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Parameter estimation for infectious disease models is important for basic understanding (e.g.
to identify major transmission pathways), for forecasting emerging epidemics, and for design-
ing control measures. Differential equation models are often used, but statistical inference for
differential equations suffers from numerical challenges and poor agreement between observa-
tional data and deterministic models. Accounting for these departures via stochastic model
terms requires full specification of the probabilistic dynamics, and computationally demand-
ing estimation methods. Here, we demonstrate the utility of an alternative approach,
generalized profiling, which provides robustness to violations of a deterministic model without
needing to specify a complete probabilistic model. We introduce novel means for estimating
the robustness parameters and for statistical inference in this framework. The methods are
applied to a model for pre-vaccination measles incidence in Ontario, and we demonstrate
the statistical validity of our inference through extensive simulation. The results confirm
that school term versus summer drives seasonality of transmission, but we find no effects
of short school breaks and the estimated basic reproductive ratio R0 greatly exceeds previous
estimates. The approach applies naturally to any system for which candidate differential
equations are available, and avoids many challenges that have limited Monte Carlo inference
for state–space models.

Keywords: differential equation model; generalized profiling;
state–space model; measles
1. INTRODUCTION

Mathematical models are now widely recognized as an
important tool in efforts to understand, manage and
contain infectious diseases in humans, other animals
and plants. For some problems, general models may
yield broadly applicable solutions. For example, very
simple models that distinguished between ‘core’ and
‘non-core’ groups (having high and low contact rates,
respectively) led to the successful adoption of contact
tracing for the control of gonorrhea in the US [1].
Recently, Wallinga et al. [2] showed that in a broad
range of situations, vaccinating individuals in the
group experiencing the highest force of infection
would be most effective for reducing the transmission
of a novel infection.
orrespondence (gjh27@cornell.edu).
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But in many cases progress requires a model tailored
to a specific situation with parameters estimated as
accurately as possible. Fitting models to data is impor-
tant for basic epidemiology, because comparison of
alternative models is a powerful tool for discriminating
between different hypotheses about underlying mech-
anisms (e.g. [3–8]) or potential environmental drivers
of disease processes (e.g. [7,9–12]). And in many
cases, the relative gains from different management
options depend on quantitative values of parameters
or on case-specific features such as multiple trans-
mission routes and their relative importance (e.g.
[6,13–18]).

An essential requirement for predicting the course of
an outbreak and the responses to possible interventions
is estimation of transmission rates—who infects whom,
when and at what rate? But estimating transmission is
also especially challenging because transmission is
usually unobserved. We may know (at best) when a
particular host individual contracted the infection,
This journal is q 2010 The Royal Society
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Figure 1. (a) Weekly measles case reports for the province of Ontario, Canada, from 1939 through 1965. Data were digitized from
unpublished, handwritten spreadsheets obtained from the Ontario Ministry of Health. The light grey line represents a moving
average over the 24 months preceding and following each date. (b) Monthly live births for the province of Ontario, Canada,
from 1939 through 1965. Data obtained from: Government of Canada, Dominion Bureau of Statistics, ‘vital statistics 1921–
1966’. Both the weekly case reports and the monthly birth time series can be downloaded from the International Infectious
Disease Data Archive (http://iidda.mcmaster.ca).
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and in what circumstances, but (apart from sexually
transmitted diseases in humans) it is rare to know
with any degree of certainty which other individual
passed the infection to them. Consequently, a funda-
mental goal of fitting dynamic models to epidemic
data is to uncover the transmission process, and
derive predictive models of transmission: at what rate
will hosts become infected, and what factors (in the
host population and its environment) influence that
rate (e.g. [7,19–22])? That problem is the topic of this
paper. We present a new statistical method that can
be used to fit infectious disease models, generalized
profiling [23], and illustrate its performance using
case-report data on pre-vaccination era measles in
Ontario, Canada.

The data, plotted in figure 1, present a number of
challenges for time series analysis.

— There is a substantial measurement error. Measles
was contracted by essentially all children because
of its high infectivity, but the number of reported
cases is smaller than the number of births during
the same time period by factor of � 6, implying
very large systematic under-reporting. In addition,
an examination of a 24-month moving average of
case reports indicates that there is no long-term
trend in the number of case reports, even though
the population increased substantially (as seen in
the rising birth rate), suggesting a substantial
trend in reporting rate. The low reporting rate also
implies that random sampling error will be too
large to ignore.

— We have data on only two processes (birth rate, and
the rate of new infections) in a system with many
state variables and other disease processes.

— The underlying process governing measles dynamics
in Ontario, whose parameters we want to estimate,
is nonlinear and stochastic, with events occurring
continuously in time.
J. R. Soc. Interface (2011)
The state-of-the-art methods for this sort of fitting pro-
blem are Monte Carlo methods for state–space models,
either Bayesian methods using Markov chain Monte
Carlo (MCMC; e.g. [8,24,25] and references therein)
or sequential Monte Carlo [7,26,27]. The method that
we present here is completely different. The fitting
criterion (explained in detail below) combines the
least-squares trajectory matching [28–32] and gradient
matching (e.g. [33–36]) fitting criteria, using basis
expansion methods to reconstruct the full set of state
variables. The underlying model is still a continuous
time state–space model, but very few model solutions
at candidate parameter values are required to converge
to an excellent fit.

