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Abstract

Seasonal oscillations in birth rates are ubiquitous in human populations. These oscillations might play an important role in infectious

disease dynamics because they induce seasonal variation in the number of susceptible individuals that enter populations. We incorporate

seasonality of birth rate into the standard, deterministic susceptible–infectious–recovered (SIR) and susceptible–exposed–infectious–

recovered (SEIR) epidemic models and identify parameter regions in which birth seasonality can be expected to have observable

epidemiological effects. The SIR and SEIR models yield similar results if the infectious period in the SIR model is compared with the

‘‘infected period’’ (the sum of the latent and infectious periods) in the SEIR model. For extremely transmissible pathogens, large

amplitude birth seasonality can induce resonant oscillations in disease incidence, bifurcations to stable multi-year epidemic cycles, and

hysteresis. Typical childhood infectious diseases are not sufficiently transmissible for their asymptotic dynamics to be likely to exhibit

such behaviour. However, we show that fold and period-doubling bifurcations generically occur within regions of parameter space where

transients are phase-locked onto cycles resembling the limit cycles beyond the bifurcations, and that these phase-locking regions extend

to arbitrarily small amplitude of seasonality of birth rates. Consequently, significant epidemiological effects of birth seasonality may

occur in practice in the form of transient dynamics that are sustained by demographic stochasticity.

r 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Communicable disease surveillance over the last century
has produced many valuable time series that reveal the
temporal and spatial epidemic patterns caused by a wide
variety of pathogens (Anderson and May, 1991; Grenfell
and Harwood, 1997; Earn et al., 1998, 2002; Grenfell et al.,
2001). These time series have stimulated the development
and analysis of numerous mathematical models of infec-
tious disease transmission, which aim to identify the
mechanisms that generate observed epidemic patterns and
to design strategies for control and eradication (Kermack
and McKendrick, 1927; Bartlett, 1960; Bailey, 1975;
Anderson and May, 1991).
e front matter r 2007 Elsevier Inc. All rights reserved.
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Until the 1970s, the mathematical theory of infectious
diseases was focused on autonomous deterministic and
stochastic models. London and Yorke (1973) recognized
that the contact rate among individuals is not constant but
varies seasonally as a result of the aggregation of children
in schools. Hence, the disease transmission rate is subject to
exogenous seasonal forcing, making the system non-
autonomous and leading potentially to complex dynamics.
Indeed, subsequent studies established that seasonal for-
cing of the transmission rate can lead to multiple coexisting
stable cycles (Schwartz and Smith, 1983) and chaos (Olsen
and Schaffer, 1990; Glendinning and Perry, 1997). Recent
work has shown that a suitably parameterized, seasonally
forced transmission model can successfully predict ob-
served transitions in the temporal structure of epidemics
for a variety of childhood infectious diseases, based on
slow changes in vaccination levels and birth rates (Earn et
al., 2000; Bauch and Earn, 2003).
In addition to the secular changes that occur over

decades, it is well known that birth rates oscillate
seasonally, and this has been implicated in the incidence
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patterns of some non-communicable diseases such as
schizophrenia and diabetes (Miura, 1987). From the point
of view of infectious diseases, birth rate seasonality
represents an additional source of exogenous seasonal forc-
ing. In this paper, we investigate how seasonal oscillation
in birth rates influences the dynamics of the simplest
standard models of childhood infectious disease transmis-
sion (the susceptible–infectious–recovered or SIR model
and the susceptible–exposed–infectious–recovered or SEIR
model). We begin with a brief discussion of some birth data
showing seasonal oscillations, from which we estimate the
magnitude of seasonal forcing of birth rates. We then
review the dynamics of the basic SIR model before explor-
ing the theoretical consequences of birth rate seasonality.

2. Data showing seasonality of birth rates

Seasonality of birth rate has been observed in almost all
historical populations (Trovato and Odynak, 1993). Two
distinct patterns are evident in modern populations: the
American pattern with a trough in April–May and a peak in
September, and the European pattern with a peak in
spring–summer and a secondary peak in September
(Trovato and Odynak, 1993; Doblhammer et al., 2000;
Haandrikman, 2003). In spite of its proximity to the United
States, Canada’s pattern of births since the early 1900s has
been similar to that of Europe (Trovato and Odynak,
1993).
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Fig. 1. Monthly births in Canada. The four panels show the raw birth data (a),

of the scaled time series computed with the FFT routine of Matlab 6 (c), and the

years (Eq. (4), circles) and fitted with a sine wave (Eq. (5), solid curve). Th

f ¼ �0:44p (i.e., �2:64 months). Data source: CANSIM Table 102-4502 av

1991–2000, Statistics Canada (Statistics Canada, Health Statistics Division, 20
Figs. 1a and 2a show monthly births in Canada and the
US for 10 yr from 1991 to 2000. Both secular trends and
seasonal oscillations are evident in these two time series. To
quantify the amplitude of seasonal variation, we must
remove the trends, which we do as follows.
We denote the raw monthly data, i.e., the number of

births in month j of year i, by X ij. The average number of
births in a month of average length in year i is

Xh ii ¼
1

12

X12
j¼1

X ij . (1)

To correct for the different lengths of each month we define

cij ¼
ðDays in year iÞ=12

Days in month j of year i
. (2)

The scaled, month-length-corrected monthly data is then

Y ij ¼
cijX ij � Xh ii

Xh ii
; i ¼ 1991; . . . ; 2000; j ¼ 1; . . . ; 12.

(3)

In Figs. 1 and 2, the scaled time series defined by Eq. (3) are
shown in panel b and their power spectral densities (PSD)
are shown in panel c. These examples show that oscillations
in birth rates with seasonal amplitude e� 0:1 occur in real
populations. For both Canada and the US, the power
spectrum has a strong peak at frequency 1 yr�1, reflecting
the primarily annual pattern, and a secondary peak at
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Fig. 2. Monthly births in the US. Panels correspond to those for Canada in Fig. 1. In panel (d), the fitted sine wave has amplitude e ¼ 0:04 and phase shift

f ¼ �0:76p (�4:56 months, 1:92 months later compared to that of Canada). Data source: Annual summary of Monthly Vital Statistics Report, National

Center for Health Statistics, United States; http://www.cdc.gov/nchs/births.htm.
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frequency 2 yr�1 (period 0.5 yr), reflecting the rise in births
in September in Canada and May in the US (the spectral
peak at 2 yr�1 disappears if we remove the secondary peak
in the time series).

