
Bull Math Biol (2011) 73: 2–32
DOI 10.1007/s11538-010-9526-3

R E V I E W A RT I C L E

Interactions Between the Immune System and Cancer:
A Brief Review of Non-spatial Mathematical Models

Raluca Eftimie · Jonathan L. Bramson ·
David J.D. Earn

Received: 30 October 2009 / Accepted: 18 February 2010 / Published online: 12 March 2010
© Society for Mathematical Biology 2010

Abstract We briefly review spatially homogeneous mechanistic mathematical mod-
els describing the interactions between a malignant tumor and the immune system.
We begin with the simplest (single equation) models for tumor growth and proceed
to consider greater immunological detail (and correspondingly more equations) in
steps. This approach allows us to clarify the necessity for expanding the complexity
of models in order to capture the biological mechanisms we wish to understand. We
conclude by discussing some unsolved problems in the mathematical modeling of
cancer-immune system interactions.

Keywords Cancer · Immunology · Tumor-immune system interaction · Ordinary
differential equations (ODEs)

1 Introduction

In recent years, evidence has accumulated indicating that the immune system can
recognize and eliminate malignant tumors (Parish 2003; Smyth et al. 2001). Much
research has focussed on how to enhance the anti-tumor activity, by stimulating the
immune system with vaccines or by direct injection of T cells or cytokines (Rosen-
berg 1991; Rosenberg et al. 2004). Of course, the development of powerful cancer
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immunotherapies requires first an understanding of the mechanisms governing the
dynamics of tumor growth.

Early work on tumor growth focussed on trying to understand how “normal”
cells can mutate into cancer cells (Greenblatt et al. 1994; Knudson 1971; Nowak
et al. 2002). In the last 20 years, it has become evident that the oversimplified
concept of a single type of normal cell is inadequate; interactions among multiple
cell types and chemicals play fundamental roles in the initiation and progression of
tumors (Kammertoens et al. 2005; Mueller and Fusenig 2004). The tumor micro-
environment includes immune cells, fibroblasts, and other connective tissue cells,
endothelial cells (which line the interior walls of blood vessels), the extracellular ma-
trix, signaling molecules (chemokines and cytokines), and growth factors (including
cytokines and hormones). The interactions between tumor cells and other compo-
nents of the tumor micro-environment are complex and continuously changing (e.g.,
because interaction strengths are density-dependent or concentration-dependent).
Consequently, understanding these interactions sufficiently to derive cancer im-
munotherapies (e.g., vaccines), has proven a very challenging task (Gajewski 2007;
Rosenberg et al. 2004).

As a tool to make sense of the interactions among the many components of
the tumor microenvironment, researchers have used mathematical models (see,
for example de Boer et al. 1985; de Pillis et al. 2005; Goldstein et al. 2004;
Kronik et al. 2008). Models can investigate interactions on different biological scales
(e.g., molecular, cellular, and tissue scales), and can also investigate the emergent
properties of the system, even when the properties of the individual components are
not fully known. These mathematical models are used to distill the essential com-
ponents of the interactions, thus identifying the most plausible mechanisms that can
lead to the observed outcomes.

There are many existing reviews of mathematical models of tumor growth
and tumor-immune system interactions (Araujo and McElwain 2004; Bellomo and
Preziosi 2000; Bellomo et al. 2008; Byrne et al. 2006; Martins et al. 2007; Nagy 2005;
Roose et al. 2007; Chaplain 2008). Some of these reviews follow a historical ap-
proach (Araujo and McElwain 2004), while others focus on multi-scale modeling
(Bellomo et al. 2008; Martins et al. 2007; Bellomo and Preziosi 2000), or on partic-
ular aspects of tumor evolution, such as tumor necrosis (Nagy 2005). The majority
of these reviews focus on spatial models, which are described either by partial dif-
ferential equations (PDEs) or cellular automata (e.g., Araujo and McElwain 2004;
Roose et al. 2007; Chaplain 2008). One class of models that has been reviewed very
recently is based on the mathematical kinetic theory of active particles and describes
the early stages of cancer development; these models use integro-differential equa-
tions to investigate tumor-immune system interactions (Bellomo and Delitala 2008).

Few reviews focus on non-spatial models, which are described by ordinary
differential equations (ODEs) (but see, for example, Adam and Bellomo 1997;
Dullens et al. 1986; Bajzer et al. 1996; Sachs et al. 2001; Nagy 2005). While ODE
models do not address spatial spread, they provide a simpler framework within which
to explore the interactions among tumor cells and the different types of immune and
healthy tissue cells. Existing reviews of ODE models focus mostly on models de-
scribed by one equation, and very briefly treat two-equation or three-equation mod-
els (as in Bajzer et al. 1996; Sachs et al. 2001). They also tend to focus on particular
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aspects of tumor development, such as competition between different types of tumor
cells (as in Nagy 2005).

In this article, we review ODE models starting from the very simplest (involving
a single equation) and build up to much more complex models that include succes-
sively more features of the tumor micro-environment and the immune system. This
approach allows us to clearly articulate the limitations of particular models and to
identify the dynamical effects of including greater biological detail. We do not at-
tempt a comprehensive review of all relevant ODE models. Rather, our goal here is to
present some of the mathematical approaches taken to investigate different aspects of
tumor-immune system interactions, to elucidate the complexity of the problem, and
to summarize both the strengths and weaknesses of ODE models.

Cancer immunotherapy research has focused primarily on the anti-tumor activity
of white blood cells, especially T cells (usually CD8+ T cells), natural killer (NK)
cells, and macrophages. It has been shown experimentally that the these immune
cells can lyse (kill by breaking the cell membrane of) tumor cells very effectively
(Quesnel 2008). For this reason, most tumor-immune system ODE models focus on
the interactions between white blood cells and tumor cells. Some models also in-
clude interactions with normal tissue cells, or with cytokines (e.g., IL-2, IFN-γ ) and
chemokines (chemotactic cytokines). Many of the models incorporate different thera-
peutic strategies such as administration of cytokines or adoptive transfer of activated
T cells (Kirschner and Panetta 1998). We will discuss all these aspects of tumor-
immune system modeling.

We begin in Sect. 2 with the simplest models derived to investigate the dynamics
of populations of cancer cells (ignoring normal cells). In Sect. 3, we consider elemen-
tary models that incorporate a caricature of the mechanism of immune surveillance,
whereby the immune system identifies and kills foreign cells; these models consider
two cell types, cancer cells and generic immune cells. In Sect. 4, we review models
(involving three equations) that examine interactions between cancer cells, immune
cells, and other type of cells or signaling proteins (i.e., cytokines and chemokines);
these models consider interactions among cancer, normal tissue, and immune cells;
cancer and two types of immune cells; or cancer, immune cells, and cytokines. In
Sect. 5, we review models of four interacting components of the tumor microenvi-
ronment (hence involving four equations) and in Sect. 6 we briefly mention some
very complex ODE models that incorporate more detailed interactions between the
immune system and tumor cells. Finally, in Sect. 7, we summarize and discuss some
recent advances in tumor immunology that suggest new avenues for useful mathe-
matical modeling research.

2 One-Equation Models: Tumor Growth

The first step in understanding tumor growth is simply to describe the growth pat-
terns. Extensive patient data has accumulated over many decades as a result of di-
agnostic imaging, especially through chest X-rays and mammograms (Spratt et al.
1996). These data, such as mammograms taken both before and after the detection
of a tumor, indicate that 15–77% of diagnosed breast cancers arise between annual
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Fig. 1 (a) Schematic representation of the dynamics of cancer cells as a result of autoregulatory cell–cell
interactions. Autoregulation can have either a positive or negative effect depending on the sign of the
regulating factor f (x) (2). (b) Sigmoidal curve describing the growth of untreated tumors. Shown is a
Gompertzian growth typical for aggressive mice tumors

mammograms. This suggests that the initial growth of a tumor (before it is detectable
with diagnostic imaging) is much faster than the growth of detectable tumors (Lala
and Patt 1966; Spratt et al. 1996). Gompertz (1825) first explained this type growth
by mathematically modeling cell replication and death (and nothing else). His simple
model yields a sigmoidal population growth curve (Fig. 1(b)), which shows accel-
erating growth for small populations and decelerating growth for large populations.
In the case of a tumor cell population, the decelerating dynamics displayed by the
sigmoidal curve can be explained by the finite nutrient level available to the tumor
cells.

