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Incidence of infection time-series data for the childhood diseases measles, chicken pox, rubella
and whooping cough are described in the language of multifractals. We explore the potential
of using the wavelet transform maximum modulus (WTMM) method to characterize the mul-
tiscale structure of the observed time series and of simulated data generated by the stochastic
susceptible-exposed-infectious-recovered (SEIR) epidemic model. The singularity spectra of
the observed time series suggest that each disease is characterized by a unique multifractal
signature, which distinguishes that particular disease from the others. The wavelet scaling
functions confirm that the time series of measles, rubella and whooping cough are clearly mul-
tifractal, while chicken pox has a more monofractal structure in time. The stochastic SEIR
epidemic model is unable to reproduce the qualitative singularity structure of the reported
incidence data: it is too smooth and does not appear to have a multifractal singularity struc-
ture. The precise reasons for the failure of the SEIR epidemic model to reproduce the correct
multiscale structure of the reported incidence data remain unclear.

Keywords: infectious disease; multifractal; wavelet
1. INTRODUCTION

Accurate modelling of the transmission of vaccine-
preventable childhood infectious diseases is of great
importance as morbidity and mortality rates conti-
nue to be significant, particularly in some developing
nations [1]. Our understanding of the origin of recurrent
outbreaks [2,3] and changes in the period between succes-
sive outbreaks [4–6] has improved substantially in the
last few decades. Further developments in our under-
standing of these dynamics will enhance our ability to
identify models that can guide the design of effective
control and eradication strategies [7].

In this paper, we focus on two fundamental questions
related to the statistical analysis of epidemiological time
series. First, is it possible to identify a disease from a
statistical analysis of incidence time-series data
alone? Second, does the standard susceptible-exposed-
infectious-recovered (SEIR) epidemic model capture the
multiscale time structure of the observed incidence data?

Power spectra (based on the Fourier transform) are
traditionally used to characterize the frequency content
of a signal, but they provide no information about
the frequency content at a particular time. That is,
Fourier methods work well for stationary time series,
but not for non-stationary signals, where the frequency
content changes over time. Scalograms based on the
wavelet transform provide simultaneously both time
orrespondence (earn@math.mcmaster.ca).
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and frequency information, which is important for epide-
miological data where the frequency content is typically
complex and non-stationary in time.

Wavelet analysis can also characterize the smooth-
ness of time series by using the wavelet transform
maximum modulus (WTMM) technique [8–10] to con-
struct the singularity spectrum associated with the
fractal or multifractal structure of the data. The singu-
larity spectrum is a particularly useful tool for analysing
and comparing time series with irregular (possibly
chaotic) multiscale structure. The WTMM method
has been used to analyse a wide variety of time-series
data from biological systems, such as electrocardio-
graphic (ECG) signals [11], human gait recordings
[12], electroencephalographic (EEG) signals [13] and
functional magnetic resonance imaging (fMRI) time
series [14]. In particular, it has been suggested that
the width and the peak value of the singularity spec-
trum of ECG signals are influenced by disease and
ageing, and may therefore have diagnostic value.
Indeed, in a recent article, Chiu et al. [15] claim that
a particular heart drug can actually restore the
normal singularity spectrum of heart beat time series
in patients with advanced congestive heart failure.
These investigations suggest that singularity spectra
constructed using the WTMM method are a valuable
tool for understanding and classifying the statistics of
complex biological time series.

A number of studies have already used wavelet-based
techniques to analyse recurrence in epidemiological
This journal is q 2012 The Royal Society
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time series [16,17]. They used local wavelet power
spectra to investigate patterns of recurrence in the inci-
dence of infection time series for childhood
diseases; however, they did not look for any associated
fractal structure.

In this paper, we use wavelet-based multifractal
analysis to characterize and understand the incidence
of infection time series for a number of important child-
hood diseases. We also investigate whether synthetic
data generated by the stochastic SEIR epidemic model
can be made to match qualitatively the singularity spec-
trum (and hence multifractal structure) of the observed
time-series data for common childhood diseases. In brief,
our aims are to determine whether infectious disease
time series can be characterized by ‘multifractal signa-
tures’ and, if so, whether the standard stochastic SEIR
model can reproduce these signatures. We show that
each infectious disease does indeed appear to be charac-
terized by a unique multifractal signature, but we have
not been able to reproduce these signatures with the sto-
chastic SEIR model. We believe that this is the first
study to apply the language of multifractal analysis to
epidemiological time series.

Section 2 introduces the wavelet-based multifractal
formalism and §3 describes the epidemiological time
series and stochastic SEIR model. In §4, the main
results are presented, and a brief discussion and
conclusions are given in §5.
2. WAVELET THEORY AND DATA
ANALYSIS

The wavelet transform of a signal s(t) is given by

~s ða; bÞ ¼
ðþ1

�1

sðtÞ�ca;bðtÞdt; ð2:1Þ

where the ‘mother wavelet’ cðtÞ has been shifted to
time b and dilated or compressed to scale a

�ca;bðtÞ ¼
1

a1=p
�c

t � b
a

� �
: ð2:2Þ

In this definition, p ¼ 2 gives L2 normalization,
which is used when calculating wavelet power spectra,
while p ¼ 1 gives L1 normalization, which is used
when measuring local regularity. A large-amplitude
wavelet coefficient ~sða; bÞ indicates that at time b the
signal has a significant variation at frequency 1/a.