On average, the seasonal pattern of births is roughly
sinusoidal. Indeed, averaging months across years:

Zj ¼
1

Nyr

X2000
j¼1991

Y ij ; j ¼ 1; . . . ; 12, (4)

where Nyr ¼ 10, we obtain the average seasonal pattern of
births indicated with open circles in panel d of Figs. 1 and
2. The least-squares best fit sine wave through these data is
shown as the solid curve. Writing the sine wave,

e sinð2ptþ fÞ, (5)

the fitted parameters are ðe;fÞ ¼ ð0:06;�2:64monthsÞ for
Canada (Fig. 1) and ðe;fÞ ¼ ð0:04;�4:56monthsÞ for the
US (Fig. 2). The secondary peak in September is evident in
Fig. 1d; in the following sections, we ignore this small
deviation from sinusoidal oscillation.
3. The standard unforced SIR model

The standard SIR model, originally investigated by
Kermack and McKendrick (1927), can be written as

_S ¼ nN �
b
N

I þ m
� �

S, ð6aÞ

_I ¼
b
N

IS � ðgþ mÞI , ð6bÞ
_R ¼ gI � mR. ð6cÞ

Here, S, I, and R denote the numbers of individuals that
are susceptible, infectious, and recovered, respectively, and
recovery is assumed to entail lifelong immunity. The total
population size is N ¼ S þ I þ R. There are two demo-
graphic parameters, the per capita birth and natural death
rates, which are given by n and m, respectively. The
epidemiological parameters are the transmission rate b and
the recovery rate g (the mean infectious period is 1=g).
Possible effects of disease-induced mortality are considered
in the Appendix.
If we scale the state variables by the population size

(S! S=N, I ! I=N, R! R=N) and derive equations for
these scaled variables (see the Appendix) then we arrive at
the simpler system

_S ¼ n� ðbI þ nÞS, ð7aÞ

_I ¼ bIS � ðgþ nÞI , ð7bÞ

_R ¼ gI � nR, ð7cÞ

in which S, I, and R now denote the proportions of the
population that are susceptible, infectious, and recovered,
respectively. Neither the total population size N nor the
natural mortality rate m appears in these equations. In
addition, since S þ I þ R ¼ 1, one of the equations is
redundant; henceforth we ignore Eq. (7c).
A fundamental property of an infectious disease is its

basic reproductive ratio R0, the mean number of secondary
cases caused by a typical primary case in a wholly sus-
ceptible population (Anderson and May, 1991). R0 is the

http://www.cdc.gov/nchs/births.htm
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product of the transmission rate, b, and the mean time that
an individual is infectious, 1=ðgþ nÞ, hence

R0 ¼
b

gþ n
. (8)

It is convenient to introduce a second dimensionless
parameter

G ¼
gþ n
n

, (9)

which is the reciprocal of the birth rate expressed as a
multiple of the mean time spent in the infectious class.
Note that if the population is not changing (n ¼ m) then G
is the mean lifetime in units of the mean time that an
individual is infectious. For typical diseases with infectious
periods between a few days and a few weeks, G ranges from
�103 to �104.

If we measure time in units of the mean infectious
period, then Eqs. (7) can be written so they involve only the
two dimensionless parameters R0 and G (Bauch and Earn,
2004). However, since the mean infectious period g�1 is a
more intuitive parameter than G, when displaying results
we choose to fix n and let g�1 vary. No generality is lost in
this way; presenting results varying G would simply involve
relabelling axes. The per capita birth rate n in developed
countries in the last century has typically been in the range
0:015tnt0:04 yr�1 (Earn et al., 2000). When presenting
results, we always take n ¼ 0:02 yr�1.

The SIR model (7) has at least one and at most two
equilibria. For all parameter values, there is a disease-free

equilibrium (DFE: S ¼ 1; I ¼ 0). The DFE is globally
asymptotically stable if R0p1 and unstable if R041. If
R041 then there is a globally asymptotically stable
endemic equilibrium

Ŝ ¼
1

R0
, ð10aÞ

Î ¼
1

G
1�

1

R0

� �
. ð10bÞ

Global stability analysis of the SIR model is discussed, for
example, by Hethcote (2000) (see Korobeinikov and Maini,
2004 for global stability analysis of more general epidemic
models). We briefly review the local stability analysis of the
endemic equilibrium in order to emphasize aspects that are
important to recall when we expand the model to include
birth rate seasonality.

We linearize Eqs. (7) by writing S ¼ Ŝ þ DS, I ¼ Î þ DI

and neglecting quadratic terms (DSDI) yielding

_DS

_DI

 !
¼

�nR0 �nG

nðR0 � 1Þ 0

 !
�

DS

DI

� �
. (11)

The eigenvalues of the Jacobian matrix above are

l� ¼ �r� io, (12a)

where

r ¼ nR0=2 (12b)
and

o ¼ n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GðR0 � 1Þ � ðR0=2Þ

2

q
. (12c)

The approach to the endemic equilibrium will occur via
damped oscillations if and only if

G4G� ¼
R2

0

4ðR0 � 1Þ
. (13)

For typical infections for which the SIR model is reason-
able, G41000 and R05100, so Gb254G�. Thus, inequal-
ity (13) will almost certainly be satisfied and we can expect
damped oscillations onto equilibrium (10). The natural
frequency of these oscillations is o and their period is
2p=o. In the typical situation in which GbG�, the second
term under the square root in Eq. (12c) can be neglected, so

o ’ n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GðR0 � 1Þ

p
. (14)

In the vicinity of the endemic equilibrium (10) the
solution of the SIR equation (7) is given approximately
by the solution of the linearized system (11). Noting that
the eigenvectors corresponding to l� in Eq. (12) are
½l�; nðR0 � 1Þ�T , the general solution of Eq. (11) can be
written as

DSðtÞ

DIðtÞ

 !
¼ e�rt cþeiot

�rþ io

nðR0 � 1Þ

 !(

þc�e�iot
�r� io

nðR0 � 1Þ

 !)
. ð15Þ

Here, the constants cþ and c� must, necessarily, be
complex conjugates, in order to ensure that real initial
conditions yield real solutions. Therefore, each component
of Eq. (15) has the form e�rtðzþ z̄Þ ¼ 2e�rtRðzÞ and we can
write

DSðtÞ

DIðtÞ

 !
¼ 2e�rt R cþeiot

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ o2
p

eiy

nðR0 � 1Þ

 !( )
, (16)

where we have let y ¼ arctanð�o=rÞ. It follows that the
maximum value of DSðtÞ is 2e�rtjcþj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ o2
p

and the
maximum value of DIðtÞ is 2e�rtjcþjnðR0 � 1Þ. We can
therefore define the amplitude of oscillation in S and I to be

aS;0 ¼
ðDSÞmax

Ŝ
’ 2e�rtjcþjnR0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GðR0 � 1Þ

p
, (17)

aI ;0 ¼
ðDIÞmax

Î
¼ 2e�rtjcþjnGR0. (18)

These amplitudes decay in time, but their ratio is constant
and independent of jcþj. Consequently, independent of
initial conditions, we can quantify the shape of the phase
portrait near the endemic equilibrium (scaled by the
equilibrium values) by the shape quotient

Q0 ¼
aI ;0

aS;0
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G

R0 � 1

r
. (19)
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This dimensionless quotient is a measure of the relative
amplitudes of oscillation of I and S in the neighbourhood of
the endemic equilibrium. Typically G41000 and R0o25 so
Q046 (and in general Q0b1), indicating that the oscilla-
tions in I have much greater amplitude than those in S.

4. The SIR model with seasonal oscillation in birth rate

We introduce seasonality of birth rate into the SIR
model by replacing every occurrence of n in Eq. (7) with

n½1þ e sinð2pt=tf þ fÞ�. (20)

Here, the amplitude of forcing of the birth rate is e 2 ½0; 1�
and period of forcing is

tf ¼ 1 yr. (21)

The phase shift f 2 ½0; 2pÞ plays no dynamical role; it is
included above because it is convenient to associate integer
values of t with the start (1 January) of each year when
comparing model time series with data.

