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Identifying the mechanisms by which diseases spread among populations is
important for understanding and forecasting patterns of epidemics and pan-
demics. Estimating transmission coupling among populations is challenging
because transmission events are difficult to observe in practice, and connec-
tivity among populations is often obscured by local disease dynamics. We
consider the common situation in which an epidemic is seeded in one popu-
lation and later spreads to a second population. We present a method for
estimating transmission coupling between the two populations, assuming
they can be modelled as susceptible–infected–removed (SIR) systems. We
show that the strength of coupling between the two populations can be esti-
mated from the time taken for the disease to invade the second population.
Confidence in the estimate is low if only a single invasion event has been
observed, but is substantially improved if numerous independent invasion
events are observed. Our analysis of this simplest, idealized scenario
represents a first step toward developing and verifying methods for estimat-
ing epidemic coupling among populations in an ever-more-connected global
human population.
1. Introduction
Mechanistic mathematical models are powerful tools for understanding
and predicting how infectious diseases spread in human populations [1–5].
The spread of infections in well-mixed populations has been extensively
studied, and continuing research is tackling the effects of seasonal forcing
[6–8], intensity and duration of infectiousness [9–14], and contact network
structure [15–18].

One area of research that is important for public health policy is forecast-
ing the spatial spread of diseases, which can be greatly advanced by
improving estimates of model parameters from real-world data. Estimating
parameters of spatial epidemic models is especially difficult [19–21], even
for the well studied, highly idealized class of meta-population models
[18,22–31]. Here, we consider the simplest meta-population consisting of indi-
viduals who reside in one of two ‘habitat patches’ (e.g. cities). We suppose an
epidemic begins in one patch, and we attempt to estimate the degree of spatial
coupling to the population in the second patch. In this situation, we investi-
gate whether we can successfully estimate the magnitude of coupling using
the observed time taken for the second patch to be infected (the time to
invasion, tinv).

The specific meta-populationmodel that we use is a two-patch SIRmodel (§2).
We consider both deterministic and stochastic versions of this model (§2) and
show that the distribution of times to invasion can be approximated analytically
frommodel parameters (§3.1). We then show how, in the presence of stochasticity,
the degree of coupling can be estimated using a maximum-likelihood approach
based on one or more observations of tinv (§3.4).
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2. Two-population susceptible–infected–
removed model

In the absence of coupling, we assume that disease dynamics
in each patch evolve according to the standard SIR model,

dS
dt

¼ �bS
I
N
, (2:1a)

dI
dt

¼ bS
I
N

� gI, (2:1b)

dR
dt

¼ gI: (2:1c)

The three state variables represent the numbers of individuals
who are susceptible to infection (S), currently infected and
infectious (I), and recovered and removed (R). The total
population size, N = S + I +R, is necessarily constant (since
dN/dt = 0). The two disease parameters are the rate of trans-
mission (β) and the rate at which infected individuals recover
or die (γ). The force of infection is

L ¼ b
I
N
: (2:2)

The basic reproduction number, the average number of sec-
ondary cases that result from a single primary case in a
completely susceptible population [1], is

R0 ¼ b

g
: (2:3)

If we take the time unit to be the mean infectious period (1/γ)
then R0 is the only disease parameter. Implicit in equation
(2.1) are assumptions that recovered individuals remain
immune permanently and that vital dynamics (births and
deaths) can be ignored (both these assumptions are reason-
able for most infectious diseases on the timescale of
invasion that concerns us here). In addition, the population
in any given patch is assumed to be homogeneously mixed.
2.1. Form of transmission coupling
We assume that coupling of disease dynamics between the
two patches arises because residents of one patch sometimes
visit the other patch temporarily. We model this with a coup-
ling matrix c = (cij), where cij is the proportion of the residents
of patch j visiting patch i at any time.1 Since we are consider-
ing only two patches, and the entries are proportions, the
most general coupling matrix is

c ¼ 1�m1 m2
m1 1�m2

� �
, (2:4)

where 0≤mi≤ 1. The coupling parametersmi are proportions,
which can be interpreted in various ways (e.g. the proportion
of time that individuals typically spend outside their home
region, or the proportion of individuals that are visiting the
other patch at any time). Note that with only two patches,
if the focal patch is i then the other patch is j = 3− i. Thus,
using subscripts on state variables to identify populations
(i.e. the patches in which individuals are resident), the
number of individuals in patch i at any time is

