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A century of transitions in New York City’s
measles dynamics

Karsten Hempel and David J. D. Earn

Department of Mathematics and Statistics, McMaster University, 1280 Main Street West, Hamilton,
Ontario, Canada L8S 4K1

Infectious diseases spreading in a human population occasionally exhibit

sudden transitions in their qualitative dynamics. Previous work has successfully

predicted such transitions in New York City’s historical measles incidence using

the seasonally forced susceptible–infectious–recovered (SIR) model. This work

relied on a dataset spanning 45 years (1928–1973), which we have extended to

93 years (1891–1984). We identify additional dynamical transitions in the longer

dataset and successfully explain them by analysing attractors and transients of

the same mechanistic epidemiological model.
1. Introduction
Mechanistic mathematical models are being used increasingly in the study of

infectious diseases at the population level and are considered to be powerful

tools for predicting epidemiological dynamics [1–3]. Successful modelling of

observed epidemic patterns requires access to high-quality data, including

disease incidence [4,5] (or disease-induced mortality [6,7]), demography

(especially birth rates [8,9]) and changes in contact patterns (e.g. resulting

from school vacations [10–12]).

In 1973, London & Yorke [11,12] published monthly measles incidence rates

for New York City (NYC) spanning 1928–1973. These data have been extensively

studied [4,5,11–15]. We extend the dataset to produce a time series of reported

measles cases and concurrent demographic data (total population and total

births), which spans the 93 years 1891–1984 (and for much of the incidence

time series we increase the temporal resolution from monthly to weekly). Our pro-

cess of data acquisition, compilation and quality-checking is detailed in §2 and all

the data are available in the electronic supplementary material for this paper.1

Measles exhibits recurrent epidemics, the frequency and amplitude of which

change over long timescales. Much research over the last 40 years has attempted

to reveal the biological and dynamical processes that give rise to these changing

epidemic patterns, especially the transitions evident in NYC measles dynamics

[5,11,14–18]. In this paper, by more than doubling the length of the NYC measles

time series, we substantially enhance the opportunity to test hypotheses concerning

the mechanisms that drive childhood disease transmission patterns.

We model measles dynamics in NYC using the susceptible–infectious–

recovered (SIR) model, which is applicable to diseases for which acquired

immunity is permanent [1,2,19]. There has been considerable debate in recent

years concerning the most appropriate formulation of the SIR model for child-

hood infections such as measles [20–26]. We follow Krylova & Earn [6,27], who

showed that for measles, the simplest sinusoidally forced SIR model—when

suitably parametrized—makes identical predictions to more complicated ver-

sions of the model that include realistically distributed latent and infectious

periods (details in §3.1).
2. Data compilation
The monthly measles data published by London & Yorke [11,12] span the years

1928–1973. We compiled data of finer temporal resolution (weekly), and extended

the time series back to 1891, using a variety of documents stored at the NYC
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Figure 1. Summary of data available (light grey) and used (dark grey). W, M and Y indicate weekly, monthly and yearly sources, respectively. See electronic
supplementary material, §S1 for a detailed description of sources and data compilation.
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Academy of Medicine Library.2 We also extended the monthly

measles data forward to 1984 using vital statistics records

available on the NYC Health Department website.

Figure 1 summarizes the data sources, including those from

which we extracted birth rates. Below we briefly explain some

of the issues involved in preparing the full time series for the

analyses described in §3. Much greater detail about the data

is provided in the electronic supplementary material, §S1.

2.1. Adjustments and normalization
2.1.1. Births
Our data sources typically report vital statistics in NYC as a

whole, but the boundary of NYC changed in 1898. Until

the end of 1897, NYC included only the island of Manhattan.

In January 1898, the city limits were redefined to include

The Bronx, Brooklyn, Queens and Richmond. The Vital

Statistics Reports are derived from census data and include

yearly numbers of total population, births, deaths and

infant mortality. We assume these data are reliable, but

they extend back only to 1898 [28]. The weekly Health

Bulletins include total population estimates and weekly

birth counts for Manhattan only, and extend back to 1891.

In order to merge these two sets, we aggregate the weekly

birth counts yearly, and rescale the birth numbers such that

the per capita birth rate from 1891 to 1898 meets a linear extra-

polation of the per capita birth rate from 1898 to 1900. From

1900 to 1935, the Vital Statistics Reports present births and

total population numbers only at 5-year intervals, represent-

ing the average of yearly values in each interval. For these

years, constant values are used over each 5-year interval.

2.1.2. Infant mortality
The Health Bulletins do not contain infant mortality data,

and we therefore extrapolate per capita infant mortality rates

for 1891–1898 from 1898 to 1905 data. Infant mortality was

very substantial in the early part of the time series. In 1898,

24% of all reported deaths were infants (in sharp contrast to

2% in 1984).
2.1.3. Measles cases
The NYC Health Department Weekly Bulletins normally

reported the city-wide total number of measles cases, but

in 1915 measles cases were reported only for three hospitals

within the city. We rescaled the aggregated case reports for

these three hospitals so that their yearly total matched the

reported yearly sum in the 1915 Vital Statistics Report

(see the electronic supplementary material, §S1.14 for

details).

For most of the period for which we have measles data

(1891–1984), we have weekly reports, but we have only

monthly incidence for 1932–1958 and 1976–1984. In order

to work with a weekly time series for the full length of the

dataset, we created weekly time series from the monthly

data as follows:

— generate a series of weekly dates that occur on the same

day of the week as the dates in the weekly time series

segment preceding the monthly data;

— for each new weekly time point, set its measles incidence

equal to the number of cases reported for the month

within which it falls, divided by the number of weekly

points that fall within that month; and

— at this stage, the artificially weekly time series contains

four-to-five week blocks of constant incidence. To

remove this spurious step-like structure, we smooth the

artificial portion of the weekly time series with a 5-point

moving average.

Figure 2 shows the resulting weekly measles times series,

together with annual births and total population.

