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Understanding spatial patterns of influenza transmission is important for
designing control measures. We investigate spatial patterns of laboratory-
confirmed influenza A across Canada from October 1999 to August 2012.
A statistical analysis (generalized linear model) of the seasonal epidemics
in this time period establishes a clear spatio-temporal pattern, with influenza
emerging earlier in western provinces. Early emergence is also correlated
with low temperature and low absolute humidity in the autumn. For the
richer data from the 2009 pandemic, a mechanistic mathematical analysis,
based on a transmission model, shows that both school terms and weather
had important effects on pandemic influenza transmission.

1. Introduction
Seasonality of transmission rates is known to have a significant influence on the
temporal patterns of epidemics of infectious diseases [1]. Transmission rates
appear to be influenced both by contact patterns (e.g. aggregation of children
in schools when schools are in session [2–5]) and by weather patterns
(e.g. changes in humidity and/or temperature [5–10]). Understanding how
these factors—and others, such as travel patterns—affect the full spatio-
temporal dynamics of infectious disease spread is important for epidemic
prediction and control.

The spatial spread of influenza across countries and continents has become
a very active area of research [11–15], and recent work has begun to connect
transmission mechanisms with observed spatial patterns. In particular, influ-
enza mortality patterns across the continental United States are correlated
with differences in absolute humidity [7]. Here, we investigate the relationships
among weather variables (temperature and humidity), school calendars and
influenza incidence across the 10 Canadian provinces over the last 14 years.
We use statistical models to investigate correlations over this period, and in
the case of the 2009 pandemic, we also fit mechanistic mathematical models
that allow us to draw stronger conclusions about the effects of seasonal factors
on influenza transmission and incidence.

2. Material and methods
(a) Data sources
Weekly influenza A laboratory-confirmed cases between 23 October 1999 and 9 March
2013 were taken from the Public Health Agency of Canada FluWatch surveillance pro-
gramme reports [16]. Daily climate data were obtained from Canada’s National
Climate Archive [17]. We used climate data for the most populous city in each province
to represent the province. School opening and closing dates were obtained from the
Canadian Education Association (http://www.cea-ace.ca/); if these dates were not
uniform throughout a province, we averaged the published dates.

Population sizes and estimated pandemic H1N1 (pH1N1) vaccination coverage
in each of the 10 Canadian provinces in 2009 and 2010 were obtained from Statistics
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Canada [18,19]. In Toronto (Ontario, ON) and Montreal (Quebec,
QC), the majority of vaccine doses were delivered during
November and December [20,21]. Since vaccination dates were
not available for other provinces, we assumed that they also
vaccinated during the same time span.

(b) Statistical analysis: generalized linear model
We looked for patterns in influenza epidemic timing for the 11
seasonal influenza (nine pre-pandemic and two post-pandemic)
seasons in our dataset. Each flu season starts from the 35th
week of each year and testing occurs throughout the year in
Canada [16]. To avoid spurious findings, we restricted ourselves
to a single set of predictors specified a priori in the main analysis:

— spatial ordering of provinces from east to west (longitude
rank),

— population rank of the provinces (population rank),
— mean observed October humidity, and
— mean observed October temperature.

To facilitate an unambiguous ranking of longitude (see
geographical locations of the 10 Canadian provinces in the
electronic supplementary material), we grouped Canada’s four
Atlantic provinces into one ‘mega-province’. Thus, our analysis
treated seven regions of Canada (six provinces and one
mega-province).

To test the significance of our hypotheses, we used the R stat-
istical programming language (http://www.R-project.org/) to
model epidemic timing as a function of the four predictors. We
also considered influenza season (treated categorically) to
account for the fact that overall timing was different in different
years. Our measure of epidemic timing was the date on which
the number of cumulative cases reported reached a given pro-
portion of the seasonal total for a given season in each
province, which we call the quantile time. To test whether a set
of predictors is significant as a group, we used an analysis of var-
iance test to compare the original model to a model that excludes
the focal predictors.

