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SUMMARY

Classical ideal free theory predicts that the distribution of consumers within a patchy environment should
correspond to the distribution of resources. Tests of this prediction have inappropriately compared ratios of
mean resource levels and mean consumer densities, rather than means of ratios. We show that this error,
which has propagated through hundreds of studies, leads to a systematic bias: the theory will appear to
underestimate the number of consumers occupying poor patches.We explain the correct way to test ideal
free theory and apply it to published data; the classical model is then seen to yield far more accurate
predictions than previously thought.

How will consumers distribute themselves within a
patchy environment, given that each acts to maximize
its own rate of resource acquisition? If all individuals
know the whereabouts of resources and competitors,
and if each is free to enter and exploit any patch on an
equal basis with other residents, the result is what
Fretwell & Lucas (1970) and Fretwell (1972) termed
the `ideal free distribution' (IFD): the distribution of
consumers should match the distribution of resources
within the habitat (general reviews of ideal free theory
are given by Milinski & Parker (1991), Kacelnik et al.
(1992), andTregenza (1995)). In the simplest case, with
only two patches, this can be expressed as

n2=n1 � r2=r1, (1)

where ni is the number of individuals and ri the avail-
ability of resources in patch i. When consumer
densities in the patches are balanced in this way, no
individual can bene¢t by moving elsewhere (Milinski
1979; Pulliam & Caraco 1991; Fagen 1987).
Over the past 25 years, the habitat matching predic-

tion has been subject to repeated tests (Milinski &
Parker 1991; Kacelnik et al. 1992; Tregenza 1995; Abra-
hams 1986; Kennedy & Gray 1993). In a typical study,
the experimenter calculates, based on a number of ob-
servations, the mean number of individuals in two or
more patches that di¡er in resource availability (Mili-
nski 1979, 1984; Harper 1982; Godin & Keenleyside
1984; Recer et al. 1987; Sutherland et al. 1988; Lamb &
Ollason 1993; Utne et al. 1993; Tyler & Gilliam 1995).
These mean values are then used in equation (1), and
matching is said to occur if

n2

 �

= n1

 � � r2


 �
= r1

 �

, (2)

where angle brackets denote the expected value. In other
words, the ratio of the mean number of individuals in
patch 2 to the mean number in patch 1 must equal the

ratio of the mean availability of resources in patch 2 to
themean availability in patch1.
In practice, it is rare for equation (2) to be satis¢ed

precisely. Most studies report a characteristic bias:
patches with a greater than average proportion of re-
sources tend to be underused (relative to the
predictions of equation (2)), while those with a lower
than average proportion of resources are overused
(Abrahams 1986; Kennedy & Gray 1993). This phe-
nomenon, known as `undermatching', has prompted
numerous modi¢cations of the Fretwell & Lucas model,
including the incorporation of individual di¡erences in
competitive ability (Parker & Sutherland 1986; Hous-
ton & McNamara 1988), varying levels of interference
(Sutherland 1983), and perceptual constraints (Abra-
hams 1986), any or all of which might explain the
observed bias.
But equation (2) is not predicted by IFD theory.

This means that empirical studies have set out to
test the wrong relationship. Before appealing to
more complex models to explain undermatching, it
is essential to consider more carefully the implica-
tions of the original ideal free theory.
Equation (1) speci¢es the relationship between re-

source availability and consumer density for any one
observation. With N individuals in total, the expected
number of individuals in patch i is given by

ni � N
ri

r1 � r2
: (3)

The expected ratio of the mean number of individuals
in patch 2 to the mean number in patch 1 is thus

n2

 �
n1

 � � r2

r1 � r2

� ��
r1

r1 � r2

� �
: (4)

This reduces to equation (2) only under the implausible
circumstance that the resource values of the patches
exhibit no variation whatsoever, i.e. they are identical
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for all observations. To assume that equations (2) and
(4) are equivalent would be to commit the `fallacy of
the averages' (a phrase ¢rst used in the ecological
literature by Templeton & Lawlor (1981)). The fallacy
is de¢ned byWagner (1969, p. 658): `Given an arbitrary
nonlinear function f (x1, . . . ,xn) of random variables
x1, . . . ,xn it is usually erroneous to assume
E�f (x1, . . . ,xn)� � f (E�x1�, . . . ,E�xn�)' where E is the
expectation operator. In our case, the nonlinear func-
tion is f (x1,x2) � x1=(x1 � x2).
In fact, relative to equation (2), the ideal free

hypothesis predicts undermatching. If patch 2 has the
greater resource value, we show in Appendix 1 that (as-
suming noise is generated by the same process in each
patch),