Since Gompertz’s paper, many mathematical models have been derived to fit and
explain tumor growth data, to predict patient survival, and to suggest therapeutic
options (Norton 1988). Some of these models assume that the tumors grow expo-
nentially (Skipper and Schabel 1982), but the majority consider decelerating growth
(Laird 1964; Hart et al. 1998; von Bertalanffy 1957). The most general equation de-
scribing the dynamics of tumor growth can be written

x′ = xf (x), (1)

where x is the cell population size at time t , x(0) > 0, and the factor f (x) specifies
the density dependence in the proliferation and death of tumor cells. The density
dependence factor can be written more explicitly as

f (x) = p(x) − d(x), (2)

where p(x) describes cell proliferation and d(x) describes cell death. The simplest
examples can be expressed as power laws,

p(x) = axα, (3a)

d(x) = bxβ, (3b)

with α = 0 and β = 1 for the logistic model (Hart et al. 1998), and α = −1/3 and
β = 0 for the von Bertalanffy model (von Bertalanffy 1957). If p(x) = a and d(x) =
b ln(x), then (1) reduces to the Gompertz model (Laird 1964). Such models have
been reviewed from the perspective of description of growth (Bajzer et al. 1996) and
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Fig. 2 Examples of possible dynamics of malignant cells. (a) Tumor growth. (b) Tumor elimination.
(c) Tumor growth followed by elimination. Panels (a) and (c) are based on experimental data and are
redrawn from Hamilton and Bretscher (2008). Panel (b) shows exponential decay, which can occur in
mathematical models described by (1)

from a clinical perspective, i.e., ability to predict relapse or response to chemotherapy
(Panetta 1998).

While one-equation models sometimes fit data very well (Norton 1988), the ap-
plicability of some of these models is restricted. For example, the Gompertz model
displays unbounded growth as the density tends to zero,

lim
x→0+ f (x) = +∞. (4)

Since the proliferation rate of cell populations is eventually bounded by the cell
division time, the Gompertz model is not appropriate to describe the dynam-
ics of very small tumors (which is often a serious limitation) (d’Onofrio 2008;
Weldon 1988).

For the logistic, Gompertz and many other simple forms of density dependence,
there are well-known analytical solutions of (1), making it very easy to use these
models to predict the tumor dynamics given a measurement of tumor size at a spe-
cific time (and estimates of the model’s parameters). Overall, these models have been
successful at explaining tumor growth patterns in spite of being based on a single
equation describing cell-cell interactions (see Fig. 1(a)). In addition, these models
can be used in practice to classify tumors according to aggressivity of growth (Chig-
nola and Foroni 2005) and to quantify the relationship between tumor growth rates
and patient age (Weedon-Fekjaer et al. 2008).

Equation (1) can successfully model tumor growth (p(x) > d(x); Fig. 2(a)), decay
(p(x) < d(x); Fig. 2(b)) or dormancy (p(x) = d(x)). A single equation cannot, how-
ever, model the situation shown in Fig. 2(c) in which initial tumor growth is followed
by regression (this is mathematically impossible with a single autonomous equation:
for a given density x, the right-hand side of (1) always has the same sign, so there is
no density at which the population can be increasing at one time and decreasing at
another time). However, the behavior described in Fig. 2(c) can be obtained with a
one-equation model that incorporates a time-dependent treatment term (Sachs et al.
2001),

x′ = x
[
p(x) − d(x)

] − aφ(t)x, (5)
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where a > 0 represents the strength of the chemotherapeutic agent and φ(t) repre-
sents the concentration of the agent during the treatment schedule. This term can also
be interpreted as a time-dependent immune response.

Even if the time-dependent term φ(t) can explain the macroscopic behavior of
tumors that grow and then regress, it cannot offer insight into the mechanisms leading
to this behavior. In order to investigate the biological mechanisms most likely to lead
to tumor growth and elimination, we must expand the model. In the next section, we
do this by including interactions between tumor cells and other cells that can inhibit
their growth.

3 Two-Equation Models: Interactions Between Tumor Cells and Generic
Effector Cells

The immuno-surveillance hypothesis formulated in the 1950s suggested that the im-
mune system is capable of inhibiting the growth of very small tumors and eliminating
them before they become clinically evident (Burnet 1957, 1967). This motivates the
derivation of mathematical models of the interactions between tumor cells and im-
mune cells (see Fig. 3). The simplest way to do this is by adding one equation to the
family of models described by (1).

The precise nature of the immune cell population that we include need not be
specified at this point, but the idea is to mimic the behavior of cytotoxic immune
cells, such as CD8+ T cells (Boon and van der Bruggen 1996) or NK cells (Khar
1997). These cells, also called effector cells, can control tumor growth by recog-
nizing tumor antigens (substances within tumor cells that trigger an immune re-
sponse) or tumor cell surface ligands (molecules on the surface of tumor cells,
which bind to receptors on the surface of immune cells that trigger their activa-
tion). For the class of simple models depicted in Fig. 3, we consider a generic

Fig. 3 A schematic representation of the interactions involved in the two-equation models in Sect. 3.
This contrasts the simple auto-regulation mechanism in the one-equation models described in Sect. 2 and
Fig. 1. Note that positive effects are associated with positive terms in the associated equations, while
negative effects are associated with negative terms in the equations. Positive effects promote the growth of
the component they are affecting; however, the magnitude of a positive effect does not necessarily increase
with the cell populations that contribute to it (e.g., x/(1 + y) is always positive, but gets smaller in value
as y is increased)
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Table 1 Notation used in this article

State variables Meaning

x Cancer cells

y Immune cells

z, w Other cells or cytokines

Rate functions Description

f (x) Growth of cancer cells

dj , j = x, y, z,w Inhibition of cells/cytokines (type j ) by other cells/cytokines

pj , j = y, z,w Proliferation of cells/cytokines (type j )

aj (j), j = y, z,w Death (apoptosis) of cell (type j )

φj (t), j = y, z,w Time-dependent or time-independent treatment, or influx of cells/cytokines of type j

effector cell population interacting with tumor cells. These interactions are de-
scribed by two equations, which are usually of predator-prey type (Forys et al. 2006;
Michelson et al. 1987; Michelson and Leith 1993; Stepanova 1980; de Vladar and
González 2004). The immune cells play the role of the predator, while the tu-
mor cells are the prey. All such models can be expressed as (d’Onofrio 2005,
2008)

x′ = xf (x) − dx(x, y), (6a)

y′ = py(x, y) − dy(x, y) − ay(y) + φ(t), (6b)

where x represents the size or density of the tumor cell population and y rep-
resents the size or density of the effector cell population. Note that the structure
of (6a) for the tumor is quite similar to (1), the only difference being that can-
cer cell death now results from both predation by effector cells (dx(x, y)) and
autoregulation (xd(x); see (2)). Equation (6b) for the immune cells includes a
growth term (py(x, y)) and a death term (dy(x, y)), both of which depend on in-
teraction between the cancer cells and effector cells. There is also an apoptosis
term (ay(y)) and a time-dependent treatment term (φ(t)). When φ(t) = c1 (con-
stant), the term describes continuous production of immune cells, even in the ab-
sence of cancer cells (Kuznetsov et al. 1994). These terms are summarized in Ta-
ble 1.

For particular functions f (x), dx(x, y), py(x, y), dy(x, y), ay(y), and φ(t), the
generic model (6) reduces to specific models derived in the literature (Forys et al.
2006; Galach 2003; Kuznetsov et al. 1994; Stepanova 1980; Sotolongo-Costa et al.
2003; de Vladar and González 2004). For instance, the model derived in Kuznetsov
et al. (1994) is obtained by setting

f (x) = a(1 − βx), (7a)

dx(x, y) = nxy, (7b)
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py(x, y) = ρxy

g + x
, (7c)

dy(x, y) = mxy, (7d)

ay(y) = dy, (7e)

φ(t) = s. (7f)

While not as simple as the single equation models in Sect. 2, the two-equation
models (6) are still sufficiently simple that their qualitative dynamics can be com-
pletely determined using standard mathematical techniques (such as local and global
stability analysis and bifurcation theory). For example, using the Dulac–Bendixson
criterion (Perko 2001) it has been shown that a two-equation model without external
treatment (φ(t) = 0), and with g(x) non-constant such that d

dx
(f (x)/g(x)) ≤ 0, can-

not display closed orbits (periodic orbits, homoclinic orbits, or chains of heteroclinic
orbits) (d’Onofrio 2005; Kuznetsov et al. 1994).

