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ABSTRACT

An orbit is said to cooperate with a potential well if it tends to deepen it by aligning
with it. We derive analytical formulae that give the response of resonant orbits to non-
axisymmetric perturbations. This makes it possible to quantify the level of coopera-
tion in a given galaxy model. The qualitative response of orbits can be characterized
by the sign of what we call the cooperation parameter. We discuss the relevance of our
results for theories of the formation and maintenance of bars and lopsidedness.

Key words: instabilities - celestial mechanics, stellar dynamics - galaxies: kinematics
and dynamics — galaxies: structure.

1 INTRODUCTION

Disc galaxies may be roughly axisymmetric, but their beauty
is mostly a result of the spectacular non-axisymmetric
patterns that are seen in light from bright stars and gas.
Perhaps the most natural question to ask is whether these
patterns, such as bars and spirals, are transient or long-lived.
If they are transient they must recur frequently, since they are
observed in most discs, but it is difficult to say more with
certainty. It is fairly clear that the observed asymmetries are
manifestations of density waves, but there is no general
agreement on the origin and lifetime of these phenomena (for
background see Binney & Tremaine 1987).

The orbital period of a typical star is much shorter than
the time over which an overall galactic pattern changes. It is
therefore possible to ignore the motions of individual stars
and consider only the behaviour of streams of stars along
given galactic orbits. We may then ask how a given orbital
stream responds to the presence of a non-axisymmetric
perturbation in the disc. Does it tend to align with the density
enhancement and thus cooperate with the formation or
maintenance of a pattern? Or does the orbital stream react
by increasing its distance from the density peak? These are
the questions we address in this paper.

Lynden-Bell (1979) introduced the notion of cooperation
of orbital streams (without using this term) when he con-
sidered a possible formation mechanism for galactic bars. We
consider more generally the response of orbital streams to
patterns of any given azimuthal wavenumber, and we make a
point of emphasizing lopsided (m=1) patterns, which are
very common in disc galaxies but have received little
attention.
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What we shall call the cooperation parameter { is in more
abstract settings often called the non-linearity parameter (e.g.,
Lichtenberg & Lieberman 1992, section 2.4a). We shall stick
to the former term, since it expresses the physical motivation
of our work.

In Section 2 we introduce our notation and give a quali-
tative discussion of the cooperation mechanism (a more
rigorous and complete discussion is given by Earn 1993).
Our main results, including a general formula for the co-
operation parameter for nearly circular orbits in an arbitrary
axisymmetric disc, are presented in Section 3. Implications of
our results are discussed in Section 4. In particular, based on
analytical results derived here and simulations reported
elsewhere, we argue against Lynden-Bell’s (1979) original
proposal that the linear bar instability of stellar discs is
driven by cooperative alignment of orbits. Instead, we
believe that the cooperation mechanism is effective mainly
for the non-linear evolution of discs and may govern the
maintenance of non-axisymmetric patterns.

2 BASIC CONCEPTS AND NOTATION
2.1 a-symmetry

Consider a star with angular frequency Q and radial

frequency x in an axisymmetric disc galaxy. As seen from

axes rotating with angular velocity €, the star goes around

the galaxy in the period 27t/(Q — Q). It goes in and out in the

period 27t/x. Therefore the orbit as thus seen will close with

mlobes after £ turns if
2n_, 2m

m 4 .
K Q—-Q,

(2.1)

Four lobes can be produced after two turns only if there are
two lobes after one turn, etc., so we may always assume that
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mand ¢ are relatively prime. If we write

a=7 s (2.2)

then equation (2.1) can be written as
1

Q,=Q——x. (2.3)
a

For large a there are many lobes after a single turn. a —
gives uniform rotation. Q, is well defined even if a is
irrational, but the orbit closes only in the rational case (see
Binney & Tremaine 1987, fig 6-9 for examples with a =,
2, —2and 3/2).

We say that an orbit is m/¢-symmetric or a-symmetric in a
given rotating frame if it closes with m lobes after ¢ turns
around the origin relative to that frame. We say that a pattern
is a-symmetric if it is made up of a-symmetric orbits.

2.2 Cooperation

Suppose that a nearly axisymmetric galaxy is perturbed by a
lopsided density wave, as indicated schematically in Fig. 1.
The orbits drawn as solid curves form part of the lopsided
perturbation. These orbits are imagined to be stationary in
the figure, i.e., they all close with a = 1 symmetry in the frame

Figure 1. The mechanism of cooperation of orbital streams,
presented schematically for the lopsided (a=1) resonance. An
a =1 symmetric ‘test orbital stream’ (dotted curve) is shown inter-
acting with a lopsided density enhancement, which is displayed as a
selection of nearly aligned a =1 symmertric orbits. The motion is
shown in the frame rotating at the pattern rotation rate Q, <0, so
the density perturbation is not rotating in this figure. The test orbital
stream is precessing at the rate Q,—Q,=|Q,|—|Q,|, which is
presumed to be slow. If the cooperation parameter ¢ is positive then
the torque will tend to align the test orbital stream with the density
perturbation.

rotating with the perturbation at the rate Q, <0 (the pattern
rotates clockwise in an inertial frame).

