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Abstract. In numerical experiments with Hamiltonian systems, round
off errors can be avoided by using symplectic lattice maps. This increases 
the accuracy of long-term studies of individual orbits. However, it is 
shown here that estimates of the mean local Arnold diffusion rate (in 
coupled standard maps) do not change when a lattice map is used. This 
is important because it reinforces the belief that statistical properties of 
ensembles of orbits are not significantly affected by roundoff error. 

1 Introduction 

Most numerical studies of Hamiltonian systems involve iterating a symplectic 
map on a computer using floating-point arithmetic. Although maps take discrete 
jumps, in most cases roundoff error prevents them from being iterated exactly. The 
resulting trajectories are different from those of the original system and, moreover, 
they are not exactly symplectic. The basic reason is that floating-point operations 
can map many distinct points to the same place even when the exact mapping 
is one-to-one. This can significantly alter long-term behaviour. In particular, a 
typical trajectory does not return to its initial point; instead it eventually joins 
a periodic orbit not including its initial poi~t. Earn and Tremaine ([1991] [1992]; 
hereafter ET) showed that roundoff errors cause artificial drifting across invariant 
curves and can even lead to confusion between regularity and chaos. 

A lattice map is a function that maps a discrete subset of phase space (a lattice) 
into itself. Any continuous function f on a phase space defines a natural lattice map 
F on a given lattice via "F(p, q) is the nearest lattice point to f (p, q)". Rescaling 
makes it possible to eri.sure that all lattice points have integer phase coordinates. 
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This means that error-free addition and multiplication of phase coordinates can be 
done on any computer. Because of this the lattice maps considered below can be 
iterated exactly without errors of any sort. Rannou [1974] used this method to 
study area-preserving maps of the plane. 

We say that a lattice map is symplectic (or Hamiltonian) if there is a symplectic 
diffeomorphism that, when applied to points on the lattice, agrees with the lattice 
map. The natural lattice maps associated with a large class of symplectic maps (and 
symplectic integration algorithms) are in fact symplectic lattice maps (ET; Scovel 
[1991]). This is the principal motivation for using lattice maps to study Hamiltonian 
systems: spurious dissipative behaviour is impossible because the computed system 
is exactly symplectic. 

Using lattice maps rather than ordinary floating-point maps reduces qualita
tive errors in orbits of Hamiltonian systems (ET). Quantitative errors (in known 
integrals of motions) are also significantly reduced, even in short trajectory com
putations (Earn [1994]). Nevertheless, while individual trajectories are better rep
resented with lattice maps, it is not clear that statistical properties of ensembles of 
orbits are significantly affected by roundoff error. 

An important measure of the average behaviour in a particular region of phase 
space in a nearly integrable Hamiltonian system (with three or more degrees of 
freedom) is the local Arnold diffusion rate. This is the (typically slow) rate at 
which a collection of orbits diffuses across stochastic layers (as opposed to motion 
along stochastic layers, which does not require three or more degrees of freedom 
and is typically fast). (See, e.g., Lichtenberg and Lieberman [1992], Chapter 6.) 

In this paper we compare the local Arnold diffusion rates computed numerically 
with floating-point and lattice versions of a map for which the local Arnold diffusion 
rate has been calculated analytically. 

2 Coupled standard maps 

The standard map (e.g., Lichtenberg and Lieberman [1992], Chapter 4) is the 
plane area-preserving map given by 

Xn+l = Xn + Yn+l' 

Yn+l = Yn + ~ sin (27l'Xn) , 
(2.1) 

where K is the stochasticity parameter. This map is spatially periodic with period 1 
in both x and y. The floating-point version of this map results from iterating (2.1) 
with floating-point arithmetic. The natural lattice map is obtained by multiply
ing (2.1) by a (large) integer, say m, and then replacing the sine term with the 
nearest integer to its value. The integer m gives the number of lattice points per 
unit in phase space and thus defines the resolution of the lattice map. Floating
point and lattice versions of the standard map were studied in detail by ET. 

A simple four-dimensional Hamiltonian map can be constructed by coupling 
two standard maps, 

Un+l =Un+ Vn+l, 

Vn+i = Vn + f;- sin (2r.un) + fir sin 271'( Un + Xn) , 

Xn+l = Xn + Yn+l' 

Yn+l = Yn + lf;- sin (27l'Xn) + fir sin 271'( Un + Xn). 

(2.2) 
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Here K 1 and K 2 are the stochasticity parameters for each standard map andµ is 
the coupling constant. The two maps are uncoupled forµ= 0. Equation (2.2) can 
be thought of as a Poincare return map for a continuous Hamiltonian system with 
three degrees of freedom. The natural lattice map for (2.2) is derived in the same 
way as for the ordinary standard map above. 