Linear analysis and bifurcation techniques can help to further illuminate how the
behaviors of the immune and cancer cells depend on the various parameters. In par-
ticular, phase portraits for the models reveal the existence of saddle points, nodes,
and foci. Local and global stability analysis of these points reveal conditions on the
parameters—such as those that define the functions describing the tumor-immune
interactions—that can lead to local or global eradication of the tumor, or to the co-
existence of immune and cancer cells (d’Onofrio 2008). Moreover, these equilibrium
points suggest four types of behavior: exponential growth or decay, and oscillatory
growth or decay (Kuznetsov et al. 1994; Sotolongo-Costa et al. 2003). The introduc-
tion of a periodic treatment φ(t) (Sotolongo-Costa et al. 2003), or a time delay in the
immune response py(x(t − τ), y(t − τ)) (Galach 2003), can lead to a fifth behavior,
namely persistent oscillations. A detailed analysis of the possible behaviors exhibited
by (6) can be found in d’Onofrio (2008).

Since many papers in the literature present mathematical analyses and phase por-
traits without showing sample time series (d’Onofrio 2005; Lin 2004; Takayanagi
and Ohuchi 2001; de Vladar and González 2004), in Fig. 4, we show examples of
each of the possible types of temporal dynamics that can be obtained with the two-
equation models (6). Note that for the purpose of drawing these graphs we used the
models introduced in Kuznetsov et al. (1994) and Sotolongo-Costa et al. (2003), but
the other models mentioned in this section display similar dynamics. In Fig. 4, pan-
els (a) and (b) show exponential decrease and increase in tumor size, respectively,
while panels (c) and (d) show oscillatory decay and oscillatory growth of tumors.
Panels (e) and (f) show two types of persistent oscillatory behavior: (e) coexistence
of cancer cells and immune cells; (f) periodic elimination of the tumor.

Numerical simulations also show the existence of an “immunological barrier”,
meaning that the immune system can eliminate small tumors, but is overwhelmed by
large tumors (Kuznetsov et al. 1994). In other parameter regimes, simulations show
the existence of a “sneaking through barrier”, whereby tumors that have been re-
duced in size are never quite eliminated, and ultimately escape the immune response
and grow larger (Kuznetsov et al. 1994). Two-equation models (6) can also describe
dormant or persistent small tumors; for example, de Vladar and González (2004)
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Fig. 4 Tumor-immune system dynamics displayed by the two-equation models described in Sect. 3. The
continuous curve shows the time-evolution of the cancer cell population, while the dashed curve shows
the time-evolution of the immune cell population. In panels (a)–(d), there is no treatment (φ(t) = 0).
(a) Tumor size decreases exponentially after interactions with the immune cells; (b) Initially, the tumor
size decreases through the interactions with immune cells. When the immune cell population decays under
a certain level, the tumor grows again. (c) Tumor size decays in an oscillatory manner. (d) Tumor size
grows in an oscillatory manner. This also leads to growth in the immune cell population. The addition
of periodic treatment (φ(t) �= 0) or time delay can lead to persistent oscillations: (e) oscillations with the
coexistence of tumor and immune cells, and (f) oscillations with the temporary elimination of the tumor
cells. Panels (a)–(c) were obtained with the model of Kuznetsov et al. (1994); the initial conditions for the
simulations were x(0) = 50, y(0) = 5. Using the notation of Kuznetsov et al. (1994), the parameter values
were: (a) s = 0.318, d = 0.1908, b = 2 × 10−3; (b) s = 0.318, d = 2.0, b = 4 × 10−3; (c) s = 0.1181,
d = 0.3743, b = 2 × 10−3. For all three panels, the remaining parameters were: ρ = 1.131, g = 20.19,
m = 0.00311, a = 1.636, n = 1. Panels (d)–(f) were obtained using the model of Sotolongo-Costa et al.
(2003) with initial conditions x(0) = 2.1, y(0) = 2.7 for panel (d), and x(0) = 5.3, y(0) = 6.7 for pan-
els (e) and (f). Using the notation in Sotolongo-Costa et al. (2003), the parameter values were: (d) V = 0,
β = 0.34; (e) V = 0.25, β = 0.34; (f) V = 0.25, β = 0.32; remaining parameters: α = 2.0, k = 0.2,
σ = 0.05

showed that if the quotient of the tumor growth rate and the rate at which the tumor
cells are eliminated is small, then the tumor will stay small (either microscopic or
benign). Such behavior can be explained either by strong, direct anti-tumor activity
or by strong background immunity (Forys et al. 2006).

In Sect. 2, we noted that because Gompertzian growth is unbounded as tumor den-
sity becomes small, Gompertzian models cannot describe the dynamics of small pop-
ulations of tumor cells. Analysis of two-equation models reveals further that Gom-
pertzian growth is not compatible with the immuno-surveillance hypothesis: the im-
mune response cannot completely eradicate cancer cells that grow according to the
Gompertzian law (d’Onofrio 2005), despite the fact that it can fit the data from some
in vivo tumors (Castro et al. 2003).

Another type of two-equation model (which we have not discussed here) con-
siders state variables associated with the cancer cell population and with the tu-
mor carrying capacity (which is determined by endothelial support, i.e., blood ves-
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sels in and around the tumor). The equation for the (time-dependent) carrying ca-
pacity incorporates an indirect effect of the immune system (Sachs et al. 2001;
Ledzewicz et al. 2009).

3.1 Summary of Two Equation Models

Models that are expressible by (6) can be fitted to most observed tumor-immune
system dynamics. They are, therefore, very helpful for elucidating basic (generic)
mechanisms that can induce observed behaviors, such as tumor regression and tumor
dormancy. The models display a greater variety of dynamics than is observed exper-
imentally; in particular, we are not aware of any examples of oscillatory dynamics in
solid tumors (though this might occur in systemic diseases such as leukemia, Menta
and Agarwal 1980).

Because they are so generic, two-equation models are not adequate to develop
therapies based on specific components of the immune system that might be pos-
sible to target experimentally. For example, it is intuitive that either strong innate
immunity (Forys et al. 2006) or strong anti-tumor activity (Lejeune et al. 2008;
de Vladar and González 2004) can eradicate a tumor. But anti-tumor activity can
be produced by a variety of immune cells, such as CD8+ T cells, NK cells, or
macrophages, and each cell type can interact with cancer cells in a multitude of ways.
Moreover, when thinking about the effects of specific immunotherapies, non-linear
density-dependent interactions among different immune cell populations may be very
important. In subsequent sections, we review models of increasing complexity that
consider more details of the interactions among different types of cells and signaling
molecules.

4 Three Equation Models: Interactions Among Cancer Cells and Two Other
Components of the Tumor Micro-Environment

The most natural way to incorporate more biological detail is to start with one of
the previous two-equation models and add one more component. This component
could be either a different type of cell (e.g., immune cells, or healthy tissue cells), or
cytokines present in the tumor microenvironment (see Fig. 5).

In the past 10–20 years, experimental results have shown that CD8+ T cells (Naito
et al. 1998), NK cells (Quesnel 2008; Waldhauer and Steinle 2008), and macrophages
(Fidler 1985) are associated with good cancer prognosis, being involved in the lysis
of cancer cells. Each of these immune cells uses a different mechanism and plays a
different role in cell lysis. In an attempt to shed light on these mechanisms, various
mathematical models have been developed to investigate the interactions between
cancer cells and multiple immune cells (de Pillis and Radunskaya 2003b), or between
cancer cells, immune cells, and healthy tissue cells (Owen and Sherratt 1998).

Another important component of the anti-tumor immune response is represented
by the cytokines. These molecules, which are used in cellular communication, play
a very important role in the activation and development of immune responses, as
shown by many experimental results (Dranoff 2004). For this reason, cytokines
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Fig. 5 Schematic representation of the three-component models of cancer-immune system interactions
described in Sect. 4. (a) Models involving three types of cell. (b) Models involving two types of cell and
one type of signaling molecule. Note that “death” of cytokines refers to natural decay of these molecules
(and the consequent reduction in their concentration)

are the focus of many cancer immunotherapies, though the mechanisms through
which they interact with cancer cells are not completely understood (Dranoff 2004;
Kim-Schulze et al. 2007; Parmiani et al. 2000). To help with the investigation of these
mechanisms, some simple mathematical models have been derived based on the in-
teractions among immune cells, cancer cells, and certain cytokines (Kirschner and
Panetta 1998).