The dotted orbit closes with o =1 symmetry in a frame
rotating at the rate 2, <0, which differs no more than slightly
from Q, so the precession rate, Q, —Q, = —[Q | +|Q,], of
the dotted orbit relative to the perturbation is small. In Fig. 1,
Q,-Q, is assumed to be negative (clockwise precession),
but it could equally well be positive.

A star on the dotted orbit feels torques from the pattern
potential at approximately the same orbital phase each time
it goes around the galaxy; since the dotted orbit is not aligned
with the lopsided pattern these torques add up over several
orbital times. Thus the interaction is significant and will
change the orbital alignment. Which way will the dotted orbit
go?

The answer to this question is not obvious, because the
interaction we are considering is viewed in a rotating frame
of reference. The dotted orbit can in fact go either way,
depending on the structure of the unperturbed axisymmetric
potential.

The reader may wonder whether it makes sense to talk
about ‘the dotted orbit’ in the first place. We are assuming
that the shape of the orbit does not change significantly
during the interaction. Might not the dotted orbit be
completely disrupted by the perturbation?

To be sure that this is not the case we have made three
assumptions: (i) the amplitude of the perturbation in
potential is small, (ii) the period of the dotted orbits is small
compared with its precession rate relative to the rotating
perturbation, and (iii) the dotted orbit is near resonance with
the perturbation, ie., |Q,—Q,|/Q, < 1. These reasonable
assumptions justify averaging over the fast motion of the star
around its orbit and focusing on changes in orbital alignment.

There is nothing special about the lopsided a=1
resonance in this discussion. We could equally well have
drawn a perturbation and orbits with any a-symmetry. [The
a=2 case (m=2, £=1)is discussed in Lynden-Bell (1979).]
Formally, averaging over the fast motion of the stars yields an
exactly constant ‘fast action’,

1
STt g =nev L, (2.4)
a m

where J, = his the angular momentum (azimuthal action) and
Jr=(1/2m)§ pg dR is the radial action (we denote by ¢, and
@r the angles conjugate to J,; and Jp respectively). Thus the
averaging procedure gives a reliable result only if J; is
roughly constant (adiabatically invariant) as the perturbation
grows; we expect this to be the case in galaxies. The angle
variable conjugate to J; is ¢y, the angle conjugate to J, but
we denote it as @; in order to be clear which set of variables is
in use. There is also an action associated with the slow
motion, i.e., the precession of the axes in which the orbit
closes. This ‘slow action’ is J; = J, = h; it does change. (Recall
that angular momentum is strictly conserved for an orbit in
an axisymmetric potential, so changes in / are due entirely to
the non-axisymmetric disturbances. See Lynden-Bell &
Kalnajs 1972 for a discussion of angular momentum
exchange.) The angle ¢,, conjugate to the action J,,
determines the orientation of the lobe of the ‘test orbital
stream’ (the dotted orbit in Fig. 1).

Returning to Fig. 1, stars on the dotted orbit stream
forward (counter-clockwise) in an inertial frame, so they
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appear to stream faster forwards in the backward-rotating
frame depicted (galactic orbits typically complete one radial
oscillation in less than one azimuthal period, so the frame
needs to rotate backwards to cause orbits to close with a =1
symmetry). The torque from the potential trough therefore
tugs streaming stars in the direct sense (counter-clockwise)
and thereby increases their angular momentum A. If |Q,|
decreases as h increases, then Q,—Q =[Q |-|Q,]
increases and the orbit as a whole is pulled towards the
pattern and tends to align with it; on the other hand, if |Q |
increases as h increases, then the orbit will be pushed away
from the pattern. Since Q, is negative this condition for
trapping or cooperation of orbits is

0Q,
¢ (ah ),,>0’ (2.5)
where we have used a general a since the condition is the
same for a configuration with any given a-symmetry (the
adiabatic invariant J; is different for different a; equation
2.4). The lobe angular velocity Q,, can itself be written in
terms of the unperturbed Hamiltonian H for the underlying
axisymmetric disc:

0H |[0H
Q.=0—=|%7| - 2.6
(3, 29
‘We may therefore write the cooperation parameter as
O’H
=73z 2.
¢ ( FYS )h (2.7)

The assumption of adiabatic invariance of J; is valid because
the potential changes only as fast as orbits are trapped, which
happens slowly compared with an orbital time.