(1�mi)Ni þmjNj, i ¼ 1, 2, j ¼ 3� i, (2:5)

and the number of those that are currently infected is

(1�mi)Ii þmjI j, i ¼ 1, 2, j ¼ 3� i: (2:6)
The force of infection on residents of patch i arises from inter-
actions that occur in both patches. For the (1−mi)Si
susceptibles who are resident in patch i and currently located
in patch i, the force of infection is

b
(1�mi)Ii þmjI j
(1�mi)Ni þmjNj

, i ¼ 1, 2, j ¼ 3� i: (2:7)

whereas the force of infection on the miSi susceptible resi-
dents of patch i who are currently in patch j is

b
miIi þ (1�mj)I j
miNi þ (1�mj)Nj

, i ¼ 1, 2, j ¼ 3� i: (2:8)

The total force of infection on residents of patch i is the sum
of these two contributions, namely

Li ¼ b (1�mi)
(1�mi)Ii þmjI j
(1�mi)Ni þmjNj

þmi
miIi þ (1�mj)I j
miNi þ (1�mj)Nj

� �

i ¼ 1, 2, j ¼ 3� i:

(2:9)

This formulation avoids the need to explicitly model the
movements of individuals among populations (as is some-
times done [26]).
2.2. Deterministic model
Our two-population model is, for i = 1, 2,

dSi
dt

¼ �SiLi, (2:10a)

dIi
dt

¼ SiLi � gIi, (2:10b)

dRi

dt
¼ gIi, (2:10c)

where Λi is defined in equation (2.9) and the (constant) size of
each population is Ni = Si + Ii + Ri for i = 1, 2.

If all individuals are initially susceptible and a resident
of patch i is infected then an epidemic will occur (in popu-
lation i) if the number of cases in population i is
initially increasing, i.e. if dIi/dt > 0 in the limit that Si→Ni

and Ii→ 0 (given Sj =Nj and Ij = 0). Retaining the notation
R0, as in equation (2.3), for the basic reproduction number
of the uncoupled model (m1 =m2 = 0), and defining Ri,j via

Ri,i ¼ R0
(1�mi)

2Ni

(1�mi)Ni þmjNj
þ m2

i Ni

miNi þ (1�mj)Nj

" #
(2:11a)

and

Ri,j ¼ R0
(1�mi)mjNi

(1�mi)Ni þmjNj
þ mi(1�mj)Ni

miNi þ (1�mj)Nj

� �
, (2:11b)

we can rewrite equation (2.10b)

d
dt

I1
I2

� �
¼ R1,1 R1,2

R2,1 R2,2

� �
g� 1 0

0 1

� �
g

� �
I1
I2

� �
, (2:12)

fromwhich it follows that the next-generation matrix [37,38] is

R1,1 R1,2

R2,1 R2,2

� �
: (2:13)

The spectral radius of this matrix, i.e. the basic reproduction
number of the two-patch system, is

r ¼ R1,1 þR2,2

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R1,2R2,1 þ (R1,1 �R2,2)

2
q

: (2:14)
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Figure 1. The time to invasion, tinv, is the time between an initial infection in
one population and the first case that appears in the other population. The
figure shows a single realization of the stochastic SIR model, generated using
the Gillespie algorithm [39,40] (see §2). Parameter values were m1 = m2 =
0.01, R0 ¼ 2, N1 = N2 = 105.

Table 1. Variables of the two-population coupled SIR model.

variable description

t time in units of the mean infectious period, 1/γ

S1, S2 number of susceptible individuals in each population

I1, I2 number of infected individuals in each population

R1, R2 number of removed individuals in each population
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Our further analysis in this paper applies to the general case
considered above (i.e. it is possible that N1≠N2 and m1≠
m2). However, we note that in the special case that N1 =N2

and m1 =m2 (≡m), equation (2.11) reduces to

Ri,i ¼ R0[1� 2m(1�m)] (2:15a)

and

Ri,j ¼ R02m(1�m), (2:15b)

and the spectral radius (2.14) simplifies to

r ¼ R0, (2:16)

i.e. the basic reproduction number of the two-patch system is
the same as that of the single patch system. In this case,
there is a simple partitioning of R0:

R0 ¼ Ri,i þRi,j: (2:17)

In fact, equation (2.17) holds true if m1≠m2, requiring only
that N1 =N2. In addition, note that

Ri,j ¼ Ri,i � (1� 2m)2R0 � Ri,i, (2:18)

i.e. the reproduction number is higherwhen considering trans-
mission within a patch as opposed to between patches.