The choice of analysing wavelet (mother wavelet) is
guided by the application as well as by the structure of
the data to be analysed. Complex-valued wavelets, such
as the Morlet wavelet, are ideal for capturing a signal’s
oscillatory behaviour (e.g. local wavelet power spectra)
as they provide information about both amplitude and
phase. Real-valued wavelets, such as the Gaussian
family of wavelets, return only a single component
making them well suited to measure local regularity
(i.e. local singularity strength). The appropriate
choice of a mother wavelet will be discussed separately
for the computation of the wavelet power spectrum and
the measurement of local regularity.
J. R. Soc. Interface (2012)
2.1. Power spectra

The wavelet power spectrum, also known as the
scalogram, is defined as

Pða; bÞ ¼ j~sða; bÞj2; ð2:3Þ

and the total energy of a signal s is its wavelet power
spectrum integrated over all scales and times:

E ¼
ð1

�1

ð1

0
Pða; bÞda db: ð2:4Þ

To compute scalograms, we adapted the online
wavelet toolbox provided by Torrence & Compo [18],
which includes a guide for wavelet spectral analysis.
Before taking the wavelet transform of the time-series
data, we normalize the data by subtracting its mean
and dividing by its standard deviation. It can be
shown that for Gaussian white noise with mean zero
and variance 1 the expectation of P(a, b) is 1. Thus,
using the previous normalization, P(a, b) directly
measures the power of the scalogram relative to white
noise. This provides a useful diagnostic for noisy data
since we can say, with 95 per cent confidence, that the
part of the wavelet power spectrum above the
Pða; bÞ ¼ 2 contour is significant (i.e. not due simply
to random white noise fluctuations). We plot this 95
per cent confidence contour on all scalogram plots to
identify the most significant features. Note that shifting
by the mean and normalizing by the standard deviation
also make it easy to compare the periodic structure of
different datasets (provided the sampling rate is also
taken into account).

We approximated continuous wavelet transforms
using the fast Fourier transform (FFT). If the data
are not periodic, the FFT introduces edge effects (dis-
continuities at the edge of the time series). To reduce
this problem, zeros were added to both ends of the
time series before transforming (this is known as zero
padding). Two contours identifying the so-called cone
of influence of the edge effects are plotted on the scalo-
grams to indicate which areas in position and scale may
be influenced by non-periodicity of the data; between
these contours, edge effects are considered negligible.

Consistent with Grenfell et al. [17], we chose the
Morlet wavelet

cðtÞ ¼ csp�1=4e�ð1=2Þt
2
eiv0t ; ð2:5Þ

to compute scalograms for each dataset. For the
Morlet wavelet with v0 ¼ 6, the value of the Fourier
period is l ≃ 1:03, so scale and period are nearly
equivalent [18]. This allows us to easily plot period
versus time (rather than scale versus time). More
importantly, Heisenberg’s uncertainty principle means
that there is a tradeoff between localization in frequency
and time. The Morlet wavelet provides excellent
frequency resolution at the expense of temporal resol-
ution. This trade-off is near-optimal for scalograms,
but better temporal resolution is needed for analys-
ing local singular structure, as we explain in the
following section.

http://rsif.royalsocietypublishing.org/


Table 1. Interpretation of Hölder exponent a in terms of the local regularity of a function. Note that if f(t) has exponent a, then
df =dt has exponent a� 1 and

Ð t
0 f ðuÞdu has exponent aþ 1. If f is Lipschitz a uniformly (for the same k) in a neighbourhood of

a point t, and a . n (n is a positive integer), then f is n-times continuously differentiable in this neighbourhood [9].

Hölder exponent a singularity type example

a . 1 continuous, differentiable smooth curve
a ¼ 1 continuous, differentiable almost everywhere Brownian motion: a ¼ 1=2
0 , a , 1 continuous, non-differentiable Heaviside function: a ¼ 0
�1 , a � 0 discontinuous, non-differentiable Gaussian noise: a ¼ �1=2
a � �1 not locally integrable Dirac pulse: a ¼ �1
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2.2. Singularity spectra

The decay of wavelet coefficients is determined by the
local regularity of the signal, and therefore the local
regularity of a signal may be determined by measuring
the rate of decay of the wavelet coefficients. This is the
basis of the WTMM method.

