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Recent experiments indicate that CD4+ Th2 cells can reject skin tumors in mice, while CD4+ Th1 cells

cannot (Mattes et al., 2003; Zhang et al., 2009). These results are surprising because CD4+ Th1 cells are

typically considered to be capable of tumor rejection. We used mathematical models to investigate this

unexpected outcome. We found that neither CD4+ Th1 nor CD4+ Th2 cells could eliminate the cancer

cells when acting alone, but that tumor elimination could be induced by recruitment of eosinophils by

the Th2 cells. These recruited eosinophils had unexpected indirect effects on the decay rate of type 2

cytokines and the rate at which Th2 cells are inactivated through interactions with cancer cells.

Strikingly, the presence of eosinophils impacted tumor growth more significantly than the release of

tumor-suppressing cytokines such as IFN-g and TNF-a. Our simulations suggest that novel strategies to

enhance eosinophil recruitment into skin tumors may improve cancer immunotherapies.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

T lymphocytes play a critical role in controlling cancer
(Shankaran et al., 2001; Smyth et al., 2001). These lymphocytes
can be divided into two major classes: (1) CD8+ T cells, which
typically reject tumors by direct interaction with targets on the
tumor cell, and (2) CD4+ T cells, which typically reject tumors
through indirect means following stimulation by other immune
cells infiltrating the tumor, such as antigen presenting cells
(APCs). CD8+ T cells were initially thought to be the principal
effectors in anti-tumor immunity due to their ability to directly
lyse tumor cells, whereas CD4+ T cells were thought to play only a
supportive role in CD8+ T cell activation (Behrens et al., 2004).
However, there is increasing evidence supporting a direct role for
CD4+ T cells in anti-tumor immunity, independent of CD8+ T cells
(Hung et al., 1998; Toes et al., 1999; Zeng, 2001; Corthay et al.,
2005; Perez-Diez et al., 2007; Lane et al., 2004; Leitch et al., 2004;
Wan et al., 2000).

Although the exact mechanisms by which CD4+ T cells
eliminate cancer cells is not fully elucidated, there is evidence
that they do so via the secretion of tumor-suppressive cytokines
and activation of innate effectors, such as granulocytes, which can
exert direct tumoricidal functions (Mattes et al., 2003). Tumors
can evade CD8+ T cell attack by losing or down-regulating their
surface major histocompatibility complex molecules (MHC)
(Algarra et al., 2000; Garcia-Lorca et al., 2003). Remarkably, the
indirect nature of CD4+ T cell-mediated tumor rejection over-
ll rights reserved.

56; fax: +1 905 522 0935.

ftimie).
comes this mechanism. In fact, several reports have demonstrated
that CD4+ T cells can eliminate MHC-negative tumors which are
resistant to CD8+ T cells (Perez-Diez et al., 2007; Wan et al., 2000;
Ossendorp et al., 1998; Qin and Blankenstein, 2000).

Given the utility of CD4+ T cell responses for cancer immu-
notherapy, in this article we focus on the effector role of these T
cells. Following emergence from the thymus, antigen-specific CD4+T
cells exist in a naı̈ve state with limited functional capacity. Upon
encounter with antigen, signals from antigen presenting cells and
the microenvironment of the lymph node (where the CD4+ T cells
encounter the antigen presenting cells) promote proliferation of the
naı̈ve cells and differentiation of the daughter cells. Historically,
differentiated CD4+ T cell effectors were separated into two
categories, Th1 and Th2, which were defined by the cytokines
produced by the T cells upon stimulation. Th1 cells secrete pro-
inflammatory cytokines, such as IFN-g, whereas Th2 cells produce
anti-inflammatory cytokines, such as IL-4, IL-5, and IL-13. Both Th1
and Th2 cells have the potential to cause damage to the tumor
microenvironment through the release of cytokines that suppress
angiogenesis (growth of new blood vessels from pre-existing
vessels) and act as chemoattractants for tumoricidal cells such as
NK cells, macrophages and granulocytes (Hung et al., 1998; Qin and
Blankenstein, 2000; Mattes et al., 2003; Volpert et al., 1998).

In this article, we investigate the surprising observation that
Th2 cells, but not Th1 cells, are responsible for rejecting skin
tumors produced by the widely used B16F10 melanoma cell line
that grows in immune-competent mice (Mattes et al., 2003;
Zhang et al., 2009). As a tool to make sense of these observed
tumor–immune interactions, we used mathematical models.

Many types of models have been employed to identify
mechanisms that could explain observed cancer-immune system
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interactions (see, for example, Araujo and McElwain, 2004;
Bellomo and Preziosi, 2000; Bellomo et al., 2008; Byrne et al.,
2006; Martins and Vilela, 2007; Nagy, 2005; Roose et al., 2007;
Chaplain, 2008; Eftimie et al., 2010, and the references therein).
The majority of these models focus on spatial processes, which are
described either by partial differential equations (PDE) or cellular
automata (CA) (e.g., Chaplain et al., 1998; Araujo and McElwain,
2004; Roose et al., 2007; Chaplain, 2008; Matzavinos and
Chaplain, 2004; Matzavinos et al., 2004; Owen and Sherratt,
1997, 1999). Another class of models of tumor–immune interac-
tions is based on the mathematical kinetic theory of ‘‘active
particles’’, which gives a statistical description of the evolution of
large populations of cells that undergo kinetic interactions (see,
for example, Bellomo and Preziosi, 2000; Bellomo et al., 2003;
Bellomo and Delitala, 2008 and the references therein). These
models are described in terms of an ‘‘activity’’ variable that
characterizes the discrete biological states of individual cells (for
example, the degree of recognition of cancer cells by the antigen-
presenting cells (Kolev, 2003), or the degree of activation of
immune cells, Brazzoli et al., 2010). The need to average over the
‘‘activity space’’ renders these models quite complex (they are
described by integro-differential equations), and their complexity
is further increased when a spatial component is added (see, for
example, the review of Bellomo and Delitala, 2008).

In this article, our focus is on a different class of models,
namely non-spatial models described by ordinary differential
equations (ODE) (see, for example, Adam and Bellomo, 1997;
Dullens et al., 1986; Bajzer et al., 1996; Sachs et al., 2001; Nagy,
2005; Eftimie et al., 2010). These ODE models are based on the
assumption that cell populations are homogneous (each cell has
the same ‘‘activity’’ state, which is the average of the activity
states of the entire cell population). While these models do not
address spatial spread, they provide a much simpler framework
within which to explore the interactions among tumor cells and
the different types of immune and healthy tissue cells. Such ODE
models have been used, for example, to investigate the anti-tumor
role of NK cells, CD8+ T cells, CD4+ T cells, B cells (Kuznetsov
et al., 1994; Szymanska, 2003; de Pillis et al., 2006; Joshi et al.,
2009), and macrophages (Owen and Sherratt, 1998).

We recently reviewed ODE models from a structural point of
view (Eftimie et al., 2010), and showed that building these models
in steps can help clarify underlying immuno-oncological mechan-
isms. For the present paper, we took a similar approach and
investigated the interactions between Th1 and Th2 cells and
tumor cells by increasing model complexity in steps. We derived
two parallel mathematical models to investigate separately the
Th1-tumor interactions and the Th2-tumor interactions. First, we
investigated a model where the Th1 and Th2 cells suppress tumor
growth through cytokine production. In this case, there was no
direct interaction between the tumor cells and the immune cells.
This model contrasts previous mathematical modeling efforts,
which have focused on cytotoxic cells that eliminate tumors
through direct interactions (see for example Kirschner and
Panetta, 1998). Then, we increased model complexity in order
to investigate the influence of granulocyte
(i.e., eosinophil and neutrophil) recruitment into the tumor
microenvironment: Th1 cells preferentially recruit neutrophils
while Th2 cells promote eosinophil recruitment (Buonocore et al.,
2004; Mattes et al., 2003; Tepper et al., 1992).

Our analysis of the models revealed that in the absence of
eosinophils and neutrophils, neither the Th1 nor the Th2 models
eliminate the tumor. The recruitment of neutrophils did not have
a substantial effect on the dynamics of the Th1 cells. By contrast,
the recruitment of eosinophils changed the dynamics of the
system substantially, through effects on particular parameters
(i.e., the rate of tumor growth, the rate at which Th cells are
inactivated after interactions with the tumor cells, the decay rate
of tumor-promoting cytokines, the decay rate of type 2 cytokines,
and the rate at which the tumors produce cytokines and other
factors that support their growth), ultimately leading to elimina-
tion of the tumor cells. Moreover, we found that tumor
persistence is associated with a critical threshold of the ratio of
cytokines that inhibit tumor growth to those that promote tumor
growth. Since these results depend on the values of the
parameters, we conducted a sensitivity analysis that indicates
which parameters are most likely to induce tumor regression. Our
modelling reveals a previously unappreciated feedback mechan-
ism between Th2 cells and eosinophils that sustains anti-tumor
immunity and promotes tumor rejection.
2. Model description

Many of the immunological processes that will concern us
(e.g., recruitment of immune cells into the tumor, tumor growth, and
tumor cell lysis by the immune cells and cytokines) are fundamen-
tally spatial processes. However, since we have no explicitly spatial
data, we focus on non-spatial models. Following the approach in
Yates et al. (2000), we assume that the rates of change of antigen-
specific Th1 and Th2 cell populations can be described by

Rate¼ activationþproliferation=recruitment�death: ð1Þ

Throughout this paper we investigate only the dynamics that take
place inside the tumor microenvironment. The proliferation/recruit-
ment term describes the fact that the immune cells can either
proliferate inside the microenvironment, or proliferate somewhere
else and then be recruited into the microenvironment with the help
of cytokines and chemokines. For simplicity, we combine the
proliferation and recruitment of cells into a single term. The
activation term incorporates the rate of successful encounters of
naı̈ve cells with antigen presenting cells. Variation in the concentra-
tion of antigens can thus alter the activation rate. The time-evolution
of tumor cells can be described by a similar equation which has only
the growth and the death terms (i.e., no activation for the tumor
cells).

In a similar manner, we can describe the rate of change of
cytokine concentration via

Rate¼ production�decay: ð2Þ

To understand the mechanisms that can lead to the elimination of
a tumor by Th2 cells and the failure of Th1 cells, we started by
investigating only the interactions between these immune cells
and the tumor. These interactions are mediated by cytokines
produced by the Th1 cells (type 1 cytokines) and the Th2 cells
(type 2 cytokines). Since these cytokines can have both pro-tumor
and anti-tumor roles, we distinguished between tumor-suppres-
sing cytokines (such as IFN-g, TNF-a, or IL-4), and tumor-
promoting cytokines (such as IL-10). To simplify the models, we
also included in the last category some growth factors that have a
pro-tumor effect (such as TGF-b and VEGF).