In this section, we will review some of the most cited mathematical models that
have followed these two approaches. We focus on three types of interactions:

(1) Interactions between cancer cells and two types of effector cells, which are usu-
ally CD8+ T cells and NK cells (see, for example, de Pillis and Radunskaya
2003b; de Pillis et al. 2005).

(2) Interactions between cancer cells, effector cells, and normal tissue cells (see, for
example, Owen and Sherratt 1998).

(3) Interactions between cancer cells, effector cells, and cytokines (such as IL-2,
TGF-β , IFN-γ ) (see, for example, Arciero et al. 2004; Kirschner and Panetta
1998).

There are other three-equation models that focus on different types of interactions.
For example, some models investigate the interactions among cancer cells, effector
cells, and naïve effector cells (Moore and Li 2004). Other models investigate the
interactions among antibodies and two types of cancer cells, either proliferating or
quiescent (Page and Uhr 2005), or the interactions among cancer cells, normal ef-
fector cells and resting effector cells (Banerjee and Sarkar 2008; Merola et al. 2008;
Sarkar and Banerjee 2005). Many of these models are classical ODE models (Moore
and Li 2004), but some incorporate stochastic effects (Sarkar and Banerjee 2005) or
time delays (Banerjee and Sarkar 2008).

Many of the models mentioned below in this section include treatment protocols,
such as continuous injection of cytokines (Kirschner and Panetta 1998; Owen and
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Sherratt 1998), continuous transfer of effector cells (Kirschner and Panetta 1998),
pulse-like or continuous administration of certain drugs (de Pillis and Radunskaya
2003a) or immunization with dendritic cells (Castiglione and Piccoli 2007). Some
authors have applied control theory (Kirk 2004) to their models in an attempt to
identify optimal therapy protocols (de Pillis and Radunskaya 2001; Swan 1985). In
this review, we focus only on the possible dynamical behaviors of the models and not
on the analysis of optimal treatment regimes.

Figure 6 summarizes the types of behaviors exhibited by many of these three-
equation models. The continuous curve shows the time evolution of the cancer cell
population. The other two (dashed and dotted) curves show the time evolution of var-
ious immune cells or cytokines. These three-equation models can exhibit exponen-
tial decay (cases (a)–(b)) or growth of tumor cells (cases (c), (e)), oscillatory decay
(case (d)), or persistent oscillations (case (f)). To create Fig. 6, we used the models
introduced in Kirschner and Panetta (1998) and Moore and Li (2004).

While these three-equation models do not appear to produce any distinct behaviors
beyond those displayed by the two-equation models discussed in Sect. 3, they do shed
light on the interactions among different types of cells, between cells and cytokines,
and the influence of these factors on tumor size. In the following subsections, we
consider how the three-equation models help to uncover the possible mechanisms
underlying such interactions.

4.1 Tumor Growth Modulated by Two Effector Cell Types

The general equations describing interactions among cancer cells and two different
cell populations (as in Fig. 5(a)) are

x′ = xf (x) − dx(x, y, z), (8a)

y′ = φy(t) + py(x, y, z) − ay(y) − dy(x, y), (8b)

z′ = φz(t) + pz(x, y, z) − az(z) − dz(x, z). (8c)

In (8a), f (x) describes the modulation of cancer cell growth through auto-regulation,
while dx(x, y, z) is the rate at which cancer cells are killed in interactions with the
other two cell types, y and z. The terms py(x, y, z) and pz(x, y, z) (in (8b) and (8c))
give the rates at which the y and z cell types grow in the presence of cancer cells.
The terms ay(y) and az(z) describe apoptosis (cell death), while the terms dy(x, y)

and dz(x, z) describe inactivation of immune cells by cancer cells, or competition be-
tween normal and cancer cells (as will be shown in Sect. 4.2). As in Sect. 3, the terms
φy(t) and φz(t) can model time-dependent or time-independent (φy,z = constant)
treatments, or can model the influx of immune cells into the tumor microenvironment.
In this latter case, the influx terms are usually constant (see, for example, de Pillis et
al. 2005). All our notation is summarized in Table 1.

Equations (8) describe generic interactions among cancer cells and two types of
effector cells, which could be any of the many types of immune cells present at a
tumor site. de Pillis and Radunskaya (2003b) derived a specific example of (8) to
investigate the effect of CD8+ T cells (z) and NK cells (y) on tumor regression.
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Fig. 6 Tumor-immune system dynamics displayed by the three-equation models described in Sect. 4.
The time-evolution of the cancer cell population is shown by the continuous curve in each panel. The
dashed and dotted curves show the time-evolution of two different immune cell populations (panels (a),
(c), and (e)), or immune cells and cytokines (panels (b), (d), and (f)). The graphs in panels (a), (c) and (e)
were made using the model of Moore and Li (2004). The initial conditions and the parameters (using
the notation in Moore and Li 2004) are: (a) rc = 0.23, and the initial condition x(0) = 104, y(0) = 50,
z(0) = 2500; (c) rc = 0.23 and the initial condition x(0) = 104, y(0) = 30, z(0) = 2500; (e) rc = 0.43,
and the initial condition x(0) = 104, y(0) = 50, z(0) = 2500. The remaining parameters values were:
sn = 0.071, dn = 0.05, de = 0.12, dc = 0.68, kn = 0.063, η = 43, αn = 0.56, αe = 0.93, cmax = 19×104,
γe = 1.9 × 10−3, γc = 0.048. Panels (b), (d), and (f) were made using the model of Kirschner and Panetta
(1998) with initial conditions y(0) = 10, x(0) = 105, z(0) = 0. The parameter values (using the notation
in Kirschner and Panetta 1998) are: (b) c = 0.002, (d) c = 0.05, (f) c = 0.02; and remaining parameters
p1 = 0.1245, g1 = 2×107, μ2 = 0.03, r2 = 0.18, b = 10−9, a = 1, g2 = 105, μ3 = 10, p2 = 5, g3 = 103

In their model, the authors consider logistic tumor growth (f (x) = r(1 − bx)), lin-
ear death of immune cells (ay(y) = i1y, az(z) = i2z) and bilinear inactivation terms
(dy(x, y) = pxy, dz(x, z) = qxz). Both the CD8+ T cells and the NK cells can elim-
inate the cancer cells on their own (and there is not joint effect), so the elimination
term can be written dx(x, y, z) = d

y
x (x, y) + dz

x(x, z). Here d
y
x (x, y) describes the

elimination of cancer cells by the NK cells, while dz
x(x, z) describes the elimination
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by the CD8+ T cells. Fitting the model to data from Diefenbach et al. (2001), the
authors discovered that lysis of tumor cells by effector cells can be better explained
if one associates different mechanisms (i.e., different types of interaction terms) with
cancer elimination by NK cells and by CD8+ T cells. In particular, lysis of tumor
cells by NK cells can be explained by an interaction of the form d

y
x (x, y) = cxy1.44,

whereas CD8+ T cell-induced lysis is better described by a rational term that depends

on the ratio of CD8+ T cells to tumor cells (z/x): dz
x(x, z) = d0(z/x)λ

1+(z/x)λ
. In addition,

the recruitment of the NK cells and CD8+ T cells by the immune system is better
described by Michaelis–Menten dynamics:

py(x, y, z) = g0x
2y

dz
x(x, z) + x2

, (9a)

pz(x, y, z) = j0[dz
x(x, z)]2z

k + [dz
x(x, z)]2

. (9b)

The saturated form of these terms accounts for a limited immune response in the pres-
ence of the cancer. Even if these lysis and recruitment terms provide a good fit with
experimental data, there is still the question of why the two types of immune cells
(i.e., the CD8+ T cells and NK cells) behave so differently when lysing the tumor
cells and when proliferating. To answer this question, further laboratory experiments
are required.

Later, the same authors (de Pillis et al. 2005) showed numerically that if the CD8+
T cells or the NK cells are depleted, the immune system can eliminate up to 104 tumor
cells but fails to inhibit larger innoculations (e.g., 106 injected tumor cells). In this
case, the behavior is similar to that depicted in Fig. 6(a). Moreover, the depletion of
the CD8+ T cells has a different impact on the tumor compared to the depletion of the
NK cells. In particular, the system without NK cells can control initial tumor burdens
up to 105 cells, while the system without CD8+ T cells can control tumor burdens
only up to 104 cells. Only the combined effect of the CD8+ T cells and NK cells
can eliminate large tumors (i.e., 106 tumor cells). Also, the results suggest that the
size of the tumor is most sensitive to the tumor growth rate (r) and to the parameter
connecting the lysis rate with the effector/target ratio (λ). Note that the numerical
behavior displayed by these models is similar to the ones in Figs. 6(b) and (d).