(c) Mathematical model and data fitting
To connect seasonal factors with influenza transmission during
the autumn wave of the 2009 pandemic (4 July 2009 to 18
December 2009), we used a standard mechanistic mathematical
model, the classical SIR model [1]

_S ¼ "bðtÞSI " vðtÞ; ð2:1aÞ
_I ¼ bðtÞSI " rgI " ð1" rÞgI: ð2:1bÞ

Here, S and I represent the numbers of susceptible and infectious
individuals, g is the recovery rate (the rate at which individuals
move from the infectious class to the recovered class), and
we assumed that the mean infectious period (g21) is 3 days
[5,22–25]. r is the reporting ratio (the proportion of cases that are
reported). v(t) is the vaccination rate. We define

vðtÞ ¼
hfSð0Þ

D
; t [ (10 October 2009, 10 January 2010)

0; otherwise.

8
<

: ð2:2Þ

where h denotes the vaccine effectiveness, h¼ 66% [26]; f denotes
the vaccination coverage and the estimation is available for each
province [19]; S(0) denotes the initial susceptibles; D denotes the
duration of the vaccination campaign, which was approximately
two months. The vaccination campaign was started in the last
week of October 2009 [20]. We assume that the vaccination
became effective between (10 October 2009 and 10 January
2010), to allow for the delay in vaccine-induced protection [26].

Testing was restricted for a substantial portion of the 2009
pandemic, so the reporting ratio r was not constant throughout
the epidemic. However, restrictions were initiated before our
analysis period started in July [27], allowing us to use a constant
r—with the exception of Alberta, where testing was not
restricted until November [5]. Hence we used a step function
for r in Alberta.

In equations (2.1a,b), the transmission rate b is time-varying
(dependent on weather and the school calendar). We took it to
have the following specific form:

bðtÞ ¼ b0 % e"aH HðtÞ % e"aT TðtÞ

& 1; summer vacation;
1þ 1; school term:

!
ð2:3Þ

Here, H(t) is the absolute humidity and T(t) is the temperature at
time t. The parameter b0 is the baseline transmission rate during
the summer vacation. The parameter 1, which we call the school
term intensity, controls the increment in transmission after schools
reopen in September. The parameters aH and aT describe the
strength of response to humidity and temperature, respectively.
This definition of b(t) gives us 23 ¼ 8 scenarios to consider,
since we can separately turn off the effects of school terms,
temperature or humidity. Below we focus on the following
three ‘sub-models’: (i) only school terms and temperature
(aH ¼ 0), (ii) only school terms and humidity (aT ¼ 0) and (iii)
only school terms (aT ¼ aH ¼ 0).

Because temperature and humidity are highly correlated, and
the functional responses are imperfectly known, we do not
expect to be able to disentangle the separate contributions of
these two factors. We therefore do not analyse any models that
incorporate both humidity and temperature.

In our simulations, we assumed that the initial proportion of
susceptible individuals S(0)/N was 65% (on 4 July 2009; in the
electronic supplementary material, we investigate two other
assumptions for this quantity), and the initial proportion of infected
individuals was below 1% (cf. [28–31]). We define the basic repro-
duction number R0 ¼ kbðtÞl=g [32], where the expectation is taken
over the time window that we model. We also define the effective
reproduction number Re ¼ R0Sð0Þ=N.

3. Results
(a) Patterns of annual influenza epidemic spread across

Canada
Figure 1a shows the weekly laboratory-confirmed influenza
A cases for each Canadian province from October 1999 to
March 2013 (the last few months are not included in our
analysis, since we do not have complete data for this flu
year). The top axis indicates which subtype was most
common in each season. Epidemics tended to begin earlier
in the H3N2-dominated seasons. In addition, three pro-
vinces (British Columbia (BC), Alberta (AB) and ON)
tended to have earlier influenza epidemics than the rest
of Canada.

Figure 1b–d shows the times at which 25, 50 and 75% of
weekly laboratory-confirmed cases occurred in the non-
pandemic years (i.e. excluding the 2009–2010 and 2010–2011
flu years). Figure 1b suggests that on average, influenza
tends to start earliest in AB, followed by BC and ON, even-
tually reaching the Maritimes (MA) last. There is much less
evidence of spatial spread when we look later in the seasons
(figure 1c,d). Figure 1e shows the temperature pattern, which
may explain why flu starts in BC later than in AB; humidity
(not shown here) follows a similar pattern. We use the Tukey-
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style boxplot in R (http://stat.ethz.ch/R-manual/R-patched/
library/grDevices/html/boxplot.stats.html) in figure 1b–e.

