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We propose a mathematically straightforward method to infer
the incidence curve of an epidemic from a recorded daily death
curve and time-to-death distribution; the method is based on the
Richardson–Lucy deconvolution scheme from optics. We apply the
method to reconstruct the incidence curves for the 1918 influenza
epidemic in Philadelphia and New York State. The incidence curves
are then used to estimate epidemiological quantities, such as daily
reproductive numbers and infectivity ratios. We found that during
a brief period before the official control measures were imple-
mented in Philadelphia, the drop in the daily number of new infec-
tions due to an average infector was much larger than expected
from the depletion of susceptibles during that period; this find-
ing was subjected to extensive sensitivity analysis. Combining this
with recorded evidence about public behavior, we conclude that
public awareness and change in behavior is likely to have had a
major role in the slowdown of the epidemic even in a city whose
response to the 1918 influenza epidemic is considered to have been
among the worst in the U.S.

1918 pandemic | incidence curve | death curve | Richardson–Lucy deconvolu-
tion | infectivity ratios

I n characterizing a newly emerging or historical epidemic, one
often has access to an epidemic curve that provides the num-

ber of persons who became ill on a certain day (the symptom
curve), or the number of cases that were reported each day
(the report curve), or the number of dying that were reported
each day (the death curve). Of more direct interest, for the pur-
poses of visualizing the spread of the epidemic and calculating
relevant quantities such as the daily reproductive number, is
the (usually unobserved) epidemic curve of the number of per-
sons becoming infected on each day (the incidence curve). The
other three curves—the symptom, report, and death curves—
provide information about the incidence curve but are imperfect
representations of it, first because not all cases may appear in
these other curves—asymptomatics, unreported cases, or nonfatal
cases respectively will be missed—and perhaps more importantly
because the delay between infection and subsequent events—
symptom onset, report, or death—is a random variable that adds
horizontal variation or “smear” to the epidemic curve. For some
infections (e.g., HIV), diagnostic symptoms (i.e., AIDS-defining
illness) may occur years after infection, so the symptom curve is
a poor reflection of the evolution of the epidemic; there is much
literature on the problem of deconvolution to estimate the HIV
incidence curve from the symptom (AIDS-incidence) curve (1).
For acute infections, such as SARS and influenza, the incubation
period is relatively short compared with the growth rate of the
epidemic; hence the symptom curve and the incidence curve are
similar. The time to death for such infections, however, can be sev-
eral weeks, equivalent to three or more disease generations, and
is highly variable (2–4), making the death curve a poor surrogate
for the incidence curve.

In this paper, we propose a mathematically straightforward
method to infer the incidence curve from a death curve. The inci-
dence curve is then used to estimate the basic epidemiological

quantities of interest, such as the daily reproductive numbers and
infectivity ratios; the latter can be utilized to assess major changes
in the epidemic’s dynamics.

First, we describe a technique for deconvolution to estimate
the incidence curve from the death curve and the time-to-death
distribution. The technique, called the Richardson-Lucy (RL)
deconvolution, was originally developed for use in optics (5, 6),
and is adapted in a simple way to the slightly different setting of
the death-to-incidence deconvolution problem. The technique is
illustrated for the 1918 influenza epidemic in Philadelphia and
New York State (2, 7, 8).

Second, we use the reconstructed incidence curves to perform
inference on daily reproductive numbers in that epidemic. One
level of difficulty arises from the fact that because of the rapid pro-
gression of the epidemic, there is saturation of susceptibles and a
possible change in behavior during the course of infection for per-
sons infected on a given day (9). To deal with this issue, we have
rederived the Wallinga–Teunis estimator by using an approach
similar to the one in ref. 10. The derivation uses daily infectiv-
ity ratios, a concept which essentially appeared before in refs. 10
and 11.

Third, we examine the spread of pandemic influenza in the city
of Philadelphia around the end of September and the beginning
of October, 1918. On September 28, a 200,000-person Liberty
Loan Drive took place on the streets of Philadelphia against the
advice of medical professionals (12). Within 72 hours, “every sin-
gle bed in the city’s 31 hospitals was filled” (ref. 13, p. 220). By
October 1, residents were often encouraged to stay home to stem
spread of the disease (14). On the evening of October 3, the clo-
sure of schools, churches, and places of public amusement was
adopted by the Philadelphia city council (ref. 15, p. 74). The decon-
volved incidence curve, which peaks around October 1–2, shows
a drastic change in the growth patterns/infectivity ratios between
September 26 and October 3. In particular, the infectivity ratios,
representing the average number of infections by an infector on a
given day, dropped by more than half. We estimate, assuming that
case-fatality ratio is at least 2% (16, 17), that during this period
depletion of susceptibles was at most 16% (here and elsewhere,
depletion is characterized in terms of the number of susceptibles
on September 26, which equals Philadelphia’s population minus
the number of infected by September 25). This difference sug-
gests that depletion of susceptibles played only a modest role in
slowing the growth of the epidemic during that period, which took
place before the closures went into effect. Our main conclusion,
which is not merely of historical interest, is that public awareness
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Fig. 1. The influenza epidemic in Philadelphia (Upper) and New York State
(Lower) in 1918. Black is death curve. Blue is the initial condition for RL itera-
tions (death curve, shifted back by nine days). Red is the estimated incidence
(scaled by a factor of p, where p is the case fatality ratio), obtained from the
first iteration for which the χ2 value from Eq. 3 is below 1 (sixth iteration for
Philadelphia and fourth iteration for New York State). Green are results of RL
after 30 iterations.

and changes in behavior are likely to have had a major role in
the slowdown of the epidemic before the official control measures
were in place.

In the SI Appendix we use simulations and sensitivity analyses to
test the robustness of our methodology/conclusions. We examine
how well the deconvolved incidence curve represents the original
one, and what is the best way to estimate the growth rate and the
initial reproductive number of the original incidence curve. We
also study the epidemic progression in Philadelphia between Sep-
tember 26 and October 3, considering various “incidence” curves
deconvolved by using a collection of randomly generated time-
to-death distributions and also allowing for time dependency of
the case-fatality ratios due to potential changes in demographics
of the infected. Our general conclusion remains valid in all cases:
Within that period, a drastic change in the epidemic’s dynamics
took place, and depletion of susceptibles was probably insufficient
to explain that development.

Results
Reconstructing the Daily Incidence Curves for the 1918 Influenza Epi-
demic. We apply the procedure from the Methods section to the
1918 influenza and pneumonia death curves in Philadelphia and
New York State (excluding the city) to obtain the daily incidence
in those places. Fig. 1 depicts the reconstructed incidence curves,
which are scaled by a factor of p, where p is the case fatality ratio.
Notably, the peaks of the incidence curves are shifted backward
by approximately nine days, but the incidence curves have nar-
rower peaks with steeper upward and downward trajectories as
one would expect when removing the smear induced by the time-
to-death distribution, which is analogous to removing the blur due
to camera motion from a photographic image.

