). Each attrac-
tor is identified with a different color. For sufficiently high 〈β〉, there
is a unique (annual) attractor. As 〈β〉 is reduced, biennial, 3-, 4-, 5-,
6-, 7-, and 8-year cycles all occur, before all but the annual attractor
are extinguished. The term-time forcing function used to produce this
figure corresponds to school terms in England and Wales [BE03]. In
the United States, the summer holiday is longer; this does not affect the
structure of the bifurcation diagram, but with a longer summer holiday
each of the various bifurcations occurs at lower 〈β〉. Above the bifurca-
tion diagram, basins of attraction (initial susceptibles, 0 < S0/N < 0.1,
versus initial infectives, 0 < I0/N < 0.0001, with E0/N = 0.0001)
are shown for the various attractors at four particular values of 〈β〉.
Figure 13 identifies regions of this diagram that correspond to the dy-
namics observed at various times and places. [Reproduced from Earn
et al [ERBG00]. Copyright c© (2000) American Association for the
Advancement of Science.]
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Figure 12 presents the type of bifurcation diagram that we need, for the term-
time forced SEIR model (Figure 9) with fixed parameters chosen to correspond to
measles. The control parameter (on the abscissa) is the mean transmission rate
〈β〉. The ordinate shows measles incidence on 1 January of each year, so annual
cycles are represented by a single curve, biennial cycles by double curves, and so
on. Different colors correspond to different stable solutions of the model, which
attract different sets of initial conditions (basins of attraction). For several values
of the mean transmission rate 〈β〉, basins of attraction of the various attractors are
shown above the bifurcation diagram in Figure 12. Where multiple stable solutions
coexist, stochasticity can induce complicated dynamics due to shifts among attrac-
tors [SS83, Sch85, Aro90]. The upper panels of Figure 12 show that the basins
of coexisting attractors are more intermixed if 〈β〉 is smaller, so we might expect
the effects of stochasticity to be greater for smaller 〈β〉 (or, equivalently, when the
effective 〈β〉 is reduced by vaccination or a decrease in birth rate).

Figure 13 shows measles incidence in four representative large cities; major
dynamical transitions are evident in each case. Superimposed on the time series,
each panel shows births (in red). In the vaccine era, susceptible recruitment (light
blue) is lower than births. Above the incidence data, horizontal lines indicate
periods of annual, biennial, and more complex dynamics that are predicted (Figure
12) on the basis of the observed exogenous variables (birth and vaccination rates).
The horizontal lines in Figure 13 are color-coded according to the corresponding
attractors in Figure 12.

London (Figure 13A) experienced biennial cycles of measles epidemics from
1950 to 1968; the estimated mean transmission rate for this period [AM91] is
〈β〉 $ 1240, corresponding to a biennial attractor (dark blue, see Figure 12). Before
1950, epidemics were roughly annual; over the same brief period the birth rate was
much higher, which greatly increased the effective mean transmission rate, allowing
attraction to an annual cycle (green, far right of Figure 12). After 1968, recruitment
rates steadily decreased because of mass vaccination (for example, when vaccine
uptake reached 60%, the effective mean transmission rate was reduced to 〈β〉 $
500); this brought the system into the parameter region where there are multiple
coexisting attractors with extremely intermixed basins, suggesting an explanation
for the irregular epidemics in the vaccine era. Alternatively, or in addition, irregular
dynamics in this region may arise from stochastic interactions with a chaotic repellor
[RW91].

In Liverpool (Figure 13B) the birth rate was much higher than the mean in
England and Wales throughout the post-war period until 1968 [FG98] (the birth
rate in Liverpool is drawn as a dotted red line in Figure 13A as well, for comparison
with the birth rate in London). This explains the roughly annual cycle of measles
epidemics over the same period. After 1968, the combination of vaccination and
a lower birth rate brought Liverpool, like London, into the regime where multiple
co-existing cyclical attractors exist and might lead to irregular dynamics in the
presence of noise.