2.2. Consistency checks
There is some temporal overlap among the various source

documents (figure 1), which facilitates some cross-checking.

From 1911 to 1932, we compared the yearly aggregated measles

case reports from the Vital Statistics Reports with yearly sums

of the data we acquired from the weekly Health Bulletins.

From 1928 to 1932, we compared monthly aggregated case
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data from London & Yorke [11] with monthly sums of the weekly

reports from the Health Bulletins. Finally, from 1958 to 1973 we

compared monthly aggregated case data from London & Yorke

[11] with monthly sums of the weekly reports from the Health

Department records. In all cases, there is excellent agreement

between previously published data and our newly digitized

data (see the electronic supplementary material, §S1.8).
3. Analysis
In this section, we describe the tools that we use to examine

measles dynamics in NYC. We begin with the SIR model

(§3.1), and explain how we use the effective basic reproduction
number R0,eff (§3.2.1) and the estimated amplitude of seasonal
forcing a (§3.2.2) to predict the periodicity of measles incidence

in NYC (§3.3). We estimate R0,eff and a as functions of time

to generate an SIR-predicted frequency structure for measles

in NYC throughout the time period 1891–1984. In §4,

we compare the observed frequency structure of the incidence

time series (using a continuous wavelet transform) with the

SIR-predicted frequency structure.

3.1. The susceptible – infectious – recovered model
The deterministic SIR model [1,19] can be written [27]

dS
dt
¼ nN0 � bSI � mS , (3:1a)

dI
dt
¼ bSI � gI � mI (3:1b)

and
dR
dt
¼ gI � mR , (3:1c)
where S, I and R denote the numbers of susceptible, infectious

and recovered (immune) individuals, respectively. Equations

(3.1a,b) do not depend on the state variable R, so the full

dynamics of the system can be described in two dimensions

and the third equation can be ignored. The parameters are

the rates of transmission (b) and recovery (g), as well as the

per capita rates of birth (n) and death (m). The mean infectious

period is Tinf¼ 1/g. As discussed below, N0 refers to the popu-

lation size at a particular ‘anchor time’ t0 (as opposed to the

current total populations size N ¼ S þ I þ R). We will interpret

the ‘birth rate’ n more generally as the per capita rate of suscep-

tible recruitment (relative to N0) [2,4,5,13,27]. Herem represents

the per capita rate of death from natural causes (disease-induced

mortality is assumed to be negligible).

R0. The basic reproduction number R0 is the average number

of secondary cases caused by a primary case in a wholly

susceptible population [1,29]. If births balance deaths, then

for the SIR model R0 ¼ bN=(gþ m) [1]. In our situation (3.1),

typically n= m and [27]

R0 ¼
nN0

m

b

gþ m
: (3:2)

We assume that the susceptible recruitment rate n changes

slowly enough that R0 can be defined at a given time by treat-

ing n as a constant. Secular changes in n can induce dynamical

transitions [2,4,5,13,27], as we discuss in §3.3.
3.1.1. Seasonality
To account for seasonally varying transmission arising from

aggregation of children in schools [2,5,11,15], we assume



Table 1. Demographic and disease parameter estimates for NYC.

parameter meaning estimate source

fixed parameters

g21 mean generation time 13 days [1,27]

m natural death rate 0.02 yr – 1 [5]

N0 population in 1960 7 782 000 [28]

n0 births in 1960 /N0 0.0214 [28]

R0 basic reproduction number in 1960 17 [1,4,5]

parameter meaning range source

time-varying parameters

B births per year 98 507 – 171 174 [28]

Dinfant infant deaths per year 1540 – 16 609 [28]

p proportion vaccinated 0 – 0.66 [33]

n susceptible recruitment per year 0.00473 – 0.0214 equation (3.4); §3.2.1

R0,eff effective R0 3.86 – 17.5 equation (3.5); §3.2.1

a amplitude of seasonal forcing 0.11 – 0.21 equation (3.3); §3.2.2
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the transmission rate is seasonally forced,

b(t) ¼ b0(1þ a cos (2pt)) , (3:3)

where b0 is the mean transmission rate, a is the amplitude of

forcing and time t is measured in years. We use the simple

sinusoidal forcing function (3.3) rather than more realistic

term-time forcing [5,17] because the two yield virtually iden-

tical dynamics (for different a values) [5,27]. Introducing

time-dependence into the transmission rate generally affects

the basic reproduction number R0 [30,31]; however, for the

SIR model (3.1), inserting the mean transmission rate b0 in

place of b in equation (3.2) is correct [32].
3.1.2. Susceptible – infectious – recovered versus susceptible –
exposed – infectious – recovered

Most previous work on measles dynamics has been based

on the SEIR model (e.g. [4,5,14,15]), which includes an

additional class (E) of exposed individuals who are infected

but not yet infectious. Because the mean latent period for

measles (Tlat ≃ 8 days, [1]) is long relative to the mean infec-

tious period (Tinf ≃ 5 days, [1]), it is natural to assume that

the SEIR model will represent measles dynamics better than

the simpler SIR model, which includes no latent period. How-

ever, Krylova & Earn [27] showed that the SIR model displays

virtually identical dynamics to the SEIR if the length of the

mean generation interval (≃13 days) is used for the mean infec-

tious period in the SIR model. This dynamical correspondence

holds also for versions of the SIR and SEIR model with realis-

tically distributed stage durations, rather than the exponential

distributions implied by equation (3.1) [27]. We therefore use

the SIR model (3.1) with Tinf ¼ 13 days.
3.2. Parameter estimates
Table 1 summarizes our estimated parameter values. There are

two categories of parameters, those that are assumed to be

fixed and those that vary in time. Our analysis in §3.3 involves

predicting the dynamical effects of changes in R0,eff (which

depends on changes in susceptible recruitment n through
births B and proportion vaccinated p, §3.2.1) and changes in

the amplitude of seasonal forcing a.