Estimates of the Daily Reproductive Numbers. The effective repro-
ductive number Rt on day t measures the mean number of infec-
tions caused by persons who become infected on day t. Fig. 2 plots
the estimated reproductive numbers for certain periods of the
epidemic’s progression, in both Philadelphia and New York State.
The reproductive numbers fluctuate initially because of the small
values for the deconvolved incidence. The reproductive num-
bers descend in the later part of the exponential growth period,
representing future infections which happen under saturation of
susceptibles or behavior change.

Fig. 2. Epidemic progression in Philadelphia (Upper) and New York State
(Lower), for certain time periods. Red is deconvolved incidence (scaled), and
black represents the estimated reproductive numbers.

With the fluctuation of the reproductive numbers, one may won-
der what is the best way to estimate R0, the mean number of new
infections caused by an infected individual during the early, expo-
nential growth stage of the actual epidemic curve in Philadelphia.
We address this via simulations in the SI Appendix. Our estimate
is R0 = 2.14, with a standard error of 0.13.

Epidemic Peak in Philadelphia. In this section, we examine the peak
of the Philadelphia epidemic in more detail. We first compute the
daily infectivity ratios, representing the number of infections on
a given day caused by a weighted average of previously infected
individuals (Eq. 4). Fig. 3 plots the estimated infectivity ratios for
the period of September 14–October 19.

The infectivity ratio IRt on a given day t presents a basic assess-
ment of the epidemic’s state on day t; in a mass action model,
the infectivity ratio is proportional to the number of susceptibles
left on that day. The reproductive number Rt on day t measures
the number of infections caused during an infectious period of
an average person who was infected on day t; it may be harder
to relate Rt to the epidemic’s state on day t because during that
infectious period further depletion of susceptibles may occur, and
conditions related to the epidemic’s progression, such as an intro-
duction of control measures and an increase in public awareness,
may take place.

The estimated infectivity ratios dropped by more than half
between September 26 and October 3. At the same time, depletion
of susceptibles was much smaller. Philadelphia had a population of
1.7 million, with another 300, 000 added by the war industry (15).
As explained in Methods, the estimated incidence curve plotted
in Figure 1 is scaled by a factor of p, where p is the case fatality
ratio. Various estimates of p, according to location, age, gender and

Fig. 3. Estimated infectivity ratios (black) vs. (scaled) incidence (red) in
Philadephia, September 14–October 19, 1918.
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race, are given in refs. 16 and 17. There is considerable geographic
variation in case-fatality ratios, and for the surveyed communities
in the Northeastern United States (from Baltimore, MD to New
London, CT) case-fatality ratios were above 2%, topping 3% in
some places. Assuming P ≥ 0.02 for Philadelphia and by using
the deconvolved incidence curve, we estimate that at most 16%
of the susceptible population was depleted between September
26 and October 3, which cannot account for the over 50% drop
in the infectivity ratios during that period; the latter finding was
subjected to extensive sensitivity analysis with regard to the time-
to-death distribution and other parameters (see the SI Appendix
for more details). At the same time, we have evidence from refs. 12
and 14 about public awareness of the epidemic prior to October 3.
We conclude that public awareness and change in behavior likely
played a major role in the slowdown of the epidemic in Philadel-
phia before the official control measures were implemented on
October 4.

Discussion
We have described and demonstrated the usefulness of a RL-type
deconvolution approach to reconstruct incidence curves from epi-
demic curves showing the times of death in an epidemic. Applied
to the 1918 influenza data, this approach reconstructs an epidemic
curve that is more sharply peaked than the death curve—as one
would expect given the smear introduced by the large variance in
the time-to-death distribution. Moreover, this reconstructed curve
allows the direct estimation of a daily value for the reproduc-
tive number Rt, bypassing the more-cumbersome methods used
previously, which involved extensive simulations and allowed the
estimation of only a single value for R (4), or a parametric estima-
tion of Rt (18). The estimate of Rt is given by the Wallinga–Teunis
formula (9). Our derivation of this estimate relies on the fact that
the number of infected individuals is large hence the notion of an
average-infectiousness profile makes sense; this is different from
the original setting of an emerging epidemic in ref. 9, where it
is assumed that all infected individuals had the same infectious-
ness profile. Finally, the deconvolved incidence curve was used
to show that public awareness and change in behavior is likely to
have played a major role in the slowdown of the epidemic even
in Philadelphia, a city whose response to the 1918 influenza epi-
demic is considered to have been among the worst in the U.S.
(13, 19). A related point regarding the belatedness of official
control measures in Philadelphia was made in ref. 18.

The latter qualitative conclusion was subjected to extensive
sensitivity analysis. The population of Philadelphia was not homo-
geneous, with case-fatality ratios, time-to-death distributions,
infectivity and susceptibility to infection varying by age and even
gender. Although we cannot recover the complexity of the popula-
tion network in Philadelphia, we have tested our observation that
the drop in infectivity ratios during the week between September
26 and October 3 greatly exceeded the depletion of suscepti-
bles under various scenarios; we have examined the sensitivity of
that conclusion with respect to the time-to-death distribution, and
allowed for certain forms of time dependency for the case-fatality
ratios, reflecting upon potential changes in the demographics of
the infected as the epidemic progressed. The main conclusion
persisted with remarkable stability in the simulations we have per-
formed. Furthermore, visual inspection of the growth rate of the
death curve (Fig. 4) shows a major change in its slope by Octo-
ber 5–6, which was likely predated by major changes in incidence
patterns. Combining this with contemporary journalistic evidence
(14) suggests that our hypothesis about the change in behavior
before the official control measures were implemented is likely to
be real.

We have not considered asymptomatic infections in our analysis.
Data from the 1957 and the 1968 influenza epidemics yielded esti-
mates of 20–42% for the rate of asymptomatic infections (20, 21).
A review of several volunteer challenge studies (22) gives an esti-
mate of 33% for the rate of asymptomatic infections. There is no

Fig. 4. Natural logarithm of the recorded daily number of deaths from
pneumonia and influenza in Philadelphia, 1918.

data for the rate of asymptomatic infections for the 1918 influenza
pandemic. Given its virulence, that rate could have been lower
than the rates above. In our simulations, the drop in infectivity
ratios between September 26 and October 3 surpasses depletion
of susceptibles by a factor of at least 2.5. Thus, even if a third of
all infections were asymptomatic, depletion of susceptibles during
that period cannot explain the drop in infectivity ratios.