Our principal goal is to determine whether birth rate
seasonality (e40) induces dynamics that are substantially
different from the dynamics of the standard SIR model
discussed in the previous section. We investigate two ways
that qualitatively different dynamics might emerge as e is
increased. First, if the period of natural oscillations
happens to coincide with the forcing period tf (1 yr) then
the system might exhibit greatly exaggerated oscillations in
disease incidence. Such a resonance could occur even for
extremely weak seasonal forcing, as has been shown in an
SIRS influenza model with seasonal forcing of the
transmission rate (Dushoff et al., 2004). Second, as e is
increased, bifurcations might be induced, leading to limit
cycles of different lengths or more exotic dynamics.

There is no endemic equilibrium if e40. If 0oe51 then
a limit cycle replaces the equilibrium and we shall see that
for typical parameter values limit cycles are the norm for
any e 2 ð0; 1�. In Eq. (17) for the unforced SIR model
(e ¼ 0) we defined amplitudes of oscillation in S and I

during damped oscillations toward the equilibrium; for
e40 we focus on the attractor itself, and define the
amplitude of oscillation in S and I relative to the average
values of S and I on the attractor:

aS ¼
Smax � Sh i

Sh i
; aI ¼

Imax � Ih i

Ih i
, (22)

from which we define the shape quotient

Qe ¼
aI

aS

. (23)

For a given set of parameters and initial conditions, it
is straightforward to compute Qe: we simply integrate
Eqs. (7) numerically until transients have decayed and then
compute aS and aI defined in Eq. (22), from which we
calculate Qe via Eq. (23). If multiple attractors coexist then
Qe will depend on initial conditions (in an example we will
describe later in Fig. 5, two distinct annual attractors
coexist and have values of Qe that differ by 15%).
Note that the shape quotient (23) could be defined in
other ways. For example, we have considered defining it in
terms of the minimum rather than maximum oscillation
amplitudes, or via the difference between maximum and
minimum amplitudes rather than their differences from the
mean. All these definitions yield qualitatively similar
results.
Resonance is indicated if aI=eb1, i.e., if oscillations in

disease incidence have amplitude many times greater than
the externally imposed oscillations in birth rate.
4.1. Resonance in the limit e! 0 (small birth seasonality)

In the limit e! 0 we anticipate that the shape of the
limit cycle of the model with birth forcing will be similar to
the shape of the transient that approaches the equilibrium
in the unforced model. Thus, as e! 0 we expect (i) the
shape quotient Qe! Q0, where Q0 is defined in Eq. (19)
and (ii) the frequency of the oscillation should be close to
the natural damping frequency o given in Eq. (12c).
Consequently, if e is sufficiently small then we should be
able to identify the parameter values that yield resonance
by equating the natural period of damped oscillations of
the unforced model (2p=o) with the period of seasonal
forcing (tf ).
Setting 2p=o ¼ tf in Eq. (12c), and solving for the

resonant reproductive ratio R�0, we find

R�0 ¼ 2G� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GðG� 1Þ � ð2p=ntf Þ

2

q
. (24)

If we take the plus sign above we have R�042G, which for
typical values of G (41000) yields a resonant reproductive
ratio that will never occur in practice. Consequently, we
consider only the minus sign in Eq. (24). If G� G� (Eq.
(13)) then we can approximate o using Eq. (14), from
which setting 2p=o ¼ tf yields

R�0 ’ 1þ
4p2

n2t2fG
¼ 1þ

4p2

nðgþ nÞt2f
. (25)

More intuitively, we can express R�0 as

R�0 ’ 1þ 4p2
DL

t2f
, (26)

where D ¼ 1=ðgþ nÞ and L ¼ 1=n. If deaths exactly balance
births (m ¼ n) then D is the mean duration of infectiousness
and L is the mean lifetime. The line marked ‘‘e ¼ 0’’ in
Fig. 3 shows R�0 as a function of 1=g for fixed n (which
differs negligibly from a plot of R�0 as a function D with
fixed L).
If we insert expression (24) (using the minus sign) in

Eq. (19) we obtain the shape quotient of resonant
trajectories in the limit e! 0:

Q�0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G

2G� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GðG� 1Þ � ð2p=ntf Þ

2
q

� 1

vuut . (27)
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For typical parameter values, we can instead insert approx-
imation (25) or (26) in Eq. (19) to obtain

Q�0 ’
ntfG

2p
¼

1

2p
ðgþ nÞtf ¼

tf

2pD
. (28)

As a concrete example, a mean duration of infection of 13
days yields D ¼ 0:0356 yr and a shape quotient at reso-
nance of Q�0 ’ 4:47.

Fig. 4a shows how the shape quotient depends on mean
infectious period (g�1) in the limit e! 0. Using Eq. (19),
Q0ð1=g;R0Þ is plotted with dash-dot lines for several fixed
values of R0; the slope of this log–log plot is �1

2
, as

expected from Eq. (19). Using Eq. (27), the resonant shape
quotient Q�0ðg

�1Þ is plotted with a heavy solid line; the slope
of this log–log plot is �1 over most of the range plotted, as
expected from Eq. (28), but bends slightly as the mean
infectious period becomes large enough that approxima-
tion (28) breaks down and Eq. (27) must be used (with
n ¼ 0:02 yr, the expression under the square root in Eq. (24)
becomes negative for Gt314:7, i.e., for g�1\58 days).

Fig. 4d shows phase portraits of three trajectories with
little or no birth seasonality: a transient trajectory of the
unforced model approaching the equilibrium (light solid
curve), a transient trajectory of the forced model with e ¼
0:0001 (heavy solid curve), and the limit cycle of the forced
model with e ¼ 0:0002 (dash-dot curve; the value of e is
changed for the limit cycle so it does not overlap the
transient). Note that the shape quotient of the unforced
and forced transients is different, but that the shape
quotient of the limit cycle is similar to its transient.

Figs. 4b and c show how the shape quotient Qe (Eq. (23))
depends on g�1 for e ¼ 0:01 and 0:1, respectively. The dash-
dot lines in these panels show Qeðg
�1;R0Þ for a wide range

of R0 and there is virtually no dependence on R0, even for
e ¼ 0:1. Note, moreover, that the slope of these lines is
almost identical to the slope of Q�0 in Fig. 4a. Thus, the
resonant shape quotient of the unforced model, given
analytically by Eq. (28), is an almost perfect predictor of
the shape quotient of limit cycles of the model with modest
birth seasonality (et0:1) whether resonant or not.
This last observation is less surprising if we consider that

on any annual limit cycle the condition 2p=o ¼ tf must be
satisfied, yet this is the only condition that we imposed on
the unforced model to derive Eq. (28). To identify
resonance (aI=eb1) in the forced model, we must impose
2p=o ¼ tf not only on the attractor but also on the
transient oscillations during the approach to the attractor.
While we now see that for small e the shape of the annual
attractor will always be the same, the absolute size of its
phase portrait will be much larger at resonance.