This qualitative derivation of the cooperation parameter
can be made completely rigorous using standard secular
perturbation theory (e.g, Born 1927; Goldstein 1980;
Arnold 1988, 1989; Lichtenberg & Lieberman 1992,
section 2.4a). A full treatment beginning from first principles
of Hamiltonian mechanics and focusing on the particular
problem of disc galaxy dynamics is given by Earn (1993).

3 WHICH RESONANCES ARE
COOPERATIVE?

We have seen that orbital streams behave cooperatively if the
cooperation parameter (equations 2.5 and 2.7) is positive.
For any given axisymmetric potential U(R) and any
resonance a it is possible to compute g, at least approxi-
mately. In this section we compute ¢ exactly for the general-
ized isochrone potential and give a formula, equation (3.25),
for the leading-order term in general. We apply this formula
to power laws in Section 3.3 and to another special class of
potentials in Section 3.4.

One general observation that can be made is that the co-
rotation resonance (a =) will never be cooperative in
galaxies: Q always decreases with A at constant Jp, so
£=(0Q/0h),,<0. Cooperation typically occurs for
resonant orbits of different type in different ranges of angular
momentum.

©1996 RAS, MNRAS 278, 395-405
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3.1 Cooperation in the generalized isochrone

In order to calculate ¢ exactly, we must be able to write the
Hamiltonian H as a function of 4 and J;. This can be done if
J can be computed as a function of 4 and the energy E. An
important non-trivial model for which J; can be computed
analytically is the isochrone (Hénon 1959), which is defined
by the potential

UR)= —SM__ (3.1)

b+ R*+b*

The isochrone gets its name from the property that all orbits
of a given energy have the same period, independent of
angular momentum; it is a generalization of a point mass
(b=0) and a harmonic oscillator (b~ ). The generalized
isochrone (e.g., Evans et al. 1990) has U; =U—(1/2)kR "2,
where k can in principle have either sign but is positive if
circular orbits near the centre are to be stable. The radial
action is

JR=—9M——1(h +Jh*+4GMb), (3.2)
[2F 2

for the isochrone, and is readily generalized by replacing A
by JA* +k for the generalized isochrone. For both we can
write

o —(GM)

H=E 2[Jx +K (R}’ (33)
where

K(h)=%(\/h2+k+ k), (3.4)

and k, =4GMb +k. For the isochrone, k=0. The lobe
angular velocity of an orbit that closes with m lobes after £
turns is (o =m/¢)

o (oH) _(on) _1(on

(3.5)
2
= (GM) 5 K’_l ,
(Jr +K) a
and the cooperation parameter is
c=(22:) _[02.] _1[o2.
oh |, \Oh/, al\dlx/,
(3.6)

_=3GME[[ o 1)1
I o

Hence orbits in the isochrone are cooperative (> 0) only
when (K'—1/a)?*<(1/3)K"(Jg +K).

For any given resonance, specified by a =m/¢, there is a
range of J, and A over which such orbits are cooperative,
given by

M_<a<M,, (3.7)
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where

M,

1
== g (3.8)
K'FJ(1/3)(Jx+K)K
(We cast it in this form to see the connection to the similar

condition 3.26 discussed below for power-law potentials.)
Now

et
2\[iF+k {iP+k,)

and

o 1k k,
k=3 ((h2+k)3’2+(h2+k,)3“)>0'

(3.9)

o 7/2}

10/3

8/3

5/2

Hence, as h—» o, K'=1 and K"K~-0. From (3.7) these
limits imply that { <0 as A~ unless a=1. For a=1,
= (1/2)h~2(1+Jg/h)+ & (h™*), so for this case  is positive
showing cooperative behaviour in the outer parts. More
generally, (3.7) gives the range over which any given
resonance is cooperative. Note that for the isochrone itself
(k=0)

M. = 2
1 bl T3V R Ty + ho( 1+ 20 B)]

where hy=h/(4GMb) and h,=J1+h2. The loci M, of
vanishing ¢ for the isochrone are shown in the main plot of
Fig. 2; the inlayed plot shows { as a function of 4 for fixed E
and various a. In the limits »—0 and b— , one finds

M_=M,, so neither the Kepler problem nor the simple
harmonic oscillator has any cooperative resonances.