Using a generalized linear model controlling for the effect
of variation among influenza seasons (see Material and
methods), we analysed the roles of four predictors: longitude
rank, population rank, humidity and temperature. We are
mostly interested in the initial spreading, thus we used 25%
as the threshold proportion (we show other cases in the
electronic supplementary material). We found that all four
predictors as a group are significant ( p ( 0.001). In particular,
longitude rank, humidity and temperature are significant indi-
vidually ( p , 0.001, 0.021 and 0.016, respectively). Although
population is not a significant predictor ( p ¼ 0.413), a direct
comparison between longitude rank and population rank does
not show that the former is significantly better than the latter.

(b) Pattern of 2009 pandemic spread across Canada
Recent work has indicated that school closures lead to a signifi-
cant reduction in transmission of influenza (e.g. seasonal
influenza in France [33] and pandemic influenza in the province
of AB, Canada [5]). Figure 2 suggests that summer closings of
schools in 2009 influenced the transmission dynamics of pan-
demic influenza throughout Canada and led to substantially
fewer cases during the summer months than would have
occurred if schools had remained open all summer. The
figure reveals a variety of suggestive patterns: for example, pro-
vinces that closed schools earlier (e.g. QC) seem in general to
have experienced fewer cases, whereas provinces that opened
schools earlier (e.g. AB and Saskatchewan (SK)), seem to have
experienced an earlier second wave. However, the pattern
of autumn spread also seems broadly consistent with the

spatio-temporal patterns of temperature and absolute humidity;
in particular, a wave of low temperature (and absolute humid-
ity) in October 2009 is correlated with the peak of the second
wave of the pandemic. Also worth noting is the relatively low
number of reported cases in the more populous provinces of
ON and QC (probably due to testing restrictions) and many
periods with very few reports from Manitoba (MB), Nova
Scotia (NS), Prince Edward Island (PE) and Newfoundland
(NL) between April and October 2009 (possibly indicating
local fade-out and re-introduction).

To explore these patterns mechanistically, we fit an SIR
model to the pandemic data (see Material and methods).
Figure 3 shows the log-likelihood profiles of the three sub-
models as a function of school term intensity (1, equation
(2.3)) in each of the seven regions of Canada (six provinces
and the maritime ‘mega-province’). Higher likelihood
indicates better fit. It is evident that sub-model (i), with an
additional effect of temperature variation, is the best among
the three sub-models in all regions. Sub-model (ii), with
humidity replacing temperature, is as good as sub-model (i)
in ON and MB. Sub-model (iii), with neither weather
variables, is clearly the worst in all regions. Note that
sub-models (i) and (ii) involve the same number of par-
ameters, while sub-model (iii) involves one fewer
parameter. The difference between sub-model (iii) and sub-
models (i) and (ii) is much more than can be explained by
reducing the number of parameters by one ((4 units of log
likelihood). Electronic supplementary material, table S2
shows the second-order Akaike information criterion (AICc)
[5,8,35] for the three sub-models for each of the seven regions
(AICc formalizes a tradeoff between model complexity and
goodness of fit).
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Figure 1. Spatio-temporal pattern of influenza A transmission in Canada. (a) Weekly laboratory-confirmed influenza A cases in the 10 Canadian provinces ( per
100 000 habitants) from October 1999 to March 2013. Labels at the top show the dominant subtype(s) in Canada in each influenza season [16]. Vertical dashed lines
are shown on 1 January and 1 July of each year. (b – d ) Deviations of the provincial quantile times (at 25, 50 and 75%) from corresponding Canadian quantile times
for each year. MA here refers to the Maritime provinces of NB, NS, PE and NL. (e) The number of days (between September and December, for each year between
1999 and 2012) when the mean temperature was below zero. Provinces are ordered in longitude order from west to east (see the electronic supplementary material,
figure S4). (Online version in colour.)
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Figure 2. Spatial pattern of influenza A (mainly pandemic H1N1) transmission in Canada (a), as well as daily mean absolute humidity (b) and temperature
(c) across all Canadian provinces, between September 2008 and July 2010. (a) Also shows school closing dates (the thin vertical lines in late June) and opening
dates (the thick vertical lines in early September). In some provinces, there were several school closing/opening dates, corresponding to different regions and/or for
different grades. (Online version in colour.)