Our approach in principle gives a general method for recon-
structing an incidence curve from the death curve. In practice,
to have reliable estimates one needs the standard errors of the
counts to be small as compared with the means—say, if the (Pois-
son) counts reach into the hundreds. We recommend performing
simulations following the protocol in the SI Appendix to see how
well the deconvolution process works.

We note that estimated infectivity ratios in Philadelphia (Fig. 3)
first drop on September 27, one day before the notorious Liberty
Loan parade, and seven days before the implementation of offi-
cial control measures. Although reductions in transmission in the
absence of official control measures have been inferred from the
dynamics of influenza in U.S. cities by a previous study (18), this
finding for Philadelphia is surprising, given that the parade is often
interpreted as a sign that Philadelphia residents had not yet rec-
ognized the seriousness of the pandemic, and, moreover, that the
parade is often seen as an opportunity for large-scale transmis-
sion. If we have accurately estimated the timing of the decline in
infectivity ratios, then the parade was probably not in fact a major
venue for transmission, perhaps because it took place in the open
air, and we must infer that behavior changes made a contribution
to the slowing of the epidemic prior to official control measures.
We have considered the possibility that the timing is estimated
incorrectly. For example, it is possible that the time-to-death dis-
tribution we have employed is too long, resulting in artificially
early changes in the incidence curve to reflect changes in the
death curve. We believe that a shorter time-to-death distribution
is unlikely because we are unaware of any reliable data suggest-
ing that the time-to-death distribution is substantially shorter than
the one we have adopted from ref. 2; in fact, the distribution we
used is shorter than the one obtained from military data and used
previously in refs. 4 and 18 (see SI Appendix). A likely source of
error in estimating the exact timing of declines in infectivity ratios
might be the nature of the deconvolution process, as seen in sim-
ulations in the SI Appendix. Briefly, deconvolved incidence curves
have an exponential growth period ending about two days before
the original one.

One may wonder if it is possible to use the death curve directly to
infer epidemiological parameters of interest, such as R0. One can
try the exponential growth rate approach (see the SI Appendix).
In theory, given a long exponential growth period for incidence
(long in comparison to the time-to-death distribution), the death
curve would have the same exponential growth rate. However
for the Philadelphia data, deconvolution shows that the death
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curve growth rate is somewhat smaller than the incidence curve
growth rate, and the estimate of R0 resulting from the death curve
growth rate (� 2 − 2.02) is biased downward. Alternatively, one
can consider the Wallinga and Teunis approach for estimating the
reproductive numbers by using the “death-to-death” distribution.
The latter can be understood as follows: For people who died
on day t, one can look at the times of death of the individuals
they’ve infected. However this distribution depends on the state
of the epidemic around time t, and thus changes with t. Moreover,
assuming that the serial interval distribution is independent for
different pairs of cases, the death-to-death distribution will not be
independent for successive pairs of cases (e.g., A who infects B
who infects C), violating the assumptions of the approach. At the
same time, we found that having information about the incidence
curve can be used for a number of purposes besides estimating R0.
Our estimates of the daily reproductive numbers and assessment
of the rapid decline of infectivity ratios around the peak of the
epidemic in Philadelphia may not be accessible directly from the
death curve.

It is also worthwhile to compare the approach to estimating Rt
here to an approach which assumes that future opportunities for
infection for each individual, regardless of when they are infected,
will follow a fixed distribution going forward in time. One might
expect that the relation between the reproductive numbers, the
serial interval (wi) (see Methods), and new infections is that for
an average person infected on day t, the expected number Et,i of
people s/he will infect on day t + i is

Et,i = Rt · wi. [1]

The relation above is known to hold during periods when there is
little to no depletion of susceptibles and behavior change (23)—
during that period, Rt is in fact constant. However this may be
untenable for the whole duration of an epidemic, where the num-
ber of susceptibles may decline over the course of a single indi-
vidual’s infectious period (24); similarly, measures to control the
epidemic and behavior change may take place during that period.

To put the issue a bit more precisely, consider the ratio
Et,i1
Et,i2

. If

Eq. 1 was correct, this ratio would equal wi1
wi2

and would be inde-
pendent of the day t of the infection. However, when the epidemic
progresses very rapidly, populations of susceptibles (and their pos-
sible behavior) can be quite different on days t+ i1 and t+ i2. Thus,
it is unreasonable to expect that this ratio is independent of t. The
formulation proposed here, and in ref. 9, avoids this pitfall.

Methods
Richardson–Lucy-Type Deconvolution. The deconvolution problem is to
assess the daily incidence curve (It ) given the daily death curve (D1, . . . , DN)
and time from-infection-to-death distribution (d1, . . . , dl). Here, Dj is the
number of deaths recorded on day j; and dk represents the probability that an
infected person who will eventually die, will die on day k after his/her infec-
tion. The daily death curves for Philadelphia and New York State (excluding
city) are recorded in refs. 7 and 8. The time from-infection-to-death distrib-
ution is obtained as a convolution of two distributions: time from symptom
onset to death, taken from ref. 2, based on 599 hospital autopsy reports
and the influenza latent period distribution, taken from ref. 25. It is plotted
in Fig. 5.

To assess incidence It on day t, let p be the probability that an infected
individual will die from influenza and pneumonia; in the SI Appendix, we
allow for time dependence of p due to potential shifts in demographics of
the infected. The number of people who got infected on day t and later
died is binomial Bin(It , p); because It is large and p is small, it is well approx-
imated by a Poisson variable Pois(λt ) with (an unknown) mean λt = p · It .
Those Pois(λt ) deaths are binned over the subsequent days according to the
time-to-death distribution.

We wish to estimate the daily incidence curve during some time period
(t1, . . . , t2), which overlaps with the period (1, . . . , N) for which the daily
counts for the number of deaths are available (N = 92 for Philadelphia and
N = 75 for New York State). Because over 95% of deaths happen within three
weeks of infection, we want to estimate incidence from day t1 = −20 (three
weeks prior to the available death data); we also take t2 = N −2 as d1 = 0 for

Fig. 5. Assumed proportions of deaths on each day since infection. Based
on the Cook County Hospital data from ref. 2 for time from symptom onset
to death and the latent period distribution from ref. 25.

our time-to-death distribution. Thus, the number of unknown parameters is
N + 19, exceeding the number N of observations.