2.3. Stochastic model
If the ODEs are not solved directly, but are instead used to
define event rates for the corresponding stochastic process,
then there is a distribution of possible times to invasion
(tinv). For sufficiently small numbers of realizations, we simu-
late the stochastic model using the Gillespie algorithm [39,40],
but use the standard ‘tau-leaping’ adaptive time-step algor-
ithm when large numbers of simulations are required [41,42].

We define the time between the first appearance of one
infection in the first population (I1 = 1, t = 0), and the first
appearance of one infection in the second population (I2 = 1,
t > 0), to be the time to invasion, tinv. Since the ordinary
differential equations (ODEs) in equation (2.10) have a
unique solution associated with any given initial state, there
is exactly one value of tinv associated with each parameter
set ({β, γ, N1, N2, m1, m2}) in the deterministic limit. Stochastic
realizations yield a distribution of tinv. In figure 1, we show
a single stochastic realization of the model, and the
corresponding time to invasion tinv in that instance.

2.4. Notation summary
Our notation for variables and parameters, and the initial con-
ditions used in all simulations and analyses, are summarized
in tables 1, 2 and 3. All our simulations were performed with
equal populations in the two patches (N1 =N2), as well as sym-
metric coupling, coupling (only one coupling parameter m =
m1 =m2). We note that equal population sizes and coupling
symmetry are not required for our analytical results.
3. Stochastic time to invasion
The distribution of the time to invasion (tinv) is shown in
figure 2 for four parameter sets (R0 ¼ 2, 4; m = 0.01, 0.1).
The histograms are each based on 10 000 stochastic simu-
lations [41]. The blue curves show an analytical
approximation that we derive below in §3.1. We present
numerically computed and analytically approximated
maximum-likelihood estimates (MLEs) for the coupling
parameter m, given observation(s) of tinv, in §§3.4 and 3.5.
3.1. Analytical approximation of time to invasion
distribution

Suppose that at time t = 0 the system is in the initial state
specified in table 3, i.e. there is a small number of individuals
infected in the source population (population 1). We are
interested in the time tinv at which a first infection occurs in
the receiving population (population 2). Until that time,
there are no infections in population 2 and we will assume
that tinv is sufficiently short that susceptible depletion in
population 1 is negligible. Thus, for 0≤ t≤ tinv we have
I2(t) = 0 and S1(t)≃N1, so—if we ignore demographic stocha-
sticity2 in population 1—equation (2.10b) with i = 1 implies
that for 0≤ t≤ tinv we can approximate the population 1
dynamics with the single equation,

dI1
dt

¼ r1I1, (3:1)

where

r1 ; g(R1,1 � 1), (3:2)

and Ri,i is defined in equation (2.11a). Our approximation is
therefore

I1(t) ¼ I1(0) er1t, 0 � t � tinv: (3:3)

Given equation (3.3), and that no infections have occurred yet
in population 2 (i.e. S2 =N2, I2 = 0), equation (2.10b) with i = 2
specifies the (mean field3) rate at which infection events occur



Table 2. Parameters of the two-population coupled SIR model.

parameter range description

β >0 transmission rate

R0 >0 basic reproduction number of the

disease

γ >0 rate of recovery from infection

m1, m2 ∈[0, 1] transmission coupling between

populations

N1 105 total number of individuals in

population 1

N2 104–106 total number of individuals in

population 2

Table 3. Initial conditions of the two-population coupled SIR model.

initial condition value

S1(0) N1− I1(0)

S2(0) N2
I1(0) ≥1
I2(0), R1(0), R2(0) 0
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in population 2,

m(t) ¼ dI2
dt

¼ N2L2 ¼ m0 e
r1t, (3:4a)

where

m0 ¼ I1(0) gR2,1, (3:4b)

and R2,1 is defined in equation (2.11b).4

In a small time interval [t, t + Δt), we can assume that rate
μ(t) is constant so the probability that an infection occurs in
population 2 in this time interval isðDt

0
m e�ms ds ¼ 1� e�mDt ≃ mDt, (3:5)

and this is therefore also the probability that tinv lies in the
interval [t, t + Δt) given that an infection in population 2 has
not already occurred, i.e.