As a result, generalized profiling has some compu-
tational and other practical advantages. Most
importantly, it has proven very challenging to construct
MCMC proposal distributions (from which to draw new
candidate parameter values) whose acceptance and
‘mixing’ rates are both high enough for the posterior
distribution to be sampled well (e.g. to find all modes
in the posterior) within a practical amount of time.
Off-the-shelf methods have often been unsuccessful,
for example New et al. [8] fitted three alternative
state–space models for red grouse population cycles
using WinBUGS, one of which involved grouse–
parasite interactions. They observed poor mixing of the
MCMC sampler for two out of the three models, and
cautioned that ‘posterior densities may not accurately
represent the target distribution, leading to questionable
inference’. Sequential Monte Carlo methods may require
careful case-specific fine-tuning to avoid ‘particle
depletion’, the analogue of poor mixing (see §3.2 of
Newman et al. [37]). Fitting by generalized profiling
only requires nonlinear optimization. Optimization can
also be computationally challenging in general, but the
profiling objective function is often well-behaved because
of regularization by the gradient matching component of
the function (see §2.8 of Ramsay et al. [23]).

http://iidda.mcmaster.ca
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The generalized profiling method was first described
by Ramsay et al. [23], and it has since been applied in
several case studies. Here, in addition to challenging
the method with epidemic data, we add two methodo-
logical developments: a data-based method for choosing
the ‘smoothing’ parameter that sets the relative weight-
ing of trajectory and gradient matching (previously
there has been no objective way to choose the smoothing
parameter), and an improved method for calculating
asymptotic confidence intervals for parameter estimates.

Measles modelling is a well-ploughed field. We revisit
measles because the degree of knowledge about this
pathogen makes it possible to test our method in a simu-
lation study that closely mimics the real-world data, by
generating artificial data from a biologically realistic
model with biologically realistic parameters. Our main
‘target’ was the pattern of seasonal variation in the
transmission rate parameter, which is a key unknown
in the transmission process and determines many of the
most important features of the dynamics [38,39].

The results from the simulation study are encoura-
ging in three respects: the estimated seasonal variation
was very close to the actual variation in the data-
generating model, the variability across replicates was
similar to the width of the confidence bands on the esti-
mate from the real data, and the computations could be
completed in a reasonable amount of time on a current
desktop workstation. The seasonal variability that we
estimated from the real data is similar to the commonly
used ‘term time’ model (high transmission when schools
are in session, low when schools are out). However, there
was some estimated variability within school terms, and
no evidence of major decreases during short school
holidays such as the Christmas break. In addition, the
estimated mean transmission rate implies (with high
confidence) a considerably higher value of R0 than
previously estimated for measles in Ontario.
2. BACKGROUND

2.1. The data

In Ontario, notifications of measles cases were tabulated
weekly from 1939 to 1989. Although never published, the
Ontario Ministry of Health (OMoH) retained the orig-
inal handwritten spreadsheets, which we digitized in
2001 for other work [40]. For the present analysis, we
restricted our attention to the pre-vaccine era.
1When we used twice as many knots, the estimated b(t) contained
only one additional feature: a hint of a brief decrease in the month
prior to the Christmas holiday, which has been observed in other
childhood diseases and interpreted as resulting from a delay in
reporting caused by slower mail delivery. As this is not a property
of the actual epidemic dynamics, we consider 1/12 year knot
intervals to be sufficient for representing the actual b(t) process.
2.2. Model, measurement and parameterizations

As our model for the epidemic process, we use a
version of the SEIR equations [40] with mortality
assumed to be negligible in the age-group where
infection occurs:

_S ¼ rðtÞ � bðtÞðI þ vÞS; ð2:1aÞ
_E ¼ bðtÞðI þ vÞS � sE ð2:1bÞ

and _I ¼ sE � gI ; ð2:1cÞ

where S denotes a susceptible population (number of
individuals), with recruitment rate r(t). Susceptibles
become exposed (E, infected with the disease but not
J. R. Soc. Interface (2011)
infectious) at the rate b(t)(I þ v). Exposed individuals
move into the infectious class I at rate s and move
out as they recover, at rate g. We assume zero mortality
in the population of interest. The recovered class (R)
does not enter the equations for S, E and I, because
we are assuming lifelong immunity, so there is no need
to include a fourth equation (which would be Ṙ ¼ gI
ignoring mortality). The rate of infection is modified
by a visiting impact v, which allows a small number of
infectious individuals outside the modelled population
to pass the infection to susceptibles. This has been
included to remove the potential for extinction of an
epidemic in the (stochastic) simulation studies below.