To assess the vector of unknown parameters (λt1 , . . . , λt2 ) (thus estimating
the incidence curve up to a multiple), we iterate in the space of parameters by
using the expectation maximization algorithm (26); this procedure is called
the RL iteration. The initial guess λ0 = (λ0

t1
, . . . , λ0

t2
) for the parameters is

the death curve, shifted back by nine days, as the time-to-death distribution
(d1, . . . , d31) peaks on day nine after infection (see Fig. 4). RL iterations pro-
duce a sequence λn = (λn

t1
, . . . , λn

t2
) of the Poisson parameters. Explicitly, let

qj = ∑
−j+1≤i≤N−j di be the probability that a death resulting from incidence

on day j will be observed during the interval 1, . . . , N; here −20 ≤ j ≤ N − 2
and di = 0 for i ≤ 0 or i ≥ 32. Let Dn

i = ∑
j<i di−jλ

n
j be the expected number

of deaths to occur on day i, conditional on the parameters λn. Then,

λn+1
j = λn

j

qj
·
∑

i>j

di−jDi

Dn
i

. [2]

The probability of observations D1, . . . , DN , conditional on the Poisson para-
meters λn and the time-to-death distribution, increases with each iteration.
While iterating, we do not seek convergence to a maximum likelihood solu-
tion; rather, we use a criterion to end iterations and produce our estimate
of the Poisson parameters. To understand this, for the nth iteration, let
En

i = ∑
j<i λn

j di−j be the expected number of deaths on day i. If λn were
the true parameters, Di would be Poisson distributed with mean En

i ; thus,

the expectation E(
(En

i −Di )2

En
i

) would be 1. This suggests to iterate until the

normalized χ2 statistic

χ2 = 1
N

∑

i

(En
i − Di)2

En
i

[3]

descends below 1 for the first time.
Bootsrapping simulations in the SI Appendix address the question of how

closely a deconvolved curve resembles the original incidence curve.

Estimating Reproductive Numbers and Infectivity Ratios. In this
section, we show how to estimate the daily reproductive numbers for the
1918 influenza from incidence curves and the infectiousness profile distribu-
tion. We remark that the words “infectiousness profile” and “serial interval”
are often used interchangeably, though this is not quite accurate (see ref. 27,
where “infectiousness profile distribution” is called “infectious contact distri-
bution”). We prefer the term “infectiousness profile distribution” because it
reflects upon average individual infectivity, which depends only on the time
since one became infected, unlike the proportion of infectious contacts on
each day after infection or the time between one’s infection and the infection
of one’s infector.

We set a cutoff of 10 days for the infectivity process. The infectiousness
profile distribution (w1, . . . , w10), essentially taken from ref. 25, is plotted
in the SI Appendix. Here each number wi represents the proportion of the
cumulative infectiousness which falls between days (i − 0.5, i + 0.5) for an
average person. Note that, conveniently, the latent period in ref. 25 has an
offset of 0.5 days.

By using the infectiousness profile distribution and the incidence curve, we
can describe some key epidemiological parameters of interest. The infectivity
ratio IRt on day t measures the number of people infected by an “average”
infector on day t:

IRt = It∑
i<t Ii · wt−i

. [4]
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This concept was already used in ref. 10, where it was denoted by φ1(t), and in
ref. 11, where it was denoted by Rt . If the population of susceptibles and their
behavior does not change much over a reasonable interval (covering the time
of one individual’s infectiousness history), the infectivity ratio would equal
the reproductive number. This is not the case for the epidemics in question.
However, because the number of infected is large, we can compute the repro-
ductive number Rt on day t in a “forward-looking” way, by adding up the
numbers of infections caused in subsequent days by an average person who
got infected on day t:

Rt =
∑

i>0

IRt+i · wi =
∑

i>0

wiIt+i
∑i−1

l=i−10 wi−l It+l

. [5]

This is the Wallinga–Teunis formula, and its derivation essentially follows
ref. 11. Note that this derivation relies on the fact that the number of infected
is large, hence the notion of an average infectiousness profile makes sense;
this is different from the original setting of an emerging epidemic in ref. 9,

where it is assumed that all the infected have the same infectiousness profile.
The two derivations help to clarify the notion that the reproductive number
Rt is forward-looking, taking account of all the events that may happen after
time t that will affect how many secondary cases an individual infected at
t will infect. By contrast, the infectivity ratio looks backward from the day
on which infection occurs. In the case of exponential growth (where oppor-
tunities for transmission remain constant over time), the two measures are
equivalent.
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1. Richardson-Lucy-type deconvolution

The deconvolution problem (described in detail in (6), with full mathematical
derivation of its properties) involves k distinct sources numbered t1, ..., t2 (k =
t2 − t1 + 1). At each source there is a random, Poisson number of emissions,
with unknown Poisson parameters λt1 , . . . , λt2 . There are m detectors numbered
1, . . . ,m. Each emission from source j can be observed by at most one detector
i, and the probability for each such observation is pij . We assume that for each
j, qj =

∑
i pij is positive (at least some fraction of emissions from each source is

observed), but we drop the assumption, commonly used in the optics literature, that
qj = 1 (some of the data might be lost). Given the observations D1, . . . , Dm and the
known transition probabilities pij , the deconvolution problem asks for the Poisson
parameters λj for which the observations have the highest probability (maximum
likelihood). The Richardson-Lucy iterative algorithm, which is an EM algorithm (3)
solves the above problem. The original Richardson-Lucy algorithm assumes that
qj = 1. We can, however, reduce our problem to the Richardson-Lucy scenario,
by counting only emissions at each source which are observed. Those are Poisson
variables with parameters λ̂j = qjλj , and the observation probabilities are p̂ij =
pij/qj .

In the epidemiological context, the death curve D1, . . . , Dm giving the number
of deaths occuring each day represents the detectors. To understand the sources,
let It1 , . . . , It2 be the number of people infected on each day. Here (t1, . . . , t2) is
a time period, which in general will overlap with the period (1, . . . ,m) for which
the daily counts for the number of deaths are available. Since over 95% of deaths
for the 1918 influenza happened within 3 weeks of infection, we want to estimate
incidence from day t1 = −20 (3 weeks prior to the available death data); we also
take t2 = m−2 as d0 = d1 = 0 for our time-to-death distribution. Thus the number
of unknown parameters is m + 19, exceeding the number m of observations. Let
p be the case fatality ratio, i.e. the probability that an infected person will die
from influenza or a secondary pneumonia. It is estimated that p is between 2− 3%
(7; 5; 1). The number of deaths among people infected on day j is thus a binomial
variable B(Ij , p). Since Ij is large and p is small, B(Ij , p) is well approximated by

1Author for correspondence (egoldste@hsph.harvard.edu)
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a Poisson variable with (an unknown) mean λj = p · Ij - these are the "emissions"
from source j. To describe the transition probabilities, let (d1, . . . , d31) be the time-
to-death distribution for the 1918 influenza. Here dk represents the probability that
an infected person who will eventually die, will die on day k after infection. Thus
the transition probability pij (the probability that a person, infected on day j who
will eventually die, will die on day i) is

pij = di−j for i > j

Thus qj = 1, unless j > m− 31 (those are days close to the end of the observation
period for the death curve), in which case qj =

∑m−j
k=1 dk; or j < 1 (those are days

before the beginning of the observation period for the death curve), in which case
qj =

∑31
k=−j+1 dk.