Birth rates in the United States were relatively low during the Great Depres-
sion. Throughout this period, measles epidemics were irregular in New York and
Baltimore (Figure 13C and D), consistent with stochastic switching between densely
intermixed attractors or a chaotic repellor. After World War II, birth rates rose
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Figure 13. Measles dynamics in four large cities: London, Liverpool,
New York, and Baltimore. In each panel, the black time series shows the
square root of measles incidence normalized by the population size in
1960; the UK data are 4-weekly (13 points per year) whereas the US data
are monthly (12 points per year). The red curve shows annual births
normalized by the population size in 1960. In London and Liverpool,
the light blue curve shows (normalized) annual susceptible recruitment
(which is lower than the birth rate in the vaccine era). Together with
the mean transmission rate 〈β〉, the recruitment rate determines the
nature of the dynamics; see Eq. (4.2) (effects of changes in birth rate
will be delayed by initial maternally acquired immunity and the age
of school entry). The vertical scale for Baltimore is higher because re-
porting rates were twice as high [see London and Yorke [LY73]]. Note
that the American data cover an earlier period than the English data;
perhaps because of increases in mobility with time (as well as differ-
ences in population density), estimated values of 〈β〉 are significantly
lower for the American cities [And82, BE03]. This (and the length of
the summer holiday; see caption to Figure 12) must be borne in mind
when comparing measles incidence data with various regions of Figure
12. The colored lines at the top of each panel correspond to the region of
the bifurcation diagram in Figure 12 that applies to each section of the
measles time series. Many colored lines together indicate the region of
Figure 12 containing many coexisting attractors with intermixed basins.
Two horizontal blue lines indicate the biennial attractor in Figure 12,
while the single green line indicates the annual attractor that exists for
high transmission rates. Gaps, where no region of Figure 12 is indicated,
correspond to transient periods when the recruitment rate changed rel-
atively rapidly. [Reproduced from Earn et al [ERBG00]. Copyright c©
(2000) American Association for the Advancement of Science.]
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dramatically, pulling the system out of the regime with multiple co-existing attrac-
tors. In New York, the birth rate quickly reached a plateau, apparently fixing the
system on the biennial attractor. In Baltimore, the birth rate continued to rise,
eventually enough to bring the effective 〈β〉 into the region of Figure 12 where either
biennial or annual cycles are possible (far right of Figure 12).

We now appear to be doing extremely well. We can successfully predict all of
the dynamical transitions evident in each the measles time series in Figure 13 (and
every other measles time series that I am familiar with). Note, incidentally, that
this rules out chaotic intermittency as a mechanism for the dynamical transitions:
if chaotic intermittency were the correct explanation for changes in periodicity of
childhood disease epidemics then it would not be possible to predict the times at
which changes in cycle structure occur.

Our confidence in the term-time forced SEIR model is now considerable, based
on analysis of measles dynamics. Naturally, the next question we would like to
address is whether the model is equally good at predicting the dynamics of other
childhood diseases. We have every reason to anticipate success with other similar
diseases, since the only relevant difference should be the values of the disease-specific
parameters (R0, σ, γ).

Unfortunately, the analysis that has worked so well at explaining measles dy-
namics fails miserably for many other childhood infections!! In particular, with
parameters estimated for rubella or whooping cough, the term-time forced SEIR
model yields a unique attractor—an annual cycle—throughout the relevant range
of 〈β〉. Yet the observed dynamics of these diseases is much more complicated than
an annual cycle. Figure 14 shows examples of time series of case notifications for
rubella and whooping cough, together with periodograms computed separately for
two segments of each time series. It is clear from the time plots that the dynamics
are not strictly annual for either disease. Moreover, there are strong spectral peaks
at frequencies not predicted by the asymptotic analysis, i.e., not displayed by the
(strictly annual) attractor of the term-time forced SEIR model.

Ugh! Could our success with measles have been extraordinarily lucky? Why
doesn’t the same approach lead to correct predictions of the dynamics of other
childhood diseases?

Before giving up hope, it is quite telling that the transitions in the dynamics
of rubella and whooping cough observed in Figure 14 correspond to substantial
changes in the susceptible recruitment rate (plotted in green), which is exactly the
parameter that we predicted would control dynamical transitions.

Once again, the truly discrete nature of disease transmission comes to our res-
cue. As Bartlett [Bar57] discovered for the unforced SIR model, demographic
stochasticity can sustain oscillations that would be damped out in the absence of
noise. In the seasonally forced model, noise can prevent the decay of transient
oscillations at a period different from that of the attractor. We call the period
associated with the attractor the resonant period, because it is arises from reso-
nance with the seasonal forcing period of one year. In contrast, we say the period
of transient oscillations is non-resonant because it is stimulated by demographic
stochasticity and need not be an integer multiple of the period of seasonal forcing
[BE03].