The Lipschitz (or Hölder) exponent, a, is a measure
of the local regularity of a function. A function, f(t),
satisfies a Lipschitz condition of order a at a point, t,
if there is a non-negative real number k such that

jf ðt þ DtÞ � f ðtÞj � kjDtja as Dt ! 0; ð2:6Þ

f being Lipschitz of order 0 is equivalent to being
bounded. If k ¼ 0, then the Lipschitz condition is equiv-
alent to the ordinary definition of continuity. The local
Hölder exponentaðtÞ is defined to be the maximum expo-
nent for which the above condition holds, i.e. a (t) ¼
supfa0 : f is Lipschitz of order a0 at the point tg. The
function f(t) is said to be singular at the point t if
aðtÞ , 1 and the strength of the singularity is greater if
aðtÞ is further from 1.

If �1=2 , a , 0, the data are persistent or positively
correlated, with long-term memory effects, while if
�1 , a , �1=2 the data are anti-persistent or nega-
tively correlated (a ¼ �1=2 implies white noise, i.e.
the temporal autocorrelation function is a d-function).

When a persistent time series increases/decreases
from tn�1 to tn, then it is expected to increase/decrease
from tn to tnþ1. Conversely, for an anti-persistent time
series, an increase is expected to be followed by a
decrease. The smoothness of a function as measured
by its local Hölder exponent is summarized in table 1.

A signal is said to have a multifractal structure when
the Hölder exponent varies in time. In contrast, a
monofractal signal has the same Hölder exponent at
each time point in the signal. The spectrum of singu-
larities of the entire signal can be estimated using the
wavelet transform maximum modulus (WTMM)
method [9] described below.

A WTMM [9] is a point ða0; b0Þ in scale-time space at
which j~sða0; bÞj attains a strict local maximum at a fixed
scale a ¼ a0. This implies, in particular, that

@~sða; bÞ
@b

����
ða0;b0Þ

¼ 0: ð2:7Þ

The existence of a singularity at a point b ¼ b�
means that there is a sequence of local wavelet
J. R. Soc. Interface (2012)
maxima at each scale that converges to the point b�
as scale a0 ! 0. Only the largest amplitude WTMM
in each interval of size a0 is retained at each scale a0,
and these WTMMs are connected across scales to
form the WTMM lines. The rate of decay of the wavelet
moduli along the WTMM lines with decreasing scale
estimates the pointwise Lipschitz regularity. If j~sða; bÞj
has no modulus maxima at fine scales, then f is
locally regular.

The distribution of singularities is described by the
singularity spectrum, D(a), which represents the pro-
portion of Lipschitz a singularities that occur at any
time for a given scale a. The regularity of a signal is
thus characterized by the regularity of its subsets.

Define a set fbnðaÞgn[Z to be the temporal positions
of the local maxima at a fixed scale a. Now, define a
partition function Z:

Zða; qÞ ¼
X

n

j~sða; bnÞjq : ð2:8Þ

This function measures the sum at a power q of
all the aforementioned local modulus maxima. The
wavelet itself defines the shape of the partitions,
and the scale parameter dictates the size. WTMMs
are used to indicate how the partitions should be
taken at each scale. The scaling exponent t(q) measures
the asymptotic decay of Z(a, q) at fine scales a for
each q [ R:

tðqÞ ¼ lim inf
a!0

log Zðq; aÞ
log a

: ð2:9Þ

The scaling exponent t(q) is the Legendre transform
of the singularity spectrum D(a) [9]. Jaffard [10] gener-
alized the result of Bacry et al. [8] which relates the
scaling exponent, t(q), to the singularity spectrum.

Suppose the support of D(a) is L ¼ ½amin;amax�.
Let c be a wavelet with n . amax vanishing moments.
If f is self-similar then

tðqÞ ¼ min
a[L

q aþ 1
2

� �
� DðaÞ

� �
: ð2:10Þ

Computing the derivative of equation (2.10) reveals
qðaÞ ¼ dD=da. From this computation and using the
fact that t(q) is at a minimum, we derive that D(a) is
a convex function, and t(q) is an increasing and
convex function. For the Legendre transform to be
invertible, D(a) must be convex. Details of the proof
are given in Jaffard [10]. Note that the negative of the

http://rsif.royalsocietypublishing.org/


2170 Multifractal signatures of infectious diseases A. M. Holdsworth et al.

 on September 4, 2012rsif.royalsocietypublishing.orgDownloaded from 
scaling function is used in the computation giving a
concave spectrum

DðaÞ ¼ min
q[R

q aþ 1
2

� �
� tðqÞ: ð2:11Þ

D(a) is the fractal dimension of the set with Holder
exponent a. If the set of points where the signal
is Lipschitz/Holdera is an emptyone, them by convention
DðaÞ ¼ �1.

A closer look at equation (2.10) shows that the maxi-
mum or peak of the singularity spectrum occurs at q ¼ 0,
that is,

�tð0Þ ¼ max
a

f ðaÞ: ð2:12Þ

The right-hand side of D(a) is computed from
negative q, and the left from positive values of q.