4.2 Tumor Growth Modulated by Effector Cells and Normal Cells Through
Competition for Resources

Rather than focusing on other types of immune cells, some three-equation models
describe a single immune cell population together with normal-tissue cells and their
competition with cancer cells (Owen and Sherratt 1998; de Pillis and Radunskaya
2001, 2003a). Such models are used to investigate possible mechanisms involved in
the reduction of tumor size, without the loss of too many normal cells. The interac-
tions among the three cell types are usually described by two different competition
terms:

i Competition for resources between normal cells and cancer cells (and sometimes
also immune cells, as in Owen and Sherratt 1998);

ii Predator-prey competition between cancer cells and immune cells.
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These types of interactions are described by equations similar to (8), where z repre-
sents the number (or density) of normal-tissue cells.

In the particular model considered by de Pillis and Radunskaya, de Pillis and
Radunskaya (2001, 2003a), the terms describing the interactions between the dif-
ferent cells are

f (x) = r1(1 − b1x), (10a)

dx(x, y, z) = c2xy + c3xz, (10b)

py(x, y, z) = ρxy

α + x
, (10c)

pz(x, y, z) = r2z(1 − b2z), (10d)

ay(y) = d1y, (10e)

az(z) = 0, (10f)

dy(x, y) = c1xy, (10g)

dz(x, z) = c4xz, (10h)

φy(t) = s, (10i)

φz(t) = 0. (10j)

Here, the growth of the normal cells (pz(x, y, z)) is described by a logistic term, while
the growth/recruitment of the immune cells (py(x, y, z)) is described by a Michaelis-
Menten term to account for the limited immune response in the presence of cancer
cells.

The model of Owen and Sherratt (1998) focuses on a particular type of immune
cell population, the macrophages, and it is slightly different from the models de-
scribed by (8). In particular, the authors take account of the fact that the growth of
the macrophage population is limited by crowding from all cell types. This effect is
described by non-standard Michaelis–Menten terms,

wi(N + Ne)

N + w1 + w2 + w3
, (11)

where wi , i = 1,2,3 represent the different cell types, Ne is the total equilibrium
density of all cell types in normal tissue, and N is a measure of the initial growth rate
and the subsequent crowding response. After non-dimensionalization Ne disappears,
and the terms describing the interactions among the cancer cells (x), macrophages
(y), and normal cells (z) are

f (x, y, z) = ψ(N + 1)

N + x + y + z
− x, (12a)

dx(x, y) = Kmyx2, (12b)

py(x, y, z) = Axy(N + 1)

N + x + y + z
+ s0(1 + Sy), (12c)
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pz(x, y, z) = z(N + 1)

N + x + y + z
, (12d)

dy(x, y) = Klyx2, (12e)

dz(x, z) = 0, (12f)

ay(y) = δly, (12g)

az(z) = z, (12h)

φy(t) = s0, φz(t) = 0. (12i)

Note that the presence of macrophages in the tumor is caused by a generic chemoat-
tractant produced by cancer cells, which influences the parameters A and S in the pro-
liferation function py(x, y, z). The model makes the assumption that in the absence
of tumor chemoattractants, there is a baseline influx of macrophages in the tissue from
the circulating blood (s0). Such an influx might be caused by other chemoattractants
produced by other immune cells (see, for example, von Stebut et al. 2003).

Unlike the cases discussed in Sect. 4.1, the authors of both of the models that
we have discussed in this section use analytical methods to better understand the
dynamics of the three cell populations. The principal dynamical difference between
the two models is that one supports a tumor-free equilibrium. de Pillis and Radun-
skaya (2003a) show that their model has a stable tumor-free steady state solution
when the tumor growth rate is less than the “efficiency” of the immune system with
respect to tumor elimination. This “efficiency” is measured by a combination of pa-
rameters including the rate at which the immune cells kill cancer cells, the constant
influx rate of the immune cells at the tumor site, and the apoptosis (natural death)
rate of the immune cells. In contrast, the model of Owen and Sherratt (1998) does
not support a stable tumor-free steady state, so arbitrarily small tumors will grow.
This instability is caused by a quadratic term in x describing the killing of cancer
cells by macrophages (dx(x, y) = Kmyx2). The quadratic term arises from a pseudo-
steady state approximation for the concentration of a generic chemical involved in
the activation and proliferation of macrophages. The tumor-free steady state can be
stabilized by introducing a continuous, constant influx of chemicals (which might
correspond to drug treatment). If the approximations of Owen and Sherratt (1998)
are valid, then their results suggest that macrophages alone cannot eradicate a tumor.
(It has since been discovered experimentally that some macrophages (M2) actually
promote tumor growth, Mantovani et al. 2002.)

In addition to stability analysis, the authors of both models use bifurcation tech-
niques to locate points in parameter space where transitions occur between stable and
unstable steady states. de Pillis and Radunskaya (2001) focus on how the model’s
behavior depends on the proliferation rate of the immune cells (ρ), while Owen and
Sherratt (1998) focus on the effects of the rate at which a generic chemoattractant is
produced (S) and on the reaction of macrophages to this chemoattractant. In both
models, for intermediate parameter ranges it is possible to have multiple coexis-
tence steady states, i.e., distinct (stable) steady states where a small tumor can coexist
with normal cells and immune cells. In the immunological literature such coexistence
steady states are called “the equilibrium phase” (Teng et al. 2008). They represent the
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second phase of tumor-immune interactions, the other two phases being elimination
and escape (Teng et al. 2008).

In conclusion, these two models are complex enough to be used to deduce condi-
tions for different biologically relevant parameters which would ensure the elimina-
tion of a tumor, without a major loss of healthy tissue cells. On the other hand, the
models are still simple enough to be investigated analytically. Analysis of these mod-
els shows that when the tumor-immune dynamics are described by first-order terms
in x, the tumor can be eliminated permanently. On the other hand, when the dynamics
are described by second-order terms in x, the tumor will relapse (in this case, a small
perturbation of the tumor micro-environment will cause the tumor to grow again).

4.3 Tumor Growth Modulated by Effector Cells and Cytokines

One of the first models to investigate the role of cytokines on tumor regression was
developed by Kirschner and Panetta (1998), who investigated the effect of IL-2 and
cytotoxic T cells on the tumor-immune system dynamics (see Fig. 5(b)). The equa-
tions describing the dynamics between the cancer cells (x), immune cells (y), and
cytokines (z) can be written in their most general form as

x′ = xf (x) − dx(x, y), (13a)

y′ = φy + py(x, y, z) − ay(y), (13b)

z′ = φz + pz(x, y, z) − az(z). (13c)

The specific functional forms adopted by Kirschner and Panetta (1998) were

f (x) = r2(1 − bx), (14a)

dx(x, y) = axy

g2 + x
, (14b)

py(x, y, z) = cx + p1yz

g1 + z
, (14c)

pz(x, y, z) = p2xy

g3 + x
, (14d)

dy(x, y) = 0, (14e)

ay(y) = μ2y, (14f)

az(z) = μ3z, (14g)

φy(t) = s1, (14h)

φz(t) = s2. (14i)

The model investigates the results of giving two types of continuous treatment: (a) the
injection of cytokines (when s1 > 0), and (b) the adoptive transfer of immune cells
(from one individual to another, or by in vitro amplification of harvested immune
cells from one individual and re-injecting them) (when s2 > 0).
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Analytical and numerical results show that in the absence of any treatment
(s1 = s2 = 0) model (13) can exhibit three behaviors: persistence of large tumors (for
low antigenic tumors), oscillation between macroscopic and microscopic tumors (for
moderately antigenic tumors) and persistence of dormant tumors, that is persistence
of residual tumor cells (for highly antigenic tumors). The model allows for complete
tumor clearance only if treatment is introduced. In particular, adoptive cellular im-
munotherapy (s1 > 0, s2 = 0) leads to a locally stable tumor-free state, provided that
the treatment rate is above a certain critical level (s1 > s1

crit = r2g2μ2/a). Similarly,
the administration of IL-2 alone (s1 = 0, s2 > 0) can lead to tumor clearance pro-
vided that the rate at which treatment is administered (cytokine concentration input
per unit time) is above a critical level s2

crit = μ2μ3g1/(p1 − μ2). Unfortunately, this
also leads to an unbounded immune response (i.e., y = ∞) which causes damage to
the host. This mathematical result can be connected to the side effects (i.e., capillary
leak syndrome) observed in some patients after the administration of large doses of
IL-2 (Orucevic and Lala 1998). Giving both treatments simultaneously (s1, s2 > 0)
improves the results only when the rate at which IL-2 is administered is below the
critical level s2

crit. In this case, it is possible to have a tumor-free state even for very
weakly antigenic tumors.