hn2i=hn1i < hr2i=hr1i, (5)

i.e. the ratio of the mean number of individuals in patch
2 to the mean number in patch 1 will be less than the
ratio of the mean availability of resources in patch 2 to
the mean availability in patch 1.
Even a cursory survey of tests of the IFD reveals that

most report signi¢cant variance in the numbers of con-
sumers exploiting patches. If the observed distributions
are to be interpreted in terms of ideal free theory, this
variation in numbers must re£ect variation in resource
values. Experimenters typically attempt to reduce the
variance in input rates to an insigni¢cant level
(although this is not always possible, e.g. Lamb &
Ollason (1993)); however, even if input rate variation
is somehow entirely eliminated, resource availability
will necessarily vary as a consequence of individuals
depleting the resource. The source of the variation
makes no di¡erence to the e¡ect: any study that looks
at the mean numbers of consumers in di¡erent patches
should not expectöeven if the assumptions of Fretwell
& Lucas's model are satis¢edöto ¢nd that they match
the mean resource values of those patches (as speci¢ed
by equation (2)).
The precise degree of undermatching (of means) pre-

dicted by Fretwell & Lucas's model depends on the
degree of variation in underlying resource availability.
In practice, however, resource variation is usually very
di¤cult, if not impossible, to measure directly, espe-
cially if it arises largely due to depletion. In the rare
instances when it can be measured (e.g. Lamb & Olla-
son 1993) experimenters should report the resource
variance in each patch (not just the means). Otherwise,
it is necessary to estimate both resource variation and
the predicted degree of undermatching using the stan-
dard deviation, �n, in the observed proportion of
individuals occupying either patch (see Appendix 2 for
further discussion of this point).
To quantify the degree of undermatching, we use the

index proposed by Fagen (1987) and Kennedy & Gray
(1993),

K � log
n2

 �
n1

 �� log

r2

 �
r1

 � ; (6)

where a value of K � 1 represents perfect matching of
means, while K < 1 represents undermatching.
Assuming noise is generated by the same process in

both patches, a very good ¢t to the predicted relation-
ship between K and �n is

K ' 1ÿ a�bn, (7a)

where

a � 4:317ÿ 0:327 r2

 �

= r1

 �

, (7b)

b � 2:138ÿ 0:132 r2

 �

= r1

 �

, (7c)

and �n90.25.
With equation (7), we have now recast the prediction

of the Fretwell^Lucas model in terms that are directly
relevant to the data collected in empirical studies. Our
approximation (7) was calculated as a least-squares ¢t
assuming log-normal noise; for noise with a speci¢ed
origin it may be possible to calculate precisely the
associated distribution function, but for our purposes
this is not important because our approximation (7)
appears to be insensitive to the particular noise distri-
bution assumed. In ¢gure 1, we compare equation (7)
with the precise predicted value of K as a function of
�n for several di¡erent values of the ratio r2


 �
: r1

 �

.
To test the Fretwell^Lucas model correctly using

equation (7), an experimenter needs to measure the
standard deviation �n in addition to the means r1


 �
,

r2

 �

, n1

 �

and n2

 �

. Then, rather than inserting means
into equation (2), the means should be inserted in
equation (6) to obtain the observed degree of under-
matching Kobs, and the means and �n should be
inserted in equation (7) to obtain the predicted degree
of undermatching Kpred. Any discrepancy between
theory and experiment is then quanti¢ed by the di¡er-
ence between Kpred and Kobs.
A review of two-patch, continuous input tests of the

IFD revealed 15 experiments for which su¤cient
information was reported to estimate the standard
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Figure 1. The matching index K of Fagen (1987) and
Kennedy & Gray (1993), de¢ned in equation (6), as a
function of �n, the standard deviation in the observed
proportion of individuals occupying either patch, for
four di¡erent values of the ratio r2h i : r1h i (2:1, 3:1, 4:1
and 5:1). The plotted points show the precise values of
K predicted by the original Fretwell & Lucas (1970)
IFD, assuming log-normal noise. The solid curves show
our estimates of K obtained from equation (7). In the
past, experimenters have implicitly assumed that the
Fretwell^Lucas model always predicts K � 1, indepen-
dent of �n.