Classifying a signal as either monofractal or multifrac-
tal is an important, but delicate, aspect of multifractal
analysis. In principle, the singularity spectrum of a true
monofractal should be a single point, Dða0Þ ¼ 1. How-
ever, the wavelet-based multifractal formalism often
generates spurious data points in the singularity spec-
trum which cause the singularity spectrum of a
monofractal to have a finite (although small) width.
This may lead to the false conclusion that a signal is a
multifractal, when it is in fact a monofractal.

Notice from equation (2.10) that there is an impor-
tant linear relationship between t(q) and the Hurst
exponent [19], h ¼ a0 þ 1=2, for monofractal signals

tðqÞ � qh � 1: ð2:13Þ

Therefore, linear behaviour of t(q) (and the narrow
width of the singularity spectrum) indicates the pres-
ence of a monofractal, while nonlinear behaviour (and
a wide singularity spectrum) indicates multifractality.
2.3. Numerical implementation of the wavelet
transform maximum modulus method

The numerical analysis tools required to implement the
WTMM method are modifications of codes which are
readily available from WAVELAB [20], an open source
wavelet toolbox for signal processing.

We suggested above that real wavelets are an appro-
priate choice for examining the local regularity of a
signal. To choose the best wavelet for the WTMM
method among the real wavelets available, we consider
various intrinsic properties of the mother wavelet.

A function cðtÞ is said to have p vanishing moments ifðþ1

�1

tkcðtÞdt ¼ 0 ð2:14Þ

for 0 � k , p. Wavelets with n vanishing moments can
only detect the regularity, a, of f for a , n. Theorem
6.5 of Mallat’s book [9] proves that choosing a Gaussian
wavelet guarantees that all maxima lines propagate
to the finest scales. The family of Gaussian wavelets
includes all derivatives of the Gaussian function.
They have infinitely many vanishing moments, and the
nth derivative of a Gaussian can measure Lipschitz
exponents up to order a , n.
J. R. Soc. Interface (2012)
It is advantageous to choose a wavelet with a high
number of vanishing moments to measure higher orders
of regularity, but increasing the number of vanishing
moments also increases the number of WTMM lines in
the cone of influence [21]. The presence of many lines
makes it more difficult to track the WTMM lines and
accurately detect the singularities present in the time
series. Therefore, the number of vanishing moments
should be kept to a minimum consistent with the
expected regularity of the signal to be analysed.

The childhood infection time series are highly
oscillatory with many isolated singularities. Therefore,
choosing a wavelet with minimal effective compact sup-
port increases the resolution in our analysis of the
singularity structure because the larger the effective
compact support is, the more wavelets there are that
intersect a particular singularity. As the order of the
Gaussian derivative increases, the number of wavelet
oscillations increase. To find the correct balance
between having enough zero crossings and a minimal
compact support, a range of Gaussian wavelets were
tested on the infectious disease time series.
3. DATASETS

Our study compares the multifractal singularity
structure of incidence time series for several childhood
infectious diseases (measles, chicken pox, rubella and
whooping cough, from several geographical loca-
tions) with synthetic data produced by the stochastic
SEIR model.

3.1. Reported incidence time series

The time series used in this study can be found at
the International Infectious Disease Data Archive
(IIDDA), an online resource for infectious disease data
[22]. In the rare instances where data points were missing,
the values were interpolated with cubic splines so as to
minimize any effects on the singularity spectrum. Any
negative interpolations were set to zero. We analysed
data for four common childhood infectious diseases
(measles (Meas), rubella (Rub), whooping cough (WC)
and chicken pox (CP)) from four Canadian provinces
(British Columbia, Saskatchewan, Manitoba and
Ontario), two American cities (New York and Baltimore)
and two British cities (London and Liverpool).

Figure 1a shows measles incidence in Ontario (1904–
1989) and figure 1b shows the corresponding wavelet
power spectrum. High-amplitude wavelet coefficients
are isolated by dark contours and reveal a distinctive
period 1 recurrence in the time series. An annual rise in
infections is attributed to an increase in contact rates at
the beginning of the school year [3,4], while the presence
of significance contours at non-integer values of the
period indicates non-seasonal recurrence [23]. After
mass measles vaccination was introduced in the late
1960s, the number of cases dropped dramatically. A dis-
tinct decrease in the number of high-amplitude wavelet
coefficients is apparent from the scalogram.

A strong yearly recurrence of chicken pox is unmis-
takable in figure 2. These monthly data were collected
from 1928 to 1972 in New York City.

http://rsif.royalsocietypublishing.org/
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Figure 1. (a) Reported monthly measles cases in Ontario, 1904–1989. (b) Corresponding wavelet power spectrum computed using
the Morlet wavelet. The 95% confidence level (compared to Gaussian white noise) is indicated by black contours. The cone of
influence indicates that part of the wavelet power spectrum that is contaminated by end effects. (Online version in colour.)
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Figure 2. (a) Reported monthly chicken pox cases in New York City, 1928–1972. (b) Corresponding wavelet power spectrum as in
figure 1. (Online version in colour.)