4.4 Summary of Three Equation Models

Analysis of three-equation models has led to substantial biological insights. Interac-
tions between cancer cells, effector cells, and cytokines (especially IL-2) can explain
long-term tumor relapse. Examples of the possible behaviors exhibited by model (13)
are shown in Figs. 6(b), (d), and (f). Analysis of the models indicates that for large
doses of IL-2, the cytokine treatment alone cannot eliminate a tumor without causing
immune problems (i.e., an unbounded immune response). A better treatment option
is to use adoptive transfer of immune cells (either alone or in combination with IL-2).

5 Four Equation Models: Interactions Among Cancer Cells and Three Other
Components of the Tumor Microenvironment

Explicitly modeling a third component of the tumor microenvironment led to new
tumor-immune system dynamics and to the formulation of plausible explanations for
these dynamics. This raises the question: Do we learn anything new by explicitly
modeling a fourth component? This question seems particularly relevant if we con-
sider the effect of IL-2 discussed in Sect. 4.3. This is only one of the many cytokines
involved in the immune response. Moreover, IL-2 itself contributes to the production
of other cytokines, such as IFN-γ , through the activation of other immune cells (e.g.,
CD4+ and CD8+ T cells) (Berner et al. 2007). Perhaps most significantly, IL-2 pro-
duction is inhibited by cytokines such as IL-10 and TGF-β , which can be produced
by tumors. This inhibition is completely absent from the three-equation models, so a
natural question is: How are the tumor-immune system dynamics affected when we
incorporate the effects of inhibitory cytokines?

In this section, we review models obtained from those in Sect. 4 by adding a fourth
equation (see Fig. 7). This extra equation can describe, for example, the dynamics of
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Fig. 7 Schematic representation of the four-component models of cancer-immune system interactions
described in Sect. 5. (a) Models involving two types of cell and two types of signaling molecule (one that
inhibits and one that promotes tumor growth). (b) Models involving three types of cell and one type of
signaling molecule. In panel (a), note that the pro-tumor cytokines act directly on the tumor cells, but they
also promote tumor growth indirectly: they inhibit the production of anti-tumor cytokines and reduce the
growth of effector cells (which then have a weaker promoting effect on the anti-tumor cytokines)

a cytokine concentration (such as TGF-β in Arciero et al. 2004, or IL-2 in Nani and
Freedman 2000), or the dynamics of a chemokine concentration (as in Byrne et al.
2004).

There are many dynamical models of tumor-immune interactions described by
four equations (see, for example, Bunimovich-Mendrazitsky et al. 2007; Nani and
Freedman 2000; Szymanska 2003; Villasana and Radunskaya 2003). Some of these
models investigate only interactions among four different cell types (Bunimovich-
Mendrazitsky et al. 2007; Szymanska 2003), while others focus on interactions
among immune cells, cancer cells in different stages, and treatment drugs (Vil-
lasana and Radunskaya 2003). Some of the models include time delays (Villasana
and Radunskaya 2003). All of them provide helpful insights concerning the dynam-
ics of the systems. For example, secondary bifurcations observed mathematically in
some of the models show how complicated the outcome of therapy can be (Nani and
Freedman 2000).

In this section, we illustrate the value of four-equation models by reviewing two
examples that extend models investigated in Sect. 4. These examples show how an
additional equation that does not change the main dynamics of the tumor can still help
us by clarifying the detailed interactions between four different components of the tu-
mor microenvironment. These interactions are made clear mainly through extensive
analytical investigations, based on linear and weakly non-linear approximations and
bifurcation theory. Since these models do not display new tumor dynamics, we will
not summarize numerical results, as we did in Sects. 3 and 4. Summaries of numer-
ical simulations of four-equation models can be found in Arciero et al. (2004) and
Szymanska (2003).
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5.1 Two Types of Cells and Two Types of Cytokines

The general equations describing the interactions shown in Fig. 7(a), i.e., interactions
among cancer cells, immune cells, and two types of cytokines, are

x′ = xf (x) − dx(x, y) + px(x,w), (15a)

y′ = φy(t) + py(x, y, z,w) − dy(x, y, z,w) − ay(y), (15b)

z′ = φz(t) + pz(x, y,w) − az(z), (15c)

w′ = φw(t) + pw(x,w) − aw(w). (15d)

Here, x refers to the cancer cell population, y to the immune cell population, z to
the concentration of the anti-tumor cytokines, and w to the concentration of the pro-
tumor cytokines. Most of the terms in (15) are the same as those discussed in the
context of the three-equation models in Sect. 4 (and are summarized in Table 1). The
new terms are: px(x,w), which models the positive effect of the cytokine w on tumor
growth; dy(x, y, z,w), which models the negative effect that the pro-tumor cytokines
and the tumor cells have on the proliferation of immune cells; pw(x,w) and aw(w),
which respectively model the production—by tumor cells—and natural decay of the
pro-tumor cytokine w.

In their attempt to include the inhibitory effects of TGF-β on IL-2, Arciero et al.
(2004) specify the tumor-immune system interactions in (15) using

f (x) = r(1 − k1x), (16a)

px(x,w) = p2wx

g3 + w
, (16b)

dx(x, y) = a1xy

g2 + x
, (16c)

py(x, y, z,w) = cx

1 + γw
+ p1yz

g1 + z
, (16d)

dy(x, y, z,w) = yz

g1 + z
· q1w

q2 + w
, (16e)

ay(y) = 0, (16f)

pz(x, y,w) = p3xy

(g4 + x)(1 + αw)
, (16g)

az(z) = μ2z, (16h)

pw(x,w) = p4x
2

τ 2
c + x2

, (16i)

aw(w) = μ3w, (16j)

φy(t) = s, φz(t) = φw(t) = 0. (16k)

Linear stability analysis, bifurcation analysis, and numerical simulations of this
model show that the tumor exhibits the same three behaviors observed in the absence
of TGF-β (Kirschner and Panetta 1998). In particular, the tumors can (a) grow very
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large, (b) oscillate between very large and very small sizes or (c) undergo damped
oscillations that converge to a small, dormant mass. Thus, like the simpler model
without TGF-β , this model can exhibit tumor relapse, but there is an important dif-
ference: at high concentrations of TGF-β , it is possible to obtain a large, persistent
tumor (regardless of the antigenicity of the tumor, unlike the simpler model). This
suggests that more aggressive tumors, which produce higher concentrations of TGF-
β , are more difficult to control.