Returning to the deconvolution problem, we start with some initial guess λ̂0
t1 , . . . , λ̂

0
t2

for the parameters λ̂t1 , . . . , λ̂t2 . For the 1918 flu, we pick the initial parameters to
be the death curve shifted back by 9 days, as day 9 since infection is most likely for
dying. We then apply the EM algorithm to generate the successive iterations λ̂n.
The unobserved random variables at each step of the expectation maximization are
the Xij - the number of deaths on day i resulting from incidence on day j. These
are independent (conditional on the incidence curve) and Poisson distributed, with
means p̂ij λ̂

n
j . The exact recursive formulas are as follows: Let λ̂n

t1 , . . . , λ̂
n
t2 be the

nth iteration for the Poisson parameters. Let Dn
i =

∑
j p̂ij λ̂

n
j be the expected

number of deaths to occur on day i. Then

λ̂n+1
j = λ̂n

j ·
∑

i

p̂ijDi

Dn
i

If we look at λn
j = λ̂n

j /qj (which are the Poisson parameters at the nth iteration
for all deaths, not just the observed ones, resulting from incidence on day j), those
obey the following recursive equations:

(1) λn+1
j =

λn
j

qj
·
∑

i

pijDi

Dn
i

We note that the next iteration λn+1 represents the expected numbers of deaths
resulting from incidence on each day, conditional on the previous Poisson parame-
ters λn and the observed death curve. Also for each successive set of parameters,
the observations have higher probability than for the previous parameters. Finally
it can be shown, (6), that the iteration converges to a global maximum likelihood
solution λml. The answer λml is characterized by the fact that conditional on
the Poisson parameters λml and the observations, the expected number of deaths
resulting from incidence on day j equals λml

j .
We now address some practical issues related to deconvolution, in the context of

incidence and deaths. If λt1 , . . . , λt2 are the true values of the Poisson parameters
from which the observables D1, . . . , Dm were generated, then Di does not necessar-
ily equal the expected value D∗

i =
∑

j pijλj of the number of deaths on day i. This
departure from the expected value is called Type II noise (with Type I noise being
the imperfections of the system and its departure from the model). As a result, the
maximum likelihood solution described above will approximate the observations
closer than the actual parameters λj , and the noise will effectively become part



SUPPORTING INFORMATION 3

of the answer. It turns out that it is better to stop the Richardson Lucy process
after several iterations when the approximation of observations by expectations is
reasonable but not too accurate.

To describe the approximation error, let λn
t1 , . . . , λ

n
t2 be the result of the nth

Richardson Lucy iteration, and let Dn
i =

∑
j pijλ

n
j be the expected number of

deaths on day i, as before, with Di being the observed value. If λn were the true
parameters, Di would be Poisson distributed with mean Dn

i ; thus the expecta-
tion E( (Dn

i −Di)
2

Dn
i

) would be 1. This suggests the approach of iterating until the
normalized χ2 statistic

(2) χ2 =
1
N0

∑
i

(Dn
i −Di)2

Dn
i

descends below 1 for the first time. Here the sum is taken over N0 observations
(death counts). We can use N0 to be the whole death curve, or just the part with
the bulk of deaths, from ascent to descent; the difference for our data is minor.

One may wonder how close is the deconvolved curve to the (unknown) incidence
curve. We address this issue in section 4.

2. Time to Death distribution

A collection of distributions for the time from symptom onset to death in various
data sets is given in (2) - we refer the reader to that paper for a discussion and
comparison. Some of the distributions come from the military, some are civilian,
and the latter are generally somewhat shorter. In the main body of the paper we
use the distribution of time from symptom onset to death from 599 patients in Cook
County Hospital, Chicago. This distribution has a bit of a spike on day 7, suggesting
that some smoothing is needed. We used a three day smoothing of the following
nature: if (h1, . . . , h28) is the Cook County distribution, then the distribution we
used for the time from symptom onset to death is (l1, . . . , l28), where

li = (ki +
ki−1 + ki+1

2
)/2

We then convolved (l1, . . . , l28) with the latent period distribution from (4) to obtain
the time to death distribution, used in the main body of the paper. It is plotted in
Figure 1. Note that its peak is centered around day 9.

An alternative distribution for time from symptom onset to death is given by the
data from 234 autopsy reports from US Army Camp Pike (2). This distribution is
somewhat longer that the civilian one; Figure 2 plots the cumulative distribution
functions in both cases.

The main body of the paper uses the Cook County Hospital distribution to
estimate the incidence curve in Philadelphia. As a sensitivity analysis, the method
was repeated using the Camp Pike distribution. The results are plotted in Figure
3. Note that the exponential growth period for incidence still ends on Sep. 26,
while the incidence now peaks on Sep. 30 - Oct. 1.

3. Growth rate reproductive number

In the main body of the text, we estimate the daily reproductive numbers Rt

using the deconvolved incidence curve and the infectiousness profile distribution, es-
sentially taken from (4). Let the infectiousness profile distribution be (w1, . . . , w10)
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Figure 1. Assumed proportions of deaths on each day since in-
fection. Based on the Cook County Hospital data from (2) for time
from symptom onset to death, and the latent period distribution
from (4).
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Figure 2. This graph plots the cumulative distribution functions
for time from infection to death, based on two data sets for time
from symptom onset to death (and the same latent period distri-
bution from (4)). Black (1) is from Cook county hospital, Red (2)
- from US Army camp Pike - both taken from (2)
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1918 influenza epidemic in Philadelphia
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Figure 3. This graph plots the flu epidemic in Philadelphia, using
the distribution (2) from Figure 2 for time from infection to death.
Black is death curve. Blue is the initial condition for RL (death
curve, shifted back by 9 days). Red is the assumed answer for
incidence, obtained from the first iteration for which the χ2 value
from equation 2 is below 1 (19th iteration). Green are results of
RL after 100 iterations.

- it is plotted in Figure 4. Here each number wi represents the proportion of the
cumulative infectiousness which falls between time (i− 0.5, i+ 0.5) for an average
person. Note that conveniently the latent period in (4) has an offset of 0.5 days.

The estimated reproductive numbers fluctuate in the early part of the epidemic.
With this fluctuation of the reproductive numbers, one may wonder what is the
best method to estimate the reproductive number R0 for the early stages of the
actual epidemic curve in Philadelphia. The most stable method we have found uses
the average growth rate over some reasonably large interval where the growth is
approximately exponential. Recall that if the epidemic is growing exponentially
with a daily rate r, and if (w1, . . . , w10) is the infectiousness profile distribution,
then the reproductive number R during that period can be found from the equation
(8)

(3)
1
R

=
10∑

i=1

wie
−ir

To assess the exponential growth period, we first plot the natural logarithm of
the deconvolved incidence between Sep. 10 and Oct. 4. in Figure 5.