Multifractal signatures of infectious diseases A. M. Holdsworth et al. 2171

 on September 4, 2012rsif.royalsocietypublishing.orgDownloaded from 
The incidence of whooping cough, as reported in
Ontario from 1904 to 1989, is plotted in figure 3a.
The wavelet scalogram in figure 3b demonstrates
period 3–5-year recurrence after 1945.

Figure 4a shows monthly incidence of rubella in
Ontario from 1929–1989. The scalogram illustrates
complex patterns of recurrence with both seasonal and
non-seasonal peaks.

3.2. Simulated incidence time series

The WTMM method was also applied to incidence
data generated by the standard stochastic SEIR
J. R. Soc. Interface (2012)
epidemic model [7,24]. The SEIR model divides the
host population into compartments containing sus-
ceptible (S), exposed (E), infectious (I) and recovered
(R) individuals. Susceptibles have no immunity and
can become infected upon contact with an infectious
individual. Exposed individuals have been infected
but are not yet infectious. Infectious individuals
can infect susceptibles who they contact. Recovery is
assumed to entail lifelong immunity. Assuming a
mass-action contact process, the mean-field in the
large population size limit [25] is governed by the stan-
dard deterministic SEIR model [7,26], which is specified

http://rsif.royalsocietypublishing.org/
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Figure 3. (a) Reported monthly whooping cough cases in Ontario, 1904–1989. (b) The corresponding wavelet power spectrum as
in figure 1. (Online version in colour.)
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Figure 4. (a) Reported monthly rubella cases in Ontario, 1929–1989. (b) The corresponding wavelet power spectrum as in
figure 1. (Online version in colour.)
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by the following set of differential equations:

_S ¼ nð1� pÞ � bSI � mS ; ð3:1aÞ
_E ¼ bSI � sE � mE; ð3:1bÞ
_I ¼ sE � gI � mI ð3:1cÞ

and _R ¼ npþ gI � mR ð3:1dÞ

The total population size is N ¼ S þ E þ I þ R. n is
the birth rate, which varies seasonally in reality [27]
but is usually assumed constant or very slowly varying
[4,28]. p is the proportion of individuals who are vacci-
nated before encountering infectious individuals. m is
the per capita death rate (from ‘natural’ causes;
J. R. Soc. Interface (2012)
disease-induced mortality is negligible for the diseases
we consider here). If n ¼ mN , then N remains constant
(which was true in our simulations). b is the trans-
mission rate, which is typically time-varying for
childhood infections (as a result of the aggregation of
children in schools in term-time [3]). In our simulations,
we used sinusoidal seasonal forcing

b ¼ b0ð1þ b1 cosð2ptÞÞ: ð3:2Þ

Thus, b0 is the mean transmission rate and b1 the ampli-
tude of seasonality. Here s is the (constant) rate at
which exposed individuals become infectious (so the
mean latent period is 1=s). g is the (constant) rate of

http://rsif.royalsocietypublishing.org/
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Figure 5. (a) Simulated weekly measles incidence, generated by the stochastic SEIR model with basic reproduction number
R0 ¼ 17, mean latent period 1=s ¼ 8 days, mean infectious period 1=g ¼ 5 days, seasonal amplitude b1 ¼ 0:08 and a population
of N ¼ 2 million. (b) Corresponding wavelet power spectrum as in figure 1. (Online version in colour.)
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Figure 6. (a) Simulated weekly chicken pox cases, generated by the stochastic SEIR model with basic reproduction number
R0 ¼ 10:5, mean latent period 1=s ¼ 8 days, mean infectious period 1=g ¼ 5 days, seasonal amplitude b1 ¼ 0:08 and a popu-
lation of N ¼ 107. (b) Corresponding wavelet power spectrum as in figure 1. (Online version in colour.)
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recovery, so the mean infectious period is 1=g. The basic
reproduction number, the average number of secondary
infections caused by an infectious individual in a wholly
susceptible population, is [7]

R0 ¼
bs

ðgþ mÞðsþ mÞ : ð3:3Þ

We implemented the stochastic SEIR model using
the standard Gillespie algorithm [29] with event rates
given by each of the terms in equations (3.1a–d).
J. R. Soc. Interface (2012)
While the SEIR model ignores many aspects of real
demographic and epidemiological interactions, it never-
theless successfully captures many features of real
epidemics [7,28].

Figures 5 and 6 show simulation time series and
wavelet power spectra for comparison with the reported
incidence in the earlier figures. Figure 5 was genera-
ted with parameter values appropriate for measles
(R0 ¼ 17, 1=s ¼ 8 days, 1=g ¼ 5 days, amplitude of
seasonal forcing b1 ¼ 0:08) and a population of two
million. The scalogram in figure 5b exhibits the same
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period 1 recurrence observed for the Ontario measles
data in figure 1, but shows significant period 2 recur-
rence which is not present in the Ontario data and
does not exhibit the complexity of recurrence observed
in Ontario over longer intervals of time.