Prob(t � tinv , tþ Dt j tinv � t) ≃ mDt: (3:6)

If we now denote the probability that invasion of population
2 occurs before time t by

F(t) ¼ Prob(0 � tinv , t), (3:7)

i.e. F is the cumulative distribution function for tinv, then the
probability that invasion occurs after time t is5

Prob(tinv � t) ¼ 1� F(t): (3:8)

In general, we have

Prob(t � tinv , tþ Dt) ¼ Prob(tinv � t)� Prob(t � tinv , t
þ Dt j tinv � t), (3:9)

and hence

F(tþ Dt)� F(t) ≃ �
1� F(t)

�
m(t)Dt: (3:10)

Dividing by Δt and taking the limit Δt→ 0 we have

F0(t) ¼ �
1� F(t)

�
m(t), F(0) ¼ 0: (3:11)

This is a separable first-order ODE for F(t), the solution of
which is

F(t) ¼ 1� exp
h
�
ðt
0
m(s) ds

i
: (3:12)

Consequently, we can approximate the probability density
function for tinv by f(t) = F0(t), i.e.

f(t) ¼ m(t) exp
h
�
ðt
0
m(s) ds

i
: (3:13)

Inserting equation (3.4a) in equations (3.12) and (3.13) we
obtain

F(t) ¼ 1� exp
hm0

r1

	
1� er1t


i
(3:14)

and

f(t) ¼ m0 exp
h
r1tþ m0

r1

	
1� er1t


i
: (3:15)

Recall from equations (2.11), (3.2) and (3.4b) that r1 and μ0
depend implicitly on m1 and m2; this is important because
we will need to think of f as a function of the coupling
parameter(s) later.
3.2. Approximation error in time to invasion
distribution

Our analysis leading to equation (3.15) was based on the
approximation of pure exponential growth of cases in the
first population. We can better appreciate the approximation
that is being made if we recognize that the underlying pro-
cess is a continuous-time branching process in the early
phase during which it behaves like a simple birth–death pro-
cess. During this phase, the ensemble mean number of cases
in population 1 can be approximated with equation (3.3) and
the associated variance is [43, p. 250]

var[I1](t) ¼ I1(0) er1t(er1t � 1): (3:16)

To approximate the standard deviation in the force of infec-
tion from population 1 to population 2 (which we denote
by σ), we scale as in equation (3.4), i.e.

s(t) ¼ s0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
er1t(er1t � 1)

p
, (3:17a)

where s0 ¼
ffiffiffiffiffiffiffiffiffi
I1(0)

p 	
gR2,1



: (3:17b)

We can indicate uncertainty in our analytical approximation
(3.15) by replacing

m(t) �! m(t)þ as(t) (3:18)

in equation (3.13), and then, for each t, finding the maximum
and minimum values of f (t) for α in some specific range.
Details of this calculation are given in appendix A. The
thin dashed blue lines in figures 2 and 3 indicate uncertainty
in f (t) obtained for α ∈ [ − 0.5, 0.5]. Note that while the
dashed blue curves emphasize that the time to invasion
distribution is only approximately given by the solid blue
curve, they do not represent formal confidence limits;
the ‘α level’ specified in (3.18) does not translate into a
confidence limit on f (t).
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Figure 2. The probability density function for the time to invasion (tinv, in units of the mean infectious period) estimated for four parameter sets (R0 ¼ 2, 4;
m = 0.01, 0.1; N1 = N2 = 105; R1,1 from equation (2.11)). A single infectious individual is assumed in population 1 at time 0 (I1(0) = 1). Grey bars show the
estimated density based on a frequency histogram constructed from 104 stochastic simulations (computed with the tau-leaping algorithm [41,42]) that did not
fizzle (see footnotes in §3.1 and §3.3). Dark blue curves show the analytical approximation (3.15), with dotted segments corresponding to the tinv range
where equation (A 5) is applicable. Pale blue bands indicate uncertainty in the approximation, based on equation (A 4) with α∈ [− 0.5, 0.5] (see appendix
A for derivation).
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3.3. Comparison of simulations and analytical
approximation

For four different parameter sets, figure 2 compares the
approximate density function (3.15) with the tinv distribution
obtained from 10 000 realizations of the fully stochastic
model.6 As expected from the approximate formula (3.15),
the probability density for tinv is sensitive to both the under-
lying transmissibility of the pathogen (R0) and the degree of
transmission coupling between the two patches (m).