(3.11)

p
h
[)
v
[)
[
[}
.
[}
.
[}

7/3F

.
.
1]
L]
L)
.
L]
L]
L)
1]
.
\]
1]
L]
L]
1}
.
5/3 " ‘\

4/3F

6 T

h

Figure 2. Cooperative resonances in the isochrone. The vertical axis is a = m/¢, while the abscissa is the angular momentum h/y GMb. The
cooperation limit curves M, and M _ are plotted for two different values of the energy, E = —8 GM /b (dotted curves) and E = — GM/8b (solid

resonances, the most cooperative orbits have low angular momentum.

curves). See equations (3.7) and (3.11). At higher energies more resonances are cooperative. The plot inlayed in the upper right shows & as a
function of 4 for fixed E = — GM/8b and various a: a = 2 (upper solid curve), a = 1 (lower solid curve), @ = 4/3 (upper dotted curve), and a =4
lower dotted curve). At any fixed E, the global maxima of ¢ is 1/4b%, which occurs for a =2 and 4 =0 (bisymmetric radial orbits). For most
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3.2 Cooperation of nearly circular orbits

With equations (2.3) and (2.5) in hand, we see that the
computation of the cooperation parameter ¢ in particular
models requires expressions for the fundamental frequencies
Q=(0H/0h),, and x =(0H/dJy), as functions of the actions h
and Jg. Although expressions for Q and x cannot be found
for a general axisymmetric potential, these frequencies can
always be approximated to any given order in the amplitude
a of the radial oscillation of the orbit. This is achieved using
standard Hamiltonian perturbation theory (e.g., Born 1927,
section 41), which has been widely used in diverse fields (see
Donner 1979, chapter VI, for an application related to the
present work). The results we need from this standard theory
are simply quoted below; complete derivations are given by
Earn (1993, section 4.3). The calculation described in this
subsection gives { to lowest order, and hence determines the
cooperative resonances for nearly circular orbits in an
arbitrary axisymmetric potential.
It is useful to define an effective potential

h2

= +— .
U.R, h)=U(R) R (3.12)
and write the Hamiltonian
1 2
H=5 vr+ Ug(R, h). (3.13)

The guiding centre radius, R,, is defined implicitly as a
function of angular momentum A, by centrifugal force gravity
balance,

aUeff _ﬂj _h_2
—aR)hmg) LT

g

US(R,)= ( =0, (3.14)

where in general we let U(e'éf)(Rg) refer to the kth partial
derivative of U with respect to R at constant 4, evaluated at
R=R,(h).

The perturbation calculation yields an azimuthal
frequency,

Q,=Jx dh+theff( o) (3.15a)
2 2 (3)
a3 Qi RU"(R)
= 1+—=|=-6 +——5F, 3.15b
QI Rg[z K 2 (3130)
and a radial frequency,
2 2
a” |15 Q; 5
= 1+—= 33— —5—-——— 3.16
"2 ""ﬂ R§[4 K2 48 (3.16)
RIUW
x[lZQS—RgU(”(Rg)]Z"'—g’w&) :
16x;
To this order,
1
JR:E Koa > (3.17)
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so equations (3.15) and (3.16) give the frequencies to first
order in Jg. In these expressions,

h
Qy=—3 3.18
0 Rz 1) ( )
and
xo=[US(R,)'". . (3.19)

Integer subscripts on Q and x refer here to the order of
the frequency with respect to the amplitude a; these sub-
scripts should not be confused with the subscript a on Q=
Q—(1/a)x.

We can now find an approximation for { by differentia-
tion:

Q. 3 1 9\ 9Q 203 1 ox
t=|—2| =|=~= —| H=—-= —+5 —.
ah I ah a aJR ah a aJR a aJR

(3.20) .

From equation (3.17) we have a? =2Jp/x,. This allows us to
write expressions (3.15b) and (3.16) directly in terms of J,
and 4. We can then insert Q, and x, for Q and « in equation
(3.20), perform the differentiations, and then finally discard
the term containing J to obtain the leading-order behaviour
of ¢. From equation (3.15a), we find

(%) <y (R,)

dh |, dn’ "
1 [ o 1 &y,
e Ueff(R)_ _Ueff(R) »
(dh/dR,) ¢ dh/dR, dR} &
(3.21)
and
0Q, _dxo_ 1 9£‘2_’ 1 (3.22)
aJx dh 2x, dR, dh/dR,’ :
Equations (3.16) and (3.17) give
ox, 15QF 5 2 3oz RRUM(RY)
—=— - - + .
. 2 xl 24x3[129° R U (Rl 8xl
(3.23)

We can now use equations (3.21), (3.22) and (3.23) in
equation (3.20) to write the leading-order behaviour of { as a
function of R, and derivatives with respect to R,. Since we
are no longer interested in the fact that R, can be written as a
function of 4, we now write R rather than R,.