Figure 6 is based on a simulation of chicken pox
dynamics (R0 ¼ 10:5, 1=s ¼ 8 days, 1=g ¼ 5 days,
b1 ¼ 0:08) and N ¼ 10 million. Again, significant
period 1 coefficients reveal an annual pattern of recur-
rence in figure 6b. A similar pattern was observable
from the reported incidence of chicken pox in New York
City shown in figure 2.
4. RESULTS

4.1. Analysis of incidence of infection
time-series data

To select the optimal wavelet for the time series, we
computed the singularity spectrum D(a) using Gaus-
sian analysing wavelets of increasing order with
q [ ½�5; 5�. Figure 7a shows the spectra computed
from the monthly Ontario measles incidence. The
J. R. Soc. Interface (2012)
figure is a representative example of convergence results
for measles data, but the location of the peak varies
with geographical location. The fourth-order Gaussian
wavelet was the lowest order Gaussian wavelet for
which we observed convergence, and therefore was
the optimal choice.

Figure 7b shows that D(a) for weekly reported
chicken pox in Ontario is also convergent, having simi-
lar peak locations and overall shapes for all orders of
wavelets tested. All of the available chicken pox,
whooping cough and rubella data also produced con-
vergent spectra and confirmed that the fourth-order
wavelet is an appropriate choice for comparisons of
the observed time series.

Figure 8 shows that the distribution of singularities
is nearly identical for the chicken pox time series
from British Columbia, Saskatchewan, Manitoba and
Ontario. These results suggest that the nature of the
disease itself may determine the shape of the singularity
spectrum. We propose that this characteristic shape is
the multifractal signature of the disease.

Figure 9 compares the singularity spectra for measles
incidence in several widely separated geographical
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locations. This figure shows that measles incidence
appears to have a distinctive singularity structure,
regardless of location. All of the measles singularity spec-
tra share the same qualitative features: they are all
smooth on the top with a wide base (characteristic of a
true multifractal statistical structure in time). This dis-
tinguishes the measles spectra from the chicken pox
spectra which have pointed tops with a narrow base (sug-
gestive of an approximately monofractal statistical
structure in time). The scaling functions produced by
the chicken pox datasets are more linear than those of
measles. This indicates that chicken pox incidence is
approximately monofractal, while measles incidence has
a true multifractal structure (recall that t(q) is a straight
line for a true monofractal). Indeed, measles incidence
appears to be more singular in structure than the chicken
pox incidence, i.e. the peaks of the measles singularity
spectra are generally located at smaller values of a.

Figure 10 shows the same data as figure 9, but the
weekly Liverpool and London time series have been
aggregated four-weekly to approximate a monthly
reporting interval. This temporal aggregation shifts
the peak of the spectrum to the left and narrows the
base of the spectrum (for both cities). It is evident
from the comparison of figures 9 and 10 that changes
J. R. Soc. Interface (2012)
in the reporting interval can have non-negligible effects
on the singularity spectrum. Comparisons of different
datasets should be made using the same (or a similar)
reporting interval.

Extending the analysis to rubella and whooping
cough reveals that each disease is characterized by a
unique singularity structure as evinced by the quali-
tative differences between their respective singularity
spectra. Figure 11 illustrates these differences between
singularity spectra computed from monthly reported
incidence. The qualitative shape of the whooping
cough spectrum starkly contrasts the narrow pointed
shape of the chicken pox spectrum and their associated
scaling functions confirm that the former exhibits a
broader multifractal structure. These comparisons,
together with the very similar chicken pox spectra
from different geographical locations, support the
idea that each disease is characterized by a unique
multifractal signature.

Comparisons of the spectra resulting from higher
frequency (weekly) incidence from each of the diseases
confirm the presence of such signatures and an example is
presented in figure 12. These higher-frequency (weekly)
whooping cough data produce a more distinctly multi-
fractal spectrum than was observed in the monthly
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case. Again, each disease appears to have a unique
singularity structure that can be identified qualitatively.

We propose that the singularity spectrum provides a
distinctive signature that may be used to characterize
different diseases based solely on a statistical analysis of
incidence time series. An accurate numerical model
should be able to reproduce this multifractal signature,
at least qualitatively. In §4.2, we investigate whether
the stochastic SEIR epidemic model, which is the stan-
dard mathematical model for the childhood diseases we
have examined, is capable of reproducing the multifractal
structure we have detected in the incidence data.

Previous work [4,23,28] has demonstrated that
substantial changes in susceptible recruitment rates
(determined by birth and vaccination rates) induce
dynamical transitions. We therefore divided several
time series into segments of approximately constant
recruitment and recomputed the singularity spectra for
each segment separately (we did this for whooping
cough in London and measles in London and Liverpool).
Our investigation into the effects of these dynamical
transitions is restricted by the limitations of the
WTMM method, which requires large numbers of data
points to accurately measure the local regularity of a
time series. For this reason, we considered only weekly
data for this analysis.