5.2 Three Cell Types and One Cytokine or Chemokine

Another way to expand the three-equation framework of Sect. 4 is shown in Fig. 7(b).
We can start with the models discussed in Sect. 4.2 and add another equation for the
concentration of some cytokine or chemokine, or we can supplement the models of
Sect. 4.3 with an equation for the number or density of normal tissue cells (or some
other type of cell). In either case, the equations describing the interactions among all
these cells and cytokines are

x′ = xf (x) − dx(x, y,w), (17a)

y′ = φy(t) + py(x, y, z) − dy(x, y,w) − ay(y), (17b)

z′ = φz(t) + pz(x) − az(z), (17c)

w′ = φw(t) + pw(x,w) − dw(x, y,w) − aw(w). (17d)

Here, x denotes the size of the cancer cell population, y is the size of the immune
effector cell population, z is the concentration of the cytokine or chemokine, while w

is the size of the normal tissue cell population.
A model that falls into this category was introduced by Byrne et al. (2004) and

complements the model of Owen and Sherratt (1998) by focusing not on normal
macrophages, but on macrophages engineered to kill cancer cells. Byrne et al. (2004)
assumed that the infiltration of the macrophages into the tumor is induced by a
chemoattractant produced by the tumor. The terms describing the interactions among
the different cells and the chemokines are:

f (x) = ψ(1 − φx), (18a)

dx(x, y,w) = xy(ψφ + k1) + ψxw, (18b)

py(x, y, z) = (y∗ − y)
δz

1 + αz
, (18c)

dy(x, y,w) = σy(x + y + w), (18d)

pz(x) = x, (18e)

az(z) = λ0z, (18f)

pw(x,w) = w(1 − w), (18g)

dw(x, y,w) = xw + yw, (18h)

φz(t) = φy(t) = φw(t) = 0. (18i)
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Even with four equations, the model is still simple enough to be investigated
analytically. In particular, using linear and weakly non-linear stability analysis
(i.e., non-linear analysis in the neighborhood of a bifurcation point, Stuart 1960;
Matkowski 1970), as well as bifurcation theory (Kuznetsov 1994), Byrne et al.
(2004) investigated the effects of two parameters (y∗ and k1) on the ability of the
macrophages to eliminate the cancer cells. As for the model of Owen and Sherratt
(1998), the results of Byrne et al. (2004) indicate that the cancer-free steady states
are linearly unstable, and small perturbations in the tumor microenvironment lead
to tumor relapse. The system usually evolves to a steady state in which several cell
types coexist. When two parameters (y∗ and k1) are varied, the coexistence steady
state with w = 0 (and x, y, z �= 0) can undergo monotonic bifurcations (when the
imaginary part of the growth rate is zero at the bifurcation point) or oscillatory bi-
furcations (when the imaginary part of the growth rate is non-zero at the bifurcation
point) toward a coexistence steady state with w �= 0 (and x, y, z �= 0). Weakly non-
linear analysis was further used to investigate these simultaneous bifurcations of the
steady states. The analytical results showed the existence of two types of oscillatory
solutions in which the tumor cells and the immune cells coexist, in one case with and
in the other case without normal tissue cells. These oscillatory solutions were then
confirmed with numerical simulations.

5.3 Summary of Four Equation Models

The models presented in Sects. 5.1 and 5.2 indicate that including the effects of one
additional component of the tumor microenvironment does not lead to any new be-
havior (such as complete tumor regression). The patterns are similar to those obtained
with three-equation models: exponential growth of tumor cells, oscillatory growth, or
oscillatory decay. This suggests that the most essential mechanisms have already been
captured with three equations. Nevertheless, more elaborate and biologically realistic
models are useful because they can help us frame testable hypotheses. An elegant
example was offered by Arciero et al. (2004) whose model suggested that regardless
of the level of antigenicity, aggressive tumors will always grow toward their carrying
capacities if the production of TGF-β is sufficiently large.

In spite of the complexity of these four-equation models, they are still simple
enough to be amenable to extensive analytical investigation. Such investigations can
reveal, for example, the amplitude of the immune response and its relation to the sizes
of the tumor cell and normal tissue cell populations.

6 Models Involving Five or More Equations

More realistic models can be obtained by including more components of the tumor
micro-environment and correspondingly more equations. The key costs of this greater
realism are that the models are inevitably less well parameterized (more parameters
must be estimated with the same amount of data) and they are much harder to analyze
(typically, only numerical analysis is feasible). Nevertheless, models involving more
than four equations have led to significant insights into the biological mechanisms
governing tumor-immune system interactions.
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Different authors have focussed on different biological details, ranging from in-
teractions among distinct cytokines (e.g., TGF-β and IFN-γ ) and major histocom-
patibility complex (MHC) class I and class II molecules (Kronik et al. 2008), to the
interactions among multiple immune cell populations, dendritic cells and cytokines
(e.g., Cappuccio et al. 2006; Castiglione and Piccoli 2007; de Boer et al. 1985).

One of the earliest and most complex ODE models for tumor-immune system
interactions was developed by de Boer et al. (1985), who considered interactions
among cancer cells, cytotoxic T lymphocytes, normal and cytotoxic macrophages,
helper (CD4+) T cells, and the production of signaling molecules such as IL-2 cy-
tokines. de Boer et al. (1985) used eleven ordinary differential equations coupled with
a further five algebraic equations. In spite of the complexity of their model, the au-
thors were able to use it to develop biological hypotheses that could explain observed
tumor-immune system dynamics. In particular, they showed that the magnitude of
the effector cell (cytotoxic T lymphocyte) response depends on the time at which
the helper T cells become activated. Early activation leads to a steep increase in the
magnitude of the immune response. de Boer et al. (1985) also found that tumor anti-
genicity plays an important role in determining the type of the immune cells that are
recruited for anti-tumor response. For example, the model indicates that weakly anti-
genic tumors are attacked mainly by macrophages, while strongly antigenic tumors
can be eradicated only by the cytotoxic T lymphocytes. A brief review of this model
and a comparison with other models of this type can be found in Dullens et al. (1986).

Many other multiple-equation models have been derived to study particular as-
pects of tumor-immune dynamics. For example, Cappuccio et al. (2006) used a six-
equation model to investigate the role of IL-21 on the transition from innate immu-
nity (represented by NK cells) to adaptive immunity (represented by CD8+ T cells),
and the possible implications for cancer immunotherapy. Their numerical simulations
suggest that IL-21 should be used to control non-immunogenic tumors, but not highly
immunogenic tumors.

One final example that we mention here is a model that investigated the effects of
immunotherapy on malignant gliomas (a type of brain tumor). In this model, Kronik
et al. (2008) considered interactions among cancer cells, cytotoxic T lymphocytes,
two cytokines (TGF-β and IFN-γ ), and MHC class I and II molecules. Numerical
simulations of the model predicted the dose of cytotoxic T-lymphocytes required for
therapeutic efficiency in the treatment of malignant gliomas (Kronik et al. 2008). The
authors then validated the predictions by comparing them with two sets of empirical
results (Burger et al. 1985; Kruse et al. 1997).

7 Discussion

7.1 Increasing Model Complexity in Steps

We began this review by considering the simplest possible models of tumor growth,
involving a single ordinary differential equation (ODE). These models describe only
one cell population (cancer cells), which are subject to self-regulation by density-
dependent processes. While such models can be fitted successfully to many examples
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of tumor growth data—and are useful for predicting tumor growth in the absence of
treatment—they cannot display temporary growth followed by regression, and they
do not allow us to investigate the effects of interactions with other types of cells and
chemicals.

We then reviewed what has been learned from models of cancer cells interacting
with one type of immune cell, before considering a third and fourth component of
the tumor microenvironment, adding one equation at a time. Finally, we briefly de-
scribed some more elaborate ODE models involving many equations for many types
of cells and signaling molecules. We emphasized the overall structure of models,
using generic functions in interaction terms, and referred to particular models by
specifying the functional forms of these terms.

The authors whose work we have reviewed did not build up their models in steps
the way that we have. Doing so has allowed us to develop a clearer view of the moti-
vations, benefits and costs of increasing model complexity. In terms of the behavior
of currently observable variables, simpler models often exhibit the same dynamics as
more complex models, but models incorporating more biological detail allow us to
conduct theoretical studies that clarify the underlying immuno-oncological mecha-
nisms and suggest hypotheses—especially concerning treatment—that can be tested
experimentally.

7.2 Related Research that We Have Not Reviewed

We have restricted attention entirely to ODE models, which approximate a cell popu-
lation as a continuum and implicitly assume that all the different cell populations are
homogeneously mixed. These approximations seem appropriate for studies of cancer-
immune system interactions in the context of systemic disease that is not isolated in
a single tumor, regardless of whether we know all the locations of the cancer cells
in the body. It is less clear that ODEs are truly suitable for modeling immune cell
interactions with a single isolated tumor. Ideally, the inferences drawn from ODE
models should be checked using models that consider the discreteness of individual
cells and/or spatial structure. There are several methods for doing this.

Discreteness and Stochasticity Any of the ODE models we have described can be
recast as an event-driven Monte Carlo model, which deals with integer numbers of
cells. Exact realizations of the associated stochastic processes can be generated using
the standard Gillespie algorithm (Gillespie 1976). In the limit of very large cell and
chemical populations, the behavior of the stochastic models converges to those of
their ODE counterparts (Kurtz 1971), but for small populations the behavior is dif-
ferent. Because the tumor and immune cell populations are very large (e.g., in mice,
they are of order 106–109 cells), this stochastic approach is rarely investigated at
the cellular level for tumor-immune models (although there are published stochastic
models that investigate various immune processes at the molecular level, Chatterjee
et al. 2005; Samad et al. 2005).

