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1. Introduction 

Numerical simulations usually aim to study the qualitative features of dynamical sys
tems. For example, when we simulate disk galaxy dynamics we are concerned with the 
overall evolution of the galaxy rather than the fine details of individual stellar orbits. 

In seeking practical numerical methods that correctly reproduce the qualitative be
haviour of dynamical systems, it is always worthwhile to try to ensure that the basic 
mathematical structure of the system under study is not altered by the integration 
method. We present here a method for modifying a traditional integration scheme so 
that if the original system is Hamiltonian then the computed system is also exactly 
Hamiltonian. The effect of this method is to provide the exact solution for a Hamilto
nian system that is slightly different from the system one really wishes to integrate. The 
method as stated here is applicable to an important class of problems in Hamiltonian 
dynamics. In particular, it can be used to perform exact integrations of Hamiltonian 
systems that closely approximate the gravitational N-body problem. 

2. Hamiltonian Systems and Leapfrog 

To a very good approximation, many of the dynamical systems that we study in as
tronomy are Hamiltonian systems. This means that a state of the system is described 
by a point in phase space and the time evolution is given by Hamilton's equations, 

. 8H 
x= 8v' 

. 8H 
v=-ax· (1) 

Here H is the Hamiltonian, the total energy expressed as a function of x, v, and t. A 
solution of these equations (1) gives a trajectory in phase space. 

There are several important properties shared by all Hamiltonian systems. The most 
basic is that phase trajectories do not intersect. Hamiltonian systems have several other 
special properties, which can be expressed as integral invariants. The most fundamental 
of these is that volume in phase space is preserved. An ideal numerical integration 
scheme ought to preserve all these properties. 
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There are two major classes of dynamical systems: Hamiltonian systems and dissipa
tive systems. While trajectories of Hamiltonian systems remain distinct, trajectories of 
dissipative systems tend to converge onto an "attractor". Standard numerical methods 
turn Hamiltonian systems into dissipative ones, destroying the Hamiltonian properties 
(although for good methods, the dissipation is weak and only leads to noticeable effects 
after integrating for a long time). 

Numerical integration schemes give the state of the system at time t + .6.t given the 
state at time t. To do this exactly requires the evaluation of an infinite series. Since the 
series must be truncated after a finite number of terms, the computed new state is not 
exactly correct. In symplectic integration algorithms (e.g., Channell and Scovel 1990) 
the bad effects of this truncation error are evaded by replacing the original system with 
a slightly different (but still Hamiltonian) system for which the series are always finite. 
Thus, despite the finite time step, all the Hamiltonian properties are preserved; the only 
error is that the Hamiltonian is slightly incorrect. 

Unfortunately, this goal of preserving the Hamiltonian properties is not really 
achieved in practice. Roundoff errors make it impossible to perform the required finite 
computations exactly, so phase trajectories still intersect and phase volumes contract 
with time. The main point of this presentation is that numerical integrations can be 
made exactly Hamiltonian despite roundoff error. 

The simplest symplectic integration algorithm is the standard "leapfrog" scheme, 

x(t + .6.t) = x(t) + .6.t v(t + .6.t), 
au 

v(t + .6.t) = v(t) - .6.t ax (x(t)). 
(2) 

This first-order method can be used to integrate trajectories described by any Hamilto
nian that can be expressed in the form H = !v2 +U(x) (an important special case is the 
gravitational N-body problem in cartesian coordinates). Equations (2) follow directly 
from Hamilton's equations (1) with the Hamiltonian H = !v2 + U(x) En h(t - n.6.t). 
Thus truncation error is "cured" by multiplying the potential by a periodic time
dependent factor whose average value is unity. 

We may now avoid roundoff error by adding a small, time-independent perturbation 
to the original potential U(x), so that when the perturbed potential U(x) is inserted 
in the leapfrog scheme (2) the required computations can always be done exactly. The 
idea is to ensure that the scheme (2) maps a lattice of points to itself. After a change 
of scale, lattice points will have integer coordinates so computers can do the required 
iteration of the "lattice map" without errors. Choose units such that the time-step .6.t 
is an integer, and let the lattice have m points per unit. Then the "integerized leapfrog" 
scheme is 

mx(t + .6.t) = mx(t) + .6.t mv(t + .6.t), 

mv(t + .6.t) = mv(t) - [.6.tm: (x(t))] , 
(3) 