4.2. Resonance and hysteresis in the presence of substantial

birth seasonality e

In Section 2 we found that e� 0:1 in practice, so the limit
e! 0 may not reflect real situations. To estimate the
resonant reproductive ratio R�0 for e� 0:1, we must resort
to numerical computations.

4.2.1. Resonance via numerical analysis of attractors

If we can ignore dependence on initial conditions, then
identifying resonance is straightforward (numerically). For
given G (or g) we can plot aI=e as a function of R0 and
identify R�0 (the maximum point of the curve). An example
of such a plot is shown in Fig. 5a; this example is for
e ¼ 0:01 and Eq. (25) predicts R�0 accurately. We note that
if R0 ¼ R�0=2 then the induced oscillations in I have the
same amplitude as the imposed oscillations in birth
(aI=e ’ 1) and this appears to be true for any infectious
period (not just the particular choice of g�1 ¼ 3 days used
in Fig. 5).
We also show aS=e and Qe in Fig. 5a. The plot of aS=e as

a function of R0 confirms that at resonance the oscillations
in S are also greatly increased in amplitude, though to a
much lesser extent than the oscillations in I (at resonance,
aS=e ’ 1 whereas aI=eb1). The plot of Qe as a function of
R0 confirms that the shape of the phase portrait is almost
independent of R0, with only a slight elongation at
resonance.
Fig. 5b examines aS=e more closely, for two different

amplitudes of birth seasonality (e ¼ 0:01; 0:05). The solid
curve is the same as the thin solid curve in Fig. 5a; it
appears identical in shape to the aI=e curve in Fig. 5a
precisely because the shape quotient Qe is nearly constant.
A comparison of the solid and dash-dot curves in Fig. 5b
reveals that the effect of increasing birth seasonality from
e ¼ 0:01 to 0:05 is to bend the resonance curve to the right,
slightly increasing the resonant reproductive ratio R�0 (so it
is no longer accurately estimated by Eq. (25), which was
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derived in the limit e! 0). (Bending of the graph of aI ðR0Þ

to the right has been observed previously in the context of
seasonal forcing of the transmission rate b, Greenman et
al., 2004; Ireland et al., 2004.)

The effect of increasing the amplitude of birth season-
ality further to e ¼ 0:1 is shown in Fig. 5c. With e ¼ 0:1, the
resonant reproductive ratio is not uniquely defined. In fact,
the system appears to exhibit a sort of ‘‘memory’’ for
previous values ofR0 (note that both increases or decreases
in the effective R0 over time can occur in practice, for
example, as a result of changes in contact rates, Anderson
and May, 1991, or vaccination rates, Earn et al., 2000). If
we calculate the aS=e curve by reducing the reproductive
ratio from R0 ¼ 30 then we obtain the solid curve and
conclude R�0 ’ 20. Alternatively, if we plot aS=e by
increasing R0 from R0 ¼ 5 then we obtain the dotted
curve (also marked with circles) and conclude R�0 ’ 21.
This is an example of the general phenomenon of
hysteresis, i.e., dependence of dynamical behaviour on the
history of changes in exogenous variables (Macki et al.,
1993). Similar phenomena have been identified in other
epidemic models near R0 ¼ 1, where DFE and endemic
equilibrium can coexist (Dushoff et al., 1998; van den
Driessche and Watmough, 2000).
The hysteresis we observe in Fig. 5c is associated with

coexistence of two distinct stable annual cycles. To demon-
strate this, we show a bifurcation diagram in Fig. 5d
(calculated using CONTENT 1.5, Kuznetsov, 1995). Stable
and unstable cycles are indicated by solid and dotted
curves, respectively. In the interval 20tR0t21, there are
two distinct stable annual cycles (with different amplitudes)
and one unstable annual cycle. The stable and unstable
branches meet at two fold bifurcations. The two coexisting
annual attractors have different shape quotients. For
example, with g�1 ¼ 3 days, R0 ¼ 21, and e ¼ 0:1, there
are two stable annual cycles, one with Qe ¼ 23 and the
other with Qe ¼ 26:5. Their basins of attraction are shown
in Fig. 5e.

4.2.2. Resonance via numerical analysis of transients

While the approach adopted to produce Figs.5a–c
(analysis of attractors via direct numerical integrations of
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Eqs. (7)) does identify resonance (and yields an estimate of
R�0 for a given parameter set), it does not provide any
insight as to the origin of the resonance. To explain the
resonance, we need to examine the transient dynamics,
considering the period of damped oscillations onto the
attractor. This parallels our approach in the limit e! 0
using the unforced SIR model, but we are now without an
analytical expression for the frequency o of damped
oscillations. We need to impose the resonance condition
2p=o ¼ tf using a numerical method.

Fig. 6 shows the result of applying the method described in
the next section to calculate o as a function of R0 (for a few
values of g�1). Resonant reproductive ratios R�0 are values of
R0 for which the period 2p=o is exactly 1 yr. The figure
shows that for a given mean infectious period g�1, resonance
occurs over a range ofR0 rather than at a single value ofR0.
The heavy solid curves show the period 2p=o in the limit
e! 0, i.e., given by Eq. (12c). With e ¼ 0:05 or 0:1, the exact
(thin) curves lie above the approximate (thick) curve, over
the range of R0 corresponding to the bend in the peak of the
resonance curve in Figs. 5b and c. For e ¼ 0:05 or 0:1, the
curves show phase-locked intervals of R0 rather than a single
resonant value of R0. The curve for e ¼ 0:1 marked
‘‘hysteresis’’ corresponds to the hysteresis described in
relation to Fig. 5c. The inset panel of Fig. 6 shows how
the phase-locked range of reproductive ratios varies as a
function of amplitude of birth seasonality e for fixed g�1.
Parameter regions that yield hysteresis are shaded dark grey;
phase-locked regions are shaded light grey.
4.3. Numerical calculation of damping frequency o for

general e

Solutions of the SIR model (7) are pairs of functions
ðSðtÞ; IðtÞÞ, defined for all tX0. Rather than investigating
the continuous-time system of differential equations
directly, it is convenient to study instead the associated
map

P
SðtÞ

IðtÞ

 !
¼

Sðtþ 1Þ

Iðtþ 1Þ

 !
. (29)

Here, the Poincaré map P moves the system ahead by
exactly 1 yr. For a given initial condition ðS0; I0Þ we
consider the sequence

S0

I0

 !
;P

S0

I0

 !
;P2

S0

I0

 !
; . . . , (30)

which is equivalent to strobing the original system once a
year (so P is sometimes called the ‘‘stroboscopic map’’,
Crawford, 1991). Annual cycles of the original system
correspond to fixed points of P, biennial cycles to two-
point cycles, and so on. Stability of cycles of the original
system correspond to stability of the associated periodic
points of P. Attraction or repulsion of cycles of the
original system is determined by the system’s Floquet
multipliers, which are equal to the eigenvalues of DP, the
Jacobian matrix of P, at the associated periodic points
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(e.g., Guckenheimer and Holmes, 1983, p. 25; Kuznetsov,
1995, Theorem 1.6).