Following previous work [4,5,27], we estimateR0 in 1960 by

assuming the standard estimate for England and Wales in 1960

[1, p. 70] also applies to NYC. Susceptible recruitment in 1960,

n0, arises entirely from births because the measles vaccine was

not yet available and immigration of susceptibles into NYC

was negligible (most immigrants would have been immune).

Note that the natural death rate indicated in table 1 yields

a mean lifetime m21 ¼ 50 years, which is much shorter than

the true mean lifetime. This intentional discrepancy accounts

partially for the long tail in the implicitly assumed exponen-

tial distribution of lifetimes. Our results are insensitive to the

value of m because most people contract measles as children,

and immune individuals do not affect transmission.
3.2.1. Effective basic reproduction number R0,eff
Because our estimate of R0 (equation (3.2)) is for 1960, we take

our ‘anchor time’ to be t0 ¼ 1960. Susceptible recruitment (n) is

defined in terms of births (B), infant mortality (Dinfant), the

population size at the anchor time (N0) and vaccine uptake ( p),

n(t) ¼ B(t)�Dinfant(t)
N0

(1� p(t)): (3:4)

Infant mortality is deducted here because it represents a large

reduction in new susceptibles early in the NYC time series (see

§2.1). The effective R0 is [2,5,27]

R0,eff(t) ¼
n(t)N0

m

b0

gþ m
¼ n(t)

n0
R0 : (3:5)

Thus, the time series R0,eff(t) is strictly proportional to n(t)
(figure 3).
3.2.2. Seasonal forcing amplitude
We estimate the seasonal forcing amplitude a as a function

of time using the method of Krylova [6, ch. 4]. Krylova

improved on the earlier method of Fine & Clarkson [34] for

estimating b(t) by allowing for reporting delays, accounting

for natural mortality, and removing the restriction that the
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generation interval must be equal to the observation interval,

requiring instead that the generation interval is an integer

multiple of the observation interval.

Krylova’s method [28, ch. 4] begins by reconstructing the

time series of the number of susceptible individuals in the

population via

StþDt ¼ St þ (1� pt)Bt �
1

rt
CtþDtþTreport

�Dt

Pt
St : (3:6)

The symbols here refer, for the time interval from t to t þ Dt, to

the number of susceptibles (St), the proportion of new-

borns vaccinated ( pt), the number of births (Bt, adjusted

for infant mortality), the proportion of cases reported (rt),

the number of cases reported (Ct), the number of deaths from

natural causes (Dt) and the total population size (Pt). The

time interval between reports is Dt (one week in our case)

and the average reporting delay is Treport (taken to be two

weeks). Following Fine & Clarkson [34], we infer the reporting

efficiency rt by assuming that all surviving individuals even-

tually contract measles (hence we estimate rt as a moving

average of measles cases divided by a moving average of

susceptible recruitment).

As in the Fine & Clarkson [34] algorithm, an estimate of the

proportion of the population susceptible is required at a single

time point. We assumed that at time t ¼ 1900 this proportion

was S0/P0 ¼ 0.05, which is near the endemic equilibrium of

the unforced SIR model [1]. Our results are not sensitive to

the precise value of S0 assumed. A bad guess leads to an

obvious spurious trend in the reconstructed susceptible time

series. See Krylova [6, p. 134] and deJonge [35, p. 16] for greater

detail on this issue.

After reconstructing the full time series of susceptibles fStg,
the transmission rate at time t is estimated via [6, eqn 4.12]

bt ¼
1

St

CtþTreport

CtþTreport�T
(gþ mt) : (3:7)

Krylova’s method requires that the disease generation interval

be an integer multiple of the observation interval. The mean

generation interval for measles g21 ¼ 13 days, and following

[6,34] we approximate this as T ¼ 2 weeks (table 1).
Given the full time series fbtg, the seasonal pattern for a

given year y containing reporting dates ti, i ¼ 1, . . . ,52, can

be expressed

b
y
ti
¼

bti
� kbti

l
kbti

l
, (3:8)

where angle brackets refer to the average over the 52 reporting

dates in year y. The underlying pattern of seasonality should

not vary substantially from year to year (since population con-

tact structures do not change significantly from year to year).

To reduce the noise in the inferred seasonality, b
y
ti
, we obtain

the median seasonal pattern over a 9 year period centred on

the focal year y. Thus, we replace each b
y
ti

with

~b
y
ti
¼Median{b

yþj
ti

}4
j¼�4 : (3:9)

The estimated seasonal pattern (3.9) is our observational equiv-

alent of the term a cos 2pt in the sinusoidally forced

transmission rate (3.3) that we use in the SIR model (3.1). How-

ever, in order to use the sinusoidally forced SIR model to make

predictions, we must estimate the amplitude (a) of sinusoidal

forcing to which the observed forcing pattern (3.9) is equival-

ent. Previous work [5] has indicated that such an equivalence

does exist and can be found by matching stable or unstable

period doubling bifurcation points—along the main branch

of the R0 bifurcation diagram—that occur when forcing the

SIR model with a sinusoidal versus observed seasonal pattern;

the match is accomplished by making a sequence of R0 bifur-

cation diagrams with different sinusoidal forcing amplitudes

(a) until an a value is found that yields a bifurcation diagram

in which the focal bifurcation occurs at the same R0 value as

in the bifurcation diagram made with the observed seasonal

forcing pattern. We separately matched stable and unstable

period doubling bifurcations and found negligible difference

in the estimated a. We also varied the averaging window

from 5 to 13 years and found no significant differences from

the 9 year window specified above. In order to quantify uncer-

tainty in one a estimate, we computed 25% and 75% quartiles

of the seasonal pattern in (3.9) along with the median. For these

quartiles, we matched the stable and unstable period doubling

bifurcations, as we did for the median. Our estimated a time

series is shown in figure 4.
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We estimate a only from 1900 to 1970. We avoid pre-1900

data due to the previously mentioned change in reporting

area in 1898 (§2), and lack of data outside Manhattan. We do

not produce estimates beyond 1970 because case sampling is

worse, resulting in poor and unreliable reconstruction. Since

we use 9-year windows to produce estimates, and data from

1900 to 1970, we produce a estimates for the years 1904–1965.