Our models of tumor–immune interactions use the following
notation:

XTh Th cell population. Under the influence of the cytokine
medium, the Th cells can polarize and become Th1 cells
(XTh1) or Th2 cells (XTh2)

Xtum Tumor cell population
C1 Type 1 cytokines (i.e., cytokines secreted by Th1 cells,

such as IL-2, IFN-g).
C2 Type 2 cytokines (i.e., cytokines secreted by Th2 cells,

such as IL-4, IL-5, IL-13);
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Cts Tumor-suppressing cytokines (i.e., cytokines produced
by various immune cells to suppress tumor growth: e.g.,
IL-4 produced by Th2 cells, tumor necrosis factor a (TNF-
a) and interferon g (IFN-g) produced by Th1 cells);

Ctp Tumor-promoting cytokines (i.e., cytokines produced by
tumors and in some cases by immune cells, which
promote tumor growth and angiogenesis: VEGF, TGF-b,
and even IL-10 and IL-13).

Eqs. (1) and (2) illustrate the terms that will appear in our
formal mathematical equations describing the time-evolution of
cell populations and cytokine concentrations. Before presenting
these equations, we discuss in detail the terms describing the
dynamics of each type of cell and class of cytokines.
1.
 Terms in Eq. (1) associated with Th cells:
� Activation happens in the presence of tumor cells and is

determined by type 2 cytokines (for the Th2 cells) or type 1
cytokines (for the Th1 cells). Moreover, Th cell activation is
inhibited by tumor promoting cytokines (TGF-b) (Yates
et al., 2000). This interaction can be described mathema-
tically by the term ðaThCi=ð1þkpCtpÞÞXtum=ðh2þXtumÞ, where
aTh is the activation rate, Ci stands for type i cytokines (i¼1
or 2) and kp determines the concentration of tumor-
promoting cytokines at which their effect becomes im-
portant. The factor Xtum=ðh2þXtumÞmimics the saturation of
interactions between tumor cells and antigen presenting
cells as the tumor increases in size. Here h2 is the half-
saturation constant for the tumor cells that are detected by
the T cells (via antigen presenting cells).
� Proliferation happens in the tissue once the cells become

activated, and is inhibited by pro-tumor cytokines (TGF-b).
Throughout this article we assume that there is a carrying
capacity (1/KTh) for the total number of Th cells present in
the tumor microenvironment. Denoting the proliferation
rate by bTh, we can model this proliferating process using
bThXTh=ðð1�KThXThÞð1þkpCtpÞÞ.
� Cells undergo apoptosis at a constant rate cTh. Moreover, Th

cells can become inactivated at a rate dTh after interactions
with the tumor cells (Flynn and Stockinger, 2003). We
model these two processes via cTh fdeath (XTh)+dThXTh Xtum.
The apoptosis function fdeath is slightly different for the Th1
and the Th2 cells. In particular, it has been suggested that a
high concentration of IL-2 decreases the death rate of CD4+

T cells (Ganusov et al., 2007). Since IL-2 is a type 1 cytokine,
we will assume that it influences the death rate of the Th1
cells, and not the Th2 cells. This might not be entirely
realistic, but it helps us to keep the models simple, without
introducing another category of cytokines for the Th2
model. We incorporate the effect of IL-2 into the Th1 model
by assuming that

fdeathðXThÞ ¼
XTh

1þk1C1
: ð3Þ

For the Th2 model, the apoptosis function is

fdeathðXThÞ ¼ XTh: ð4Þ
ms in Eq. (1) associated with the dynamics of tumor cells:
2.
 Ter
� Tumor growth is modeled by a logistic term that accounts

for the deceleration in the growth as the size of the tumor
increases (Spratt et al., 1993): atum Xtum (1�Ktum Xtum).
Here atum is the growth rate, and 1/Ktum is the carrying
capacity. Moreover, both the tumor-promoting and tumor-
suppressing cytokines affect tumor growth by increasing or
decreasing it, respectively. Hence, the full term describing
the growth of the tumor is: atumXtumð1�KtumXtumÞ
ð1þkpCtpÞ=ð1þ ksCtsÞ. Here kp and ks determine the
concentration of tumor-promoting and tumor-suppressing
cytokines at which their effects become important.
� Tumor cells are killed through interactions with tumor-

supressing cytokines (Hung et al., 1998): gtumCtsXtum=ðh0þ

XtumÞ. Here gtum is the rate at which the tumor cells are
killed by the cytokines, and h0 is the half-saturation
constant for the tumor cells killed by these cytokines.
3.
 Terms in Eq. (2) associated with the dynamics of type 1 and
type 2 cytokines:
� Production of cytokines is driven by the presence of tumor

cells ðXtum=ðh2þXtumÞÞ, and is inhibited by the presence of
tumor promoting cyokines (TGF-b). Type 1 cytokines are
produced by Th1 cells (i11XTh1), while type 2 cytokines are
produced by Th2 cells (i11XTh2). Moreover, the cytokines
may be produced at a rate c by other types of cells present
in the tumor microenvironment. Putting these effects
together, the rate of change of the cytokine population is
ði11XThþcÞXtum=ððh2þXtumÞð1þkpCtpÞÞ.
� Cytokines decay at a constant rate j0, yielding terms j0Ci,

iAf1,2g.

4.
 Terms in Eq. (2) associated with the dynamics of tumor-

suppressing cytokines (e.g., TNF-a, IFN-g, IL-4):
� Production of cytokines is driven by the presence of tumor

cells, and inhibited by the presence of tumor-promoting
cyokines. The cytokines are secreted by Th1 and Th2 cells
(i21XTh), and possibly by other types of immune cells
present in the microenvironment (c). The full term
describing the production of these cytokines is
ði21XThþcÞXtum=ððh2þXtumÞð1þkpCtpÞÞ.
� The cytokines decay at a constant rate jts, yielding the term

jtsCts.

5.
 Terms in Eq. (2) associated with the dynamics of tumor-

promoting cytokines (e.g., TGF-b, VEGF, IL-13):
� Following the approach of Arciero et al. (2004), we model

the production of tumor-promoting cytokines by the tumor
cells with the term i3tX

2
tum=ðh

2
1þX2

tumÞ. However, the Th2
cells—and in a smaller proportion the Th1 cells—can
produce IL-13, which has pro-tumor effect, being associated
with increased tumor implantation (see Mattes et al., 2003).
In addition, we account for the production of tumor-
promoting cytokines (at rate c) by other cells in the tumor
microenvironment (e.g., tumor-associated macrophages).
Note that these tumor-promoting cytokines do not seem to
be inhibited by any other types of cytokines (such as
tumor-supressing cytokines). Putting these various con-
tributions together, the rate of growth of the population of
tumor-promoting cytokines is ði31XThþcÞXtum=ðh2þXtumÞþ

i3tX
2
tum=ððh

2
1þX2

tumÞÞ.
� The tumor-promoting cytokines decay at a constant rate jtp,

yielding the term jtpCtp.
Substituting all the above terms into Eqs. (1) and (2), we obtain
the following model, which describes the interactions between
the Th1 cells and the tumor (the Th1 model) or between the Th2
cells and the tumor (the Th2 model):

dXTh

dt
¼ aThCi

Xtum

ðh2þXtumÞð1þkpCtpÞ
þ

bTh

1þkpCtp
XThð1�KThXThÞ

�cThfdeathðXThÞ�dThXThXtum, ð5aÞ

dXtum

dt
¼ atum

ð1þkpCtpÞ

ð1þksCtsÞ
Xtumð1�KtumXtumÞ�

gtumCtsXtum

ðh0þXtumÞ
, ð5bÞ
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dCi

dt
¼�j0Ciþ

ði11XThþcÞXtum

ðh2þXtumÞð1þkpCtpÞ
, ð5cÞ

dCts

dt
¼�jtsCtsþ

ði21XThþcÞXtum

ðh2þXtumÞð1þkpCtpÞ
, ð5dÞ

dCtp

dt
¼�jtpCtpþ

ði31XThþcÞXtum

ðh2þXtumÞ
þ

i3tX
2
tum

ðh2
1þX2

tumÞ
: ð5eÞ

Here, Ci denotes the type i cytokines ðiAf1,2gÞ produced by the
Th1 or Th2 cells. The apoptosis function fdeath is given by Eqs. (3)
and (4). The Th1 and Th2 models differ structurally in that they
use different functional forms for fdeath; in addition, they differ in
the values of parameters that characterize the production of
cytokines (see Table 2 in Appendix A).

It would be possible to reduce the number of parameters in our
model—as for most models—by non-dimensionalizing. In this
paper, because we use some of the model parameters to interpret
biological experiments, we prefer to work with a dimensional
model. A more specific way to simplify models like ours is to
assume that the cytokines evolve on a much faster time scale, and
therefore that their dynamics can be described by a steady-state
equation (Yates et al., 2000). Separating timescales in this way
would eliminate the last three equations in (5), but would replace
each occurrence of a cytokine variable in the remaining equations
with a very complex expression in Xtum and XTh. The resulting
system is too unwieldy to be amenable to a useful analytical
treatment, so there is little to be gained by this approximation. We
therefore proceed with analysis of the full five-equation model (5),
without making any approximations. Some useful information can
be obtained analytically, but most of our analysis is numerical.
Table 1
The number of possible coexistence steady states depends on the values of model

parameters, as well as the concentration of tumor-suppressing and tumor-

promoting cytokines.

S�r
atum

gtumbtum

ðbtumh0�1Þ2

4
þh0

 !
S�Z

atum

gtumbtum

ðbtumh0�1Þ2

4
þh0

 !

S�o
h0atum

gtum

1 coexistence steady state (Xtum
n1 ) no coexistence steady state

S�4
h0atum

gtum

2 coexistence steady states

(Xtum
n2 , Xtum

n3 )

no coexistence steady state

We denote by S� ¼ C�tsðð1þksC�tsÞ=ð1þkpC�tpÞÞ. For large Sn (i.e., the concentration of

tumor-suppressing cytokines is much larger than the concentration of tumor-

promoting cytokines), there are no coexistence steady states. For small Sn (i.e., a

higher concentration of tumor-promoting cytokines), there is a coexistence steady

state. However, for intermediate values of Sn, it is possible to have two different

coexistence steady states.
3. Steady states and their stability

In preparation for the numerical investigation of the tumor–
immune dynamics, we studied analytically the long-time beha-
vior of model (5). In particular, we were interested in the size of
different cell populations and cytokine concentrations when the
system is at equilibrium.

First, it is easily shown that if the initial data are non-negative
(i.e., Cið0ÞZ0, iA1,2, and Xið0ÞZ0, iAfTh,tumg), then the solution
is also non-negative (see Appendix B); in particular, any steady
state that is reached will be non-negative. Thus the model is
biologically well-posed.