The resonant period is predicted by the asymptotic analysis that identifies the
attractors of the model and worked so well for measles. The non-resonant period
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Figure 14. Case notification time series for rubella in Ontario, Canada,
and whooping cough in London, UK. In each panel, the green line shows
annual susceptible recruitment, ν(1−p), where ν denotes births normal-
ized by 1955 population size and p denotes the proportion vaccinated;
recruitment is shown displaced forward in time by the mean age at
infection to account for the typical delay between birth and infection
(11 years for rubella and 4 years for whooping cough). Time-series
are divided into sections based on substantial differences in recruitment
rates; the corresponding periodograms are not sensitive to the precise
point at which the time-series is divided. [Reproduced from Bauch and
Earn [BE03]. Copyright c© (2003) The Royal Society.]

can be predicted by a perturbation analysis. Rather than a simple linear stability
analysis of an equilibrium solution, we must consider perturbations of non-trivial
attractors. Conducting such a perturbation analysis is not straightforward, but
standard (numerical) methods exist for doing this [Kuz98, BE03].

Both the resonant and non-resonant periods can be expected to correspond to
peaks in the periodogram of the disease time series. In every case I have ever con-
sidered, a resonant peak in the periodogram is correctly predicted by asymptotic
analysis (and the prediction is always exact, which is perhaps not too surprising
given that seasonal forcing will tend to lock the system onto an exact integer mul-
tiple of the forcing period). Moreover, a non-resonant peak in the periodogram is
also predicted with great accuracy by perturbation analysis, for all of the childhood
diseases we have investigated; see Figure 15 and Bauch and Earn [BE03].

We are now back in business. We have developed a quantitative method for
predicting the structure of the periodogram of disease time series, and it works!

You may wonder why we didn’t need to worry about sustaining transient dy-
namics in the case of measles. The answer is that the non-resonant period associated
with the biennial attractor is too long to be observable in the relatively short time
series we have. In this sense, we were indeed lucky in our analysis of measles dy-
namics using only the asymptotic analysis. On the other hand, restricting attention
to bifurcation theory did lead us to what now appears to be an incorrect inference.
At times when measles is not strictly biennial, we find that the periodogram has
two peaks, a resonant peak at one year and non-resonant peak at the frequency
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Figure 15. The correlation between predicted and observed periods
of non-resonant periodogram peaks is positive and highly significant
(r2 = 0.83, t = 8.69, d.f. = 16, p < 10−7). If the observations agreed
perfectly with our predictions (as they do for resonant periodogram
peaks) then the corresponding points would lie precisely on the line of
slope 1 shown on the graph (the least-squares linear fit of the data has
a slope of 1.02 and an intercept of 20.11). See electronic Appendix A
of Bauch and Earn [BE03] for details. [Reproduced from Bauch and
Earn [BE03]. Copyright c© (2003) The Royal Society.]

associated with transient oscillations around the annual attractor. Apparent ir-
regularity of measles epidemics does not, in fact, seem to arise from stochastic
switching among co-existing attractors. We appear to be seeing simply the effects
of noise preventing decay of transients.

While the approach we have adopted successfully predicts the positions of both
peaks in the periodogram, it cannot explain the heights of the peaks. For that, we
return again to demographic stochasticity. If the non-resonant peak occurs because
noise sustains transient dynamics then that peak should be relatively larger if there
is more noise. In other words, we expect that time series of infectious disease
dynamics in smaller populations will show relatively larger non-resonant peaks, and
this is what we observe, both in observed data and stochastic simulations [BE03].

4.1. Exercises

(1) Show, by scaling of the usual variables in the SEIR model as in Eq. (4.1),
that a change in vaccination proportion from p to p′ together with a change
in birth rate from ν to ν′ yields exactly the same dynamics as a change in
basic reproduction number from R0 to R0(1−p′)ν′/[(1−p)ν], as indicated
in Eq. (4.2).
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(2) In the SIR model, show that if the birth rate ν is different from the
death rate µ, and the contact term is βSI/N , rather than βSI, then
the equations for the proportions of the population in each state are the
same as the usual SIR model with both the birth rate and the death rate
equal to ν. What if ν is a function of time? Is this consistent with the
equivalence you derived in the previous exercise?

5. Manipulating epidemics

Vaccination can be viewed as a method of manipulating the structure of epidemic
patterns. As a result of the equivalence (4.2) discussed in the previous section,
vaccination at a given level will induce a predictable transition in the character of
recurrent epidemics. Of course, if we vaccinate a sufficiently large proportion of
the population (3.10) then we will eradicate the infection. But can we somehow
build from our success in predicting dynamical transitions to develop a vaccination
strategy that beats the classical eradication threshold (3.10)?