The temporal progressions of both our predictor parameters

(R0,eff and a) are shown in a figure in §3.3.3 for the full

time series.

3.3. Transition analysis
Previous work has shown that analysis of the deterministic SIR

model (3.1) is sufficient to predict changes in the frequency
structure of observed temporal patterns of infectious disease

incidence [2,4,5,27] or mortality [6] observed over many

decades. The methodology has been described in detail pre-

viously [27, §2.2]. Here we briefly summarize our analysis as

we apply it to the newly extended NYC measles times series,

emphasizing the aspects of our approach that differ from

previous transition analyses.
3.3.1. Features of the data that we would like to explain
Figure 2 presented all the data used for our analyses. Figure 5

displays the normalized NYC measles time series again, but in

two different ways that highlight the changes in frequency struc-

ture that we seek to understand. The top panel of figure 5 shows

weekly normalized measles on a square root scale, suppressing
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epidemic magnitude in favour of exposing periodic structure.

The bottom panel of the figure shows the corresponding

continuous wavelet transform [36–40], which reveals the

dominant frequencies at each point in time.

The main features of the wavelet transform in figure 5 are

two spectral peaks at almost all times. Throughout most of

the time series, there is a peak at a period of 1 year. The

period of the second peak varies between 2 and 3 years

(and is absent from about 1912 to 1915). Can we explain the
existence and spectral position of these peaks over the course of
the time series?
3.3.2. Attractor and transient periods as functions of R0
For any given parameter set and initial conditions, the sol-

ution of the SIR model (3.1) yields predicted dynamics that

can be compared with the observed time series. In particular,

two periods can usually be extracted from (non-chaotic) SIR

solutions: (i) the period of the attractor that is reached asymp-

totically and (ii) the period of the transient during approach

to the attractor. The attractor period—or resonant period—of

the SIR model is always an integer multiple of the 1-year for-

cing period and is typically inferred from bifurcation

diagrams of the stroboscopic map associated with the
model [5]. The transient period—or non-resonant period—

can be a time of any length and is obtained by a linear pertur-

bation analysis of the associated attractor [4]. (For an attractor

with period k, its transient period Tk is given by 2pk/

jArg(lk)j, where lk is the dominant eigenvalue of the

associated stroboscopic map [4,13].) Both resonant and

non-resonant periods are expected to be observed in real

incidence time series because demographic stochasticity

sustains transient dynamics [4,41].

Naively, there are many model parameters (b, g, n, m,

N0, a) and possible initial conditions (S0, I0) to consider

when attempting to make predictions using the SIR model

(3.1). However, the relationship between susceptible recruit-

ment and effective reproduction number (equation (3.5))

can be exploited [2,4,5,27] to reduce the relevant number of

parameters to one: predictions can be made from the SIR

model (3.1) by considering only how periodicity of solutions

varies as a function of the basic reproduction number R0

(equation (3.2)) with all other parameters fixed (provided

the amplitude of seasonality a can be taken to be constant

throughout the observed time series).

Figure 6 presents predicted NYC measles dynamics as a

function of R0. The top panel is a bifurcation diagram for

the SIR model (3.1) and the bottom panel shows the transient
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periods associated with each attractor. From these diagrams,

we can read off the predicted attractor and transient period

for any given R0. For R0 values for which multiple attractors

coexist, predicted dynamics are history-dependent and

demographic stochasticity can lead to switching among

attractors [5,44]; however, in real incidence time series we

are unlikely to detect attractors with periods other than 1 or

2 years, for a number of reasons:

(i) attractors with periods longer than 2 years typically

have small attracting basins,

(ii) long-period attractors typically have unrealistically

low prevalence levels,

(iii) brief excursions of long-period attractors will not be

distinguishable from noise and

(iv) in the presence of noise, some long-period attractors

are indistinguishable from lower period attractors.

The predicted transient periods for non-annual attractors

are all very long; in practice, only the transient period associ-

ated with the annual attractor is likely to be observable. The

degree of spectral power generated by a transient varies with

the system’s proximity to the associated attractor. During

time intervals when the system is very close to the attractor,

the transient period can be undetectable (we demonstrate

this effect through stochastic simulations in the electronic

supplementary material, §S2).

3.3.3. Attractor periods as functions of both R0 and a
For the era (1928–1972) of NYC measles dynamics that has

been studied previously [4,5,11,27], it was reasonable to

assume that the amplitude of seasonal forcing (a) was

roughly constant. With our much longer time series going

back to 1890, this approximation is less likely to be valid.

We therefore estimated the amplitude of time-varying season-

ality in §3.2.2. To make use of estimates of both R0,eff(t) and

a(t), we need a two-dimensional equivalent of figure 6,

showing how attractors and transients vary as functions of

both R0 and a.

Figure 7 presents a two-dimensional bifurcation diagram

for the SIR model (3.1), which shows the regions of the

(R0, a) parameter plane in which attractors of various lengths

exist. The black curve shows the estimated trajectory of NYC

measles in this parameter plane (based on the median value

of a shown in figure 4). The boxed region is shown on a

larger scale in figure 8, and the last two digits of many

years are marked along the (R0(t), a(t)) curve.
4. Results
We summarize our results in figure 9. As in figure 5,

figure 9a,c shows the NYC measles incidence time series

and wavelet spectrum, which we aim to explain using the

SIR model (equation (3.1)).