Linear analysis reveals the possibility of having two tumor-free
steady states and a coexistence steady state. The first tumor-free
steady state is characterized by the absence of any tumor cells,
immune cells or cytokines:

ðXTh,Xtum,Ci,Cts,CtpÞ ¼ ð0,0,0,0,0Þ, iAf1,2g: ð6Þ

This state corresponds to the successful elimination of the tumor.
The second tumor-free steady state is characterized by the

absence of tumor cells and cytokines, but the presence of immune
cells:

ðXTh,Xtum,Ci,Cts,CtpÞ ¼ ðX
�,0,0,0,0Þ, ð7Þ

where X� ¼ ðbTh�cThÞ=KThbTh, and iAf1,2g. Note that this steady
state would not arise without the assumption that the recruit-
ment/proliferation of Th cells occurs at a constant rate, as soon as
the cells become activated. Moreover, this steady state exists only
when the recruitment rate is larger than the apoptosis rate
ðbTh4cThÞ. Throughout this paper we will ignore this steady state
and choose bTh and cTh such that bThocTh.

Further investigation of the stability of the tumor-free steady
states reveals that these states are always unstable. The
eigenvalues of the Jacobian matrix associated with (5) are exactly
the terms on the main diagonal of this matrix. For Eq. (5b), the
value on the main diagonal is the tumor growth rate (atum), which
is always positive. All other terms are zero when calculated at the
steady states. The only non-zero population at the steady state
(the Th cells) does not enter the equation for the tumor growth.
Therefore, when the immune cells do not interact directly with
the tumor cells, tumor can only be temporarily eliminated. A
slight perturbation in the system will cause tumor relapse.

The relapse of the tumor is characterized by the evolution of
system (5) towards a coexistence steady state. This state is
described by persistent tumor cells, continuous production of
cytokines and a small number of activated immune cells:

ðXTh,Xtum,Ci,Cts,CtpÞ ¼ ðX
�
Th,X�tum,C�i ,C�ts,C�tpÞ, ð8Þ

with iAf1,2g. It is impossible to write down closed-form
equations that completely specify this steady state. However,
using the equation for the dynamics of tumor cells (Xtum) one can
obtain an expression for Xtum

n , which depends on the concentra-
tions of tumor-suppressing cytokines and tumor-promoting
cytokines:

X�tum ¼
�ðh0Ktum�1Þ

2Ktum
7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðh0Ktum�1Þ2�4Ktum

gtum

atum
S��h0

� �s

2Ktum
, ð9Þ

where

S� ¼
C�tsð1þksC�tsÞ

ð1þkpC�tpÞ
: ð10Þ

The number of coexistence steady states depends on the values of
the parameters (see Table 1). When Sn is very large (i.e., the
concentration of tumor-supressing cytokines is much higher than
the concentration of tumor-promoting cytokines), then the tumor
is eliminated and there are no coexistence steady states. When Sn

is small ðS�oh0atum=gtumÞ (i.e., the concentration of tumor-
promoting cytokines is higher than the concentration of tumor-
supressing cytokines), there is only one coexistence steady state
(Xtum

n1 ). This state is characterized by a very large number of tumor
cells. For intermediate values of Sn (i.e., S�4h0atum=gtum), the
system can evolve towards one of two possible relatively small
steady states Xtum

n2 or Xtum
n3 , where X�3tumoX�2tumðoX�1tumÞ. Hence, the

threshold value Sn¼h0atum/gtum determines whether the system
will evolve towards a very large tumor or a small tumor (of two
possible sizes). We will come back to this threshold in the
following sections, in the context of our numerical simulations.
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4. Numerical results

In this section, we summarize our numerical simulations that
investigate the growth of tumor cells and how this is affected by the
immune cells. The parameters used for these simulations are
specified in Table 2, in Appendix A. Note that throughout this paper
we focus on a particular parameter space and assume that the
majority of parameters have similar values for both the Th1 and the
Th2 models. The few exceptions are highlighted in bold in Table 2.

Since we want to understand the mechanisms behind the
rejection of tumors by Th2 cells and the failure of Th1 cells to
reject them, we use initial conditions similar to the ones described
in Mattes et al. (2003). In particular, we model the effect of
injecting 105 tumor cells on day zero. We also assume that at this
initial time, there are no activated immune cells or cytokines
present at the injection site: XTh1¼0, XTh2¼0, Ci¼0, Cts¼0, and
Ctp¼0.

Fig. 1 shows the growth of the tumor following the injection of
tumor cells. Because these cells are only weakly immunogenic,
the immune response is not significant. Moreover, the differences
between the two models we mentioned in Section 2 are not
sufficient to induce a difference in tumor growth. For both
models, the tumor reaches its carrying capacity approximately 20
days after it is introduced.

Next, following the approach in Mattes et al. (2003), we
investigate the result of adoptively transferring 107 Th1 and Th2
cells into the tumor-bearing mice. The cells are transfered 7 days
after the tumor is inoculated. The adoptive transfer can be
incorporated into the model by adding a step function (s0) to Eqs.
(5a) which describe the time-evolution of immune cells. This
function is different from zero only on the day the treatment is
administered:

s0 ¼
107=day if tA ½7,8�,

0 otherwise:

(
ð11Þ

Fig. 2 shows the effect of adoptive transfer on the dynamics of
the Th1 and Th2 models. The graphs in panels (a) and (c) show
that neither model is capable of eliminating the tumor. The
tumor-suppressing cytokines can only temporarily stop the
growth of the tumor. The tumor starts growing again 15–20
days after it was introduced (i.e., 1–2 weeks after the adoptive
transfer of T cells). Panels (b) and (d) show the ratio

SðtÞ ¼
CtsðtÞð1þksCtsðtÞÞ

1þkpCtpðtÞ
, ð12Þ

of tumor-suppressing cytokines and tumor-promoting cytokines.
The dotted horizontal lines show the threshold value Sn¼h0atum/
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Fig. 1. The dynamics of the Th1 and Th2 models. (a) tumor size for the Th1 model; (b

specified in Table 2, in Appendix A.
gtum, which determines when the tumor evolves to a larger steady
state close to the carrying capacity (see Section 3). These dotted
lines seem to be associated with faster tumor growth. Note that
tumor grows fast when S(t) is less than the analytical threshold
value Sn. In contrast, the tumor is controlled by the immune
system when S(t) is larger than this value.

For the Th1 model (panels (a) and (b)), the adoptive transfer of
immune cells on day 7 immediately increases the ratio S(t) above
the threshold Sn. This leads to a decrease in the tumor size by
approximately 5%. For the Th2 model (panels (c) and (d)), the
increase in S(t) is much smaller. This causes a smaller decrease (of
about 0.1%) in tumor size, followed by faster growth.

We also tested the effects of a second adoptive transfer 7 days
after the first transfer (as in Mattes et al., 2003), but found only a
delay in tumor growth, and no significant tumor cell death.
Further investigation of the effects of these adoptive transfers
suggested that the tumor can eventually be eliminated if the
injections are administered repeatedly until the tumor size is
below 2�106 cells (not shown here). At this point, one final
transfer of immune cells is enough to kill all remaining tumor
cells. The number of injections that must be administered
depends on the rate of tumor-killing by cytokines (gtum). For
example, if gtum¼3 (cells/day)(pg/ml)�1, then six injections
administered within 10 days of each other can eliminate the
tumor in approximately 70 days. However, if gtum¼2 (cells/
day)(pg/ml)�1 then eight injections are necessary to eliminate the
same tumor. These results describe the outcome of the Th1 model.
For the Th2 model the results are quite similar, the only difference
being that tumor elimination is slower and requires longer
treatment.

Overall, model (5) cannot explain the experimental results in
Mattes et al. (2003). Even if we change the parameter values
within some relevant parameter ranges (as will be done in Section
6), we do not observe a situation where the tumor is eliminated in
the presence of Th2 cells but not in the presence of Th1 cells.
5. Extension of the Th1 and Th2 models

The models investigated in Sections 3 and 4 considered an
anti-tumor effect which was mediated by the release of tumor-
suppressing cytokines from CD4+ T cells. However, both the Th1
and Th2 cells have the capacity to recruit other immune cells such
as granulocytes (e.g., neutrophils and eosinophils) to the site of
inflammation. Granulocytes are short-lived effector cells that can
mediate tumor rejection through the release of toxic granules.
Mattes et al. (2003) showed that eotaxin, the chemokine involved
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S(t)¼(1+ksCts(t))Cts(t)/(1+kpCtp(t)) of tumor-suppressing cytokines (Cts) and tumor-promoting cytokines (Ctp) for the Th1 model. The two horizontal lines show the critical

threshold values for S that lead to tumor growth: the numerical S line is calculated by substituting the numerical values for Cts and Ctp (at the time when the tumor starts

growing again) into the formula for S(t); the analytical S line is Sn¼h0atum/gtum (i.e., the threshold value which determines when the tumor evolves to a larger steady state

(see Section 3)). This analytical line seems to be associated with a faster tumor growth; The continuous vertical line shows the exact time when the tumor is first observed

(numerically) to grow, while the dotted vertical line shows the time when the ratio S(t) crosses the analytical threshold S¼Sn. (c) Tumor size for the Th2 model; (d) Ratio

S(t) for the Th2 model. Here aTh¼0.008. The rest of the parameters are specified in Table 2, in Appendix A.
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in the recruitment of eosinophils, is correlated with the elimina-
tion of tumor by the Th2 cells. Similarly, other studies have shown
that neutrophils influence the priming and the polarization of Th1
cells (van Gisbergen et al., 2005), and are involved in anti-tumor
immunity (Carlo et al., 2001). In this Section, we extend the Th1
model to incorporate neutrophil recruitment, and the Th2 model to
incorporate eosinophil recruitment.

To describe the dynamics of granulocytes inside the tumor
microenvironment, we use again Eq. (1), with details specified as
follows:
�
 Granulocyte activation occurs in the presence of tumor cells.
For eosinophils, activation is determined by type 2 cytokines
such as IL-5 (Kataoka et al., 2004), while for neutrophils it is
determined by tumor-suppressing cytokines such as TNF-a
(Carlo et al., 2001). In both cases, cell activation is inhibited by
tumor promoting-cytokines. We model these interactions via
the term agranĈXtum=ðh2þXtumÞð1þCtpÞ, where

Ĉ ¼
C2 for eosinophils

Cts for neutrophils:

(
ð13Þ

Eosinophil recruitment is caused by type 2 cytokines (IL-5),
�

while neutrophil recruitment is caused by tumor-suppressing
cytokines (TNF-a) (Canetti et al., 2006). In both cases, cell
recruitment can be inhibited by tumor-promoting cytokines.
In addition, we assume that there is a carrying capacity
(1/Kgran) determining the maximum size of the granulocyte
population that can be sustained by the environment. Thus,
the full term describing the recruitment of granulocytes is
bgranð1�KgranXgranÞĈ=ð1þkpCtpÞ.