All of our analysis has been of temporal patterns of epidemics. What about
spatial patterns? Can a spatially explicit version of the SEIR model lead us to
suggest improved strategies for control or eradication of measles of other infectious
diseases?

Before getting involved with a spatial model, it would make sense to look at
some spatial epidemic data and see whether the data inspire any particular ideas.
One potentially promising idea is suggested by a comparison of measles and whoop-
ing cough dynamics in England and Wales during the second half of the 20th cen-
tury. Before mass vaccination for measles was initiated in 1968, measles epidemics
in UK cities were strongly synchronized, but the degree of spatial correlation was
greatly reduced in the vaccine era [BG96]. In sharp contrast, whooping cough epi-
demics in the identical population were not synchronized in the pre-vaccine era but
became strongly synchronized upon implementation of mass vaccination [REG99].
These examples indicate that vaccination can induce spatial dynamical transitions
(in the degree of synchony), in addition to the temporal transitions discussed in the
previous section.

Attempting to manipulate the degree of synchrony of epidemics might be worth-
while. Increasing synchrony has the potential to reduce the threshold vaccination
level required for eradication [ERG98], because synchrony reduces the “rescue
effect” [BKB77] whereby regions in which populations are small are saved from
extinction by dispersal of individuals from other areas. Can we devise a vaccination
strategy that will synchronize measles epidemics worldwide?

One way to synchronize epidemics might be through “global pulse vaccina-
tion”, i.e., intense vaccination efforts that are simultaneous around the world and
repeated periodically [ERG98], or by supplementing continuous vaccination with
periodic pulses [GH97]. Intuitively, the introduction of globally synchronized pe-
riodic forcing might synchronize the troughs between epidemics, stimulating the
desired “anti-rescue effect”. But this tantalizing prospect requires careful analysis.
As we saw for the simple SIR model, periodic forcing can have complex dynamical
effects, and we can’t be sure a priori that the probability of synchronous oscillations
will definitely be increased by global pulse vaccination.
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The theory of synchronization is important in many areas of science [PRK01,

Str03]. Most mathematical research on the subject has focused on the local stabil-
ity of synchronous solutions of dynamical systems, which determines whether par-
ticular synchronous solutions attract nearly synchronous initial states with some
non-zero probability [Bue97]. For epidemiological purposes, we really need a global
theory, so we can determine conditions under which all initial states will lead to
synchronous solutions [ELR00]. While we have made some valuable progress on
a fully global theory of synchrony [EL06], it remains to be seen whether it can be
successfully exploited to discover synchronizing vaccination strategies. Of course,
a great deal might be learned from intermediate approaches that attempt to find
conditions that yield synchrony with high probability but not certainty [MEms].
Simulations will also play an important role, though the parameter space that must
be explored is high-dimensional and involves substantial computational challenges.

6. Conclusions and Take-home messages

The detailed temporal patterns of recurrent epidemics can be usefully described
and analyzed using tools of time series analysis, especially the time plot and the
periodogram. In terms of their ability to forecast patterns of recurrence of future
epidemics, time series models such as ARMA(p, q) models are of limited value.
Mechanistic mathematical models, on the other hand, are extremely powerful in this
respect. (Note that there is scope for combining time series models with mechanistic
modelling, which leads to models that can fit observed epidemic time series with
remarkable precision [FG00].)

Mathematical and computational analysis of a simple mechanistic model (the
term-time forced SEIR model; Figure 9, Eqs. 3.9 and 3.17) explains the observed
complex dynamics of epidemics of a variety of childhood diseases. We arrived
at this model after ruling out a number of simpler models, and I hope that I have
convinced you that successful mathematical modelling of biological systems is likely
to proceed in this way. By adding model structure in small steps, we are most
likely to discover which biological features have the greatest impact on observed
behaviour. It is also worth highlighting that apparent limitations of a model can
sometimes reflect more about our failure to think of the right analysis tool than
about any inherent inadequacy of the model itself.

We are lucky that medical and public health personnel have painstakingly con-
ducted surveillance of infectious diseases for centuries. This has created an enor-
mous wealth of valuable data [IIDDA] with which to test hypotheses about disease
spread using mathematical models. Building from models that successfully explain
past patterns of epidemics, we can hope to design improved strategies for control
or eradication of many infectious diseases.
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