deviation �n, and hence to predict the matching index
K. In table 1, we list the observed and predicted values
of K for these tests. Both the linear and Spearman rank
correlations between observation and prediction are
positive and highly signi¢cant (r� 0.68, t� 3.35,
d.f.�13, p50.006; rs� 0.65, t� 3.05, d.f.�13, p50.01;
see ¢gure 2b). In most cases, the e¡ects of variation do
not account for all of the observed undermatching.
However, they frequently account for most of the
observed undermatching, and greater variation is asso-
ciated with greater undermatching, as our analysis
predicts.
Although we have focused only on the original IFD,

similarconsiderationsareessentialwhentestingany ideal
free model, e.g. Sutherland's (1983) interference model,
Parker & Sutherland's (1986) analysis featuring di¡er-
ences in competitive ability, or models incorporating
imperfect information (Abrahams 1986). Many of these
modelspredictundermatchingeven intheabsence of var-
iance, but this does not imply that the e¡ects of resource
variation can be ignored.When testing any IFD model,
one cannot take the relationship it yields and insert mean
values of the relevant variables; doing sowill result in un-
dermatching relative to themodel's predictions.

This research was stimulated by a seminar on ideal free the-
ory and its empirical tests, given by Martyn Kennedy in
Cambridge, 21 January 1997. We thank Nick Davies, Bryan
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Table 1. Observed and predicted values of the matching index K for a sample of two-patch, continuous input tests of the IFD

(We are unaware of any other published studies that report the data necessary to compute the predicted K. Observed K
values are based only on the stable distribution of consumers, excluding the initial approach period (as de¢ned by the
authors in each case). Where authors report several equivalent experiments, we have pooled data to obtain one result for
each input ratio. (In some cases, we therefore obtain slightly di¡erent K values from Fagen (1987) and Kennedy & Gray
(1993), who combined data from all input ratios to obtain a single estimate.) Note that the table is divided into two parts.
The ¢rst comprises those studies for which the standard deviation in the proportion of individuals in either patch (�n ) could
be calculated directly from published data and graphs. The studies listed in the second part (where � is marked with an
asterisk) all involved several trials, in each of which many observations were made. While the standard deviation (or
standard error) of trial means was given, the amount of variation among observations within each trial was not reported.
Consequently, to calculate the predicted values of K, we were forced to estimate �n crudely as the standard deviation in trial
means multiplied by the square root of the number of observations in each trial. More accurate tests are possible only with
full access to experimental data. In the future, it would be helpful if experimenters made a point of publishing numerical
values for the quantities given in each column of this table.)

study hr2i=hr1i hn2i=hn1i
observed K

(equation (6)) �n

predicted K
(equation (7))

Harper 1982 2 1.91 0.93 0.07 0.98
Lamb &Ollason 1993 2.17 2.05 0.93 0.07 0.98

3.28 2.67 0.82 0.05 0.98
Milinski 1979 2 1.70 0.77 0.12 0.93

5 4.36 0.91 0.11 0.90
Milinski 1984 `regular prey' 2 1.71 0.77 0.17 0.87
`irregular prey' 2 1.42 0.51 0.23 0.78

Recer et al. 1987 2 1.92 0.94 0.05 0.99
Tyler & Gilliam 1995 3 2.47 0.82 0.07 0.97
Godin & Keenleyside 1984 2 1.74 0.80 0.19* 0.84

5 2.28 0.51 0.19* 0.79
Sutherland et al. 1988 2 1.38 0.46 0.14* 0.91
Utne et al. 1993 2 1.98 0.99 0.14* 0.91

5 3.81 0.83 0.13* 0.88
8 3.66 0.62 0.15* 0.80

*Estimated.
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Figure 2. The matching index K predicted by the Fretwell^
Lucas model (equation (7) or ¢gure 1) versus the observed
value of K, for each of the studies listed in Table 1. If obser-
vations agreed perfectly with the prediction of the Fretwell^
Lucas model, then the corresponding points would lie
precisely on the line of slope 1 shown in the graph. Some of
the plotted points lie su¤ciently close to this line that the
Fretwell^Lucas model is adequate to explain the published
observations. In most cases, the plotted points lie below the
plotted line, indicating undermatching relative to the Fret-
well^Lucas model (much less undermatching, however,
than previously reported relative to the prediction of K � 1
valid only for �n � 0). Observed and predicted values of K
are correlated at the 99% level (see text), showing that
more noise does indeed lead to more undermatching, as
our analysis of the Fretwell^Lucas model predicts.
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APPENDIX 1. PROOF OF
UNDERMATCHING OF MEANS