The discrepancy between the simulations and analytical
approximation in figure 2 results from variance in the epi-
demic curve in population 1, which is less important when
the initial number of cases in population 1 is larger. To see
this, note from equations (3.4) and (3.17) that the coefficient
of variation in the force of infection in population 2 is

s(t)
m(t)

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e�r1t

p
ffiffiffiffiffiffiffiffiffi
I1(0)

p , (3:19)

which decreases rapidly with I1(0). Figure 3 shows that as
I1(0) is increased, the analytical approximation of the tinv dis-
tribution converges to the histogram obtained from
simulations. A standard measure of the difference between
two continuous probability distributions p and q is the K-L
divergence [45, p. 6],

DKL(pkq) ¼
ð1
�1

	
p(x)� q(x)



log

p(x)
q(x)

dx: (3:20)

We define q(x) to be the heights of the histogram bins, pro-
duced from stochastic simulations, in figure 3. p(x) is
equation (3.15) evaluated at the histogram bin midpoints.
We use the K-L divergence to show the convergence of
the analytical approximation of the tinv probability distri-
bution to the distribution obtained from simulations in
figure 4.
3.4. Maximum-likelihood estimation of coupling
parameter m

If we know the values of the underlying parameters (R0, m,
N1, N2), then equation (3.15), or easily computable histograms
like those shown in figure 2, allow us to estimate the prob-
ability of observing any particular time to invasion (tinv)
[46]. Our goal is to start with knowledge of
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— the patch population sizes (N1, N2),
— the disease reproduction number of the uncoupled

system (R0),
— the mean infectious period (1/γ)

and

— one or more observations of the time to invasion (tinv),

and then estimate the underlying transmission coupling m
between the two patches. To that end, in standard fashion,
we interpret the probability density of observing tinv given
knowledge of the underlying parameter set as the likelihood
of observing m given an observation of tinv [47, p. 170]. If we
use our approximation (3.15), the likelihood function is

L(m j tinv) ≃ f(tinv): (3:21)

Based on this approximation, figure 5 shows the MLE of the
coupling parameter m as a function of the observed time to
invasion tinv, for several reproduction numbers. The relation-
ship between the MLE of m and tinv is steeper for larger R0;
consequently, to estimate m with a desired precision, more
accurate estimates of tinv are necessary for diseases with
larger R0.

We can also approximate L(m j tinv) by constructing many
simulation-based histograms like those in figure 2, for a range
of values of m [46]. In figure 7, we show (as a heat map) a
likelihood surface constructed in this way. To obtain an
MLE of m for a given tinv from this simulation-based likeli-
hood surface, we (i) obtain a likelihood profile as a function
of m by slicing the surface at tinv, (ii) smooth the profile
with a cubic spline, and then (iii) find the maximum point
of the smoothed profile (figure 8).

Whether we use the analytically approximated or simu-
lation-based likelihood, we compute confidence limits
based on the likelihood ratio test (LRT) [47, ch. 6, pp. 189–
194]. The LRT, applied to our MLE m̂, assumes that the
deviance,

� 2 log
L(m j tinv)
L(m̂ j tinv)

� �
, (3:22)
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is approximately chi-squared distributed with one
degree of freedom. We obtain 95% confidence limits by
finding the interval along the likelihood profile of m for
which the deviance is less than half the critical value
of the chi-squared distribution (x21(0:95)=2 ¼ 1:92)
[47, p. 192].
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The MLE (m̂) and confidence interval for m, given an
observation of tinv, are shown with a black dot and error
bars in figures 6 and 7; figure 6 is based on our analytical
approximation, while figure 7 is based on simulations (see
appendix B for computational details). In figure 7, the solid
blue curve shows the MLE (m̂) as a function of tinv obtained
from our analytical approximation (3.21), and the dashed
blue curves show the analytically approximated confidence
bands. Because it was constructed using analytical formulae,
the time required to create figure 6 was negligible, whereas
more than 12 h of computation time were required to create-
figure 7.
3.5. MLE based on multiple observations of time to
invasion

If multiple events of disease spread from one population to
the other have been observed then much more accurate esti-
mation of the transmission coupling parameter m is possible.
It is important to emphasize in this context that since we are
aiming to estimate a parameter of the social contact net-
work—as opposed to a disease parameter—there is no need
to restrict attention to repeated invasions by a single patho-
gen. Independent invasions by unrelated infectious diseases
with the same mode of transmission could, in principle, be
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just as valuable for this purpose. Estimates of m from
independent invasions would require the assumption
that m does not change between events, along with accurate
estimates of disease parameters, R0 and γ, for each
invading disease.