−160

−140

−120

lo
g 

lik
el

ih
oo

d

BC(a)

(e) ( f ) (g )

(b) (c) (d )

−150

−140

−130

−120

−110
AB

−120

−110

−100

−90

SK

0.02 0.10 0.50

−110

−100

−90

−80
MB

0.02 0.10 0.50

−150

−140

−130

−120

−110

lo
g 

lik
el

ih
oo

d

ON

−140

−130

−120

−110
QC

−130

−120

−110

MA e

e
0.02 0.10 0.50

e
0.02 0.10 0.50

e

Figure 3. Likelihood profiles of three sub-models as a function of school term factor in each of the seven Canadian regions. The likelihood profile is obtained by
maximizing the likelihood of each of the three sub-models while fixing the school term factor at values spanning from 0.01 to 2.3, via iterated filtering [34]. Three
symbols (circle (temperature sub-model), square (humidity sub-model) and triangle (no-weather sub-model)) correspond to sub-models (i) – (iii) as defined in
Material and methods. Sub-model (i), with an effect of temperature variation, is the best. Sub-model (iii), with neither weather factors, is the worst in all provinces.
Comparison of their second-order Akaike information criterion is given in the electronic supplementary material. (Online version in colour.)
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Figure 3 also reveals a relationship between the effects of
weather and school term in the data. When the school term
intensity is large, the difference between sub-models with
and without weather decreases; whereas when the school
term intensity is small, sub-models that include weather fit
the data much better than those that include neither weather
variable. These observations suggest that the effects of school
term and weather variation are similar. We also note that the
likelihood profiles for the prairie provinces (AB, SK and MB)
have similar shapes, perhaps due to the proximity in geogra-
phy and similarity in climate among these provinces. The
95% CIs for the school term intensity can be calculated from
figure 3 via the procedure described in [36].

Table 1 shows our maximum-likelihood estimates of par-
ameters: the reproductive number (Re), the attack rate (AR, the
total infected proportion), the baseline transmission rate (b0),
the temperature intensity and the school term intensity (1), in
each of the seven regions, based on sub-model (i). The Re esti-
mates for the autumn pandemic wave are close to published
estimates for the spring wave [5,23–25]. Our estimated ARs
are larger than published values, e.g. 36% published in [37]
(for the whole pandemic including vaccination). However, the
published values were based on haemagglutination inhibition
(HI) titres greater than or equal to 40; if a lower threshold (greater
than or equal to 20) is used, the estimated AR is larger [30,37].

Electronic supplementary material, figures S9 and S10,
compare the observed data with simulations with estimated
parameter values for the three sub-models in each of the
seven regions. It can be seen that simulations without weather
variables match the observed data less well than those that
include weather variables.

Electronic supplementary material, figure S7, shows total
number of laboratory-confirmed influenza cases in each region
during the pandemic year (with a box plot of annual cases
during pre-pandemic seasonal epidemics for comparison), the
reporting ratio and the school term intensity (with 95% confi-
dence interval), estimated from the three sub-models for the
pandemic year. The results show that the sub-model without
temperature or humidity gives higher estimates of reporting
ratio and school term intensity.

4. Discussion and conclusion
In this article, we have reported evidence of a west-to-east spatial
pattern of spread of seasonal influenza A across Canada between

1999 and 2013, using a simple statistical model. We also studied
the autumn wave of the 2009 pandemic in more detail, using a
model with explicit transmission, which allowed us to demon-
strate that the spread of influenza across Canada is strongly
affected by weather even when school terms are accounted for.
For seasonal influenza, we demonstrated that longitude rank,
humidity and temperature are significant predictors. We chose
not to fit a mechanistic model to the seasonal influenza data,
since seasonal influenza tends to be sampled more poorly, and
the data generally include multiple strains.

Our results on the pattern of seasonal epidemic spread are
consistent with an earlier phenomenological report that cov-
ered both the USA and Canada [15]. Our results on the
importance of weather in pandemic transmission are consist-
ent with similar observations across the United States for
seasonal influenza [7].