Changes in London whooping cough incidence were
strongly influenced by the introduction of whole-cell
J. R. Soc. Interface (2012)
vaccination in 1957 [30]. Figure 13 shows the singularity
spectrum for each period of approximately constant sus-
ceptible recruitment. The main qualitative difference is
that the peak location for the full time series is more nega-
tive (i.e. more singular) than the peak locations of those
spectra generated by the divided regions. Although the
peak locations vary slightly, the qualitative signature of
the data is similar for all three time periods.

Figure 14 shows the singularity spectra for weekly
measles incidence in London (figure 14a) and Liverpool
(figure 14b). The partition of the data was determined
by the time of introduction of measles vaccine. For
Liverpool, the spectra for post-vaccination data lie
further to the right (i.e. smoother) than for the pre-vac-
cination era. This suggests that the introduction of the
vaccine caused the disease dynamics to become more
regular. For London, the pre-vaccination spectrum is
much broader (i.e. more multifractal) than the post-
vaccination spectrum, but the peak location changes
very little. This indicates that the introduction of
the vaccine made the time series more monofractal
(i.e. regularly irregular).

The pre-vaccination spectra from London and Liver-
pool are qualitatively different. The reasons for these
differences are unclear, though we note that the birth
rate was much higher in Liverpool and that this induced
an annual cycle of epidemics in Liverpool and a biennial
cycle in London [4].
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4.2. Singularity spectra of susceptible-exposed-
infectious-recovered epidemic simulations

The WTMM method was applied to incidence time series
generated by the stochastic SEIR epidemic model with
parameters typical of measles in the pre-vaccination era (
R0 ¼ 17, 1=s ¼ 8 days, 1=g ¼ 5 days) and a population
of 2 million people. For comparison with the reported
data, the optimal analysing wavelet is found by comput-
ing the singularity spectra using increasing orders, n, of
Gaussian analysing wavelets.

Figure 15 shows singularity spectra for simulated
measles incidence with seasonal forcing amplitude
b1 ¼ 0:08. The spectrum shifts monotonically to the
right as n increases from 2 to 16. The same result was
found for simulations with other seasonal amplitudes
b1. The spectrum clearly does not converge with increas-
ing order of analysing wavelet, and much of the DG16
spectrum extends to a � 1, suggesting that large subsets
of the signal are in fact continuous and differentiable.

The optimal wavelet analysis was repeated for simu-
lated chicken pox incidence with a population size of
10 million (R0 ¼ 10:5, 1=s ¼ 8 days, 1=g ¼ 5 days) in
figure 16. The regularity of the simulated chicken pox
data varies significantly over time, so we have deli-
berately selected one of the less smooth regimes.
J. R. Soc. Interface (2012)
Although the simulation spectra seem to share the
pointed peak characteristic of real chicken pox data,
the simulation data are much smoother. As for measles,
the location of the peak of the singularity spectrum
shifts monotonically to the right as the order of the
Gaussian analysing wavelet increases.

Since a wavelet of order n is capable of detecting
singularities of order a , n, the spectrum of a fractal
signal is expected to converge to a unique spectrum
once the highest order singularities present in the
signal are resolved. Lack of convergence suggests that
the simulated data are smoother than the analysing
wavelets. For all of the simulated data, the scaling func-
tion becomes more linear with increasing n, which
suggests that higher-order singularities are not present
in the signal. The linearity of the scaling function,
t(q), usually indicates a monofractal structure, but
the lack of convergence provides evidence that the
data are dominated by smooth sub-intervals.

Mallat [9] proved that smooth perturbations of a
multifractal signal introduce a bias in the singularity
spectrum and proposed that this bias be detected by
varying the order of the analysing wavelet, n. The pres-
ence of smooth sub-intervals can inhibit the tracking of
WTMM lines (§2) causing the spectrum to vary with
the order of the analysing wavelet.
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Numerical tests of SEIR simulation data for a range
of model parameters have confirmed the presence of
smooth sub-intervals in the simulated time series.
This behaviour is qualitatively different from the singu-
larity spectra produced by the reported data shown in
figure 7, which exhibits convergence with n. The time
series generated by the stochastic SEIR model produces
fewer high-amplitude wavelets coefficients at the finest
scales, which further demonstrates that the simulated
incidence data are significantly smoother than the
reported incidence data.

Overall, our analysis strongly suggests that the
time series produced by the stochastic SEIR epidemic
model are only weakly singular and are unlikely to be
multifractal or even monofractal. This contrasts sharply
with the reported data, which are clearly multifractal
and strongly singular. It appears that the stochastic
SEIR epidemic model does not capture the singu-
lar multiscale time structure that characterizes the
reported incidence data.
J. R. Soc. Interface (2012)
5. DISCUSSION AND CONCLUSIONS

The WTMM multifractal formalism was used to analyse
time series of reported cases of measles, chicken pox,
whooping cough and rubella from a variety of geographi-
cal locations. A characteristic multifractal singularity
spectrum was identified for each disease. Multiple data-
sets from different locations corresponding to the same
disease produce singularity spectra with qualitatively
similar shapes, which distinguish them from spectra
associated with the other diseases (with some exceptions,
e.g. measles in London versus Liverpool).