Suppose n independent invasions have been observed
and let θi denote the set of observations {R0, g�1, tinv} associ-
ated with the ith invasion event. Then the likelihood of the
coupling parameter being m, given this sequence of n
observed invasions, is

L(m j{u1, . . . , un}) ¼
Yn
i¼1

L(m j ui): (3:23)

Each factor L(m j ui) can be approximated using equation
(3.15) or via a simulation-based, smoothed likelihood profile,
as in figure 8.

Figure 9 shows four examples of how an estimate of m
using the simulation-based approach improves as the
number of observed invasions increases from 1 to 64. In
each of four panels, the 64 invasions are assumed to be by
the same disease (so the same R0 and mean infectious
period). Exactly how the MLE and 95% confidence intervals
change as additional invasions are observed depends on the
sequence in which the observations occur. Each panel of
figure 9 shows three extreme cases, in which the 64 tinv obser-
vations occur from (i) shortest to longest, (ii) longest to
shortest, and (iii) from the median of the 64 observations to
median of the remaining 63, and so on. The equivalent
figure based on the analytical approximation (3.21) is
shown in figure 10.
4. Discussion
We have explored the feasibility of using the time taken
for an infectious disease to spread from one population to
another (the time to invasion, tinv) to estimate the degree of
social contact between two populations. We quantified the
degree of social contact with the proportion (m) of time that
individuals typically spend outside their home region.
We have considered only the most idealized situation in
which there are only two populations and the basic reproduc-
tion number, R0, and mean infectious period, 1/γ, of the
disease are known precisely. Even so—if based on a single
observed disease invasion—the confidence intervals we
obtain for the degree of coupling (m) stretch over an order
of magnitude (figure 8), which therefore provides only
crude information about the social connectivity of the two
populations. However, if multiple invasions are observed,
much more accurate estimation of m is possible (figure 9),
and the independent invasions need not be of the same
disease (§3.5).

We estimated the likelihood profile for the coupling
parameter m in two ways (figure 8), one based on large
numbers of stochastic simulations and the other based on
an analytical approximation that we derived in §3.1. The
simulation approach is more accurate (figures 2 and 9
versus 10), but significantly so only if the number of cases
in the source population is very small when the estimate is
made (figure 3). The large computational expense of the
simulation approach could be reduced by, for example, iter-
ated filtering [48] beginning from the analytically derived
MLE, but simulations would be hard to justify if * 10
cases had already occurred in the source population
(figure 3).

Our analytical approximation facilitates exploration of
how the relationship between observed tinv and MLE of m
depends on underlying disease characteristics—such as R0

and the mean infectious period—and on uncertainty in
estimates of those properties (figure 5).

It is worth noting that our analysis leading to an analyti-
cal approximation of the likelihood function (equation
(3.21)) depends only on the epidemic growing exponentially
in the source population, not on any details of the natural
history of infection. For more complex models (e.g. models
that include non-exponential waiting time distributions
[11,12,49,50]), equation (3.2) for the exponential growth
rate r1 in the source population would simply be replaced
by a different expression for the more realistic model
in question.
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4.1. Limitations
If attempts are made to apply our methodology to real epi-
demics, a number of limitations are important to bear in mind.

— The time to invasion tinv can be difficult to estimate
because of incomplete or inaccurate reporting, reporting
delays, asymptomatic cases, and lack of temporal resol-
ution in reporting (especially for historical data).

— If multiple invasions are observed, with long breaks
between them, the possibility of changes in population
characteristics in the times between epidemics should
be considered. This can be a particularly significant con-
cern when examining historical epidemics separated by
decades or centuries.

— In general, changes in human behaviour and other factors
may alter the social contact network during an epidemic
and consequently the coupling of subpopulations of a
meta-population.

4.2. Possible further developments
There are several natural directions for enhancement of the
methods developed in this paper.