This study aggregated cases at the provincial level and
did not distinguish between age groups. This allowed us to
obtain robust fits, but may have led us to miss some details.
The aggregated fits also complicate the interpretation of our
school term effect. The direct effect of school terms on trans-
mission among schoolchildren will be greater than our
estimated effect, averaged over the whole population. Quan-
tifying this difference would require an understanding of the
extent to which schoolchildren drive the influenza epidemic,
both when schools are open and when they are closed, which
in turn would require an age-structured model.

In the electronic supplementary material, we also investi-
gated the timing of intervention and showed its importance
on the reduction of infections. While this study is not the first
one to investigate vaccination measures in Canada during the
2009 pandemic (see [38]), it is the first that includes the effects
of weather. Overall, our study suggests that better understand-
ing of the factors underlying patterns of spatio-temporal spread
will be very useful for designing and prioritizing vaccination
and other control efforts. As influenza surveillance and model-
ling techniques continue to improve, it should become possible
to further unravel the climate factors that affect influenza
transmission using data from seasonal epidemics.
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Table 1. The maximum-likelihood estimates of parameters for the autumn wave of the 2009 influenza pandemic in seven Canadian regions, estimated using
sub-model (i), the sub-model with an effect of temperature variation. The parameters are the reproductive number, the attack rate (AR), the reporting ratio r,
the baseline transmission rate, the temperature intensity (aT) and the school term intensity (1). For aT and 1, the 95% confidence intervals (CIs) are given
in parentheses.

province Re AR (%) r b0 aT 95% CI of aT 1 95% CI of 1

BC 1.27 43.5 0.0035 374.37 0.045 (0.033, 0.054) 0.088 (0.010, 0.247)

AB 1.25 42.6 0.0054 229.48 0.028 (0.023, 0.034) 0.247 (0.180, 0.343)

SK 1.32 45.7 0.0060 229.14 0.031 (0.022, 0.039) 0.261 (0.146, 0.484)

MB 1.32 45.9 0.0033 249.63 0.037 (0.013, 0.049) 0.384 (0.083, 0.614)

ON 1.30 45.0 0.0012 406.49 0.050 (0.035, 0.052) 0.075 (0.010, 0.261)

QC 1.27 45.3 0.0034 368.04 0.046 (0.042, 0.053) 0.018 (0.010, 0.189)

MA 1.31 47.0 0.0044 411.93 0.065 (0.058, 0.077) 0.011 (0.010, 0.113)
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6.1 Geographic locations of the ten Canadian provinces2
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Figure S4: Geographic locations of the ten Canadian provinces. The red dot indicates the
location of the most populous city in each province. AB, SK and MB are the Prairie provinces ;
NB, NS, PE and NL are the Maritime provinces.

6.2 p-values of four predictors in a generalized linear model3

Figure S5 shows p-values associated with each of the four predictors and the four predictors4

taken together, while varying the threshold proportion of quantile time (see main text). We5
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compared two di↵erent temperature predictors: the number of days when the mean tempera-6

ture was below zero between September and December (panel (a)), and the mean temperature7

in October (panel (b)). We found that the p-value associated with all four predictors together8

(curve A) is smaller using mean October temperature as the temperature predictor. Longi-9

tude rank (L) is a significant predictor in the initial stage of the epidemic (when the threshold10

proportion is less than 30%) for both temperature predictors (panels (a) and (b)); while the11

two climatic predictors, temperature (T) and humidity (H), are significant predictors (panel12

(b)). Humidity (H) and temperature (T) are significant predictors (p < 0.05) when the thresh-13

old proportion exceeds 20% (panel (b)). These results suggest that climatic variables likely14

influenced the spatial pattern of influenza A across Canada.15
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Figure S5: The impact of varying threshold proportion and temperature predictor on p-values
associated with each of the four predictors and the four predictors taken together. (a) Tempera-
ture predictor is number of days when the mean temperature is below zero between September
and December; (b) Temperature predictor is mean temperature in October. In each panel,
the five curves show the p-values of longitude rank (demarcated by L), population rank (P),
humidity (H), temperature (T), and all four together (A). Two horizontal dashed lines indicate
the two levels of significance, 1% and 5%.
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6.3 Direct comparison between longitude and population predictors16

In the main text, we reported that longitude rank, humidity and temperature are significant17

predictors. Here we directly compare longitude rank and population rank. To test whether one18

predictor is better than the other, we reparameterized our model using standardized variables19