Figure 9b shows predicted attractor periods for each year

from 1891 to 1984. For each year, the SIR model was solved

for 10 000 distinct initial states and the period of the attractor

to which the solution converged was recorded. The coloured

bands show the proportion of runs that converged onto

an attractor of the period indicated in the legend; thus the

relative lengths of the coloured bands can be viewed as
estimates of the relative volumes of the basins of attraction

associated with each periodic attractor. The collection of

initial states for a given year (t) was chosen as follows:

— the initial proportion susceptible (S0) was varied from

80% to 120% of the proportion that would be susceptible

at equilibrium (1=R0,eff(t)) if the system were unforced;

— the initial prevalence (I0) was varied throughout the

range of observed weekly incidence (before 1963 for

the pre-vaccine era and after 1963 for the vaccine era);

— a 100 � 100 grid of initial states was considered in the

region of the (S0, I0) plane specified above. For each grid

point, the model parameters were set according to table

1, except that the estimated R0,eff(t) (figure 3) was used

in place of R0, and the seasonal amplitude (a) was

chosen at random from a uniform distribution between

the lower and upper quartile of the estimated a(t)
(figure 4) for the year in question.

In years for which multiple attractors are predicted, any of

these attractors could occur in a particular realization of the

underlying stochastic process. In each year, we take the pre-

dicted attractor period to be that of the attractor to which

the greatest number of simulations converged. Black circles

indicate these attractors on the wavelet spectrum. White ver-

tical bars identify the possible ranges of transient periods

associated with these attractors (an annual attractor for

most of the time series, but a biennial attractor from 1946 to

1963). The heavy white dot on the white bars indicates the

median transient period for the simulations associated with

the given year.

The qualitative agreement between predicted and observed

spectral peaks in figure 9 is very good. In greater detail

1891–1945

Observed behaviour: the wavelet spectrum has a substantial

peak at a period of 1 year throughout this time inter-

val, and a secondary peak near a period of 2 years is

evident except during 1909–1917. From 1909 to 1917,

the incidence time series shows very similar annual

epidemics.

Predicted periods: panel b shows that an annual attractor

exists throughout this year range with a larger estimated

basin of attraction than other attractors. Other longer

period attractors with smaller estimated basins of attrac-

tion coexist with the annual for some years (also see

figure 8, white circles). The median predicted transient

period varies between 2.20 and 2.58 years over this

time span and is slightly longer than the observed

(2 year) secondary peak period before about 1905.

Interpretation: since the wavelet spectrum does not show

power near period 3 at the beginning of the time series

(excluding information inside the cone of influence), we

conclude that the real system was near the period 1 attractor

initially. The system appears to remain near the period 1

attractor for the duration of this time interval, which can

be explained by the consistently high volume of attraction

of the annual attractor. Where they exist, longer period

coexisting attractors might influence the dynamics, but

their effects would likely be indistinguishable from noise

because the temporal segments in question are too short

for multiple cycles of these longer period attractors to be

completed. The power near period 2 throughout this time

interval is always close to the predicted transient period
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associated with the period 1 attractor. The power observed

at a transient period in an infectious disease time series

varies significantly, as stochasticity affects the proximity

of the system to the periodic attractor. The temporary
absence of power near period 2 is a phenomenon that we

have reproduced with the estimated parameter values

using stochastic simulations (electronic supplementary

material, §S2).
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1946–1963

Observed behaviour: there is substantial power at precisely

periods 1 and 2 years throughout this time interval.

Predicted periods: the greatest estimated basin volume

throughout this interval is occupied by a period 2 attrac-

tor, with coexisting longer period attractors also present

(also see figure 8, teal circles).

Interpretation: the multi-year attractors that are identified

always display power at a 1-year period in addition to

the period of the attractor because the multi-year epi-

demic pattern involves epidemics every year. Since a

biennial attractor is the most probable throughout this

time interval, we expect to see the observed power at

1 and 2 years.

1964–1984

Observed behaviour: the wavelet diagram shows power near

period 1 year throughout the time interval, and power

near periods 2 and 3 years up to 1973. The time series

appears very noisy and a dramatic drop in incidence is

evident beginning in 1965.

Predicted periods: an annual attractor exists throughout this

time interval, with sporadically coexisting attractors of

periods 3–6 years. No biennial attractor is predicted

(also see figure 8, yellow circles).

Interpretation: vaccination was introduced in NYC in 1963,

accounting for the dramatic drop in cases. As cases drop,

dynamics are governed more by demographic and extrin-

sic stochasticity than periodic attractors. This accounts for

the weakness of spectral peaks. We conclude that the

system transitioned from a biennial attractor to an annual

attractor near the beginning of this time interval, which
is consistent with predicted behaviour. The weak spectral

peak at period 1 year until 1980 suggests that the system

remained near the annual attractor until the end of the

time series.

5. Discussion
The NYC measles incidence data published in 1973 by

London & Yorke [11,12] has inspired a great deal of research

on infectious disease dynamics [2,4,11,14,15]. Given the

impact of the London and Yorke time series (monthly reported

measles cases from 1928 to 1972), we were motivated to extend

the dataset to more than twice its previous length (1891–1984),

and in so doing we obtained long spans of higher quality

(weekly rather than monthly) data. To complement the measles

data, we compiled annual birth and population data for NYC

for same year range. We collected data from a number of dis-

tinct sources, which contained some overlapping years,

allowing us to perform sanity checks and either verify data

quality or make minor corrections.

Previous work [4,5,27] has used mechanistic epidemic

models to understand transitions in measles dynamics in

NYC from 1928 to 1972. These analyses made predictions of

dynamical transitions based on changes in the effective basic

reproduction number R0,eff (estimated from changes in suscep-

tible recruitment arising from births and vaccination), and a

fixed amplitude of seasonal forcing (a). For our analysis of

transitions in the newly extended time series, we generalized

this approach to allow for changes in both R0,eff and a and

estimated both over the course of the observed time series.

There is excellent agreement between our SIR model pre-

dictions of dominant periods and the observed frequency

structure in the data quantified by a continuous wavelet
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transform (figure 9). All observed transitions can be explained

using the deterministic SIR model by a combination of changes

in birth rate, vaccination and the effect of demographic stochas-

ticity preventing transient oscillations from damping out

[41,45].