�
 All cells undergo apoptosis at a constant rate cgran:

cgran fg
death (Xgran). The apoptosis function fg

death is slightly
different for the eosinophil and the neutrophil populations. In
particular, eosinophil apoptosis is enhanced by tumor sup-
pressing cytokines and reduced by type 2 cytokines (such as
IL-5) (Yamagughi et al., 1988):

f g
deathðXgranÞ ¼ Xgran

1þkpCtp

1þk2C2
: ð14Þ

For neutrophils, it has been shown that TNF-a has a dual effect
on apoptosis by increasing as well as decreasing it in a
concentration-dependent manner (Cross et al., 2007). To
simplify the model, we ignore this dual effect and define

f g
deathðXgranÞ ¼ Xgran: ð15Þ

Finally, we consider also the twofold anti-tumor effect of
granulocytes (that is, direct killing via degranulation or phagocy-
tosis, or indirect killing via tumor-suppressing cytokines) to
obtain the following extended model:

dXTh

dt
¼ aThCi

Xtum

ðh2þXtumÞð1þkpCtpÞ
þ

bTh

1þkpCtp
XThð1�KThXThÞ

�cThfdeathðXThÞ�dThXThXtumþs0, ð16aÞ

dXgran

dt
¼ agranĈ

Xtum

ðh2þXtumÞð1þkpCtpÞ
þbgranð1�KgranXgranÞ

Ĉ

ð1þkpCtpÞ

�cgranf g
deathðXgranÞ, ð16bÞ

dXtum

dt
¼ atum

ð1þkpCtpÞ

ð1þksCtsÞ
Xtumð1�KtumXtumÞ

�
gtumCtsXtum

ðh0þXtumÞ
�

etumXgranXtum

ðh0þXtumÞ
, ð16cÞ

dCi

dt
¼�j0Ciþ

ði11XThþ i1gXgranþcÞXtum

ðh2þXtumÞð1þkpCtpÞ
, ð16dÞ
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dCts

dt
¼�jtsCtsþ

ði21XThþ i2gXgranþcÞXtum

ðh2þXtumÞð1þkpCtpÞ
, ð16eÞ

dCtp

dt
¼�jtpCtpþ

ði31XThþcÞXtum

ðh2þXtumÞ
þ

i3tX
2
tum

ðh2
1þX2

tumÞ
: ð16fÞ

The extended Th1 model (i.e., the Th1-neutrophils model) and the
extended Th2 model (i.e., the Th2-eosinophils model) differ in their

expressions for fdeath(XTh), Ĉ , and f g
death (Xgran), as well as their

cytokine production rates (see Table 2 in Appendix A). Similar to
the models presented in Section 2, these new models evolve
towards two tumor-free steady states, or towards some coex-
istence steady states. As before, the tumor-free states are
unstable, because the steady states for both eosinophils and
neutrophils are zero (Xn

gran¼0). Thus, the granulocytes are
eventually eliminated from the tumor microenvironment and
the tumor relapses.
5.1. Numerical results

We studied the dynamics of the two extended models through
numerical simulations. The majority of the parameters are similar
to those used in Section 4. The new parameters that characterize
the dynamics of eosinophils and neutrophils are described in
Table 2 in Appendix A.

The dynamics of the extended Th1 and Th2 systems are shown
in Figs. 3 and 4. As before, we investigated the effect of adoptively
transferring 107 immune cells on day 7. Comparing Figs. 3 and 4,
we observe that adding eosinophils to the Th2 model can
eliminate the tumor (Fig. 4(a)), while adding neutrophils to the
Th1 model can only delay the tumor growth (Fig. 3(a)).

For the Th1-neutrophils model, even though the curve describ-
ing the evolution of the tumor cells (Fig. 3(a)) is qualitatively
similar to the one for the model without neutrophils (Fig. 2(a)),
they are quantitatively different. We notice that introducing
neutrophils reduces the size of the tumor by 14% (from a
maximum on day 30 of 7�106 cells in Fig. 2(a), to only 6�106

cells in Fig. 3(a)). The adoptive transfer of Th1 cells leads to a spike
in this cell population (panel (b)). This causes a spike in the
concentration of tumor-suppressing cytokines (panel (c)), as well
as type 1 cytokines. It also causes a spike in the population of
neutrophils recruited at the site (panel (d)). Overall, these
immune responses stop tumor growth, and even slightly reduce
the size of the tumor. However, the subsequent decrease in the
Th1 cell population leads to a decrease in the ratio S(t) (Eq. (12))
and the neutrophil population. Note that for this extended model,
the threshold Sn¼h0atum /gtum is slightly greater than the
threshold value that results from the steady-state analysis (which
depends also on the steady state for the granulocytes). However,
as in Section 4, fast tumor growth is associated with S(t) decaying
below Sn.

For the Th2-eosinophils model, elimination of the tumor cells
results from the combined effects of Th2 cells and eosinophils. In
Fig. 4(a) we observe that the decrease in the tumor size starts
around day 20. During this time, only the Th2 cells are present in a
sufficient number to stop tumor growth (panel (b)). The
eosinophils are still being recruited at the site (panel (d)). The
decrease in the tumor size is also associated with a ratio S(t)
above the critical threshold Sn (panel (c)).

Note that for the Th2 model, the rate at which the tumor is
eliminated depends on the parameter values. In particular,
significantly increasing the recruitment rate of eosinophils (beos)
or the rate at which these cells kill the tumor (etum), leads to faster
elimination of tumor cells (not shown here). Moreover, even
though Fig. 4(a) indicates that there is no tumor after 120 days,
careful inspection of the simulation data shows that there are still
a few tumor cells left, which will grow again eventually.

We have so far presented results for simulations employing
particular parameter values. In the next section we examine the
robustness of our results to small changes in parameter values.
6. Sensitivity analysis

There are at least two important reasons to investigate the
sensitivity of our results to small changes in parameter values.
The first is that none of the parameter values is known precisely
and some have had to be guessed (e.g., cytokine production rates),
so we need some reassurance that any general conclusions we
draw are valid throughout the plausible ranges of each parameter.
The second reason is that our ultimate goal is to discover ways to
improve immunotherapies for cancer treatment, and to do so we
need to know which parameters would be most useful to alter.

In this section, we perform a local sensitivity analysis for the
Th1 and Th2 models, i.e., we vary one parameter at a time, keeping
all other parameters constant. For each parameter, we compare
the effects of changes of the same magnitude on the behavior of
each of our models. In particular, performing sensitivity analysis
on the extended Th1 and Th2 models allows us to investigate how
eosinophil and neutrophil recruitment changes the effect that the
various model parameters have on tumor growth.

For both models, we start with a parameter set and initial
conditions for which tumor is still present after 30 days, and
investigate the effect of changing slightly (by 10%) the values of
the parameters. (Note that varying the tumor intrinsic growth
rate (atum) by 10% leads (unsurprisingly) to very large changes in
tumor size, so we vary atum only by 1%.) Thus for each parameter,
denoting by q the value listed in Table 2, we consider the effect of
changing q to qþDq, for Dq either positive or negative and
jDq=qj ¼ 0:1 or 0.01. The result of changing q to qþDq is to change
the tumor size after 30 days from X to XþDX. In order to compare
the effects of changing different parameters, we quantify the
change in X as the ratio of relative changes,

DX

X

�
Dq

q

����
����: ð17Þ

Using this quantity as a metric, Fig. 5 shows how tumor size
changes when parameter values are increased or decreased by 1%
or 10%. Negative (positive) values correspond to reductions
(increases) in tumor size.

Figs. 5(a) and (c) show that in the absence of eosinophils and
neutrophils, the parameters that have the most significant impact
on tumor size are: tumor growth rate (atum), the rate at which Th
cells are inactivated after interactions with the tumor cells (dTh),
the rate at which tumor-promoting cytokines are secreted by the
tumor cells (i3t), and the decay rate of tumor promoting cytokines
(jtp). A much smaller effect on tumor size is observed when
changing the decay rate of tumor suppressing cytokines (jts) or the
apoptosis rate of Th cells (cTh). Note that for all parameters, the
direction of the effect is the same for both the Th1 and Th2 models.

Figs. 5(b) and (d) show that the dynamics of the extended
models depend on the particular types of granulocytes introduced
into the system. More precisely, the recruitment of neutrophils by
the Th1 cells does not influence the parameters that have a
significant effect on the tumor size. However, the recruitment of
eosinophils by the Th2 cells greatly decreases the effect of
changing dTh. It also decreases the effect of i3t, and increases the
effect of the decay rate for type 2 cytokines (j0). Moreover, the
introduction of eosinophils brings in two new parameters that
have a significant effect on tumor size (the rate at which
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eosinophils are recruited into the tumor microenvironment, bgran,
and their apoptosis rate, cgran).

In summary, the parameters that have the most significant
effect on tumor size are: tumor growth rate (atum), the recruit-
ment rate of eosinophils (bgran), the apoptosis rate of eosinophils
(cgran), the decay rate of tumor-promoting cytokines (jtp), the
decay rate of tumor-suppressing cytokines (jts), the rate at which
cytokines are produced by the tumor cells (i3t), and the decay rate
of type 2 cytokines (j0).

Note that this sensitivity analysis suggests that the rate at
which tumor cells are lysed by the eosinophils (etum) has a more
important effect on tumor size compared to the rate at which these
cells are lysed by tumor-suppressing cytokines (gtum) (see
Fig. 5(d)). For the Th1 model, the roles of etum and gtum seem to
be reversed, i.e., the rate at which tumor cells are killed by the
tumor-suppressing cytokines is slightly more important than the
rate at which these cells are lysed by the neutrophils. The different
results shown in Figs. 5(b) and (d) seem to be caused mainly by the
difference in the death rate of granulocytes, fgdeath (see Eqs. (15)).
7. Discussion

In this article, we derived mathematical models to investigate
anti-tumor immunity mediated by Th1 and Th2 cells. Our interest
in this question stems from experimental research in our group
(Zhang et al., 2009) and other groups (Hung et al., 1998; Mattes
et al., 2003), suggesting that Th2 cells have greater capacity than
Th1 cells to promote the rejection of skin cancer. In particular,
tumor rejection appears to depend upon the recruitment of
eosinophils into the tumor bed. To propose hypotheses that might
explain this unexpected anti-tumor effector role of Th2 cells, we
employed minimalist models that considered either a 2-cell
system (CD4+ T cells and tumor cells) or a 3-cell system (CD4+ T
cells, tumor cells, and granulocytes).