Consider a periodic point of the Poincaré map P, i.e., a
point ðS0; I0Þ that lies on a periodic solution ðS̄ðtÞ; ĪðtÞÞ of
the original system (7) (for convenience we assume S̄ð0Þ ¼
S0 and Īð0Þ ¼ I0). The entries of the Jacobian matrix
DPðS0; I0Þ can be obtained numerically as follows. Similar
to the variational equations (11) for the unforced SIR
model about the equilibrium ðŜ,ÎÞ, we have variational
equations associated with the seasonally forced SIR model
(7) along the periodic solution ðS̄ðtÞ; ĪðtÞÞ,

_DS

_DI

 !
¼
�nðR0GĪðtÞ þ 1Þ �nR0GS̄ðtÞ

nR0GĪðtÞ nGðR0S̄ðtÞ � 1Þ

 !
DS

DI

� �
.

(31)

(Note that in the limit e! 0, the periodic solution
ðS̄ðtÞ; ĪðtÞÞ reduces to the equilibrium ðŜ; ÎÞ and the
variational equations (31) reduce to Eq. (11) for the
unforced SIR model.) If we determine how an arbitrary
deviation ðDS;DIÞ from ðS0; I0Þ is mapped forward in time
by 1 yr then we will have calculated the entries of the
Jacobian matrix DPðS0; I0Þ (e.g., Kuznetsov, 1995, Theo-
rem 1.6). This can be done most easily in two steps, first
integrating (31) from ðDS;DIÞ ¼ ð1; 0Þ for 1 yr, and then
from ðDS;DIÞ ¼ ð0; 1Þ for 1 yr (thus obtaining the first row
and then the second row of DPðS0; I0Þ).
Writing the Jacobian J ¼ DPðS0; I0Þ, its eigenvalues are

L� ¼
1
2
½tr J � i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 det J � ðtr JÞ2

q
� if 4 det JXðtr JÞ2;

1
2
½tr J �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðtr JÞ2 � 4 det J

q
� if 4 det Joðtr JÞ2:

8><
>:

(32)

We calculated these eigenvalues by integrating the varia-
tional equations as described above, and verified that our
computations were correct by calculating the Floquet
multipliers independently using CONTENT 1.5 (Kuznet-
sov, 1995).
The frequency of damped (or growing) oscillations of

trajectories that begin near the periodic point ðS0; I0Þ is

o ¼
kpþ arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 det J � ðtr JÞ2

q
=tr J

� �
if 4 det JXðtr JÞ2;

kp if 4 det Joðtr JÞ2:

8><
>:

(33)

Here, the integer k provides the information that cannot be
provided by the arctan function, which has range
ð�p=2;p=2Þ, i.e., k is the number of half rotations around
the periodic point ðS0; I0Þ that the orbit completes between
the time points considered in the stroboscopic map (see
Fig. 7). We are not concerned with the sense of this
rotation, so we ignore the sign of o (equivalently, we can
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take the absolute value of the arctan in Eq. (33) and assume
kX0).

In the first case in Eq. (33) (where the eigenvalues of J

have a non-zero imaginary part) the period T ¼ 2p=o can
take any (positive) real value. In the second case, however,
the eigenvalues of J are purely real and o can take only
discrete values (even though the entries of J can be varied
continuously).

To identify resonance, we explore ranges of the
parameters (R0, g, e), computing o as above for each
parameter set, and noting parameter values that yield o ¼
2p (i.e., 4 det J ¼ ðtr JÞ2 and k ¼ 2). In practice, to
construct Fig. 6, we fixed g and e and computed o as we
varied R0, to identify resonant reproductive ratios R�0.

4.4. SIR dynamics with large birth seasonality amplitude e

Because birth seasonality in Canada and the United
States currently has amplitude et0:1, we have focused
our attention so far on small and modest levels of
seasonal forcing (et0:1). In order to develop a complete
understanding of the possible role of birth seasonality,
we need to explore larger e and establish whether greater
birth seasonality can induce dynamics that are more
complex than the annual limit cycles investigated in
previous sections. In this section, we use CONTENT 1.5
(Kuznetsov, 1995) to examine the qualitative dynamics of
the SIR model with large seasonal forcing of the birth rate.

Fig. 8 summarizes the dynamics of the model for fixed
(large) values of the seasonal amplitude e. Fig. 8a shows a
bifurcation diagram with control parameter R0, with e ¼
0:5 and mean infectious period g�1 ¼ 5 days. The curves
show the proportion of individuals infectious on 1 January,
so single points indicate an annual cycle, two points
indicate a biennial cycle, and so on. Stable and unstable
branches are indicated by solid and dotted curves,
respectively. Several bifurcations are evident and there is
a range of R0 over which there are coexisting stable annual
and biennial cycles. The basin of attraction of the biennial
attractor at R0 ¼ 12 is shown in Fig. 8b.
Figs. 8c and d show two-parameter bifurcation diagrams

for e ¼ 0:3 and 0:6, respectively. In each of these diagrams,
three distinct parameter regions are identified: (I) a unique
(annual) attractor exists, (II) a unique (biennial) attractor
exists, and (III) an annual and biennial attractor coexist.
Fig. 9 examines how the dynamics of the birth forced

SIR model vary over the full range of forcing amplitudes,
0pep1, and a wide range of reproductive ratios R0, with
the mean infectious period fixed at g�1 ¼ 5 days. Fig. 9a
shows a two-parameter bifurcation diagram, with regions
labelled using the same convention as just described for
Figs. 8c and d. Figs. 9b, c, and d show representative one-
parameter bifurcation diagrams (control parameter e),
displaying the different characters of period-doubling
bifurcations that occur as we cut horizontally through
Fig. 9a at R0 ¼ 7:5, 8, and 10, respectively. Fig. 9e shows
that horizontal cuts through the type of two-parameter
bifurcation diagram shown in Fig. 9a will produce either
period-doubling or hysteresis (but not both) depending on
the fixed value of g�1.
Finally, Fig. 10 shows how the dynamics of the model

vary as a function of seasonal amplitude e and mean
infectious period g�1, for fixed R0. The main panels show
two-parameter bifurcation diagrams for R0 ¼ 10, 20, and
30, respectively. In panels a and b, entering the triangular
region bounded by the curve marked PDU (for ‘‘period-
doubling upper’’) corresponds to changing from a stable
annual to stable biennial cycle. This PDU curve is shown
for several values of R0 on the small panel inset to panel a
(this period-doubling bifurcation does not occur for
R0\28).
A second period-doubling bifurcation curve marked

PDL (for ‘‘period-doubling lower’’) is shown in each of the
three main panels of Fig. 10. This is also a bifurcation from
a stable annual to stable biennial cycle. In addition, there
are two curves corresponding to fold bifurcations, where
an annual cycle changes stability (these curves are marked
LPU and LPL for ‘‘limit point upper’’ and ‘‘limit point
lower’’). In Fig. 10c, the dotted horizontal line at the very
short infectious period of 0.8 day corresponds to the one-
parameter bifurcation diagram inset in the upper right of
this panel. In this small inset panel, three bifurcations are
marked (two folds marked LP1 and LP2 and a period-
doubling bifurcation marked PD) and the corresponding
points along the dotted line in the main panel are also
marked. Note that in this (unrealistic) extreme with R0 ¼

30 and g�1 ¼ 0:8 day, there is a narrow range of seasonal
amplitude, 0:729oeo0:774, over which there is coexistence
of a stable annual cycle, a stable biennial cycle, and two
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unstable annual cycles; as e is increased further, there is a
period-doubling cascade to chaos (not shown).