— The exponential growth approximation in §3.1 could be
replaced with a better approximation of an epidemic
curve. For example, instead of equation (3.3), a logistic
curve could be used to approximate initial growth
in the source population beyond the exponential
phase [51,52], or an approximate or exact analytical
solution to a transmission model [53–55] could be used
estimate the entire epidemic curve in the source popu-
lation. Any phenomenological or mechanistic model
could be fitted to an observed source epidemic,
and could potentially lead to better analytical approxi-
mations of μ(t), the expected rate at which new
infections occur in the receiving population. This estimate
would replace equation (3.4a) and, after insertion in
equation (3.13), lead to an alternative version of equation
(3.15) for the probability density of the time to invasion.
Such analyses would potentially be valuable in situations
involving extremely weak coupling, where the prob-
ability of invasion after the exponential phase might
be substantial.

— Rather than relying on an approximation to the epidemic
curve in the source population, the actual time series of
observed cases could be used instead of equation (3.3)
(for example, by assuming each case is infectious
for exactly the mean infectious period). This would
lead to a (presumably more accurate) estimate of the
time to invasion distribution. This approach would
preclude fully analytical investigations, but would
presumably provide more accurate results (in weak
coupling situations).

— In a meta-population with more than two populations,
the time at which a first case occurs in each sub-
population could be used to inform the coupling in
the system. In principle, it could turn out to be easier
to estimate the average inter-population transmission
coupling when there are more subpopulations. On the
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other hand, potentially different degrees of coupling
between each pair of subpopulations increases the range
of possible contact networks. For familiar, circulating
pathogens, existing knowledge of disease parameters
and population sizes can be used to estimate coupl-
ing for the typically smaller populations that are
below the critical community size [56] and therefore
experience local extinctions and re-invasions. For newly
invading pathogens, coupling throughout the meta-
population can be estimated, but will be limited by
the accuracy of disease parameter estimates during
the invasion.

— While our analytical results apply to any 2 × 2 coupling
matrix, all of our illustrative examples assumed equal
coupling (m1 =m2). A systematic analysis of the effects
of unequal coupling parameters would be valuable.
This seems especially relevant in the context of coupling
between large cities and small towns, since one would
expect a larger proportion of residents of a small town
to visit a large city regularly than vice versa.

— In figure 5, we indicated the effect of uncertainty in R0. A
more systematic and complete analysis of the effects of
uncertainty in estimates of non-coupling parameters
would be valuable.

— We have focused on the time to invasion, but if there are
more than two subpopulations then the locations of the
source subpopulations that seed each invasion could
also be used to constrain estimates of connectivity.

— If age-stratified incidence or mortality data are available,
more detail about transmission coupling could be
extracted, in principle. Different age-groups have been
observed to make contact at different rates [57], and the
age distribution of infections in the source population
along with the age of the first case in the receiving popu-
lation could better inform estimations of inter-population
coupling than the time to invasion alone.
— In some situations, information about travel volumes and
destinations may be available, in which case ways to use
such data to constrain connectivity estimates (such as
with the use of Bayesian priors [58]) could be useful.

— In a situation where multiple independent invasions can
be observed, an estimate of the coupling parameter m
from earlier events, along with another estimate of m
from later events, might have non-overlapping confi-
dence intervals. This would be evidence of changes in
the underlying social contact network.

Our analysis in this paper has shown that while estimat-
ing coupling from the time to invasion is difficult, it is
possible. Enhancing methods of doing so will advance under-
standing of the mechanisms and predictability of infectious
disease outbreaks in meta-populations.
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Endnotes
1Similar formulations of cross-coupling can be found in the literature,
such as Murray & Cliff [32], Lloyd & May [33], Lloyd & Jansen [34].
We derive our formulation of coupling on a meta-population fully in
[35, §4.3.2], which we omit here since we are dealing with only two
populations. An alternative approach to the two-patch invasion pro-
blem, based on a model with explicit travel between patches, is
presented by Yan et al. [36].
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2In the stochastic setting, with probability (1=R1,1)