Undermatching of means is de¢ned by equation (5).
Noting that
r2

r1 � r2
� 1ÿ r1

r1 � r2
, (8)

and using equation (4), it is easy to see that the
inequality in equation (5) is equivalent to�

r1
r1 � r2

�
>

hr1i
hr1i � hr2i

, (9)

i.e. the proportion of individuals in patch 1 is greater
than expected if inserting patch means in equation (1)
could be justi¢ed. This is what we shall prove.
To make our argument precise, we write

ri � hrii(1� xi), where xi, i � 1,2, are independent
and identically distributed random variables with mean
hxii � 0 and lower bound xi > ÿ1 (to ensure ri is
always positive). If we de¢ne

� � hr1i
hr1 � r2i

, U(�) �
�

1� x1
1� �x1 � (1ÿ �)x2

�
, (10)

we can then write�
r1

r1 � r2

�
� �U(�). (11)

Our goal is therefore to show that if 0 < � < 1=2, i.e.
patch 2 is better than patch 1, then U (�)41.
It is convenient to change variables to u � x1 � x2 � 2

and v � x1 ÿ x2. Since xi > ÿ1, u > 0 and u � v�
2(1� x2) > v for all x1 and x2. Since x1 and x2 are identi-
cally distributed, v � x1 ÿ x2 and ÿv � x2 ÿ x1 are
equally probable. Hence, the joint probability distribu-
tion p(u, v) is even in v, i.e. p(u,v) � p(u, ÿ v) for all
u > 0 and v [ IR.
In terms of u and v we ¢nd

U(�) �
�

u� v
uÿ (1ÿ 2�)v

�
�
�
(u� v)(u� (1ÿ 2�)v)

u2 ÿ (1ÿ 2�)2v2

�
.

(12)

Now,

(u� v)(u� (1ÿ 2�)v)

� �u2 ÿ (1ÿ 2�)2v2� � 2(1ÿ �)�uv� (1ÿ 2�)v2�. (13)

Hence,

U(�) � 1�
�
2(1ÿ �) uv� (1ÿ 2�)v2

u2 ÿ (1ÿ 2�)2v2

�
. (14)

Since u4v and 05�51, the denominator of the quan-
tity whose expected value is sought here is always
positive, and the coe¤cient 2(1ÿ �)40. The uv term

is an odd function of v; since p(u,v) is even in v, the
mean of this term is zero for any � [ (0, 1/2). Finally, if
�51/2 then the v2 term is always positive, hence so is
its mean. Thus, U(�)41 if 05�51/2, as required.

APPENDIX 2. PREDICTING THE DEGREE
OF UNDERMATCHING

The undermatching index K is de¢ned by equation
(6). To predict K based on ideal free theory, we use
equation (3), which relates predicted patch occupancy
to resource availability for individual observations.
From equation (3), the predicted mean value of n1 is

hn1i � N
�

r1
r1 � r2

�
, (15)

where N� n1�n2 is the (constant) total number of
individuals. Assuming noise is generated by the same
process in both patches, we can write ri � hrii(1� xi),
with x1 and x2 identically distributed, as in Appendix 1.
Then, in terms of � and U(�) de¢ned in equation (10),
we ¢nd

hn1i � N�U(�), (16)

where U(�) depends on the probability distribution of
the noise variables xi.
Let �r denote the standard deviation of xi (or, equiva-

lently, the coe¤cient of variation of resource
availability in either patch). If we specify the noise dis-
tribution function, then for given � and �r , equation
(16) gives us the corresponding hn1i predicted by the
Fretwell^Lucas model, and a similar expression exists
for hn2i. These expressions can then be inserted in equa-
tion (6) to obtain the predicted undermatching index
Kpred. Assuming log-normal noise, for example, the
relationship between Kpred and �r is approximately

K(�r) '
1� �r � 0:50�2r
1� �r � 1:17�2r

. (17)

This approximation is accurate to within 2% for �r < 3
and 1

6 4 �4 1
3, the range within which most experi-

ments fall. (Note that, unlike the approximation, the
precise value of Kpred is in£uenced by �, but only to a
very slight degree.)
As we have emphasized in the main text, resource

variation is rarely possible to measure directly (particu-
larly if it arises largely due to depletion). Fortunately,
patch occupancy variation is usually easy to monitor.
Let �n denote the standard deviation in ni=N, the pro-
portion of individuals occupying either patch (since N
is ¢xed, this value is the same for both patches). If we
specify the noise distribution function, then for given
� and �r , we can use equation (3) to calculate �n just
as we did to calculate hn1i and hn2i. The predicted rela-
tionship between �n and K, to which a very good
approximation is given by equation (7)in the main text,
can then be used to test the Fretwell^Lucas model
(while equation (7) was obtained as a least-squares ¢t
assuming log-normal noise, the approximation appears
to be insensitive to the particular noise distribution
assumed).
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