4.5. Bifurcations and phase-locked transients

The central panel b of Fig. 10 contains some dash-dotted
curves that help to explain the circumstances under which
the observed bifurcations can occur.

Throughout the triangular parameter region at the top
of Fig. 10b (the region bounded by dash-dotted curves and
marked ‘‘o ¼ p’’) the transient dynamics are locked onto a
period of exactly T ¼ 2p=o ¼ 2 yr. It is easy to see that
period-doubling bifurcations can occur only within such a
phase-locked region, as follows.

Period-doubling bifurcations occur when a single (multi-
plicity 1) eigenvalue of J passes out of the unit circle
through �1, destabilizing a cyclical solution of the SIR
model (7) (a periodic point of P). When this occurs, the
other eigenvalue of J must have magnitude less than 1 and
must lie on the real line (because complex eigenvalues come
in conjugate pairs). Since the eigenvalues are continuous
functions of the matrix entries (which are continuous
functions of the model parameters) the eigenvalues must be
real just before the bifurcation. Thus, period-doubling
bifurcations can occur only in the interior of regions of
parameter space where the eigenvalues of J are real. But in
such regions, the angular frequency o can take only a
discrete set of values (Eq, (33)), hence period-doublings
can occur only in parameter regions where transients are
phase-locked.
The same argument applies to fold or ‘‘saddle-node’’

bifurcations (marked LP for ‘‘limit point’’ in our diagrams)
where there is a change in the stability of a periodic point
of P (without a change in period). Folds occur where a
single eigenvalue of J passes out of the unit circle through 1,
so—like period-doubling bifurcations—they can occur
only in the interior of regions of parameter space where
the eigenvalues of J are real, and hence where transients are
phase-locked.
Any given periodic solution is characterized not only by

the integer period that is observable from the stroboscopic
map P, but by the number of half rotations k that it
completes between successive strobes (Eq. (33)). For a
given set of parameters, multiple periodic solutions can
occur, with different basins of attraction. Thus, a given
parameter set can correspond to several periodic solutions
with different k, associated with different initial conditions.
In general, associated with each positive integer k there is a
region of parameter space within which the eigenvalues of J

are real and period-doubling (k odd) or fold (k even)
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bifurcations can occur. These parameter regions associated
with different k can overlap, as the numerical example in
Fig. 10b shows (the phase-locked regions for o ¼ p, 2p, 3p,
and 4p are shown). In the limit of no seasonal forcing
(e! 0), each such region connects to the mean infectious
period (g�1) that yields an angular frequency of kp in the
unforced model.

The arguments in this section have nothing to do with
birth rate forcing per se or the SIR model specifically. They
apply generally regardless of the nature of the seasonal
forcing and the details of the model. Consequently, we can
make a more general inference.

Theorem 1. In a periodically forced continuous-time smooth

dynamical system, period-doubling and fold bifurcations

occur only in regions of parameter space where transients

are phase-locked onto periods that exactly divide the forcing

period.

5. The SEIR model with seasonal oscillation in birth rate

When we use the SIR model (7), we are implicitly making
the approximation that the latent period (the time between
initial infection and becoming infectious) is zero. For
childhood diseases, the latent period is often comparable to
the infectious period (Anderson and May, 1991), so assuming
a zero latent period might be a poor approximation.

Non-zero latency is usually introduced by adding an
‘‘exposed’’ (E) compartment in which individuals are
infected but not yet infectious. If the rate at which exposed
individuals become infectious is s (so the mean latent
period is s�1) then the expanded model can be written as

_S ¼ n� ðbI þ nÞS, ð34aÞ

_E ¼ bIS � ðsþ nÞE, ð34bÞ

_I ¼ sE � ðgþ nÞI , ð34cÞ

_R ¼ gI � nR, ð34dÞ

where we assume from the outset that state variables refer
to proportions, so S þ E þ I þ R ¼ 1 (consequently, one
of the differential equations is redundant and usually Eq.
(34d) is ignored).
The basic reproductive ratio for the SEIR model is

R0 ¼
bs

ðgþ nÞðsþ nÞ
. (35)

For any R0 there is a globally asymptotically stable
equilibrium (Li and Muldowney, 1995; Korobeinikov and
Maini, 2004). If R0p1 then the DFE is stable, whereas if
R041 then there is a stable endemic equilibrium ðŜ; Ê; ÎÞ:

Ŝ ¼
1

R0
, ð36aÞ

Ê ¼
n

sþ n
ð1� ŜÞ ¼

n
sþ n

1�
1

R0

� �
, ð36bÞ

Î ¼
s

gþ n
Ê ¼

sn
ðgþ nÞðsþ nÞ

1�
1

R0

� �
. ð36cÞ
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annual cycle are phase-locked are identified by dash-dotted curves; as discussed in Section 4.5, period-doubling and fold bifurcations can occur only within

such phase-locked regions. In panel (c), with R0 ¼ 30 ð\28Þ, there is no upper period-doubling bifurcation (PDU). The inset to panel (c) shows the one-
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occur, at e ¼ 0:803 (LP1) and e ¼ 0:433 (LP2), and a period-doubling (from annual to biennial cycle) occurs at e ¼ 0:729 (PD); further increase of e leads
to a period-doubling cascade to chaos.
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The eigenvalues of the Jacobian matrix associated with the
linearization of Eqs. (34) about the endemic equilibrium
ðŜ; Ê; ÎÞ can be obtained exactly but are unwieldy. Useful,
simple approximate expressions for the eigenvalues can be
obtained by treating the birth rate n as a small parameter
(which is always justified for childhood diseases, for which
n5g�s). Standard methods yield (Schwartz and Smith,
1983; Bauch and Earn, 2003)

l1 ¼ � ðsþ gÞ þOðnÞ, ð37aÞ

lþ ¼ i ~o
ffiffiffi
n
p
� ~rnþOðn3=2Þ, ð37bÞ

l� ¼ � i ~o
ffiffiffi
n
p
� ~rnþOðn3=2Þ, ð37cÞ

where

~r ¼
1

2
R0 �

sgðR0 � 1Þ

ðsþ gÞ2

� �
; ~o ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R0 � 1

1=sþ 1=g

s
. (38)

In the limit of zero latent period (s!1), the decay
rate r ¼ ~rn and the angular frequency o ¼ ~o

ffiffiffi
n
p

agree with
Eqs. (12b) and (12c) for the corresponding quantities
associated with the SIR model (7). Note that we also
obtain the equivalent of Eq. (14) if we replace G (defined in
Eq. (9)) with

G0 ¼
n

sþ n
þ

n
gþ n

� ��1
. (39)

If births balance deaths (m ¼ n) then G is the mean lifetime
expressed in units of the mean time an individual is
infectious, whereas G0 is the mean lifetime expressed in
units of the mean time an individual is infected (latent or
infectious).
In addition to the two complex conjugate eigenvalues l�,

the inclusion of an exposed class yields the (real) eigenvalue
l1. Since the leading term of l1 does not contain a power of
n, the magnitude of l1 is much larger than the other
eigenvalues. Consequently, in the neighbourhood of the
endemic equilibrium, there is rapid collapse onto a centre
manifold where the dynamics are governed by l�, as for