(we divided each variable by its standard deviation), and replaced the focal predictors with their20

sums and di↵erences. This reparameterized model has a parameter measuring the di↵erence21

between the absolute values of the partial correlation coe�cients of the longitude rank and22

population rank; the p-value associated with this parameter was not significant, indicating that23

we do not have statistical evidence at the 5% level that longitude rank is a better predictor24

than population rank.25

6.4 Comparing the spatial spreading pattern of seasonal epidemics26

versus the 2009 pandemic27

Figure S6 compares the spatial spread of seasonal epidemics versus the 2009 pandemic. We28

first define the scaled cumulative incidence (laboratory-confirmation) curve (CIC). Given a29

time series of weekly laboratory confired cases for a season in a province, we calculate the30

cumulative sum series (cumsum in R), then divide by the total of number of confirmations for31

the given season in this province. For each of the seven regions (6 provinces and maritime32

mega-province), we calculate the CIC for each of the nine pre-pandemic seasons, and take an33

average for each province over the nine seasons. The averaged CIC for the pre-pandemic seasons34

is shown in panel (a). The CIC for the 2009 pandemic fall wave (August 2009 to August 2010)35

are shown in panel (b). We focus on the fall wave, excluding the spring wave, since the data36

for the spring wave contain a substantial proportion of seasonal strains, and the testing policy37

changed abruptly during the period. Figure S6 shows a striking similarity in the pattern of38

spatial spread of both the seasonal epidemics and the 2009 pandemic, from west to east.39
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Figure S6: Comparison of the pattern of spatial spread of seasonal epidemics versus the 2009
pandemic. Panel (a) shows the scaled cumulative incidence curve (CIC), averaged over nine
pre-pandemic seasons, for the seven regions. Panel (b) shows the CIC for the 2009 pandemic
fall wave.

6.5 Comparison of three sub-models via AICc40

Table S2 presents a comparison of the explanatory power of three sub-models using the second-41

order Akaike Information Criterion (AICc)[1, 2, 3]. Each of the models includes an increment42

in transmission when schools re-opened; the table reveals that the data for all regions (except43

for MB) are best explained by an additional e↵ect of temperature variation. The di↵erences44

among models including either of the two weather variables are marginal in ON and MB (i.e.,45

�AICc < 6 [3]), indicating similar fits. Including neither weather variable yields a much worse46

fit.47

6.6 Maximum likelihood estimates of parameters and simulations48

Figure S7 shows (a) the total number of laboratory-confirmed influenza cases in each province49

during the pandemic year (with a box plot of annual cases during pre-pandemic seasonal epi-50

4



Table S2: Comparison of three sub-models (see Methods). (i) Temperature variation only; (ii)
humidity variation only; (iii) no climatic variation. All three models include reduced trans-
mission when school is not in session. The table entries represent �AICc, i.e., the di↵erence
between the AICc value for the best sub-model (which has the smallest AICc value) and the
AICc value for each of the three sub-models. Thus, “best” indicates that the sub-model in the
column in question yields the best fit for the region in question. Large �AICc values indicate
a poor sub-model.

(i) Temperature (ii) Humidity (iii) None
Province (+ school term) (+ school term) (but school term)

BC best 9.4 33.3
AB best 16.5 34.4
SK best 5.7 30.5
MB 1.0 best 16.4
ON best 2.6 21.6
QC best 8.3 31.8
MA best 6.3 40.9

demics for comparison), (b) the reporting ratios estimated from the three sub-models for the51

pandemic year, and (c) the school term factor (increment in transmission due to school re-52

opening) estimated from the three sub-models for the fall wave of the 2009 pandemic. The53

sub-model without temperature or humidity (triangle for each province in panels (b,c)) tends54

to give a higher reporting ratio and higher school term factor than the other two sub-models,55

probably because this model does not fit as well.56

Figure S8 shows the likelihood profiles for sub-model (i) as a function of temperature inten-57

sity (↵T ) in each of the seven regions. These profiles show how the temperature intensity a↵ects58

the fits. We also notice the similarity in the shape of the profile among the prairie provinces59