Both tumor growth and recruitment of T cells and granulocytes
into the tumor are spatial processes. However, for simplicity—and
because we currently have no spatially explicit data with which to
test our models—we used non-spatial models to describe the
tumor–immune interactions. Nevertheless, we were able to
incorporate spatial effects implicitly using appropriate nonlinear
terms. For example, the lysis of tumor cells by tumor-promoting
cytokines and granulocytes is described by Michaelis–Menten
terms. These terms can account for the tumor–immune interac-
tions in a solid tumor, where only a fraction of the tumor cells
come in contact with the cytokines and granulocytes.
7.1. A critical cytokine ratio threshold

Using numerical techniques, we found that neither the Th1 nor
the Th2 cells alone could account for tumor elimination.
Furthermore, local sensitivity analysis for the model parameters
showed that even if we increase or decrease the parameters by 1%
or 10%, the final results are unchanged (Fig. 5). We also varied the
parameters by 25% (and even increased them by 100%), and the
results were still similar (not shown).

Since the CD4+ T cells interact with the tumor via multiple
cytokines, we investigated analytically and numerically the role of
these cytokines on the growth of the tumor cells. An empirical
investigation of the effect of two types of cytokines on tumor
growth was conducted by Hamilton and Bretscher (2008b), who
focused on the anti-tumor role of Th1 versus Th2 cells and
investigated the ratio IFN-g/ IL-4 (both of which are tumor-
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suppresing cytokines). Hamilton and Bretscher (2008b) showed
that for two particular tumor lines, regression is associated with a
larger ratio. In this paper, we investigated separately Th1 anti-
tumor immunity and Th2 anti-tumor immunity. Since there are
multiple cytokines that can have an anti-tumor role (including
IFN-g and IL-4), we grouped them together into the class of
tumor-suppressing cytokines (Cts). We found that when the ratio
of tumor-suppressing to tumor-promoting cytokines (S(t), Eq.
(12)) is greater than a certain threshold (Sn), the tumor is
controlled by the immune system. In contrast, when SðtÞoS�,
tumor growth accelerates.
7.2. Tumor control or elimination driven by granulocytes

When granulocytes were added to our models, the simulations
began to match the experimental observations (Mattes et al.,
2003; Zhang et al., 2009). In particular, the recruitment of
neutrophils by the Th1 cells could stop tumor growth and cause
some reduction in size. However, the tumors were not rejected. By
contrast, the recruitment of eosinophils by the Th2 cells resulted
in the elimination of tumor cells. The stronger effect of
eosinophils appears to be caused by the large amount of
eosinophils recruited into the tumor microenvironment. The
eosinophils in turn produced very large concentrations of Cts that
contributed to the elimination of the tumor cells.

Note that the temporal delay in the recruitment of eosinophils
and neutrophils (see Figs. 3 and 4)—which, in reality, results from
a spatial process of migration from the blood to the inflammatory
sites in the tissues—was obtained in our model through the
explicit incorporation of cytokines. More precisely, the adoptive
transfer of T cells leads to an increased production of cytokines,
which in turn—after sufficient cytokines have been produced—-

triggers the activation and proliferation of granulocytes. Our
models do not include any direct interactions between the T cells
and the granulocytes.

Our numerical results indicate that the type 2 cytokines
produced by eosinophils (e.g., IL-4 Nonaka et al., 1995) strongly
promote the elimination of tumor cells by Th2 cells. In particular,
when i2g¼0 tumor growth is temporarily stopped and a large
number of tumor cells are killed (not shown here). However, tumor
cells start growing again after a few days. When i2g40, the tumor
can be eliminated, as shown in Fig. 4(a). By contrast, the production
of type 1 cytokines by neutrophils has no impact on tumor growth.

Sensitivity analysis for the models that incorporate granulo-
cytes showed that the results were still valid if we decreased the
parameter values by 10% or 25% or increased them by 10%, 25% or
100%. Moreover, this analysis identified parameters that might
have a significant effect on the reduction of tumor size (e.g., dTh, i3t,
jts or jtp). Some of these parameters are already the focus of
immuno-therapies. For example, experimental studies have shown
that injecting the peptide pepstatin into mice leads to an almost
10-fold increase in the serum half-life of IL-2 (a tumor-suppressing
cytokine), thus decreasing its decay rate (Ohnishi et al., 1990).
However, further experiments should be performed to test
whether other parameters are better at decreasing tumor size.

Local sensitivity analysis was also used to get a better
understanding of the effect of eosinophils on the size of the
tumor cell population. Eosinophils change the dynamics of the
tumor–immune system by influencing the way the system
responds to changes in particular parameters, such as the decay
rate of type 2 cytokines (j0) or the rate at which the Th cells are
inhibited by interactions with the tumor cells (dTh). While
increased responsiveness to j0 was expected (since the eosino-



ARTICLE IN PRESS

-4

-2

 0

 2

 4

 6

 8

 10

 12

at
umjtpjtsj0i3

1
i2

1
i1

1i3
t

h2c
gt

umdt
h

ct
h

bt
h

at
h

-20

-10

 0

 10

 20

 30

 40
ch

an
ge

 in
 tu

m
or

 s
iz

e 
(T

h1
 m

od
el

)

ch
an

ge
 in

 tu
m

or
 s

iz
e 

w
he

n 
’a

tu
m

’ 
va

ri
ed

 1
%

+10%
-10%
+1%
-1%

-4

-2

 0

 2

 4

 6

 8

 10

 12

 14

 16

at
umjtpjtsj0i3

1
i2

1
i1

1i3
t

h2c
gt

umdt
h

ct
h

bt
h

at
h

-30

-20

-10

 0

 10

 20

 30

 40

 50

 60

ch
an

ge
 in

 tu
m

or
 s

iz
e 

(T
h2

 m
od

el
)

ch
an

ge
 in

 tu
m

or
 s

iz
e 

w
he

n 
’a

tu
m

’ 
va

ri
ed

 1
%

+10%
-10%
+1%
-1%

-20

-10

 0

 10

 20

 30

 40

 50

at
umjtpjtsj0i3

1
i2

1
i1

1i3
t

i2
g

i1
gh2c

et
um

gt
um

cg
ra

n
bg

ra
n

ag
ra

n
dt

h
ct

h
bt

h
at

h

-15

-10

-5

 0

 5

 10

 15

 20

ch
an

ge
 in

 tu
m

or
 s

iz
e 

(T
h1

+
ne

ut
. m

od
el

)

ch
an

ge
 in

 tu
m

or
 s

iz
e 

w
he

n 
’a

tu
m

’ 
va

ri
ed

 1
%

+10%
-10%
+1%
-1%

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

at
umjtpjtsj0i3

1
i2

1
i1

1i3
t

i2
g

i1
gh2c

et
um

gt
um

cg
ra

n
bg

ra
n

ag
ra

n
dt

h
ct

h
bt

h
at

h

-6

-4

-2

 0

 2

 4

 6

 8

ch
an

ge
 in

 tu
m

or
 s

iz
e 

(T
h2

+
eo

s.
 m

od
el

)

ch
an

ge
 in

 tu
m

or
 s

iz
e 

w
he

n 
’a

tu
m

’ 
va

ri
ed

 1
%

+10%
-10%
+1%
-1%

Fig. 5. (Color online) Sensitivity analysis for models (5) and (16). The negative values show the effect of the parameters on decreasing the tumor size, while the positive

values show the effect on increasing the tumor size. Also, note that the yellow and magenta rectangles are shown on a secondary axis (on the right-hand-side of the

graphs). (a) Th1 model; (b) extended Th1 model (i.e., the Th1-neutrophils model); (c) Th2 model; (d) extended Th2 model (i.e., the Th2-eosinophils model). The dark color (blue

and magenta) rectangles show the effect of increasing the parameter values by 10% and 1%. The light color (green and yellow) rectangles show the effect of decreasing the

parameter values by 10% and 1%.
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phils influence directly the production of type 2 cytokines
(i1g40)), increased responsiveness to dTh was unforeseen, and
further work will be required to identify the mechanism behind
this behavior.

We also investigated the output of our Th1 and Th2 models

when various pairs of parameters were altered at the same time.
Allowing two parameters to change simultaneously did not yield
any surprising results. For example, tumor growth was reduced by
decreasing atum or increasing jtp independently, and was reduced
further if both parameter changes were made simultaneously.
7.3. Comparison of model predictions and experiments

A key hypothesis generated by our mathematical models
concerns the anti-tumor role of eosinophils versus cytokines. Our
sensitivity analysis suggests that the rate of tumor killing by
eosinophils through degranulation has a more pronounced effect
on tumor size than the rate of tumor killing by tumor-suppressing
cytokines. This effect can explain the observation that Th2 cells,
which can recruit eosinophils, are more effective at rejecting
B16F10 melanoma than Th1 cells, which do not recruit eosino-
phils.

During the elimination of tumor cells by Th2 cells in our
models, we observed that the population of Th cells decreased,
while the population of eosinophils increased. Similar dynamics
between the lymphocytes and eosinophils have been observed
experimentally (Jeong et al., 2007). Whether the mechanisms
underlying the experimental results are the same as the ones
underlying our mathematical model, remains to be determined.

Another observation is that the tumor-growth curves shown in
Figs. 3(a) and 4(a) capture the general dynamics exhibited by
various tumor cells. As an example, Hamilton and Bretscher
(2008a) investigated experimentally the growth of L5178Y
lymphoma cells after the immune system had been previously
activated through ‘‘excision priming’’. They found that the growth
was suppressed by the Th1 cells, and delayed by the Th2 cells.
This contrasts our results for B16F10 melanoma, where the Th2
cells suppress tumor growth (Fig. 4(a)), and the Th1 cells only
delay it (Fig. 3(a)). This different outcome is likely the result of
distinct tumor–immune dynamics for the two tumor cell lines
(L5178Y and B16F10). Nevertheless, it is encouraging that our
results capture the general dynamics observed in other cancer
cells.
7.4. Conclusions and directions for further research

Our mathematical models have shown that the recruitment of
granulocytes (and, in particular, eosinophils) by the CD4+ T cells
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impacts tumor growth more significantly than the release of
tumoricidal cytokines such as IFN-g and TNF-a. Consequently, we
can now explain the observation that the Th2 cells, which can
recruit eosinophils into the tumor microenvironment, are more
protective against the B10F16 melanoma than the Th1 cells,
which do not recruit eosinophils. However, additional experi-
mental research is required to test our models and further
elucidate the mechanisms underlying the interactions between Th
cells, tumor cells, and different granulocytes.

Further development of our models will be useful in reconciling
the differences between our theoretical results and those of others
who—using different tumor models—found that Th1 cells appeared
to be more efficient at promoting tumor rejection (Nishimura et al.,
1999; Hamilton and Bretscher, 2008a). To identify the source of this
difference, our models must be expanded in complexity in order to
account for different methods of immunization and the distinct
environments of solid tumors and leukemias.