ARTICLE IN PRESS
D. He, D.J.D. Earn / Theoretical Population Biology 72 (2007) 274–291 287
the SIR model. The expression for the angular frequency o
for the SEIR model (38) differs from the corresponding
expression for the SIR model (12c) only in that the sum of
the latent and infectious periods (1=sþ 1=g) replaces the
infectious period alone (1=g) (this is noted in Anderson and
May, 1991, p. 668). The non-zero latent period also has the
effect of reducing the decay rate r, so transients in the
neighbourhood of the equilibrium will decay more slowly.
For childhood diseases, the latent and infectious periods
are of the same order of magnitude, so sg=ðsþ gÞ2�g2=
ð2gÞ2 ¼ 1

4
; hence the reduction in r in Eq. (38) relative to

Eq. (12b) is of order 25%. Thus, near the endemic
equilibrium, the dynamics of the SEIR model will be
nearly the same as the SIR model provided that we use an
infectious period in the SIR that corresponds to the sum of
the true latent and infectious periods of the disease. This
remark motivates using a mean infectious period of 13 days
when using the SIR equations (7) to model measles (for
which s�1 ’ 5 days and g�1 ’ 8 days).

Taking advantage of the fact that n is small relative to g
and s (hence using expression (38) for ~o) we can easily
approximate the resonant reproductive ratio R�0 by setting
~o
ffiffiffi
n
p
¼ 2p=tf which yields

R�0 ’ 1þ
4p2

t2f n
1

s
þ

1

g

� �
’ 1þ

4p2

n2t2fG
0
. (40)
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compared with Fig. 5a for the SIR model (7), while panels (b) and (c) should

marked for each curve. Panel (c), which shows the same information as panel (b

and SEIR models, provided we associate s�1 þ g�1 in the SEIR model with g
Eq. (40) agrees with Eq. (25) in the limit s!1 (bearing in
mind that we obtained expression (40) by neglecting n
relative to g and s). This comparison of the expressions for
R�0 emphasizes that if we want to study resonance of
childhood diseases using the SIR model, then we must take
the mean infectious period in the SIR model to be the sum
of the true mean latent and infectious periods. In general,
note that larger latent or infectious periods correspond to
larger resonant reproductive ratios.
Fig. 11 shows resonance in the SEIR model with birth

seasonality e ¼ 0:04. Fig. 11a (where g�1 ¼ 5 days and
s�1 ¼ 8 days) is the SEIR equivalent of Fig. 5a (where
g�1 ¼ 13 days) for the SIR model. The difference between
Figs. 11a and 5a is small: at the resonant reproductive ratio
R�0, the amplitude aS in the SEIR case is larger than one,
whereas aSðR

�
0Þ ’ 1 in the SIR case (Fig. 5a). We note that

in the SEIR case, ifR0 ¼ R�0=2 then the amplitude aI is still
close to one, as for the SIR model.
Fig. 11b shows (for the SEIR model) how the shape

quotient Qe depends on the mean infectious period g�1 and
should be compared with Figs. 4b and c for the SIR model.
The different curves in Fig. 11b correspond to different
mean latent periods (s�1 ¼ 0, 1, 5, and 8 days), with a zero
latent period corresponding to the SIR model. Fig. 11c
shows the same points plotted as a function of s�1 þ g�1

rather than g�1, making clear (again) that there is really no
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be compared with Figs. 4b and c. In panel (b), the latent period (s�1) is
), makes clear that no difference is evident between the results for the SIR
�1 in the SIR model.
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discernable difference between the behaviour of the SIR
and SEIR models if we associate the mean infectious period
in the SIR model with the mean infected period in the SEIR
model.

6. Discussion

We have investigated the effects of seasonal oscillations
in birth rate on infectious disease transmission dynamics.
In Section 2 we found that in North America the amplitude
of oscillations is on the order of 10% of the mean birth rate
(e� 0:1). In Section 4, analysis of the SIR epidemic model
in the presence of birth seasonality revealed a number of
potentially significant dynamical effects, depending on the
characteristics of the disease in question. In Section 5, we
found that predictions based on the (more realistic) SEIR
model (34) will be essentially the same as those based on
the SIR model (7) if the parameter g�1 in the SIR model is
interpreted as the sum of the mean latent and infectious
periods.

Estimates of the mean latent period s�1, mean infectious
period g�1, and basic reproductive ratio R0 are given for a
variety of childhood infectious diseases in Table 1. In
addition, the table shows the resonant reproductive ratio
R�0 (Eq. (40)) associated with the estimated latent and
infectious periods. In all cases, the observed reproductive
ratio is far from R�0, so in situations where the amplitude of
seasonality is small (i.e., the limit in which the expression
for R�0 was derived) we do not expect significant
amplification of oscillations in incidence.

For places where the amplitude of birth seasonality is
similar to what is currently observed in North America
(e� 0:1), Fig. 3 shows that all of the diseases listed in
Table 1 are still far from the range of R0 that would yield
resonance and hysteresis (resulting from fold bifurcations).
From another perspective, the fact that substantial
seasonal amplitudes tend to bend the resonance curve to
the right (Fig. 5b) means that the resonant reproductive
ratio calculated from the unforced model will always tend
to underestimate R�0.
Table 1

Parameter estimates for several childhood infectious diseases, taken from

Table 3.1 of Anderson and May (1991)

Disease s�1 (days) g�1 (days) R0 R�0

Measles 8 5 16–18 72

Whooping cough 8 14 16–18 123

Chickenpox 14 7 10–12 117

Rubella 7–14 11–14 6–7 100–160

Mumps 13 6 11–14 106

Polio 1–3 14–20 6–7 83–129

Scarlet fever 1–2 14–21 7–8 83–130

Mean latent period (s�1), mean infectious period (g�1), and basic

reproductive ratio (R0). R
�
0 is the resonant reproductive ratio given by

Eq. (40) based on the mean latent and infectious periods estimated for

each disease.
When calculating the resonant reproductive ratio R�0
numerically (e.g., Figs. 5a and b), we discovered a scaling
relationship that is shown in Fig. 12 (based on the SEIR
model). This figure shows how the amplitudes of seasonal
oscillations in susceptibles and infectives (relative to the
amplitude of birth seasonality e) change as a function of
the sum of the mean latent and infectious periods of the
disease (s�1 þ g�1). The plotted points (which correspond
to mean latent and infectious periods of a variety of
childhood infections) represent the induced oscillations in
susceptibles (aS=e, panel a) and infectives (aI=e, panel b)
when the reproductive ratio is set to exactly half the
resonant value (R0 ¼ R�0=2, which is still larger than any
observed R0 for these diseases). For susceptibles, a linear
scaling is evident, whereas for infectives the amplitude of
oscillations in I are the same as those in births (aI=e ¼ 1)
regardless of the latent and infectious periods. Figs. 12c
and d show that the value R0 ¼ R�0=2 used for Figs. 12a
and b is special in that aI=e ¼ 1 holds almost exactly.
For other values of R0, the relationship between aI=e and
s�1 þ g�1 is linear (provided R0t0:7R�0), but the slope
and intercept of the best fit line varies (the slope is always
small, so aI=e never varies substantially as a function of
s�1 þ g�1).
Further analysis revealed that birth seasonality can