I1(0), an outbreak in
population 1 fizzles out without causing a full blown epidemic [43,
§7.6.2, p. 321]. Nevertheless, the second population is sometimes
infected before the outbreak fizzles out in the first population. This
effect is larger for lower R0, and for sufficiently small R0 must be
taken into account to understand the expected distribution of tinv.
We ignore fizzles in our analysis, but in figures 2 and 3 we indicate
the number of simulations that fizzled and were therefore ignored.
3The mean field refers to the ensemble mean of all stochastic
realizations.
4In the derivation that follows, we assume that the incidence in popu-
lation 1 must be approximated in order to estimate the distribution of
the time to invasion, tinv. However, if the actual trajectory of inci-
dence in population 1 is known, then this distribution can be
computed exactly, since the force of infection on population 2 can
be calculated at each point in time.
5The derivation presented here follows along the lines of standard
survival analysis, where our hazard function is characterized by
the force of infection on population 2 by population 1 (e.g. [44, p. 13]).
6We keep a stochastic simulation only if two conditions are satisfied:
(i) the second population is eventually infected (I2(t) > 0 for some t >
0), and (ii) the first population does not fizzle. We consider the out-
break to have fizzled in population 1 if the prevalence in that
population drops to zero before the cumulative proportion of the
population infected reaches the level corresponding to the peak of
the deterministic epidemic curve (at the peak, the proportion suscep-
tible, S1(t)/N1, is 1=R1,1 (see equation (2.11))). The number of
susceptibles in the first population, S1(t), does not increase, and
decreases as individuals become infected. Once the condition
S1(t)=N1 , 1=R1,1 is satisfied, dI1=dt (equation (2.10b)) remains
strictly negative for all future times. Thus, the condition defining a
non-fizzle is I1(t) > 0 for all t > 0 until S1(t)=N1 , 1=R1,1.
Appendix A. Approximation error on tinv
distribution
The ensemble mean and variance of the force of infection from
the source population (1) to the receiving population (2) are
given in equations (3.4) and (3.17), respectively. To quantify
uncertainty on the distribution of the time to invasion of popu-
lation 2, we must evaluate the integral in equation (3.13) for
μ(t) + α σ(t) rather than μ(t), i.e. we must calculate

fa(t) ¼
�
m(t)þ as(t)

�
exp

n
�
ðt
0

�
m(s)þ as(s)

�
ds
o
: (A 1)

(Note that f(t) in equation (3.13) corresponds to f0(t) in this
notation.) To evaluate the integral in equation (A 1) explicitly,
we useðt

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ers(ers � 1)

p
ds ¼ 1

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ert(ert � 1)

p
� log

	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ert � 1

p
þ

ffiffiffiffiffi
ert

p 
h i
:

(A 2)

Thus, with μ and σ given by equations (3.4) and (3.17), respect-
ively, and writing r for r1 to reduce clutter, we obtain the
explicit expression,

fa(t) ¼
h
m0e

rt þ as0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ert(ert � 1)

p i
� exp

nm0

r
	
1� ert


o
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n
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s0

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ert(ert � 1)

p
� log

	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ert � 1
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þ

ffiffiffiffiffi
ert

p 
h io
:

(A 3)

For a given α range (αmin≤ α≤ αmax, where normally αmin =
−αmax), we then define upper and lower error estimates,

fU(t) ¼ max
a

fa(t) :amin � a � amax

��
(A 4a)

and

fL(t) ¼ min
a

�
fa(t) :amin � a � amax

�
, (A 4b)

which correspond to the blue bands in figures 2 and 3. For any
given t, at least one of the upper and lower estimates is obtained
at an edge of the α range; solving ∂fα/∂α= 0 for α, we find a single
critical point

acrit(t) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ert � 1

p
(r� m0 e

rt)þ m0 e
rt=2 log

	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ert � 1

p
þ ert=2
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ert=2(ert � 1)�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ert � 1

p
log

	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ert � 1

p
þ ert=2


i :

(A 5)

Appendix B. Numerical details of simulation-
based likelihood
This appendix relates to the construction of figure 7, as
described in §3.4.

For each of 100 m values, we measured time to invasion
tinv from 104 stochastic simulations using the adaptivetau
package in R [41], and grouped these tinv values into 100
bins on the tinv axis. More precisely, our 100 m values,
which we refer to as mi, were spaced logarithmically between
0.001 and 0.1. For each mi, and for R0 ¼ 2, 4, we produced
nsim = 104 simulations and measured the corresponding tinv
for each simulation. We then divided the full range of result-
ing tinv values into 100 bins, bj. We produced a grid where
Cell(i, j ) contained the number of simulations with m =mi

and tinv in bin bj. We used the grid of m vs. tinv simulation
frequencies to produce likelihoods of tinv given m,

L(tinvjmi) � Cell(i, j)
nsim

: (B 1)

We produced a full grid of log-likelihoods, i.e. logL(tinvjmi)
(figure 7). We select the bin bj that contains the observed
tinv. The log-likelihoods of column j yield the likelihood pro-
file of the observed tinv with respect to m, and the cell with
the maximum likelihood indicates the MLE of m given tinv
(figure 8).
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