A convenient expression for ¢ can be found by intro-
ducing the dimensionless functions

E'=——_ (324)

The cooperation parameter may then be written
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1 [E-4) _ a)’

C—asz( £ )(a M-)a M+)+6(R). (3.25a)
Here

Mi=JE[1+n<s>i/ﬁ[(&—nm(smsn}, (3.25b)
where

n(&)= § (3.25¢)

£(E-4)
u(&)=% [14+ E+n(ENSE+4)-3 %] (3.25d)

For 1< & <4, the expression (3.25a) is positive only if « lies
between M_ and M. Thus when a?/R? is neglected the

o 7/2F

10/3

8/3
5/2

7/3

condition for cooperation of orbital streams is

£>00 M_<a<M,,
a<M_ora>M,,

for £<4,

for £> 4. (326)

We have carried the perturbation expansion through to
fourth order in order to obtain the cooperation parameter to
&(a?/R?), but the expression for ¢ to this order is far too
complicated to be useful, so we do not give it here.

3.3 Cooperation in power-law potentials

Condition (3.26) becomes simple when £ is a constant, i.e.,
for power laws. If v, o R#, then

1
M1=J§[1i /E@—l)},

(3.27a)

[

5/3

3/2

4/3

1.5

B

Figure 3. Cooperative resonances (a =m/¢) in power-law potentials. a is plotted vertically, and the horizontal axis is 8, the power of the

circular velocity law. The cooperative resonances (& > 0) for nearly circular orbits lie in the hashed region of this figure (¢ =0 on the boundary

of the hashed region). The dotted curve relates to the special power laws discussed in Section 3.4; it is defined by $=(a2?/2)— 1, and shows that .
the resonance that determines the special power is cooperative provided 1 < a <2. The heavy solid curves give the loci of extrema of R2¢ at

fixed a. The part of the figure near a = 1 is shown on an expanded scale in Fig, 4.
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§=2(p+1). (3.27b)

The cooperative region (3.26) is hashed in Fig. 3. The
dimensionless cooperation parameter R?{ is never very large
for power laws. Its maximum is 0.091 3064, for a =1.31593
(near 4/3) and 8=0.049 0381. For the a =2 resonance the
maximum of R2{ is 0.0356836 at $=0.500 184, while for
the a=1 resonance its maximum is 0.026 7948 at
B=—0.361589. For any chosen resonance a, the extreme
values of R?{ occur when & satisfies

a=%«/2;‘ [4+§¢ /%[11(5—2)%4)]}.

The locus of such points defines the two heavy solid curves
in Fig. 3. The higher of the two corresponds to maximum § at
fixed a and the lower to minimum. The lower heavy solid
curve intersects the lower boundary (M _) of the cooperative
region when ﬂ=J§/4 and B=1. Thus if the minimum ¢ at
fixed a is positive then it occurs for ﬂ2J3/4=O.433 013
(and very near to a=1 when <1, which is always true in
galaxies). The behaviour of the curves is difficult to see near
a =1, so this region is expanded in Fig. 4.

(3.28)

3.4 Kinematically cooperative models

Since the cooperation mechanism operates on resonant and
near-resonant orbits, we would expect it to be most effective
if all orbits happened to be resonant. We therefore consider
special potentials in which all nearly circular orbits are a-
symmetric in the same frame. We say that such models are
kinematically cooperative, because in the absence of self-
gravity an a-symmetric pattern can be sustained indefinitely;
the usual winding of kinematic density waves (Kalnajs 1973;
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Binney & Tremaine 1987, section 6.2.1) does not occur in
these models.

As seen from fixed axes, a closed orbital stream will
typically tumble over and over. To make a permanent con-
figuration from many such streams they must all tumble at
the same rate. So to build up an a-symmetric pattern that
rotates rigidly with angular velocity Q,, we must have
Q,=Q, for orbits with a whole range of guiding centre radii.
We consider here the most extreme case, in which Q,=Q,
for all nearly circular orbits; from the solutions we derive,
models that are kinematically cooperative only in restricted
regions can also be constructed.

Writing x, as a function of Q, (e.g., Binney & Tremaine
1987, equation 3.59) we may express the condition Q ,=Q
(for nearly circular orbits) as a differential equation:

dQg

2 0_ 2 2
4Q5 +RG—E— a’(Qo—Q,).
This equation and its general solutions were first derived by
Berry (1973). A systematic analysis of these solutions is

given by Earn (1993).

(3.29)

3.4.1 Non-rotating patterns

In the simplest case Q, =0, so the a-symmetric patterns do
not rotate. Equation (3.29) is then trivial and yields a power

law
(a?/2)-2
Q,x R“P7?
or
v OCR(azlz)_l
. .