We did not, in this paper, attempt to predict the relative

magnitudes of the observed spectral peaks in the NYC

measles wavelet spectrum. Doing so requires analysis of the

stochastic SIR model, either by simulation [2,4] or by analyti-

cal or semi-analytical methods that have begun to be applied

to infectious disease dynamics in recent years [16,46].

We did point out an unusual feature of the new earlier seg-

ment of the NYC measles time series from 1909 to 1917, namely

the complete lack of spectral power at any period other than 1

year, even though an observable transient period near 2 years

is predicted. As a proof of principle, we showed in electronic

supplementary material, §S2 that precisely this behaviour can

be reproduced in stochastic SIR simulations, but we did not

quantify the probability of such behaviour occurring. One poss-

ible direction for future work would be to examine the wavelet

spectra of large numbers of realizations of the stochastic SIR

model with the parameters estimated for NYC measles (includ-

ing the vaccine era during which demographic stochasticity

plays a much larger role); analysing such a collection of simu-

lations would allow us to estimate the probability distribution
of relative transient power at each point along the time series,

and more generally the probability of observing a time series

very similar to the real data. This would be computationally

expensive, but seems likely to be enlightening and could sub-

stantially enhance our understanding of dynamical transitions

in recurrent patterns of infectious disease epidemics.
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Endnotes
1The data compiled for this paper are also available from the Inter-
national Infectious Disease Data Archive (IIDDA) at http://iidda.
mcmaster.ca.
2The NYC Academy of Medicine (www.nyam.org) is a public insti-
tution independent of the NYC Health Department. Its library
maintains a collection of books and literature related to health in
the NYC population throughout its history.
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S1 The Data

Two data files that we compiled accompany this paper and can be downloaded from the web site of the
Journal of the Royal Society Interface or from the International Infectious Disease Data Archive (IIDDA,
http://iidda.mcmaster.ca).

meas us ny nyc 1890-1984 wk.csv
Weekly measles cases in New York City (NYC).

vital us ny nyc 1890-1984 yr.csv
Annual vital statistics in NYC (population, births, deaths, infant mortality, proportion vaccinated).

These datasets span 4 October 1890 to 30 December 1983, and were pieced together from four different
sources.

S1.1 The Health Dept. Bulletins: 1891–1932 Weekly Data

Near the end of the 19th century and in the first half of the 20th, the NYC Health Department published
weekly bulletins containing information regarding a wide variety of public health related issues (see §S3
for sample photographs of such a bulletin). Some of the details provided in these bulletins were incidence
rates for numerous infectious diseases, including measles. Spanning the years 1891–1932, the weekly
bulletins were published in two volumes. We acquired access to these through the NYC Academy of
Medicine Library 1

As noted previously, vital statistics for the whole of NYC were acquired through the NYC Health
Dept., which provides data going back to 1900 [2]. However, we require data going back to the beginning
of measles incidence data in 1891. To fill in the missing years of 1891–1899, we extracted vital statistics
from the health bulletins.

An important note must be made about these bulletins regarding their reporting area. The data tables
in the bulletins provide data for only Manhattan Island up until 15 January 1898, after which the reporting
area was enlarged to cover Manhattan, The Bronx, Brooklyn, Queens, and Richmond. We wish to retain
as high consistency as possible between the reporting area of both measles incidence data and vital statis-
tics. It is therefore advantageous to use disease incidence data and vital statistics from the same source,
especially through a change in reporting area.

S1.1.1 Disease Incidence, Volume 1: 1891–1914

City-wide reported cases of measles were extracted from a table as shown in Figure S1.

1The NYC Academy of Medicine [1] is a public institution independent of the NYC Health Department. Its library maintains
a collection of books and literature related to health in the NYC population throughout its history.

2
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Figure S1: Health Bulletin table reporting weekly cases of infectious diseases. See §S3 for full page.

S1.1.2 Vital Statistics, Volume 1: 1890–1899

Tables of the form shown in Figure S1 in volume 1 of the bulletins provide needed vital data where it could
otherwise not be found.

S1.1.3 Vital Statistics, Volume 1: 1898 Change in Reporting Area

The bulletin published for the week of Jan 15, 1898 was the first to include the larger reporting area
mentioned previously. Vital statistics tables for that week and the one prior are shown in Figure S2 and
Figure S3 to demonstrate the transition. Notice that though these consecutive bulletins occur in the same
volume, their format changes to include data from the different boroughs.

3



Figure S2: Health Bulletin table reporting vital statistics for only Manhattan Island, week of Jan. 8, 1898.

Figure S3: Health Bulletin table reporting vital statistics for Manhattan, The Bronx, Brooklyn, Queens, and Rich-
mond, week of Jan 15, 1898. The handwritten corrections are uncommon in these documents; they are
the result of Health Dept. reorganization.

S1.1.4 Disease Incidence: 1915

Sometime between 1914 and 1916, the NYC Health Dept. adjusted the form of its bulletins, and the
transitional year, 1915, presents some difficulty. Figure S4 shows the only available data tables regarding
cases of reportable infectious diseases found for that year.
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Figure S4: Health Bulletin table showing reportable infectious diseases, week of Feb. 20, 1915. See §S3 for full
page.

Notice that city-wide totals of cases are not reported. Instead measles cases are reported only for three
hospitals within the city. These numbers are themselves not representative of the entire city, but fortunately
we can re-scale them using an independent data source (see §S1.4).

S1.1.5 Disease Incidence, Volume 2: 1916–1932

The format of the tables from which disease incidence data were drawn changed slightly compared to the
previous volume, and tables appeared as shown in Figure S5.

Figure S5: Health Bulletin table reporting weekly cases of infectious diseases. See §S3 for full page.