Another potentially fruitful direction for development of our
models would be to include a spatial component explicitly. While
our non-spatial models already provide an explanation of the
observed tumor–immune dynamics, including the spatial compo-
nent might reveal important mechanisms and lead to a deeper
understanding of the tumor–immune interactions (see, for
example, the ODE and PDE models proposed by Kuznetsov et al.
(1994) and Matzavinos et al. (2004), and by Owen and Sherratt
(1998, 1999), to investigate the anti-tumor effect of CD8+ T cells
and macrophages). Spatial models would also allow us to
investigate the effects of immune cells being recruited into
specific regions of a tumor (for example, eosinophils seem to be
recruited mostly into the necrotic and capsule region of B16F10
melanoma (Cormier et al., 2006)).
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Appendix A

Here, we describe the parameter values we use throughout
this paper. Some of the values were taken from the published
literature (see Table 2 and the references therein). However, this
is a first model which investigates the effects of the Th1 cells, Th2
cells, eosinophils and neutrophils on the growth of the tumor. For
this reason, not all parameter values could be found in the
literature. We will describe in detail how we obtained some of the
missing values.

The only parameter values that can be taken from other
mathematical models existent in the literature are those describ-
ing the dynamics of some particular types of cytokines, the
dynamics of tumor cells and CD4+ T cells (although the models do
not usually make any distinction between the Th1 and the Th2
cells). For example, the activation rate for the CD4+ T cells in
healthy patients is 0.002 (Ribeiro et al., 2002). However, the HIV
infected patients have a higher activation rate (between 0.003 and
0.009). Here we will assume that the activation rate for the CD4+

T cells is 0.008.
The values of the parameters that describe the activation,

recruitment and death rate of eosinophils and neutrophils are
very scarce. Production and decay rates for different types of
cytokines are also hard to find. In the following, we will
approximate some of these rates using known information about
the half-life of cells and cytokines. The relationship between the
death (decay) rate and the half-life of cells (cytokines) is given by

d¼
lnð2Þ

t1=2
, ð18Þ

where d represents the death rate, and t1/2 represents the half-life
time.

Using this formula, we can calculate the values of some of the
parameters as follows:
�
 In the absence of any immune response, Th cells half-life is
taken to be approximately 1 week. This translates into a death
rate cTh¼0.1. We will assume that inside the tumor micro-
environment, the level of the Th cells is approximately
constant. This means that the recruitment rate balances the
death rate, and thus we choose bTh¼0.09. We make this
assumption to ensure that the immune cells disappear from
the microenvironment after the tumor is eliminated (see Eq.
(7) and the discussion about it).

�
 The half-life of eosinophils in the rats blood is approximately

6.7 h (Spry, 1971). Taking an average of 7 h, it results in a decay
rate of ceos¼2.38. Note that these are blood parameters. It may
be possible that the tissue parameters are slightly different.
However, since we do not have any information about the
rates inside the tumor microenvironment, we will use the
blood values. We should also keep in mind that the presence of
the tumor will most likely change these rates through the
secretion of cytokines.

�
 For neutrophils, we consider a half-life of 6 hours. This

translates into a decay rate cneut¼2.7.

�
 We consider the average half-life of cytokines to be 30 min,

which translates into a decay rate ji ¼ 34, iAf0,tp,tsg. This half-
life value is consistent with the observations for IL-2 (whose
half-life seems to be between 30–120 min, Rosenberg and
Lotze, 1986), and for TNF-a (whose serum half-life is between
6–20 min, Tracey and Cerami, 1994). The half-life of IL-4 serum
levels is also very short, ranging from 15 to 22 min (Alatrash
et al., 2005). Note that the majority of the mathematical
models that incorporate the effect of different tumor suppres-
sing cytokines consider a half-life of about 90–100 min, which
would correspond to ji¼10 (see for example Kirschner and
Panetta, 1998; Arciero et al., 2004).
To incorporate the production rates of different cytokines into
the mathematical models, we have to quantify somehow these
rates. To this end, we derive a very simple equation that can
approximate the process of cytokine production.

It is known that the cytokines are produced by the cells in an
on/off cycling manner (Corbin and Harty, 2005; Slifka et al., 1999).
In particular, upon interaction with the antigen, the T cells start
producing rapidly cytokines. After the dissociation of T cells from
their targets, the production stops immediately. To derive the
equation for the production of the cytokines, we focus only on the
‘‘on’’ part of the cycling. Once the tumor is killed the production
stops immediately, and this can account for the ‘‘off’’ part of the
cycling.

Let us denote by C(t) the concentration of cytokines at time t.
Since during the ‘‘on’’ switch the cytokines are produced
immediately, we can assume that the concentration of the
cytokines follows an exponential dynamics:

CðtÞ ¼ ekt�1 ð19Þ

Here, k describes the production rate, while ‘‘�1’’ accounts for the
assumption that at t¼0, the cytokine level is zero. Therefore, the
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Table 2
Parameter values for the Th1 and Th2 models.

Parameter Value (Th1

model)

Value (Th2

model)

Units Description Reference

aTh 0.008–

1.008

0.008–

1.008

cell (days�1)

(pg/ml)�1

Activation rate of Th cells Ribeiro et al. (2002)

bTh 0.09 0.09 days�1 Proliferation rate of Th cells guess

cTh 0.1 0.1 days�1 Apoptosis rate of Th cells guess

KTh 10�8 10�8 cell�1 KTh
�1
¼ carrying capacity of Th cells

k1 10�8 10�8 (pg/ml)�1 k1
�1
¼concentration of IL-2 (which inhibits the apoptosis of Th1 cells) at

half-maximum

Arciero et al. (2004)

kp 1 1 (pg/ml)�1 k�1
p ¼ concentration of Ctp at half-maximum (scaled value) Arciero et al. (2004)

ks 1 1 (pg/ml)�1 k�1
s ¼ concentration of Cts at half-maximum (scaled value) Arciero et al. (2004)

k2 1 1 (pg/ml)�1 k�1
2 ¼ concentration of C2 at half-maximum (scaled value) guess

dTh 10�7 10�7 cell�1 days�1 Inactivation rate of Th cells by the tumor de Pillis et al. (2005)

agran 0.08 0.08 cell (days�1)

(pg/ml)�1

Activation rate of granulocytes (eosinophils & neutrophils) guess

bgran 10 10 cell (days�1)

(pg/ml)�1

Recruitment rate of granulocytes guess

cgran 2.38 2.7 days�1 Apoptosis rate of granulocytes Spry (1971)

Kgran 5�10�6 5�10�6 cell�1 Kgran
�1
¼carrying capacity of granulocytes guess

atum 0.514 0.514 days�1 Tumor growth rate de Pillis et al. (2005)

Ktum 1.02�10�9 1.02�10�9 cell�1 Ktum
�1
¼carrying capacity of tumor cells de Pillis et al. (2005)

gtum 0.2 0.2 (cell) (days�1)

(pg/ml�1)

Tumor killing rate by the cytokines Hung et al. (1998)

etum 0.2 0.085 days�1 Tumor killing rate by the granulocytes Mattes et al. (2003) Challacombe

et al. (2006)

h2 103 103 cell Half-saturation constant for the tumor cell population detected by the T

cells

Arciero et al. (2004)

h1 106 106 cell Half-saturation constant for the Tumor cell population producing tumor-

promoting cytokines

Arciero et al. (2004)

h0 105 105 cell Half-saturation constant for the tumor cell population killed by the immune

cells and cytokines

Kirschner and Panetta (1998)

j0 34 34 days�1 Decay rate of type 1 and type 2 cytokines Rosenberg and Lotze (1986),

Tracey and Cerami (1994)

jts 34 34 days�1 Decay rate of tumor-suppressing cytokines Rosenberg and Lotze (1986),

Tracey and Cerami (1994)

jtp 34 34 days�1 Decay rate of tumor-promoting cytokines Rosenberg and Lotze (1986),

Tracey and Cerami (1994)

i11 9.0 5.4 (pg/ml)

(days�1) cell�1

Production rate of type 1/2 cytokines by the Th cells Mattes et al. (2003)

i1g 6.0 5.4 (pg/ml)

(days�1) cell�1

Production rate of type 1/2 cytokines by the granulocytes Mattes et al. (2003)

i21 6.0 8.6 (pg/ml)

(days�1) cell�1

Production rate of tumor-suppressing cytokines by the Th cells Mattes et al. (2003)

i2g 8.0 3.2 (pg/ml)

(days�1) cell�1

Production rate of tumor-suppressing cytokines by the granulocytes Mattes et al. (2003)

i31 2.3�10�4 3.8�10-4 (pg/ml)

(days�1) cell�1

Production rate of tumor-promoting cytokines by the Th cells guess

i3t 10 10 (pg/ml)

(days�1)

Production rate of tumor-promoting cytokines by the tumor guess

c 1 1 pg/ml Production rate of cytokines by other cells in the microenvironment (cells

that are not included specifically in this model)

guess

In bold are those values which are different for the two models.
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cytokine production rate is described by

dC

dt
¼ kCðtÞ: ð20Þ

This says that the production of new cytokines is proportional to
the concentration of the existing cytokines. This make sense since
some cytokines (e.g., IL-4) are produced in an autocrine manner:
the cytokines activate new T cells, which in turn produce even
more cytokines. The production rate (k) can be calculated as
follows:

k¼
lnðCðtÞþ1Þ

t
: ð21Þ

Using this simple model, one can approximate the production
rates for the different cytokines present in the tumor micro-
environment. For this we use data from Mattes et al. (2003). There
the authors measured the level of cytokines produced by the Th1
and Th2 cells following a 48 h OVA restimulation. Thus, in Eq. (21)
we take the time to be t¼2 days. The production rates k for
various cytokines are approximated as follows:
�
 For the Th2 cells:
1. IL-4 production rate: kIL-4 ¼ lnð4�102

þ1Þ=2¼ 2:99.
2. IL-5 production rate: kIL-5 ¼ lnð105

þ1Þ=2¼ 5:756.
3. TNF-a production rate: kTNF-a ¼ lnð5 � 102

þ1Þ=2¼ 3:1.
4. IL-13 production rate: kIL-13 ¼ lnð2 � 103

þ1Þ=2¼ 3:8.

�
 For the Th1 cells:

1. IFN-g production rate: kIFN-g ¼ lnð5 � 104
þ1Þ=2¼ 5:4.

2. TNF-a production rate: kTNF-a ¼ lnð6 � 102
þ1Þ=2¼ 3:2.

3. IL-13 production rates: kIL-13 ¼ lnð102
þ1Þ=2¼ 2:3.
To obtain the rate at which the Th1 and Th2 cells produce
tumor-suppressing cytokines, we add the production rates for the

different cytokines that belong to this category (see the values in
Table 2). We use a similar approach for the type 1 and type 2
cytokines. Note that we use the same values to calculate the rates
at which the eosinophils and the neutrophils produce different
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types of cytokines (i.e., IL-4 and TNF-a for the eosinophils, and
TNF-a for the neutrophils).