In the special case a=3/2 (so v, < R!8), all nearly circular
orbits will have trefoil symmetry and will close after two

a ‘ '
[}
1]
[
[]
[}
1.04F} :
[
. \
L]
[}
0
1.02 ! \
.
J /
J
J
»
) /
«
L
L
.
0.98 } !
L]
[
[]
.
L]
0.96 f '
]
L]
L]
L]
[]
'] : A S A L 1 .
-1 -0.5 0 0.5 1 1.5

Figure 4. A vertically expanded view of the region near the a =1 resonance in Fig. 3.
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turns around the origin. This, and the case a=4/3 (v, x
R™17), are especially interesting, because they give rise to
rotation curves that are nearly flat, similar to observed
rotation curves. Thus in galaxies with flat rotation curves,
three- and four-fold symmetric patterns can be sustained
even without help from self-gravity.

Fig. 3 shows that when self-gravity is taken into account,
these velocity laws are always cooperative for the resonance
of interest, provided that —1/2<f<1,ie., 1 <a<2.InFig.
3 the relation f=a?/2—1 is shown by the dotted curve,
which goes exactly through the middle of the cooperative
region since = a?/2 — 1 is equivalent to
a=V2(8+1)=JE=(M, +M_)/2.

Cooperation ends at the 8= —1/2 (Kepler) and =1 (simple
harmonic) cases. For all the special cases in which 8=

a?/2—1, the dimensionless cooperation parameter has a
very simple form:

(¢’—1)4-a’)

R*C=
¢ 124’

(3.30)

In summary, for non-rotating patterns, kinematic coopera-
tion leads to dynamic cooperation.

3.4.2  Rotating patterns

With Q, # 0, equation (3.29) is more complicated, but it can
be separated and written as

Jd_}g=J 2Q,/9Q} 4o
R J1al+2)Q0/Q, - |all[(|a|-2)Q/Q,~|al] "
(331)

This integral is elementary, but |a|=2 is a special case.
Writing R,, for the radius at which Q,=Q , we obtain

( 1
(m_l)&_mur-z)
2 e, 2 ,
'l Q |a|;’ if |a|#2,
X (_+1) Qo _lall5gaa) (3.32)
R U2 e, 2
RP
— ! - if|a|=2.
ei(nﬂ"),z%q
\ Q,

This implicit relation gives 11 distinct behaviours for Q(R),
seven of which can be rejected because |Q,| increases as a
function of R (Earn 1993). This leaves us with four quali-
tatively different physical cases. In Fig. 5 we show v, = RQ,
(solid curve), Q (dashed curve) and x, = a(Q, — Q,)(dotted
curve) for each of these cases. An example of a long-lived
kinematic density wave in the model of Fig. 5(c) (|a|=2) is
shown in Fig. 6.

Fig. 5 reveals a peculiarity of these models that deserves
comment. In a spherically symmetric model, V2[U(r)]=
x5 —Q3, so the mass density p(r)> 0 if and only if x> Q,.
This condition does not hold in non-spherical systems such
as the flat disc of interest here, but the fact that %, <Q, in

some regions of the rotating kinematically cooperative
models is unusual, and raises the concern that they may
involve negative surface densities. The important point,
which we wish to stress, is that it is easy to construct rotating
discs that are kinematically cooperative over large radial
ranges and have non-negative surface density everywhere. To
see this, consider a finite disc obtained by squashing the finite
sphere of radius r, with density o(r). For R<r,, the surface
density of the disc is

Z(R) =2J o(r)dz, (3.33)

where r=JR?+z’ is the spherical radius. We may rewrite
this as

ro .2 —0?
s(R)=—L | Xl =) . (3.34a)
222Gl [7-R?
Qo(ro) .2 2
: -Q
_1 J Q)= o) I ag,  (334)
258G Ja,r r(Q,)— R’ 4

and the integration interval [R, r,] can be divided into regions
where we know Q(r) or r(Q,). In kinematically cooperative
regions, x§(Q,)=[a(Q,—Q,), and equation (3.32) gives
r(Q,). In all the models presented in Fig. 5, x3—Q}2
approaches a positive constant as R~ (cf. Earn 1993,
table 2.1); hence if a sufficiently large r, is taken, equation
(3.34) will yield =(R)>0 everywhere even for strictly kine-
matically cooperative models. More realistic models can be
constructed that are kinematically cooperative in extensive
regions.

Our general formula (3.25) for ¢ for nearly circular orbits
is local in R, but it turns out that for the kinematically co-
operative models, the sign of  is the same everywhere. We
can therefore make a general statement about (dynamic)
cooperation in kinematically cooperative regions without
worrying about exactly what radial intervals of equation
(3.32) have been included in a particular disc model.