S1.1.6 Tabulation

For the tables containing disease incidence rates in volumes 1 and 2, notice that for each week’s bulletin, a
full quarter-year of previous weeks’ worth of reported cases are shown. This means that in order to extract
a year’s worth of data, no more than five sample bulletins are required. As a result, we did not photograph
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all Weekly Bulletin pages, but instead sampled pages periodically such that completely overlapping disease
incidence tables were acquired.

Notice that the table providing vital statistics shows only information for the week in question. For the
total population of NYC at the time, this did not present a problem; weekly changes in population are not
significant compared to the total population, we can therefore estimate a yearly average population from
these numbers. Birth rates oscillate throughout the year [8], and so for years in which a full set of bulletin
photographs had not been acquired, we use weekly data points available periodically throughout the year
to estimate the yearly value.

S1.2 Health Dept. Records 1958–1976 Weekly Disease Incidence Data

The NYC Health Department kept detailed records of the incidence of many diseases and conditions,
including infectious diseases of interest to us. In particular, from 1958–1976, weekly records were kept
of the incidence of diseases and conditions by health district of residence, of which there are 27 in NYC
(this date range represents only what we were able to find, but all indications suggest that such data were
collected for a wider range of dates). These are organized by boroughs and city-wide totals are available
for our purposes. See Figure S6 for a sample table providing city-wide totals, and §S3 for a sample of a
full weekly report.

S1.3 NYC Health Dept. Vital Statistics Reports: 1900–1984

The NYC Health Dept. website has made historical vital statistics reports available to the general public
[2]. These reports, for the years of 1976–1984, contain tables showing city-wide monthly aggregated cases
of reportable diseases. For years outside of this range and going back to 1935, yearly aggregated data is
provided in the reports we obtained. For disease incidence, yearly data is by no means sufficient for our
purposes. However, these vital statistics reports, as the name would imply, contain population and vital
statistics data, for which yearly numbers are adequate. Furthermore, 5-year estimates are reported from
1900–1935.

S1.4 1915

We noted previously that we must further discuss the Weekly Bulletin data for the year 1915. Disease
incidence numbers prior to 1915 come from Volume 1 of the Health Bulletins, and after 1915 come from
Volume 2, as noted previously. The data before and after 1915 represent measles cases for all of NYC,
whereas the data we have for 1915 represent counts taken for only three hospitals within the city. Using
yearly aggregated reported measles cases taken from the NYC Vital Statistics Reports [2] and comparing
them with yearly totals from the Health Bulletin data (see Figure S10), we determine a scaling factor
(5.04) with which to adjust the weekly Health Bulletin Data. Figure S7 shows measles incidence rates
recorded for the years surrounding 1915 before we re-sale the 1915 data. We conclude from the apparent
consistency in the pattern of outbreaks that the adjustment is appropriate.
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Figure S6: NYC Health Dept. table showing reportable diseases and conditions. See §S3 for full weekly report.
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Figure S7: Time series plot of tabulated Health Bulletin data from 1910–1920, showing original and adjusted 1915
reported measles cases from three hospitals in the context of city-wide measles cases for other years.

S1.5 Formatting the Data

For our analysis, we make use of weekly and monthly aggregated measles data, and yearly vital data. For
large time spans (namely 1932–1958 and 1976–1984), we have only monthly data, hence we interpolate
pseudo-weekly data from the monthly data points.

For vital statistics, we obtain yearly total population and birth rates from the NYC Health Bulletins for
1891–1900 as detailed previously §S1.1.2, and from the NYC Dept. of Health vital statistics reports for
1900–1984. Note that the vital statistics reports contain only data points every 5 years from 1900–1935.
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We do not interpolate yearly points from this because the Vital Statistics Reports give a single estimate for
each of the 5-years.

S1.6 Summary of Available and Compiled Data

Since we are using data from various overlapping sources, we need to pick time points where we transition
from one source to the next. Since it is better to do analyses using originally recorded weekly data rather
than pseudo-weekly interpolation, we will use as much originally recorded weekly data as possible.

Vital Statistics Reports
(Y)

Health Bulletins, Vol. 1
(Y)

Health Bulletins, Vol. 1 and 2
(W)

London and Yorke
(M)

Health Dept.Records
(W)

Vital Statistics
Reports (M)

Available
Used

1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990

Measles Incidence Data

Vital Statistics Data

Figure S8: Summary of available and used data.

S1.7 Normalized Data

For our analysis of the disease incidence data, we need to control for changes in population size. To this
end we have constructed a time series of yearly total population numbers, as detailed previously. Using the
population data, we can normalize disease incidence data with respect to population size. This serves to
remove elements of the dynamics which are simply artifacts of changes in population, and what remains is
a more consistent representation of the dynamics of measles. See Figure S9 for a plot of total population
with respect to time, which we use to normalize our data. Note in particular the high rate of population
growth in the early 1900s; much of an apparent rise in measles incidence can be attributed to this. The
sudden jump in the population data is attributed to a change in reporting area (see §S1.1)
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Figure S9: Time series plot of the total population of NYC from 1891–1984.

S1.8 Consistency Checks

Since much of the data we use is from original digitization, it is appropriate to conduct a number of checks
on the data to ensure that its quality is acceptable for the analysis. We therefore cross-reference our new
data with as much independent information as we can. To this end we perform the following three sanity
checks on our new data:

1. The NYC Health Department Vital Statistics Reports [2] list yearly totals for disease incidence from
1911 to the present. Our first check takes yearly sums of our weekly data from the Health Bulletins
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in the time-span of 1911–1932, and compares these yearly sums to data from the Health Department
Vital Statistics Reports. See Figure S10 for this comparison. We conclude that, with the exception of
the year 1915 (which we dealt with previously), the close match of these totals evidences reliability
of the Health Bulletin data.
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Figure S10: Overlapping time series plots of yearly measles incidence counts taken from the Health Bulletins and
the Health Dept. Vital Statistics Reports.