Table 2 shows that weekly incidence data for a given
disease at different geographical locations have similar
characteristics, while table 3 shows that weekly inci-
dence data for different infectious diseases differ
significantly in both their irregularity and their degree
of multifractality. The peak Hölder exponent a ranges
from 20.6 (indicating discontinuous data) to 0.6 (indi-
cating continuous but non-differentiable data). The
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Table 2. Multifractal signatures of measles and chicken pox,
presented as the peak positions and base widths of
singularity spectra. Means and standard deviations were
computed from monthly time series for four geographical
locations for each disease (cf. figure 8 for chicken pox and
figure 10 for measles).

disease peak width type

chicken
pox

�0:53 +�0:07 0:63 +�0:12 approximately
monofractal

measles �0:92 +�0:25 0:84 +�0:25 multifractal

Table 3. Multifractal signatures based on a single weekly
incidence time series for each disease (cf. figure 12).

disease peak width type

chicken pox 20.6 0.7 approximately monofractal
measles 20.4 1.3 multifractal
rubella 0.6 2.0 multifractal
whooping cough 0.3 1.6 multifractal
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degree of multifractality, measured by the width of the
singularity spectrum, ranges from 0.7 to 2.0. In fact, the
chicken pox data seem to be approximately monofractal
(all others are clearly multifractal).

Visual comparisons of time-series and conventional
(periodicity) spectra of infectious disease incidence
or mortality suggest that weekly or monthly counts of
cases ordeaths encode essential characteristics of different
pathogens. However, converting such visual impressions
into a formal statistic is not straightforward and has not
been attempted to our knowledge. The approach we
have presented in this paper suggests that infectious dis-
eases have multifractal signatures, which are relatively
easy to compute and provide a useful new way to describe
infectious disease data. These signatures might, in certain
cases, permit a disease to be identified purely on the basis
of a statistical analysis of its reported incidence or mor-
tality time series. This approach could be used, in
principle, to confirm the cause of historical epidemics
that have been identified by analysis of ancient DNA
[31], to identify the causative agent of historical epidemics
from which direct evidence cannot be obtained, or to help
isolate the causes of transitions in disease dynamics that
correlate with changes in the associated multifractal sig-
nature. Moreover, the WTMM method can be used as a
new way of statistically validating models: accurate
numerical simulations should reproduce the multifractal
signatures of the diseases they are intended to model.

We used the WTMM technique to analyse simulated
incidence data generated by the stochastic SEIR
epidemic model. The simulated time series generated
by the stochastic SEIR model were much smoother
than the observed data for all of the diseases tested.
In fact, by analysing the data with Gaussian wavelets
of increasing order, we found that the singularity
spectra do not even converge. This lack of convergence
suggests that the simulated data generated by the
stochastic SEIR model are dominated by smooth
sub-intervals and do not capture the full multiscale
structure of the real incidence data.
J. R. Soc. Interface (2012)
In particular, we found that real measles data are
characterized by a broad (multifractal) singularity spec-
trum, but after testing a range of model parameters we
concluded that the stochastic SEIR model could not
reproduce such a spectrum, even qualitatively. Increas-
ing the amplitude of seasonal forcing, b1, did improve
the fit of the model’s spectrum somewhat, but did not
produce convergent spectra. We investigated the effect
of parameter changes in the SEIR model and considered
the effect of imperfect reporting in an attempt to better
match the qualitative statistical properties of the real
data, but without success.

The precise reasons behind the SEIR model’s
inability to produce multifractal, singular incidence
data remain unclear. Possible reasons include stochastic
fluctuations in the fundamental parameters of the
disease (such as transmission rate), the existence of
spatial hierarchies involving the interaction of urban
centres of different sizes or time-varying differences
between the actual incidence rate and the reported inci-
dence rate. It is also possible that the dynamics of the
stochastic SEIR model do not adequately capture the
richness of the dynamical system governing the actual
infectious disease transmission process.

Our analysis confirms that multiscale wavelet analysis
offers powerful new tools for classifying infectious dis-
eases based on their incidence time series and for
qualitatively comparing and fitting models to reported
data. Accurate mathematical models of infectious disease
transmission are important for public health decision-
makers, who can use models to design better control
strategies. We have shown that, as measured by the
singularity spectrum, the most popular epidemic model
appears to miss some important multiscale time structure
clearly present in the reported data. We hope that the
results will lead to improved epidemic models, and a
better understanding of the mechanisms underlying the
spread of infectious disease.

We are grateful for support from the Natural Sciences and
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