Computing ¢ from equation (3.32) is a messy affair. To
evaluate the expression in (3.25) directly, we need Q, as a
function of R (since £ is a function of Q, and the derivatives
in equation 3.25 are with respect to R). Instead, we have only
the expression (3.32) for R as a function of Q. To find the
leading-order behaviour of { for these models, equation
(3.25) must be re-expressed in terms of derivatives with
respect to Q,, via

=1

4 _ (d o R) 4 (3.35)
dlnR |\ dQ, dQ,

and so on. [This transformation is valid along each one-to-
one branch of the solution function R(Q,).] We are left with
an extremely tedious calculation. Note that since Q,—
(1/a)x, =2, in these models, a number of the terms in the
expression for { cancel out. Even so, the resulting formulae
are so ugly that giving them here would be pointless. The
lengthy but straightforward nature of this calculation makes
it well-suited to the MATHEMATICA system (Wolfram 1991),
which we have used to write a program that evaluates
equations (3.25) for given functions R(Q,). The MATHEMATICA
program was tested by expressing R as a function of Q, for
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Figure 5. Physical solutions derived from equation (3.32). In each panel, the solid curve is the rotation curve v (R) in units of R,Q,. The
dashed curve is Q(R). The dotted curve is x(R). Panel (a) gives the rotation curve for a backward-rotating (Q, <0) lopsided pattern; « — Q is
constant at the value 1 in the units of the figure. Panel (b) is for a forward-rotating (Q,>0) lopsided pattern. Q — x is constant for R <R, and

Q +x is constant for R> R,,. (c) |a| =2, relevant for bars or two-arm spirals; Q —(1/2) x is constant for R < R, and Q+(1/2)x is constant for
R>R,.(d)|a|=4, constant 4:1 resonance.

Figure 6. A rotating bisymmetric pattern of orbits in the model of Fig. 5(c). In the ‘bar’ a = 2, whereas in the spiral a = —2
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the isochrone and reproducing the results available from
equation (3.6).

In these kinematically cooperative models that support
rotating a-symmetric patterns self-gravity brings one
surprise: the a =1 resonance is not cooperative anywhere for
the model in Fig. 5(a) (backward-rotating pattern). However,
a =1 iscooperative everywhere in Fig. 5(b) (forward-rotating
pattern). In Fig. 5(c), a =2 is cooperative everywhere and the
same is true of the a =4 resonance in Fig. 5(d).

4 DISCUSSION

We have derived several results that can be used to quantify
the level of cooperation (for any resonance a) implied by
observed rotation curves. Fig. 3 makes it possible to estimate
the cooperation parameter § for nearly circular orbits in a
region of a galaxy by fitting a local power law to the rotation
curve. In general, equation (3.25) gives ¢ for nearly circular
orbits in any axisymmetric disc. Alternatively, if orbits of a
galactic potential can be well-fitted with a generalized
isochrone (cf. Evans et al. 1990, appendix A ) then equation
(3.6) permits a general discussion of cooperation in the
galaxy. A full cooperation analysis for an arbitrary model
would need to be done numerically.

In his study of the dynamics of barred galaxies, Lynden-
Bell (1979) had already found that the isochrone potential is
cooperative for a =2, from the centre to well beyond the
maximum in the rotation curve, which occurs at R=2.20b
(the exact guiding-centre radius at which ¢ changes sign
depends on the orbital eccentricity, but is R,=3.73b for
nearly circular orbits). The inner region of the isochrone
approximates the simple harmonic oscillator potential, which
supports non-rotating a =2-symmetric patterns. Since the
a =2 resonance is neither cooperative nor uncooperative in
the harmonic potential, it is not surprising that a small
change in the potential can make a =2 cooperative; but since
Q —(1/2)x remains small when changing from the harmonic
oscillator to the isochrone, the expected pattern speed of
zero is not increased by much. However, as first shown by
Lindblad (1956) the relation Q—(1/2)x=Q,, with non-
negligible Q,, holds approximately in the inner parts of
typical galactic discs. This is the condition that defines the
kinematically cooperative model shown in Fig. 5(c) (for
R<R,); since we have found that this model is (dynamically)
cooperative for a=2 nearly circular orbits everywhere, it
follows that in principle, galaxies can sustain fast rotating
bars by the cooperation mechanism. Judging from the iso-
chrone (Fig. 2) we expect a=2 cooperation to be more
effective for more eccentric orbits and hence to have a
greater influence after a weak bar has already formed.

In the case of lopsidedness self-gravity may be a small
effect. In the outer region of disc galaxies, where lopsided-
ness is most pronounced, the mass attributable to the
observed matter (mostly neutral hydrogen gas) typically
accounts for only a fraction of the mass inferred from the
rotation curve, usually no more than 25 per cent (e.g.,
Casertano & van Albada 1990). If the gravitational potential
of the galaxy is dominated by a dark halo in these parts then
observed lopsided density waves could be approximately
kinematic. [We remark that the observational signature of
lopsided kinematic density waves is a rotation curve that is
systematically higher on the shorter side (Earn 1993, section

2.6)] If a=1 is cooperative in the relevant region of the
given galaxy then self-gravity will tend to help lopsided
(a =1-symmetric) density waves to live for a long time. As
mentioned above, this is not the case for the peculiar
potential that sustains backward-rotating, kinematic, a =1-
symmetric patterns forever (Fig. 5a). However, a =1 is co-
operative in the outer parts of the isochrone (beyond the
rotation curve maximum) and everywhere in power laws with
v, xRF, —0.5<Bs —0.0584; so in some similar models
self-gravity tends to compensate for the fact that Q — x is not
exactly constant (but is negative and small).