The experimental results in Mattes et al. (2003) measured the
concentration of the cytokines after 48 h. But it might be possible
that these concentrations are already obtained after 24 h. This
would imply that the previous rates would be higher. The effect of
increasing these rates was investigated in Section 6, and the
results did not show any significant differences.

Next, we calculate the rates at which the tumor-suppressing
cytokines, the eosinophils and the neutrophils lyse the tumor cells.
For this, we use in vitro data from the graphs published in Hung
et al. (1998) and Mattes et al. (2003) showing the percent lysis as a
function of effector:target ratio (E:T). To translate this information
into the killing rates that are necessary for the mathematical
models, we use a formula derived by Poe et al. (1996). There, the
rate for killing at a killer-to-target ratio E:T¼r:1 is

kr ¼
lnð100Þ

lnð100�%lysisÞ

1

t
: ð22Þ

Here t is the time during which the immune cells are incubated with
the tumor cells at a specified E:T ratio. Usually, t¼4-6 h. Using this
formula and the graphs from Mattes et al. (2003), one can obtain the
lysis rate of the tumor cells by the eosinophils at a 1:1 ratio:
keos¼0.2. Moreover, using the graphs in Hung et al. (1998), we can
find the %lysis by the tumor-suppressing cytokines. Since there is no
significant difference between the killing of tumor cells by Th1 or
Th2 cytokines, we choose the same killing rate for all the tumor
suppressing cytokines: kcytok¼0.2. The lysis rate for the neutrophils
can be found from Challacombe et al. (2006): kneut¼0.085.

We recognize that these rates might not be biologically realistic.
Previous results have shown that the in vivo rates might be faster
than the in vitro rates (Regoes et al., 2007). Higher values for these
parameters might explain the faster elimination of tumor cells
observed experimentally (Mattes et al., 2003). Our numerical
results suggested that it takes at least 160 days for the Th2-
eosinophils model to eliminate the tumor. To counterbalance the
low lysis rates we decided to choose large recruitment rates for the
granulocytes (i.e., bgran¼10). This allows the tumor to be
eliminated in approximately 120 days. Note that a faster lysis rate
(i.e., etum,gtum � 1) decreases significantly the time necessary to
eliminate the tumor cells (numerical results for this case are not
shown in this paper).

Finally, we calculate the carrying capacities for the immune
cells. Since 106 cells/ml can cause severe eosinophilia, we take the
carrying capacity for eosinophils to be ðKgranÞ

�1
¼ 1=ð5� 10�6

Þ. We
consider a similar value for the carrying capacity of neutrophils.
The carrying capacity for the Th cells is (KTh)�1

¼1/10�8.
Table 2 summarize the values of the parameters we used for

the two mathematical models. Note that some of the rates differ
by one or two order of magnitudes (see, for example, the rates of
activation, proliferation, and apoptosis of different immune cells).
This is the result of experimental data, as well as our guesses for
different parameter values which would give patterns that may be
biologically realistic.
Appendix B

Here we briefly show that if the initial data is non-negative
(i.e., Cið0ÞZ0, iA1,2, and Xið0ÞZ0, iAfTh,tumg), then the
solution is also non-negative. To start, Eqs. (5c)–(5d) are used
to show that

dCiðtÞ

dt
Z�jiCiðtÞ, iAf1,2g: ð23Þ
This leads to the following inequality

CiðtÞZCið0Þe
�ji t Z0, for Cið0ÞZ0, iAf1,2g: ð24Þ

Then, Eq. (5b) is used to show that

dXtumðtÞ

dt
4atum

1þkpCtpðtÞ

1þksCtsðtÞ

� �
XtumðtÞ�gtumCtsðtÞXtumðtÞ: ð25Þ

From this, we obtain the following inequality for the size of the
population of tumor cells:

XtumðtÞ4Xtumð0Þe
R t

0
ðatumðð1þkpCtpðtÞÞ=ð1þksCtsðtÞÞÞ�gtumCtsðtÞÞ dt: ð26Þ

Hence, if Xtumð0ÞZ0 then XtumðtÞZ0, for any tZ0 for which the
solution exists.

Finally, Eq. (5a) is used to show that

dXThðtÞ

dt
Z

aThCiðtÞXtumðtÞ

ð1þkpCtpðtÞÞðh2þXtumðtÞÞ
þbThXThðtÞ, ð27Þ

where, iAf1,2g. This leads to

XThðtÞ4XThð0Þe
bThtþ

Z t

0

ebThðt�tÞaThCiðsÞXtumðsÞ

ð1þkpCtpðsÞÞðh2þXtumðsÞÞ
ds: ð28Þ

Therefore, if XThð0ÞZ0 then XThðtÞZ0 for any tZ0 for which the
solution exists.
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Bajzer, Z., Maruĉić, M., Vuk-Pavlović, S., 1996. Conceptual frameworks for
mathematical modeling of tumor growth dynamics. Math. Comput. Modelling
23 (6), 31–46.

Behrens, G., Li, M., Smith, C., Belz, G., Carbone, J.M.F., Heath, W., 2004. Helper t
cells, dendritic cells and CTL immunity. Immunol. Cell Biol. 82 (1), 84–90.

Bellomo, N., Bellouquid, A., Angelis, E.D., 2003. The modelling of the immune
competition by generalized kinetic (Boltzmann) models: review and research
perspectives. Math. Comput. Modelling 37, 65–86.

Bellomo, N., Delitala, M., 2008. From the mathematical kinetic, and stochastic
game theory to modeling mutations, onset, progression and immune
competition of cancer cells. Phys. Life Rev. 5, 183–206.

Bellomo, N., Li, N., Maini, P., 2008. On the foundations of cancer modeling: selected
topics, speculations, and perspectives. Math. Models Methods Appl. Sci. 18 (4),
593–646.

Bellomo, N., Preziosi, L., 2000. Modelling and mathematical problems related to
tumor evolution and its interactions with the immune system. Math. Comput.
Modelling 32, 413–452.

Brazzoli, I., Angelis, E.D., Jabin, P.-E., 2010. A mathematical model of immune
competition related to cancer dynamics. Math. Methods Appl. Sci. 33,
733–750.

Buonocore, S., Surquin, M., Moine, A.L., Abramowicz, D., Flamand, V., Goldman, M.,
2004. Amplification of T-cell responses by neutrophils: relevance to allograft
immunity. Immunol. Lett. 94, 163–166.

Byrne, H., Alarcon, T., Owen, M., Webb, S., Maini, P., 2006. Modeling aspects of
cancer dynamics: a review. Philos. Trans. R. Soc. A 364, 1563–1578.

Canetti, C., Silva, J., Ferreira, S., Cunha, F., 2006. Tumor necrosis factor-alpha and
leukotriene B4 mediate the neutrophil migration in immune inflammation.
Brit. J. Pharmacol. 364, 1563–1578.

Carlo, E.D., Forni, G., Lolini, P., Colombo, M., Modesti, A., Musiani, P., 2001. The
intriguing role of polymorphonuclear neutrophils in antitumor reactions.
Blood 97, 339–345.

Challacombe, J., Suhrbier, A., Parsons, P., Jones, B., Hampson, P., Kavanagh, D.,
Rainger, G.E., Morris, M., Lord, J., Le, T., Hoang-Le, D., Ogbourne, S.M., 2006.
Neutrophils are a key component of the antitumor efficacy of topical
chemotherapy with Ingenol-3-Angelate. J. Immunol. 177, 8123–8132.

Chaplain, M., 2008. Modelling aspects of cancer growth: insight from mathema-
tical and numerical analysis and computational simulation. Multiscale
Problems in the Life Sciences. Lecture Notes in Mathematics, vol. 1940/2008.
Springer, Berlin/Heidelberg, pp. 147–200.



ARTICLE IN PRESS

R. Eftimie et al. / Journal of Theoretical Biology 265 (2010) 467–480480
Chaplain, M., Kuznetsov, V., James, Z., Stepanova, L., 1998. Spatio-temporal
dynamics of the immune system response to cancer. In: Mathematical Models
in Medical and Health Sciences. Vanderbilt University Press, Nashville, pp. 1–
20.

Corbin, G., Harty, J., 2005. T cells undergo rapid ON/OFF but not ON/OFF/ON cycling
of cytokine production in response to antigen. J. Immunol. 174, 718–726.

Cormier, S., Taranova, A., Bedient, C., Nguyen, T., Protheroe, C., Pero, R., Dimina, D.,
Ochkur, S., O’Neill, K., Colbert, D., Lombari, T., Constant, S., McGarry, M., Lee, J.,
Lee, N., 2006. Pivotal advance: eosinophil infiltration of solid tumors is an early
and persistent inflammatory host response. J. Leukoc. Biol. 79, 1131–1139.

Corthay, A., Skovseth, D., Lundin, K., Rosjo, E., Omholt, H., Hofgaard, P., Haraldsen,
G., Bogen, B., 2005. Primary antitumor immune response mediated by CD4+ T
cells. Immunity 22 (3), 371–383.

Cross, A., Moots, R., Edwards, S., 2007. The dual effects of TNF-a on neutrophil
apoptosis are mediated via differential effects on expression of Mcl-1 and Bfl-
1. Blood 111 (2), 878–884.

de Pillis, L., Gu, W., Radunskaya, A., 2006. Mixed immunotherapy and chemother-
apy of tumors: modeling, applications and biological interpretation. J. Theor.
Biol. 238, 841–862.

de Pillis, L., Radunskaya, A., Wiseman, C., 2005. A validated mathematical model of
cell-mediated immune response to tumor growth. Cancer Res. 65 (17),
7950–7958.

Dullens, H., Tol, M.V.D., de Weger, R., Otter, W.D., 1986. A survey of some formal
models in tumor immunology. Cancer Immunol. Immunother. 23, 159–164.

Eftimie, R., Bramson, J.L., Earn, D.J.D., 2010. Interactions between the immune
system and cancer: a brief review of non-spatial mathematical models. Bull.
Math. Biol., doi:10.1007/s11538-010-9526-3.

Flynn, S., Stockinger, B., 2003. Tumor and cd4 t cell interactions: tumor escape as a
result of reciprocal inactivation. Blood 101 (11), 4472–4478.

Ganusov, V., Milutinovic, D., de Boer, R., 2007. Il-2 regulates expansion of cd4+ t
cell populations by affecting cell death: insights from modeling CFSE data. J.
Immunol. 179 (2), 950–957.

Garcia-Lorca, A., Algarra, I., Garrido, F., 2003. Mhc class i antigens, immune
surveillance, and tumor immune escape. J. Cell. Physiol. 195 (3), 346–355.

Hamilton, D., Bretscher, P., 2008a. The commonality in the regulation of the
immune response to most tumors: the prevalence of immune class deviation
as a tumor escape mechanism and its significance for vaccination and
immunotherapy. Cancer Therapy 6, 745–754.

Hamilton, D., Bretscher, P., 2008b. Different immune correlates associated with
tumor progression and regression: implications for prevention and treatment
of cancer. Cancer Immunol. Immunother. 57, 1125–1136.