where square brackets denote the nearest integer vector. Provided that we choose 
initial conditions (x(O), v(O)) such that mxi(O) and mvi(O) are integers for each i, 
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Figure 1. (a) A typical "regular" phase trajectory of the map obtained by applying ordinary 
leapfrog (with REAL•4 floating-point arithmetic) to evolve the motion of a particle in the 
potential U( x) = (27r )-2 cos 27rx. The complete phase trajectory is shown; it appears to 
remain on an invariant curve but the following enlargements at various times reveal that the 
motion is more complicated. (b) 105 iterations. (c) 106 iterations. (d) 2150019 iterations. 
The limit circuit has been reached by this time and the plot has been terminated after one 
completion of the limit circuit. (e) The limit circuit alone (1622 iterations). Only two points 
of the limit circuit appear in this enlargement, which is of the same region as (b ), ( c ), and ( d ). 
The phenomenon observed here, attraction of a trajectory onto a limit circuit that does not 
contain the initial point of the trajectory, cannot occur in a Hamiltonian system. 

(mx(n~t), mv(n~t)) can be determined exactly for all n. Thus (3) yields the ex
act solution of the problem with Hamiltonian H = tv2 + U(x) En 8(t - n~t). (A 
precise discussion of U, including a proof that it exists, is given elsewhere (Earn and 
Tremaine 1991 ), but equations (3) are all that is needed to carry out the computations.) 
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Figure 2. Complete trajectories obtained using integerized leapfrog, starting from the same 
point as the plots in Figure 1. The scale is the same as in Figure l(b-d). (a) m = 105 , cycle 
length L = 16728. (b) m = 106 , L = 34756. (c) m = 107 , L = 1689794. (d) m = 108 , 
L = 130141384. In a Hamiltonian system on a finite lattice, such as this one, all trajectories 
are periodic. 

3. The Standard Map 

To illustrate the bad effects of roundoff error and how these are overcome using lattice 
maps, we have applied both ordinary leapfrog ( eqs. 2 with single-precision :floating
point arithmetic) and integerized leapfrog (eqs. 3) to the motion of a particle in the 
one-dimensional potential U(x) = K/(27r)2 cos21rx, where K is a constant. Inserting 
this potential in (2) we obtain 

Xn+l = Xn + Vn+l , 

Vn+l = Vn + ~ sin(21rxn). 
(4) 

where Xn = x(n.6t), Vn = v(n.6t) and time units are chosen so that .6t = 1. This is the 
well-known "standard map". K is known as the "stochasticity parameter". This map is 
periodic in both x and v with period 1. 

Since computers can only represent a finite number of states, repeated iteration of ( 4) 
eventually leads to a cycle, which we call the limit circuit. This is true whether we use 
ordinary or integerized leapfrog. The advantage of integerized leapfrog is that it is 
exactly Hamiltonian; thus phase trajectories do not intersect and initial points always 
lie on the limit circuit. An integerized version of the standard map was first investigated 
by Rannou (1974). 

The figures show the results of a number of experiments investigating the differ
ences between trajectories calculated using ordinary leapfrog and integerized leapfrog. 
Ordinary leapfrog allows "regular" trajectories to cross invariant curves, and it allows 
"chaotic" trajectories to be trapped indefinitely by a "regular" attractor. These effects 
are simply wrong and do not occur if integerized leapfrog is used instead. 
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Figure 3. Another example of unsatisfactory behaviour found when using ordinary leapfrog 
with REAL•4 floating-point arithmetic. (a) The first 40 000 iterations display an apparently 
regular trajectory. (b) The next 1730000 iterations show an apparently chaotic trajectory. 
The limit circuit is reached near the end of this interval. ( c) The limit circuit has length only 
37 310 iterations and appears to be a regular trajectory (a chain of islands). 

4. Concluding Remarks 

The effects of roundoff error and the benefits of lattice maps are discussed in greater 
detail in Earn and Tremaine (1991 ). The use of lattice maps to design exactly symplec
tic integration algorithms of arbitrary order for general Hamiltonians is discussed by 
Scovel (1991 ). 

The use of lattice maps has practical value mostly for systems that are studied over 
long time scales. Thus the use of lattice maps is likely to be more important for Solar 
System simulations lasting for millions of orbital times, than for galaxy simulations 
lasting for hundreds of orbital times. 

References 

Channell, P.J. and Scovel, C. (1990) "Symplectic Integration of Hamiltonian Systems." Non
linearity, 3, 231-259. 

Earn, D.J.D. and Tremaine, S. (1991) "Exact Numerical Studies of Hamiltonian Maps: Iterating 
Without Roundoff Error." Submitted to Physica D. 

Rannou, F. (1974) "Numerical Study of Discrete Plane Area-preserving Mappings." Astron. 
and Astrophys., 31, 289-301. 

Scovel, C. (1991) "On Symplectic Lattice Maps." Submitted to Phys. Lett. A. 