Lynden-Bell (1979) envisaged that the cooperation
mechanism could be responsible for the formation of bars
through (linear) gravitational instabilities. Palmer & Papaloi-
zou (1987) have shown that this does seem to be the physical
origin of the radial orbit instability in spherical systems. In
flat discs, however, where most orbits are nearly circular,
cooperation of orbital streams does not seem to be the
trigger of (linear) bar formation, as we discuss below. This
conclusion might be guessed from the example of the
isochrone (Fig. 2) in which ¢ has significant magnitude only
for nearly radial orbits.

We can identify three distinct mechanisms that are
associated with the cooperation parameter and could trigger
the growth of unstable bar modes in discs: (i) cooperative
orbit alignment (a =2, > 0) similar to the Jeans instability
for individual stars (Lynden-Bell 1979) - in this case we
would expect a strong correlation between the sign of the
o =2 cooperation parameter and the formation of a bar in a
disc model; (ii) uncooperative anti-alignment of orbits (a =2,
£ <0) similar to the two-stream instability of plasma physics
(Collett 1988) - here an anticorrelation would be expected
between bar formation and the sign of ¢ for a = 2; (iii) non-
cooperation at corotation (m=2 but a— ©, £ <0) (Collett
1994). Two-stream instability probably works most power-
fully on the m=2 disturbances of material near corotation
where all the little Lindblad epicycles are uncooperative.

A decisive test for mechanisms (i) and (ii) is the stability
analyses of scale-free (power-law) discs in which the sign of
the cooperation parameter is the same everywhere. Earn
(1993) has studied the linear stability of a class of power-law
discs (Evans 1994) and found no correlation (or anticorrela-
tion) between instability of bar modes and the sign of the
a =2 cooperation parameter (Fig. 3 of this paper): nor did he
find a relation between lopsided instabilities and the sign of
the a =1 cooperation parameter. This appears to eliminate
mechanisms (i) and (ii) in the linear regime, although it says
nothing about mechanism (iii) because corotation is always
uncooperative, so two-stream instability could work when-
ever there was a deep enough minimum in the effective
distribution function.

This indicates that cooperative alignment of orbits does
not drive typical linear bar instabilities in stellar discs.
Another mechanism must be responsible, perhaps mechan-
ism (iii), but in any case presumably one that causes unstable
modes to grow faster than bisymmetric orbits can be
trapped. Orbital alignment instabilities with small growth
rates may still exist, but if they are masked by more virulent
instabilities then they are irrelevant.

Nevertheless, there are several ways in which cooperation
of orbital streams may be important in the evolution of real
disc galaxies. In particular, if galactic discs are typically more
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stable than models that are easy to construct, then the
unstable modes may grow slowly enough that the fast action
is adiabatically invariant and the cooperation mechanism
governs the growth. Alternatively, encounters with other
galaxies can excite linearly stable discs, perhaps to high
enough amplitude for non-linear effects to take over; the
cooperation analysis is still valid in this circumstance, as we
now explain.

The cooperation analysis is valid provided that the
perturbation V to the porential is small. In contrast, the
linearized collisionless Boltzmann equation is valid only
while the perturbation fto the phase-space density is small.
Since V is obtained from f by four or six integrations, it is
greatly smoothed compared with f and the cooperation
analysis will be valid well into the non-linear regime (in the
sense of the Boltzmann equation).

One way we plan to explore the significance of coopera-
tion for the non-linear evolution of discs is to compare the
non-linear behaviour of two bar-forming models with
cooperation parameters of opposite sign. Models with very
massive haloes should also be explored carefully, since the
growth rates of unstable modes will tend to be lower.

The true origin of bars, lopsidedness and other non-
axisymmetric features in disc galaxies is not clear. However,
some bars may be formed by interaction of galaxies that were
not formerly barred. We therefore note finally that angular
momentum loss to a passing perturber, from particles of a
ring near inner Lindblad resonance with it, inevitably leads
to an increase of J;/h=1/2+Jz/h. This increase in J,/h
entails an increase in the rings’ ellipticity (Lynden-Bell 1963)
so forming a bar shape, and moreover, typically making
cooperation more effective. Whatever the process of pattern
formation, we emphasize again that cooperation may be
important for sustaining non-axisymmetric features for a long
time.
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