2. Much of the newly digitized data overlaps with monthly data previously published by London and
Yorke [11]. We can therefore use monthly tabulated totals of our original weekly data in the over-
lapping periods and compare them to London and Yorke’s data. The results of this second check are
shown in Figures S11 and S12. Interestingly, these numbers do not match up perfectly, suggesting
that adjustments were made by the NYC Health Department to the data we acquired (both from the
Health Bulletins and the Health Department Records), prior to its tabulation in the paper published
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in 1973 by London and Yorke [11].2 The monthly sums of measles cases, however, match up closely
enough in both overlapping time periods that we conclude our weekly data are reliable.
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Figure S11: Overlapping time series plots of London and Yorke’s monthly measles incidence rates, and the Health
Dept. Bulletins weekly measles incidence rates, from 1928–1932. To compare these numbers, we have
summed the weekly Bulletin data monthly, summing up the number of measles cases reported at the
ends of weeks that fall in the same month.

2London and Yorke give very little information regarding the source of the data published their 1973 paper [11], only
mentioning that the provider was the NYC Health Dept. Bureau of Infectious Disease Control (which no longer exists).
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Figure S12: Overlapping time series plots of London and Yorke’s monthly measles incidence rates, and the Health
Dept. Records weekly incidence rates summed monthly, from 1958–1973.

Jan 31, 1920 In Figure S13, we show a page from the Weekly Bulletins in which an epidemic of in-
fluenza can be seen from the case reports, peaking on Jan 31, 1920 with a number of reported cases of
30456. For this same week, the cases of measles are reported as 4671, where the previous and following
weeks were 1984 and 2035, respectively. Such a high number of reported measles cases seems unlikely,
and possibly erroneously entered, but could otherwise have been misdiagnoses from the influenza out-
break.
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Figure S13: Weekly Bulletins pages showing weekly reported cases for infectious diseases from 13 December 1919
to 6 March 1920. The reported number of cases of measles for the week of 31 January is unusually
high (no other weekly count exceeds 2500 until the year 1941). Concurrent with an apparent measles
epidemic is an influenza epidemic, which suggests that the 31 January reported number—and possibly
others— could result from misdiagnoses. It is also possible that the unusually high number, if it is
incorrect, resulted from a clerical error.
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S2 Transient Periods in Wavelet Spectra

A wavelet spectrum of an epidemic time series typically has peaks at the periodicities of attractors that
the system visits. However, transient periods do not reveal themselves as consistently as attractor periods,
since they depend on demographic stochasticity to be maintained [3,4,7]. The distance of the system from
a periodic attractor is influenced by random stochastic perturbations, and the spectral power of transient
periods in the time series depends on this distance. As a result, we should expect significant lack of
homogeneity in the spectral power of transient periods in disease time series.

To verify this intuition, we simulated many realizations of the stochatic SIR model, and we show
wavelet spectra [5, 6, 9, 10, 12] of a subset of these simulated time series in Figures S14 to S19. In order
to produce simulated time series comparable to our NYC measles time series, we produced simulations
of the same length as the measles time series. We produced 10 stochastic SIR realizations for each of 6
different parameter sets. Three parameter sets fixed µ = ν = 0.02/year, and the other three parameter sets
were defined using birth and death rates derived from NYC vital statistics. In both groups of parameter
sets, we considered three R0 values (R0 ∈ {12, 14.5, 17}). The mean infectious period was set to 13 days
in all simulations, and the initial total population was fixed at the NYC population in 1891 (the beginning
of the time series). For each parameter set, we show one of the 10 realizations in Figures S14 to S19.
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Figure S14: Stochastic SIR simulation emulating NYC. Top panel: cases time series. Bottom panel: wavelet spec-
trum. Parameter values: R0 = 12, 1/γ = 13 days, µ = ν = 0.02 yr−1.

16



ca
se

s

0
0.

02
0.

04
0.

06

0.25

0.5

1

2

4

8

1900 1910 1920 1930 1940 1950 1960 1970 1980

year

Figure S15: Stochastic SIR simulation emulating NYC. Top panel: cases time series. Bottom panel: wavelet spec-
trum. Parameter values: R0 = 14.5, 1/γ = 13 days, µ = ν = 0.02 yr−1.
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Figure S16: Stochastic SIR simulation emulating NYC. Top panel: cases time series. Bottom panel: wavelet spec-
trum. Parameter values: R0 = 17, 1/γ = 13 days, µ = ν = 0.02 yr−1.

18



ca
se

s

0
0.

02
0.

04
0.

06

0.25

0.5

1

2

4

8

1900 1910 1920 1930 1940 1950 1960 1970 1980

year

Figure S17: Stochastic SIR simulation emulating NYC. Top panel: cases time series. Bottom panel: wavelet spec-
trum. Parameter values: R0 = 12, 1/γ = 13 days, µ(t) and ν(t) are realistic NYC values changing
with time.
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Figure S18: Stochastic SIR simulation emulating NYC. Top panel: cases time series. Bottom panel: wavelet spec-
trum. Parameter values: R0 = 14.5, 1/γ = 13 days, µ(t) and ν(t) are realistic NYC values changing
with time.
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Figure S19: Stochastic SIR simulation emulating NYC. Top panel: cases time series. Bottom panel: wavelet spec-
trum. Parameter values: R0 = 17, 1/γ = 13 days, µ(t) and ν(t) are realistic NYC values changing
with time.
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S3 Sample Photographs from Data Sources

Figure S20: Weekly Bulletins Vol 1: Page 1
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Figure S21: Weekly Bulletins Vol 1: Page 2
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Figure S22: Weekly Bulletins Vol 1: Sample Page from 1915.
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Figure S23: Weekly Bulletins Vol 2: Only Relevant Data Page

25



Figure S24: Health Department Records: Page 1
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Figure S25: Health Department Records: Page 2
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Figure S26: Health Department Records: Page 3
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Figure S27: Health Department Records: Page 4
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Figure S28: Health Department Records: Page 5
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