(AB, SK and MB), and between BC and ON, between QC and MA.60

Figure S9 and Figure S10 compare the observed data to simulations of three sub-models in61

the seven regions. The simulations including weather variables match the observed data better62

than those without weather variables.63

5



1 2 5 10 50 200

MA

QC

ON

MB

SK

AB

BC
Pr

ov
in

ce

Annual total per 100K habitants

(a) (b)
●

●

●

●

●

●

●

●

MA

QC

ON

MB

SK

AB

BC

0.0001 0.001 0.01 0.1
Reporting Ratio (ρ)

(c)
●

●

●

●

●

●

●MA

QC

ON

MB

SK

AB

BC

0.01 0.05 0.20 0.50
School Term Factor (ε)

Figure S7: Influenza A case reports and model-estimated reporting ratios. (a) Annual lab-
confirmed influenza A cases per 100,000 inhabitants (on a log scale) during the pre-pandemic
seasons (boxplots) and during the 2009 pandemic (triangles). (b) The estimated reporting ratio
(⇢) for the 2009 pandemic season, using three sub-models (see Methods); the filled symbols show
the reporting ratio in provinces where testing restrictions were implemented, while the open
symbols show the reporting ratio in provinces where testing restrictions were never imposed.
Since in Alberta, testing restrictions were not applied until November 2009, we estimate ⇢
separately for before (open) and after (filled) restricted testing commenced. For each province,
the three symbols (circle, square, and triangle, from top to bottom) correspond to sub-models
(i)-(iii) as defined in Methods. Note that in provinces where testing restrictions were applied
(i.e., AB, ON, QC), the reporting ratios were significantly lower than for the rest of the country.
Arrows indicate the best sub-model. (c) The estimated school term factor (") for the 2009
pandemic season, using three sub-models, with whiskers indicating 95% confidence interval.

6.7 E↵ect of earlier or delayed vaccination64

Vaccination against pH1N1 in Canada began in late October 2009, initially in vulnerable groups65

and by mid November in the entire population [8, 9]. The simulations summarized in Figure S966

and Figure S10 assumed, for simplicity, that vaccination began on 10 November 2009 in all67

provinces. Figure S11 summarizes the expected outcomes in terms of additional cases prevented68

(or caused) if vaccination had been initiated 1–3 weeks earlier (or later). Overall, earlier69

vaccination (panel a) would have had a substantially stronger e↵ect than delayed vaccination70

(panel b). Earlier vaccination would have reduced incidence in all provinces, but would have71

had the smallest relative impact in AB, ON and BC, probably because the spring wave was72

larger in AB and ON [10]. The autumn wave began earlier in these provinces, and vaccine73
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Figure S8: Likelihood profiles of sub-model (i) as a function of temperature intensity in each
of the seven Canadian regions. The likelihood profile is obtained by maximizing the likelihood
while fixing the intensity at a variety of values, via iterated filtering [4].

coverage was lowest in these provinces [11]. The four Atlantic provinces, as well as QC, MB74

and SK, would have benefited the most from an early vaccination program.75
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Figure S9: Simulations compared with observed pH1N1 influenza cases (blue) in four Canadian
provinces (BC, AB, SK and MB) in 2009. Boxplots (Tukey-style with whiskers showing 2.5%
and 97.5% quantiles) are based on 1000 stochastic simulations of the best model (Table S2);
the stochastic version of each model was implemented using the Euler-multinomial approach
[5, 6, 7] with a time step of one day; in simulations of provinces with small populations there were
occasional fadeouts, so a single infection was introduced at these times to mimic transmission
among provinces.
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Figure S10: Simulations (boxplots) compared with observed pH1N1 influenza cases (blue) in
two Canadian provinces (ON and QC) and the maritime mega-province (MA) in 2009.
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Figure S11: Predicted impact of earlier or later initiation of vaccination campaigns during
the 2009 influenza pandemic, based on our best-fit transmission model for each region. (a)
Estimated proportional reduction in the number of pH1N1 cases resulting from vaccine ad-
ministration 1 (black bar), 2 (dark grey bar) or 3 (light grey bar) weeks earlier. (b) Estimated
proportional increase in the number of pH1N1 cases resulting from vaccine administration 1
(black), 2 (dark grey) or 3 (light grey) weeks later. The thin red curves show the overall H1N1
vaccine coverage (i.e., proportion of population vaccinated) for each region. Note the higher
vaccine coverage in SK and the maritime mega-province (MA), which could explain the higher
impact of earlier vaccination on the reduction of cases in these provinces (panel a).
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6.8 Assumption on initial susceptible proportion76