We see that the growth in Figure 5 slows down after Sep. 26; also the incidence
is low and fluctuating before Sep. 14. It is reasonable to assume that the actual
incidence curve grew exponentially between Sep. 14 and 26, with an unknown



6 SUPPORTING INFORMATION

●

●

●

●

●

●

●
●

●
●

2 4 6 8 10

0.
00

0.
10

0.
20

0.
30

Infectiousness profile (serial interval) distribution for influenza

time after infection (in days)

pr
op

or
tio

n 
of

 to
ta

l i
nf

ec
tio

us
ne

ss

Figure 4. Infectiousness profile distribution for influenza, essen-
tially taken from (4). Each number wi represents the propor-
tion of the cumulative infectiousness which falls between time
(i − 0.5, i + 0.5) for an average person. Note that conveniently
the latent period has an offset of 0.5 days.
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Figure 5. Logarithm of the deconvolved Philadelphia incidence,
Sep. 10- Oct. 4

growth rate. We can try to infer that growth rate from our deconvolved data;
such an inference process might have a bias. To address this, first note that the
average growth rate during Sep. 14-26 is r = (ln(I(Sep.26))− ln(I(Sep.14)))/12 =
0.2690697. The resulting reproductive number from equation 3 is R = 2.19. The
bias in such an estimate is assessed by bootstrapping in section 4. Over the period of
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Sep. 14-26, the estimated bias is about 0.05, and the standard error of the estimate
is 0.13. Thus we estimate R0 = 2.14. Taking shorter periods for computing the
growth rate increases the bias - see Table 1.

4. Deconvolved Incidence vs. Actual Incidence

The goal of this section is to use simulations to compare deconvolved incidence
curves to the original one. In the process, we also assess the bias that the growth
rate reproductive number estimation method from equation 3 gives. We will work
this out in three sets of examples. The first involves a civilian time to death
distribution from Figure 1; the second involves a military one from Figure 2; the
third one allows for some Gaussian noise for the Poisson binning.

In all cases the strategy is as follows: first we generate a "synthetic" incidence
curve with a constant initial growth rate to approximate the deconvolved Philadel-
phia incidence. Next, from this incidence curve and time to death distribution, we
generate 500 death curves via Poisson binning (and adding Gaussian noise in the
last example). Each of these curves is deconvolved using the initialization proce-
dure and the stopping criterion for iterations which were used for the 1918 data.
Those curves are compared to the original one, and their growth rate reproductive
numbers are investigated.

4.1. Civilian time to death distribution. We generate a "synthetic" incidence
curve with a constant initial growth rate to approximate the deconvolved Philadel-
phia incidence from the main body of the paper. The idea is that if we know the
infectivity ratio IRt on day t and incidence up to day t−1, we obtain the incidence
on day t by

It = IRt ·
10∑

i=1

It−i · wi

We prescribe the initial incidence up to day 22, growing exponentially between
days 8-22 with the rate compatible with the reproductive number of 2.15, the
infectiousness profile distribution and equation 3. We keep the infectivity ratio (and
the growth rate) constant at 2.15 up to day 48. We then vary it linearly during
several periods to mimic the behaviour of the Philadelphia incidence. The synthetic
incidence vs. the deconvolved Philadelphia incidence are depicted in Figure 6.

Next, from this incidence curve and time to death distribution from Figure 1, we
generate 500 death curves via Poisson binning. Each of these curves is deconvolved
using the initialization procedure and the stopping criterion from section 1. Since
the deconvolved Philadelphia incidence took 6 iterations to have the χ2 statistic
descend below 1, we discard those incidence curves which took more than 25 RL
iterations - those are 37 curves out of 500. To illustrate the general comparison
between deconvolved incidence and the original one, we plot two sets of 5 randomly
chosen deconvolved incidence curves against the original one in Figure 7. The plots
show that it is sensible to compare their growth rates to the growth rate of the
original one during the exponential growth period.

For a pair of days t1 < t2 (with 1=Sep. 1) and an incidence curve, we compute
the average growth rate during that period as

(4) r(t1, t2) = (ln(I(t2))− ln(I(t1)))/(t2 − t1)
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Figure 6. "Synthetic" incidence (black) vs. deconvolved
Philadelphia incidence from the main body of the paper (red).

Day Sep.22 Sep.23 Sep.24 Sep.25 Sep.26
Sep.12 b=0.0604 b=0.0656 b=0.0710 b=0.0683 b=0.0551

sd=0.2085 sd=0.1868 sd=0.1709 sd=0.1578 sd=0.1432
Sep.13 b=0.0539 b=0.0604 b=0.0669 b=0.0643 b=0.0505

sd=0.1941 sd=0.1733 sd=0.1596 sd=0.1440 sd= 0.1325
Sep.14 b=0.0560 b=0.0630 b=0.0698 b=0.0643 b=0.0515

sd=0.2036 sd= 0.1792 sd=0.1611 sd=0.1420 sd=0.1300
Sep.15 b=0.0679 b=0.0741 b=0.0802 b=0.0757 b=0.0583

sd=0.2213 sd=0.1891 sd=0.1661 sd=0.1485 sd=0.1320
Sep.16 b=0.0765 b=0.0823 b=0.0886 b=0.0825 b=0.0627

sd=0.2199 sd=0.1814 sd=0.1620 sd=0.1389 sd=0.1219
Sep.17 b=0.0997 b=0.1024 b=0.1063 b=0.0974 b=0.0737

sd=0.2401 sd=0.1884 sd=0.1609 sd=0.1379 sd= 0.1206
Table 1. Bias and standard deviation for the reproductive num-
ber estimates from section 4.1 for pairs of days, via equations 4
and 3.

The growth rate reproductive number R(t1, t2) is obtained from r(t1, t2) using equa-
tion 3. For 12 ≤ t1 ≤ 17, and 22 ≤ t2 ≤ 26, we tabulate (Table 1) the bias between
the mean of those numbers among the 463 deconvolved curves and 2.15, which is
the growth rate reproductive number during that period for the synthetic curve
from Figure 6. We also include the standard deviation of the estimate.

We note that the choice (t1, t2) = (14, 26) (used in section 3) corresponds both
to a low bias and a low standard deviation.

4.2. Military time to death distribution. In this section, we use time to death
distribution (2) from Figure 2. We follow the same protocol as in section 4.1. We
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5 deconvolved incidence curves + original (synthetic) one from Figure 6
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5 deconvolved incidence curves + original (synthetic) one from Figure 6
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Figure 7. Two samples of five deconvolved incidence curves +
the original, "synthetic" one from Figure 6 (black).

generate a synthetic incidence curve to fit the deconvolved incidence from Figure
3. The two curves are plotted in Figure 8.