induce a variety of fold and period-doubling bifurcations,
but primarily at very short infectious periods or very large
amplitudes of birth seasonality (Fig. 10). Nevertheless,
analysis of transient dynamics revealed that solutions
can be phase-locked onto cycles with periods that differ
from the attractors to which they converge. If these
transients are sustained by noise (Bartlett, 1960; Bauch
and Earn, 2003) then significant dynamical effects of
birth rate seasonality on incidence patterns might be
observable for some diseases, even for small amplitude
oscillations in birth rate. In particular, for the case of
measles (taking g�1 ¼ 13 days in the SIR model), Fig. 10b
suggests that small amplitude birth seasonality could
induce stochastically sustained cycles that are approxi-
mately biennial.
The effects of birth seasonality on infectious disease

dynamics have been investigated previously for fatal
diseases of wildlife with relatively short lifespans, such as
haemorrhagic fever in rabbits (Ireland et al., 2004).
Another study considered the effects of strictly seasonal
(pulsed) births on animal diseases, which is relevant to
diseases such as tuberculosis in the possum (Roberts and
Kao, 1998). In these contexts, the reproductive rate of the
host population is density dependent and the average
reproductive rate of hosts is influenced by seasonal forcing
of the birth rate. Effects on host population dynamics
resulting from a combination of seasonality of host
reproduction and macroparasitic infections (e.g., nema-
todes) have also been explored (White et al., 1996). In the
context of human diseases, which has been our focus, host
reproduction is not density dependent and the average
host reproductive rate is not affected by birth rate
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a ¼ R0=R
�
0. Near a ¼ 1

2
the slope is almost zero and the intercept is almost one, indicating that if R0 ¼ R�0=2 then the amplitude of oscillation in disease

incidence is equal to the amplitude of oscillation in birth seasonality, for any latent and infectious periods. The horizontal axis range ends at a ¼ 0:7
because for a\0:7 the relationships between oscillation amplitudes and time infected are no longer approximately linear. We have verified that similar

results are obtained for other seasonal amplitudes ep0:1. For realistic R0 and e41, phase-locking causes R�0 to become a range rather than a single value

(see Figs. 3 and 5), so a is not well defined and the picture is more complicated.
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seasonality (because there is a long delay between birth and
reproduction) nor by the type of infection we have
considered (microparasites that cause relatively short
respiratory infections).

Previous studies of the effects of seasonal forcing on
childhood infectious disease dynamics have focused on
seasonal variation in contact rates, which is believed to
arise from aggregation of children during school terms
(London and Yorke, 1973; Fine and Clarkson, 1982).
Contact rate seasonality is traditionally modelled by
making the transmission rate (b) vary seasonally in the
SIR (7) or SEIR (34) models (London and Yorke, 1973;
Schenzle, 1984; Olsen and Schaffer, 1990; Earn et al., 2000;
Bauch and Earn, 2003). In this paper, we have examined
the effects of seasonal forcing of the birth rate (n). A given
amplitude of forcing applied to b tends to generate more
exotic dynamics than applying the same level of forcing to
n, probably because b occurs in a nonlinear term (bSI).

A natural extension of our work in this paper would be
to consider the effects of forcing both b and n. Exploratory
work that we have conducted suggests that forcing both
parameters is most likely to generate important effects
(such as hysteresis or coexistence of annual and biennial
cycles) if there is a substantial phase difference between the
two forcing functions. The true phase difference between
birth rate seasonality and contact rate seasonality is
different in different parts of the world, so the combined
effects of these two seasonal influences may depend
strongly on the region of interest. It might, therefore, be
important to generalize methods that can reconstruct
exogenous forcing functions from observed incidence data
(Fine and Clarkson, 1982; Finkenstädt and Grenfell, 2000)
so that both birth seasonality and contact seasonality can
be estimated. Our exploratory work indicates that even
with large phase differences between the two seasonal
forcing functions, inclusion of birth seasonality will not
have substantial effects on asymptotic dynamics for
parameter ranges that correspond to known infectious
diseases (consistent with our conclusions from the work
presented in this paper).



ARTICLE IN PRESS
D. He, D.J.D. Earn / Theoretical Population Biology 72 (2007) 274–291290
A key conclusion of our analysis in this paper is that
while strict resonance induced by seasonally varying birth
rates is unlikely for diseases with realistic transmissibility,
phase-locked transient dynamics can be induced by birth
seasonality even for very weakly transmissible diseases. An
important question for further work will be whether
interaction between the two types of seasonal forcing
(birth rate and transmission rate) substantially affects
phase-locking regions, leading to greater or lesser like-
lihood of phase-locked transient patterns being sustained
by demographic stochasticity.
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Appendix

If we expand the basic SIR model to include disease-
induced mortality at rate m, our basic system of equations
becomes

_S ¼ nN � bSI=N � mS, ð41aÞ

_I ¼ bSI=N � gI � mI �mI , ð41bÞ

_R ¼ gI � mR, ð41cÞ

_N ¼ ðn� mÞN �mI . ð41dÞ

If m ¼ 0 then we have Eqs. (6). Note that the total host
population size, N ¼ S þ I þ R, is not constant unless n ¼
m and m ¼ 0.

The rates of change of the proportions of the population
in each compartment (S=N, I=N, R=N) are obtained by
noting that

d

dt

X

N

� �
¼

_X

N
�

X

N2
_N, (42)

where X is S, I, or R. Putting this together with Eqs. (41)
yields

d

dt

S

N

� �
¼

1

N
ðnN � bSI=N � nSÞ þ

S

N2
mI , ð43aÞ

d

dt

I

N

� �
¼

1

N
ðbSI=N � gI � nI �mIÞ þ

I

N2
mI , ð43bÞ

d

dt

R

N

� �
¼

1

N
ðgI � nRÞ þ

R

N2
mI , ð43cÞ

_N ¼ ðn� mÞN �mI . ð43dÞ

Rescaling variables, i.e., replacing X=N with X everywhere
for X ¼ S, I, or R, we obtain

_S ¼ n� bSI � nS þmSI , ð44aÞ

_I ¼ bSI � gI � nI �mð1� IÞI , ð44bÞ

_R ¼ gI � nRþmRI , ð44cÞ

_N ¼ ðn� m�mIÞN. ð44dÞ
If m ¼ 0, Eqs. (44) are the same as Eqs. (7). If m40 then
we note that the first two equations (which completely
specify the dynamics) can be written as

_S ¼ n� ½b�m�SI � nS, ð45aÞ

_I ¼ bSI � ½gþmð1� IÞ�I � nI . ð45bÞ

Now, if P is the probability that an infected individual dies
from the disease, then m must be of order gP (assuming the
time to disease-induced death or recovery is similar). For
the diseases of concern in this paper, P51, so we must
have bbm and gbm4mð1� IÞ. Consequently, the factors
in square brackets in Eqs. (45) must be negligibly different
from b and g, respectively, and the full equations must be
negligibly different from Eqs. (7). It is therefore unlikely
that disease-induced mortality could have an observable
influence on the dynamics explored in this paper.
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