In the main text, we assumed the initial susceptible proportion (on 4 July 2009) was 65% in77

all provinces. Results based on di↵erent assumptions, namely S(0) = 0.8N and S(0) = 0.4N ,78

are summarized in Tables S3–S6. Model comparisons based on these tables yield the same79

conclusions as reported in the main text. We found that a sub-model with temperature variation80

yields the smallest AICc in almost all provinces, except for MB (the di↵erence is very small),81

thus we identified this sub-model as the best model. We also found that with a smaller S(0),82

the estimated attack rate (AR) is closer to published values (20–30%) [12]. The estimated83

reporting ratio is also larger with a smaller S(0). These results indicate that the pandemic84

H1N1 strain might not be as novel as the initial level of HI titers (using 1:40 as threshold)85

suggested [13, 12, 14]. There could be other mechanisms of (cross-) protection not measured86

by HI titers.87

Table S3: Model comparison via AICc. We reproduce Table S2 with initial susceptible propor-
tion S(0) = 0.8N (where N is the population size).

(i) Temperature (ii) Humidity (iii) None
Province (+ school term) (+ school term) (but school term)

BC best 9.2 33.6
AB best 17.2 35.2
SK best 5.7 31.6
MB 0.8 best 17.0
ON best 0.3 19.9
QC best 8.6 32.4
MA best 5.3 38.9
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Table S4: Maximum Likelihood Estimates of parameters from the best model. We reproduce
Table 1 with initial susceptible proportion S(0) = 0.8N (where N is the population size).

Province Re AR (%) ⇢ �0 ↵T 95% CI of ↵T " 95% CI of "
BC 1.27 53.4 0.0028 305.24 0.045 (0.033, 0.054) 0.088 (0.010, 0.247)

AB 1.25 52.2 0.0044 186.98 0.029 (0.023, 0.034) 0.247 (0.180, 0.325)

SK 1.33 56.1 0.0049 187.12 0.032 (0.022, 0.039) 0.261 (0.146, 0.484)

MB 1.32 56.2 0.0027 203.35 0.037 (0.013, 0.050) 0.363 (0.088, 0.614)

ON 1.30 55.3 0.0010 329.28 0.050 (0.035, 0.053) 0.075 (0.010, 0.261)

QC 1.27 55.9 0.0027 299.24 0.046 (0.042, 0.053) 0.018 (0.010, 0.162)

MA 1.30 57.5 0.0039 330.00 0.064 (0.055, 0.076) 0.012 (0.010, 0.113)

Table S5: Model comparison via AICc. We reproduce Table S2 with initial susceptible propor-
tion S(0) = 0.4N (where N is the population size).

(i) Temperature (ii) Humidity (iii) None
Province (+ school term) (+ school term) (but school term)

BC best 9.4 33.0
AB best 16.0 34.5
SK best 5.5 30.1
MB 0.9 best 16.7
ON best 5.8 25.2
QC best 7.7 31.1
MA best 6.8 41.0

Table S6: Maximum Likelihood Estimates of parameters from the best model. We reproduce
Table 1 with initial susceptible proportion S(0) = 0.4N .

Province Re AR (%) ⇢ �0 ↵T 95% CI of ↵T " 95% CI of "
BC 1.27 26.7 0.0057 609.60 0.045 (0.032, 0.055) 0.088 (0.010, 0.247)

AB 1.25 26.5 0.0086 375.20 0.029 (0.022, 0.034) 0.247 (0.180, 0.343)

SK 1.32 28.2 0.0097 373.05 0.031 (0.020, 0.039) 0.261 (0.139, 0.484)

MB 1.33 28.5 0.0053 408.80 0.037 (0.013, 0.048) 0.384 (0.088, 0.614)

ON 1.28 27.6 0.0019 600.44 0.046 (0.034, 0.051) 0.092 (0.010, 0.275)

QC 1.26 27.7 0.0054 567.39 0.044 (0.042, 0.053) 0.038 (0.010, 0.234)

MA 1.35 29.6 0.0065 699.55 0.067 (0.062, 0.078) 0.010 (0.010, 0.154)
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