Hung, K., Hayashi, R., Lafond-Walker, A., Lowenstein, C., Pardoll, D., Levitsky, H.,
1998. The central role of CD4+ T cells in the antitumor immune response. J.
Exp. Med. 188, 2357–2368.

Jeong, I., Han, K., Joung, J., Choi, W., Hwang, S.-S., Yang, S., Seo, H., Chung, J., Lee, K.,
2007. Analysis of changes in the total lymphocyte and eosinophil count during
immunotherapy for metastatic renal cell carcinoma: correlation with response
and survival. J. Korean Med. Sci. 22 (Suppl.), S122–S128.

Joshi, B., Wang, X., Banerjee, S., Tian, H., Matzavinos, A., Chaplain, M., 2009. On
immunotherapies and cancer vaccination protocols: a mathematical modeling
approach. J. Theor. Biol. 259 (4), 820–827.

Kataoka, S., Konishi, Y., Nishio, Y., Fujikawa-Adachi, K., Tominaga, A., 2004.
Antitumor activity of eosinophils activated by IL-5 and Eotaxin against
hepatocellular carcinoma. DNA Cell Biol. 23 (9), 549–560.

Kirschner, D., Panetta, J., 1998. Modeling immunotherapy of the tumor–immune
interaction. J. Math. Biol. 37, 235–252.

Kolev, M., 2003. Mathematical modeling of the competition between acquired
immunity and cancer. Int. J. Math. Comput. Sci. 13 (3), 289–296.

Kuznetsov, V., Makalkin, I., Taylor, M., Perelson, A., 1994. Nonlinear dynamics of
immunogenic tumors: parameter estimation and global bifurcation analysis.
Bull. Math. Biol. 2 (56), 295–321.

Lane, C., Leitch, J., Tan, X., Hadjati, J., Bramson, J., Wan, Y., 2004. vaccination-
induced autoimmune vitiligo is a consequence of secondary trauma to the
skin. Cancer Res. 64 (4), 1509–1514.

Leitch, J., Frazer, K., Lane, C., Putzu, K., Adema, G., Zhang, Q., Jefferies, W., Bramson,
J., Wan, Y., 2004. Ctl-dependent and independent antitumor immunity is
determined by the tumor not the vaccine. J. Immunol. 172 (9), 5200–5205.

Martins Jr., M., S.F., Vilela, M., 2007. Multiscale models for the growth of avascular
tumors. Phys.Life Rev. 4, 128–156.

Mattes, J., Hulett, M., Xie, W., Hogan, S., Rothenberg, M., Foster, P., Parish, C., 2003.
Immunotherapy of cytotoxic T cell-resistant tumor by T helper 2 cells: an
eotaxin and STAT6-dependent process. J. Exp. Med. 197 (3), 387–393.

Matzavinos, A., Chaplain, M., 2004. Travelling-wave analysis of a model of the
immune response to cancer. C. R. Biol. 327 (11), 995–1008.

Matzavinos, A., Chaplain, M., Kuznetsov, V., 2004. Mathematical modelling of the
spatio-temporal response of cytotoxic T-lymphocytes to a solid tumour. Math.
Med. Biol. 21 (1), 1–34.

Nagy, J., 2005. The ecology and evolutionary biology of cancer: a review of
mathematical models of necrosis and tumor cells diversity. Math. Biosci. Eng. 2
(2), 381–418.

Nishimura, T., Iwakabe, K., Sekimoto, M., Ohmi, Y., Yahata, T., Nakui, M., Sato, T.,
Habu, S., Tashiro, H., Sato, M., Ohta, A., 1999. Distinct role of antigen-specific T
helper type 1 (Th1) and Th2 cells in tumor eradication in vivo. J. Exp. Med. 190
(5), 617–627.

Nonaka, M., Nonaka, R., Woolley, K., Adelroth, E., Miura, K., Okhawara, Y., Glibetic,
M., Nakano, K., O’Byrne, P., Dolovich, J., Jordana, M., 1995. Distinct
immunohistochemical localization of il-4 in human inflamed airway tissues.
J. Immunol. 155, 3234–3244.

Ohnishi, H., Lin, K., Chu, T., 1990. Prolongation of serum half-life of interleukin-2
and augmentation of lymphokine-activated killer cell activity by pepstatin in
mice. Cancer Res. 50, 1107–1112.

Ossendorp, F., Mengede, E., Camps, M., Filius, R., Melief, C., 1998. Specific T helper
cell requirement for optimal induction of cytotoxic T lymphocytes against
major histocompatibility complex class II negative tumors. J. Exp. Med. 187
(5), 693–702.

Owen, M., Sherratt, J., 1997. Pattern formation and spatiotemporal irregularity in a
model for macrophage-tumour interactions. J. Theor. Biol. 189, 63–80.

Owen, M., Sherratt, J., 1998. Modeling the macrophage invasion of tumors: effects
on growth and composition. Math. Med. Biol. 15, 165–185.

Owen, M., Sherratt, J., 1999. Mathematical modelling of macrophage dynamics in
tumours. Math. Models Methods Appl. Sci. 9, 513–539.

Perez-Diez, A., Joncker, N., Choi, K., Chan, W., Anderson, C., Lantz, O., Matzinger, P.,
2007. CD4 cells can be more efficient at tumor rejection than CD8 cells. Blood
109, 5346–5354.

Poe, M., Wu, J., Talento, A., Koo, G., 1996. Ctl lysis: there is a hyperbolic relation of
killing rate to exocytosable granzyme a for highly cytotoxic murine cytotoxic t
lymphocytes. J. Immunol. Methods 192, 37–41.

Qin, Z., Blankenstein, T., 2000. CD4+ T cell-mediated tumor rejection involves
inhibition of angiogenesis that is dependent of IFN-gamma receptor expres-
sion by nonhematopoietic cells. Immunity 12 (6), 677–686.

Regoes, R., Yates, A., Antia, R., 2007. Mathematical model of cytotoxic T-
lymphocyte killing. Immunol. Cell Biol. 85 (4), 274–279.

Ribeiro, R., Mohri, H., Ho, D., Perelson, A., 2002. In vivo dynamics of T cell
activation, proliferation, and death in HIV-1 infection: Why are CD4+ but not
CD8+ T cells depleted? Proc. Natl. Acad. Sci. 99 15572–15577.

Roose, T., Chapman, S., Maini, P., 2007. Mathematical models of avascular tumor
growth. SIAM Rev. 49 (2), 179–208.

Rosenberg, S., Lotze, M., 1986. Cancer immunotherapy using Interleukin-2 and
Interleukin-2 activated lymphocytes. Annu. Rev. Immunol. 4, 681–709.

Sachs, R., Hlatky, L., Hahnfeldt, P., 2001. Simple ODE models of tumor growth
and anti-angiogenics or radiataion treatment. Math. Comput. Modelling 33,
1297–1305.

Shankaran, V., Ikeda, H., Bruce, A., White, J., Swanson, P., Old, L., Schreiber, R., 2001.
IFN-gamma and lymphocytes prevent primary tumor development and shape
tumor immunogenicity. Nature 410 (6832), 1107–1111.

Slifka, M., Rodriguez, F., Whitton, J., 1999. Rapid on/off cycling of cytokine
production by virus-specific cd8textsuperscript+ t cells. Nature 401, 76–79.

Smyth, M., Godfrey, D., Trapani, J., 2001. A fresh look at tumor immunosurveillance
and immunotherapy. Nat. Immunol. 2 (4), 293–299.

Spratt, J., von Fournier, D., Spratt, J., Weber, E., 1993. Decelerating growth and
human breast cancer. Cancer 71 (6), 2013–2019.

Spry, C., 1971. Mechanism of eosinophilia. VI. Eosinophil mobilization. Cell.
Proliferation 4, 365–374.

Szymanska, Z., 2003. Analysis of immunotherapy models in the context of cancer
dynamics. Int. J. Appl. Math. Comput. Sci. 13, 407–418.

Tepper, R., Coffman, R., Leder, P., 1992. An eosinophil-dependent mechanism for
the antitumor effect of interleukin-4. Science 257, 548–551.

Toes, R., Ossendorp, F., Offringa, R., Melief, C., 1999. CD4 T cells and their role in
atitumor immune responses [comment]. J. Exp. Med. 189 (5), 753–756.

Tracey, K., Cerami, A., 1994. Tumor necrosis factor: a pleiotropic cytokine and
therapeutic target. Annu. Rev. Med. 45, 491–503.

van Gisbergen, K., Sanchez-Hernandez, M., Geijtenbeek, T., van Kooyk, Y., 2005.
Neutrophils mediate immune modulation of dendritic cells through glycosyla-
tion-dependent interactions between mac-1 and dc-sign. J. Exp. Med. 201,
1281–1292.

Volpert, O., Foch, T., Koch, A., Peterson, J., Waltenbaugh, C., Tepper, R., Bouck, N.,
1998. Inhibition of angiogenesis by interleukin 4. J. Exp. Med. 188 (6),
1039–1046.

Wan, Y., Bramson, J., Pilon, A., Zhu, Q., Gauldie, J., 2000. Genetically modified
dendritic cells prime autoreactive T cells through a pathway independent of
CD40L and interleukin 12: implications for cancer vaccines. Cancer Res. 60
(12), 3247–3253.

Yamagughi, Y., Hayashi, Y., Sugama, Y., Miura, Y., Kasahara, T., Kitamura, S., Torisu,
M., Mita, S., Tominaga, A., Takatsu, K., Suda, T., 1988. Highly purified murine
interleukin 5 (IL-5) stimulates eosinophil function and prolongs in vitro
survival. J. Exp. Med. 167, 1737–1742.

Yates, A., Bergmann, C., van Hemmen, J., Stark, J., Callard, R., 2000. Cytokine-
modulated regulation of helper T cell population. J. Theor. Biol. 206, 539–560.

Zeng, G., 2001. MHC class-II restricted tumor antigens recognized by CD4+ T cells:
new strategies for cancer vaccine design. J. Immunother. 24 (3), 195–204.

Zhang, S., Bernard, D., Khan, W., Kaplan, M., Bramson, J., Wan, Y., 2009. CD4+ T-
cell-mediated anti-tumor immunity can be uncoupled from autoimmunity via
the STAT4/STAT6 signaling axis. Eur. J. Immunol. 39, 1252–1259.


	Modeling anti-tumor Th1 and Th2 immunity in the rejection of melanoma
	Introduction
	Model description
	Steady states and their stability
	Numerical results
	Extension of the Th1 and Th2 models
	Numerical results

	Sensitivity analysis
	Discussion
	A critical cytokine ratio threshold
	Tumor control or elimination driven by granulocytes
	Comparison of model predictions and experiments
	Conclusions and directions for further research

	Acknowledgments
	References