Next, as in section 4.1, we generate 500 ”deconvolved” incidence curves, which
are results of the Richardson-Lucy deconvolution procedure applied to 500 death
curves obtained via Poisson binning of the synthetic incidence curve with respect
to the military time-to-death distribution . 52 curves which took more than 30
RL iterations are discarded. We plot two sets of 5 randomly chosen deconvolved
incidence curves against the original one in Figure 9.

For days 12 ≤ t1 ≤ 17, and 22 ≤ t2 ≤ 26, we tabulate (Table 2) the bias
between the mean of the growth rate reproductive numbers R(t1, t2) among the
448 deconvolved curves and 2.16, which is the growth rate reproductive number



10 SUPPORTING INFORMATION

Synthetic vs. deconvolved Philadelphia incidence from Figure 3
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Figure 8. "Synthetic" incidence (black) vs. deconvolved
Philadelphia incidence from Figure 3 (red).

Day Sep.22 Sep.23 Sep.24 Sep.25 Sep.26
Sep.12 b=0.0742 b=0.0846 b=.0837 b=0.0722 b=0.0452

sd=0.2221 sd= 0.2004 sd=0.1808 sd=0.1638 sd=0.1518
Sep.13 b=0.0888 b=0.0989 b=0.0967 b=0.0832 b=0.0532

sd= 0.2077 sd=0.1843 sd=0.1651 sd=0.1483 sd=0.1360
Sep.14 b=0.0866 b=0.0979 b=0.0956 b=0.0809 b=0.0486

sd= 0.2084 sd=0.1813 sd=0.1604 sd=0.1418 sd=0.1249
Sep.15 b=0.1087 b=0.1187 b=0.1135 b=0.0954 b=0.0587

sd=0.2318 sd=0.2002 sd=0.1698 sd=0.1474 sd=0.1290
Sep.16 b=0.1295 b=0.1388 b=0.1301 b=0.1080 b=0.0663

sd=0.2285 sd=0.1958 sd= 0.1655 sd=0.1384 sd= 0.1218
Sep.17 b=0.1657 b=0.1695 b=0.1559 b=0.1275 b=0.0786

sd= 0.2614 sd= 0.2167 sd=0.1847 sd= 0.1509 sd= 0.1280
Table 2. Bias and standard deviation for the reproductive num-
ber estimates from section 4.2 for pairs of days, via equations 4
and 3.

during that period for the synthetic curve. We also include the standard deviation
of the estimate.

As in section 4.1, we note that the choice (t1, t2) = (14, 26) corresponds both to
a low bias and a low standard deviation.

4.3. Adding Gaussian noise. In this section we follow a similar protocol as in
the two previous sections, expect for the following modification: while simulating
death curves from synthetic incidence, we add Gaussian noise after Poisson binning.
More precisely, using the synthetic incidence curve from Figure 6 and time to death
distribution from Figure 1, we generate preliminary death curves using Poisson
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5 deconvolved incidence curves + original (synthetic) one from Figure 8
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5 deconvolved incidence curves + original (synthetic) one from Figure 8
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Figure 9. Two samples of five deconvolved incidence curves +
the original, "synthetic" one from Figure 8 (black).

binning. After that to each count D(t) we add a Gaussian variable N(0,
√
D(t)/3),

restricting the result to the range (D(t)/2, 3D(t)/2). This essentially means that
for each death recorded via Poisson binning, there is a probability of 9% that there
is an additional ±1 death.

We generated 500 death curves in that fashion, and deconvolved each, discarding
those which took more than 30 iterations for the χ2 statistic to descend below 1
- these were 79 curves out of 500. As in the previous sections, we record two
samples of five deconvolved curves each (Figure 10), as well as the table of biases
and standard errors for the growth rate reproductive numbers estimates (Table 3).

Comparing Tables 1 and 3, we note that Gaussian noise generally slightly in-
creases the standard errors and decreases the biases.
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Figure 10. Two samples of five deconvolved incidence curves
(Gaussian noise added to death curves) + the original, "synthetic"
one from Figure 6 (black).

5. Epidemic peak in Philadelphia

In this section we use simulations to examine a key qualitative conclusion we
have made in the main body of the text, that the drop in infectivity ratios in
Philadelphia between Sep. 26 and Oct. 3 could not be explained by depletion of
susceptibles. First we examine the sensitivity of that conclusion with respect to the
time-to-death distribution. Then we allow for certain forms of time dependency
for the case fatality ratios, reflecting upon potential changes in demographics of
the infected as the epidemic progressed. In the simulations we have performed, our
conclusion persisted, and the drop in infectivity rations greatly exceeded depletion
of susceptibles during that period.
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Day Sep.22 Sep.23 Sep.24 Sep.25 Sep.26
Sep.12 b=0.0473 b=0.0541 b=0.0582 b=0.0544 b=0.0451

sd=0.2191 sd=0.1961 sd= 0.1774 sd= 0.1666 sd=0.1522
Sep.13 b=0.04872 b=0.0559 b=0.0603 b=0.0559 b=0.0458

sd=0.2261 sd=0.1971 sd=0.1784 sd=0.1653 sd=0.1505
Sep.14 b=0.0367 b=0.0462 b=0.0520 b=0.0479 b=0.0377

sd=0.2209 sd= 0.1925 sd=0.1707 sd=0.1557 sd=0.1415
Sep.15 b=0.0564 b=0.0647 b=0.0690 b=0.0627 b=0.0503

sd=0.2230 sd=0.1916 sd=0.1648 sd=0.1460 sd=0.1319
Sep.16 b=0.0840,0.2322) b=0.0894 b=0.0914 b=0.0819 b=0.0661

sd=0.2322 sd=0.1934 sd=0.1677 sd= 0.1463 sd=0.1285
Sep.17 b=0.0928 b=0.0976 b=0.985 b=0.0868 b=0.0685

sd=0.2677 sd=0.2189 sd=0.1846 sd= 0.1589 sd=0.1348
Table 3. Bias and standard deviation for the reproductive num-
ber estimates from section 4.3 for pairs of days, via equations 4
and 3.

5.1. Sensitivity with respect to the time-to-death distribution. In this sec-
tion we examine the sensitivity of our conclusion about the drop in the infectivity
ratios with respect to the time-to-death distribution. First we randomly generate
100 time-to-death distributions as follows:
a) Start with the original time-to-death distribution d1, . . . , d31 from the main body
of the text.
b) Each number di is multiplied by exp(Xi), where Xi is a realization of a normally
distributed random variable N(0, 0.5) with mean 0 and a standard error 0.5.
c) The numbers diexp(Xi) are divided by their sum to form a distribution.