Another source of stochasticity arises, for example, from genetic mutations that
occur during the evolution of cancer cells, or from variations in the environment (e.g.,
nutrient supply). These stochastic effects have been incorporated into mathematical
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models by (a) starting with a deterministic model and adding noise terms (see, for ex-
ample Bose and Trimper 2009), or (b) using agent-based models, in which the time-
evolution of individual cells of various types is described by computer algorithms
(Lollini et al. 2006b; Pappalardo et al. 2006). Models of type (a) usually describe a
small number of biological interactions that lead to tumor growth or regression. As
an example, the model of Bose and Trimper (2009) is a one-equation model for tumor
growth. Models of type (b) can include a very large number of biological interactions
that describe complicated stochastic immune processes, such as the random gener-
ation of various immune cells or cell interactions following probabilistic laws. The
model of Lollini et al. (2006b), for example, describes the evolution of 17 different
variables.

Individual Agents Real immune systems are extremely complex, involving hun-
dreds of distinct cell types and signaling molecules. Models that attempt to include
a large proportion of this complexity can be analyzed only through simulation. The
most realistic models are: (i) agent-based models, which are defined at the individual
(biological cell) level, and (ii) cellular automata models, which are defined at the spa-
tial location (physical cell) level. Agent-based models specify rules that apply to each
individual biological cell, whereas cellular automata models specify rules that apply
to each physical cell, each of which may or may not contain one or more biological
cells.

Only a few agent-based and cellular automata models of tumor-immune interac-
tions have been published (e.g., Malet and de Pillis 2006; Gerlee and Anderson 2009;
Mansury and Diesboeck 2003; Lollini et al. 2006b; Alarcon et al. 2003). Some of
these models are deterministic (Mansury et al. 2006), while others are stochastic
(Lollini et al. 2006b). The majority of these models focus on the dynamics of cancer
cells in response to the surrounding environment, which is comprised of other types
of cells (immune and normal tissue cells) and nutrients (e.g., glucose and oxygen).
The evolution of the nutrients is generally modeled by partial differential equations
(Malet and de Pillis 2006; Gerlee and Anderson 2009; Mansury and Diesboeck 2003;
Lollini et al. 2006b; Mansury et al. 2006).

While models of this type have the ability to provide the most accurate represen-
tation of tumor micro-environments (see, for example, Lollini et al. 2006b), they are
extremely challenging to analyze because their complexity is bewildering, they must
be simulated many times for each parameter set of interest, and they involve many
parameters with values that cannot be reliably estimated from existing data (so must
be guessed). Nevertheless, agent-based/cellular automata models have the potential
to be exceptionally useful for testing very specific hypotheses that cannot even be
represented in simpler models, and for checking that results obtained with simpler
models are robust to the inclusion of much greater biological detail. For a more com-
prehensive review of these models, see Thorne et al. (2007).

Spatial Structure Partial differential equations (PDEs) have been used extensively
to model spatial aspects of solid tumor growth and cancer-immune system interac-
tions, and have been discussed in many research papers (e.g., Matzavinos et al. 2004;
Owen et al. 2004; Webb et al. 2007; Wang et al. 2009 and the references therein)
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and review articles (e.g., Byrne et al. 2006; Martins et al. 2007; Roose et al. 2007;
Chaplain 2008; Nagy 2005). Unlike the cellular automata models discussed above—
and in spite of the increased mathematical complexity arising from the spatial
dimensions—many PDE models can be examined productively using well-known
analytical techniques (e.g., techniques for proving the existence of various types of
solutions, or traveling wave methods for estimating the growth of tumor spheroids).

7.3 Directions for Future Research

As indicated throughout this review, most mathematical models in the literature fo-
cus on the effector immune cells (e.g., CD8+ T cells, NK cells and macrophages).
However, recent experimental immunological results suggest new, potentially fruitful
avenues for mathematical modeling research. We briefly mention two such directions
below.

An Effector Role for CD4+ T Cells Until recently, CD4+ T cells have been assumed
to have only a helper role, activating CD8+ T cells to kill cancer cells (Bennett et al.
1997). New experimental results have suggested a more direct role for the CD4+ T
cells (Mattes et al. 2003; Perez-Diez et al. 2007; Zhang et al. 2009). In particular,
these cells appear to have an effector role through the cytokines and chemokines
that they produce (Mattes et al. 2003; Zhang et al. 2009). This means that CD4+
T cells can kill cancer cells even in the absence of CD8+ T cells and NK cells.
Moreover, it seems that they are more efficient at rejecting tumors than CD8+ T cells
(Perez-Diez et al. 2007). To understand this theoretically, new mathematical models
are needed that focus on the CD4+ T cells and the particular biological mechanisms
these cells use to attack cancer. Such models should facilitate the development of new
hypotheses regarding the interactions between these cells and other types of immune
cells, antigen-presenting cells, cytokines, and chemokines.

Potential models for cancer-CD4+ T cell interactions should be described by at
least three equations modeling the change in the number of tumor cells, CD4+ T
cells and the concentration of tumor-suppressive cytokines (such as IL-2 or IL-4).
However, compared to (13) where the immune cells kill the cancer cells, in the new
models, the cytokines would kill the cancer cells (and thus dx(x, z) �= 0). The only
role of the immune cells would be to produce these cytokines following activation as
a result of interactions with tumor-associated antigens.

Both Pro-Tumor and Anti-Tumor Effects of Macrophages A new direction in can-
cer immunotherapy has been stimulated by the potential to genetically engineer
macrophages that kill cancer cells. In Sect. 5, we discussed the mathematical model
of Byrne et al. (2004), which was designed to study such oncolytic macrophages. This
model—as well as other ODE (Owen and Sherratt 1998) and PDE (Owen et al. 2004;
Webb et al. 2007) models—focusses on the anti-tumor activity of the macrophages.
However, natural (non-engineered) macrophages can induce both pro-tumor and anti-
tumor effects depending on the cytokine environment (Leek and Harris 2002). In
particular, they have an anti-tumor effect when activated in the presence of TNF-α
or IFN-γ (classical activation) and a pro-tumor effect when exposed to IL-4 or IL-
13 (Mantovani et al. 2002). In fact, recent studies have shown that in breast cancer,
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tumor-associated macrophages have a primarily pro-tumor effect (Leek and Harris
2002). Hence, before deploying genetically engineered “designer macrophages” in
vivo it would be useful to investigate their theoretical potential for cancer promotion
as well as inhibition. This is a research direction where mathematical models can
contribute significantly.

7.4 Conclusion

Mathematical models provide a valuable theoretical framework through which
immuno-oncological mechanisms can be discovered or clarified. However, to our
knowledge, the majority of the mechanisms discussed in this review have never
been tested experimentally. Only a few of the mathematical models mentioned here
(e.g., de Boer et al. 1985; Cappuccio et al. 2006; Lollini et al. 2006b) have re-
ceived immunologists’ attention (e.g., Horny and Horst 1986; di Carlo et al. 2007;
Lollini et al. 2006a; Pappalardo et al. 2005). In most of these cases, the immunologi-
cal papers merely acknowledge the results obtained with mathematical models (e.g.,
di Carlo et al. 2007). There are very few instances of experimental or clinical re-
sults being compared with the predictions of mathematical models (two examples are
Horny and Horst 1986 and Pappalardo et al. 2005). We believe that closer interactions
between cancer immunologists and mathematicians would benefit the field.

Acknowledgements This work was supported by the Terry Fox New Frontiers Program Project Grant
#018005. It is a pleasure to thank Susan Marsh-Rollo for assistance in the preparation of figures showing
schematic representations of models.

References

Adam, J., & Bellomo, N. (1997). A survey of models for tumor-immune system dynamics. Basel:
Birkhäuser.

Alarcon, T., Byrne, H., & Maini, P. (2003). A cellular automaton model for tumor growth in inhomoge-
neous environment. J. Theor. Biol., 225, 257–274.

Araujo, R., & McElwain, D. (2004). A history of the study of solid tumor growth: the contribution of
mathematical modeling. Bull. Math. Biol., 66, 1039–1091.

Arciero, J., Jackson, T., & Kirschner, D. (2004). A mathematical model of tumor-immune evasion and
siRNA treatment. Discrete Contin. Dyn. Syst., Ser. B, 4(1), 39–58.
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