3 Arnold diffusion rate 

Wood, Lichtenberg and Lieberman [1990] derived an analytic approximation 
for the local Arnold diffusion rate in the system of two coupled standard maps 
[(2.2)] and compared their results with numerical orbit calculations (using fl.oating
point arithmetic). The agreement was good, but it is important to know if it can 
be improved further by using a lattice map to iterate the orbits. 

We choose the three parameters in (2.2) so that the map will display observable 
Arnold diffusion. Thus we take K 1 large enough to ensure that there are large 
stochastic regions in u-v space, K2 small enough to ensure that there are large 
regular regions in x-y space, and 0 < µ « 1 so the coupling is weak. Initial 
conditions are selected in a primary stochastic region of u-v space and a region of 
x-y space dominated by invariant curves (far from sizable island chains that would 
distort the diffusion calculation). To achieve the desired property in x-y space we 
place the initial points as close as possible to the KAM curve that is the last to 
survive as K is increased in (2.1). Greene [1979] found that the "last KAM curve" 
has rotation number ~(1 + J5), the golden mean, or 1/211' times this value in our 
units in which the spatial period of the standard map (2.1) is 1 rather than 271'. 
[The rotation number or frequency of an invariant curve of the standard map is 
equal to the average action (y-value) of any orbit on the curve. (See, e.g., Meiss 
[1992]).] 

To estimate the local Arnold diffusion rate, we iterate a sample of trajectories 
and look at the RMS change in the action y until this change is of order 0.01. Our 
initial configuration consists of 256 points on a 162 grid in a primary stochastic 
region of u-v space, each associated with the same initial x-y coordinates. The 
initial (x, y) is chosen by taking x0 = 0 and searching (by bisection) for Yo such 
that the average y value after 105 iterations of (2.1) agrees with the golden mean 
to 10 significant figures. 

Figure 1 shows the RMS change in y as a function of time n, for four and eight 
byte floating-point maps and a lattice map with m = 252 points per unit. Wood et. 
al. [1990] predict that 6.y rms ,...., n 112 for the exact map (2.2) so the curves drawn 
in Figure 1 should be lines with slope ~. This is in reasonable agreement with all 
our numerical results; the agreement is no better in the cases in which the lattice 
map has been used. 

4 Discussion 

Tennyson, Lichtenberg and Lieberman [1979] investigated Arnold diffusion in 
a different four-dimensional symplectic map. ET repeated part of their study with 
a lattice map and found a significantly different global Arnold diffusion rate, which 
suggested that some of the diffusion seen by Tennyson et. al. [1979] might have been 
due to roundoff errors. In this case the diffusion rate was estimated crudely from the 
evolution of a single long trajectory; it emphasizes that the long-term qualitative 
features of individual trajectories can be strongly influenced by numerical errors. 
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Figure 1 A log-log plot of the RMS action change (due to Arnold diffusion) 
as a function of time in the system of two coupled standard maps, (2.1). There 
are 3 curves in the upper group. These all have coupling constant µ = 0.001 
and were all obtained using floating-point arithmetic. Two values of K2 (0.2 
and 0.4) were used and the K2 = 0.4 run was done with both 4 byte and 8 
byte floating-point arithmetic. There are 6 curves in the lower group. These all 
have µ = 0.0001. The same values of K2 and floating-point number size were 
used as for the up}Jer curves, but this time each run was repeated with a lattice 
map with m = 252 points per unit. There is nothing to choose from between 
the various different ·ways of computing these curves (all are consistent with a 
slope of 1/2) so this calculation is clearly not seriously affected by roundoff 

error. 
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However, precisely because individual trajectories vary so much, it is essential 
to use a sizable sample to estimate a diffusion rate reliably. The present study 
has shown that the errors introduced by floating-point arithmetic do not corrupt 
estimates of the local Arnold diffusion rate based on an ensemble of trajectories. 
Strictly, this conclusion is valid only for the specific examples considered here; it re
mains possible that with sufficiently weak coupling (small enoughµ) or with a much 
more complicated map (requiring many more arithmetic operations per iteration) 
significant differences may appear between ensemble estimates of Arnold diffusion 
rates based on ordinary floating-point versus lattice map computations. Never
theless, the present results are likely to be typical of many symplectic maps and 
Hamiltonian systems evolved with symplectic integrators, and they strengthen the 
general belief that statistical properties of ensembles of orbits are not significantly 
affected by roundoff error. 
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