Figure 11 plots two samples of 5 such distributions against the original one.
We deconvolve the Philadelphia death curve using the 100 randomly generated

time-to-death distributions above according to the method in the main body of
the text. For each such deconvolved incidence curve, we compute the drop in the
infectivity ratios between Sep. 26 and Oct. 3, as well as the depletion of susceptibles
during that period (both as percentages). We then plot the corresponding 100 pairs
of numbers in Figure 12.

We note that our conclusion persists in all the scenarios. In fact, the drop in
infectivity ratios surpasses the depletion of susceptibles by a factor of at least 2.68
in all cases.

5.2. Time-dependence of the case fatality ratios. In this section we examine
the possibility that the case fatality ratio p is time-dependent, thus in fact it equals
pt for day t. This reflects upon potential changes in demographics of the infected
as the epidemic progressed. Let It be the number of people infected on day t.
The number of deaths among people infected on day t is thus a binomial variable
B(Ij , pt). Since It is large and pt is small, B(It, pt) is well approximated by a
Poisson variable with (an unknown) mean λt = pt · It. Thus the deconvolution
problem in fact seeks an estimate of the numbers (λt).

We note that during the exponential growth period of the epidemic with no
saturation of susceptibles, different age strata are represented by more-or-less fixed
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Figure 11. Two samples of five randomly generated time-to-
death distributions vs. the original one (black).

proportions among the infected, thus pt changes little. That change starts to occur
later, with sizeable depletion of susceptibles.

Recall that the infectivity ratio on day t equals

IRt =
It∑

s<t Iswt−s

Here wi is the serial interval distribution. Since (Itpt) are the deconvolved param-
eters, we estimate the infectivity ratios as

(5) IRest
t =

Itpt∑
s<t Ispswt−s
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Figure 12. Drop in infectivity ratios vs. depletion of susceptibles,
Philadelphia, Sep. 26-Oct. 3, 1918. Each pair of point is obtained
using a different, randomly-generated time-to-death distribution.

We see that if the case fatality ratios were growing prior to day t, then IRest
t is an

overestimate of IRt; if case fatality ratios were declining prior to day t, when IRest
t

is an underestimate of IRt. When assessing the drop in infectivity ratios between
Sep. 26 and Oct.3, we assume the worst error scenario, namely that the case
fatality ratios were growing prior to Sep. 26 (thus the infectivity ratio on that date
is overestimated), and thereafter the case fatality ratios were declining (thus the
infectivity ratio on Oct. 3 is underestimated). A phenomenon like that does not
appear impossible if we inspect the incidence rates and the case fatality ratios in
(5). There, the age group 5 − 15 had the highest incidence and the lowest case
fatality ratio - thus as that group was getting depleted, case fatality ratios were
increasing in time. Later, when the age group 25− 35, which had the highest case
fatality ratio, was getting depleted, case fatality ratios pt were declining in time.

Based on the data in (5) we make an assumption that case fatality ratios were
increasing at a rate of 3% a day between Sep. 16 and Sep. 26, and thereafter
were decreasing at a rate of 3% a day till at least until Oct. 3 (and probably kept
decreasing later as well). Since the serial interval distribution wi = 0 for i ≥ 11, we
see from equation (5) that behavior of the case fatality ratios outside of the specified
time interval (Sep. 16 to Oct. 3) does not affect the estimates of infectivity ratios
on Sep. 26 and Oct. 3. Relative magnitudes of the case fatality ratios up to Oct.
3 are plotted in Figure 13.

We also note that case fatality ratios from Figure 13 between Sep. 26 and Oct.
3 are greater than their average value over the whole time period, which is assumed
to be at least 2%. Thus we maintain our estimate that depletion of susceptibles
was at most 16% between Sep. 26 and Oct. 3.
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Figure 13. Relative magnitudes of hypothetical case fatality ra-
tios up to Oct. 3, 1918 in Philadelphia (relative to the case fatality
ratio during the early exponential growth period of the epidemic)

If we assume that the deconvolved Philadelphia incidence curve is the actual
incidence curve and the case fatality ratios behave as specified in Figure 13, the ac-
tual decline in infectivity ratios between Sep. 26 and Oct. 3 is 0.457 (45.7%), while
our estimate with constant case fatality ratios is 0.538. We allow for an additional
error resulting from the deconvolution process. This error can be estimated from
simulations. While we do not know the original incidence curve, we try to estimate
the error using two types of simulations:

Starting from an incidence curve: A starting point in such simulations is a
curve Ct = Itpt, where It is an incidence curve and pt are the case fatality ratios
as in Figure 13. A death cruve is generated from Ct via Poisson binning with
respect to the time-to-death distribution; this death curve is deconvolved to obtain
deconvolved incidence. Since we do not know the original incidence curve, we use
the deconvolved incidence curve Idec

t from the main body of the text for Ct.
We have generated 500 ”death” curves by Poisson binning of the curve Idec

t

with respect to the time-to-death distribution. Each such curve was deconvolved
according to the procedures in the main body of the text. ”Incidence” curves which
took more than 30 iterations to deconvolve were discarded. For the resulting 492
”incidence” curves, drops in the infectivity ratio between Sep. 26 and Oct. 3
were calculated. The maximal drop in infectivity ratios was 0.646. If we take the
95% confidence interval (discarding the 12 largest and the 12 smallest values), the
maximal drop among the remaining ones is 0.605. Thus, starting from an incidence
curves with a drop of 0.457 in infectivity ratios between Sep. 26 and Oct. 3 and the
case fatality ratios pt as in Figure 13, the 95% confidence bounds for the drop in
infectivity ratios from the deconvolved death curve are (0.437, 0.605). Since the drop
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in infectivity ratios for Idec
t is 0.538, we estimate with 95% confidence that the drop

in infectivity ratios for the original incidence curve is at least 0.457 ∗ 0.538/0.605 =
0.406

Starting from a death curve: We start from the Philadelphia death curve
Dt. We generate 500 ”death” curves whose value at time t is the mean of Dt

and Pois(Dt), where Pois(Dt) is a realization of a Poisson variable with mean Dt

(when we considered death curves equaling Pois(Dt), most of them took over 30
RL iterations to deconvolve). Each such curve is deconvolved; incidence curves
which took more than 30 Richardson-Lucy iterations to converge were discarded.
The resulting 497 curves were divided by the case fatality ratios pt from Figure
13. Those are thought of as potential incidence curves in Philadelphia. Drops in
infectivity ratios between Sep. 26 and Oct. 3 for these curves were computed. A
95% confidence interval for these drops is (0.405, 0.5).
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