Our main goal is to estimate the time-varying trans-
mission rate parameter b(t) and, in particular, to see
how variation in b(t) relates to the structure of the
school year. To represent this time-varying rate we
used a basis expansion

bðtÞ ¼ b0 þ b1ðt � 1952Þ

þ
Xk

i¼1

fiðmodðt; 1ÞÞb2i; ð2:2Þ

where the fi(t) were taken to be cyclic cubic B-splines
with knots taken at intervals of 1/12 years. This
number of knots is sufficient to represent both smooth
seasonal variation and the sharper on/off variation of
the school year versus summer holidays, and there are
no apparent short-term features in the time-series of
case reports (e.g., no dip in reports during or following
the Christmas holiday; see figure 6 below1). The initial
linear term allows for a long-term trend in the trans-
mission rate, in addition to the annual cycle
parameterized by the fi(t). Linear combinations of
B-spline bases can represent constant functions such
as b0 meaning that equation (2.2) is not identifiable
as written. The b2i were therefore constrained to enforce

ð1

0

Xk

i¼1

fiðtÞb2i dt ¼ 0;

allowing this representation to have the effect of being
a variation about an overall average for the year. The
linear term was centred at 1952, the mid-point of
the dates of our observations (1939 to 1965) in order
to stabilize the estimate of b0 and allow its inter-
pretation as the over-all transmission rate at the start
of 1952.

In addition to disease processes, we also need to
model the observation process. Only some fraction of
weekly measles cases are assumed to be reported.
While this can be modelled as a binomial process, the
estimation methodology below only requires the
specification of the expected value of observations as

EðI o
i Þ ¼ pðtiÞI ðtiÞ; i ¼ 1; . . . ;N

http://rsif.royalsocietypublishing.org/
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for some reporting fraction p(t) and the ti occurring at
52 equal intervals across the year. The reporting ratio
is also allowed to change linearly over time, represented
by p(t) ¼ p0 þ p1(t 2 1952), where the centring
term has been used in the same manner as for the
parametrization of b(t).

It will be convenient, although not necessary, to have
direct observations of some state variable and we
observe that equation (2.1) can be re-parameterized
in terms of I*¼p(t)I so that all parameters appear in
the differential equation:

_S ¼ rðtÞ � bðtÞ I �

pðtÞ þ v
� �

S ; ð2:3aÞ

_E ¼ bðtÞ I �

pðtÞ þ v
� �

S � sE ð2:3bÞ

and _I
� ¼ pðtÞsE � gI � ð2:3cÞ

and we can set Ii
o ¼ I*(ti). Note that equation (2.3c) is

p(t)İ; the term ṗ(t)I is negligibly small (i.e. the mean
reporting rate is nearly constant, relative to the epi-
demic dynamics that occur on a much shorter time
scale) so for fitting purposes that term was omitted.
In the remainder of this paper we drop the asterisk
and use I to denote I*. It is often numerically easier
to take the log of each state when solving equations
such as equations (2.3) and we have followed this con-
vention. We have also used the log of the observed
data. In the simulation study below we employ a sto-
chastic finite-population process (Gillespie algorithm,
[41,42]) corresponding to equation (2.1) where the log
transform also helps to make the variation in the
paths more stable.
2.3. Initial parameter values

Some of the parameters in equations (2.3) were held
fixed, because they are directly observable and so
their values are known with effectively perfect precision
relative to the uncertainties in the unobserved trans-
mission and reporting processes. The recruitment rate
r(t) is interpolated from the monthly birth rate data
(figure 1) at a five-year lag, which approximates the
age of entry into primary school. The time period
between exposure and infectiousness (the latent
period) is known to be around 8 days, giving a value
s ¼ 365/8. Similarly, the mean infectious period is
around 5 days, implying g ¼ 365/5.

Initial values also need to be specified for v, b(t) and
p(t). We initialized the reporting rate to be constant
( p1 ¼ 0) and obtained an initial p0 from the ratio of
total measles cases 1951–1960 to total births 1946–
1955. This calculation assumes that all children are
eventually infected so that the ratio of total observed
cases to total births five years earlier provides an
approximate proportion of reported infections. The
resulting estimate is 16 per cent.

b(t) was initialized to approximate a step function
providing one level at June, July and August and
another during the rest of the year. Initial values are
taken from Bauch & Earn [40]. v is initialized at 1026,
or about 10 infectious visitors continuously present.
J. R. Soc. Interface (2011)
3. THE GENERALIZED PROFILING
PROCEDURE

Ramsay et al. [23] describe a method for estimating par-
ameters in ordinary differential equations such as
equations (2.3) that is robust to model misspecification.
In particular, it allows for small-variance stochastic
forcing of a system, which would be expected to result
from environmental and demographic stochasticity.
The method is based on combining a collocation
approach to estimating differential equations [43] and
allowing deviations from differential equation models
in a manner similar to the multiple shooting methods
of Bock [29] and the trust region methods in Arora &
Biegler [31].

To facilitate the exposition we use somewhat more
general notation to write the state vector as x(t) ¼
(S(t),E(t),I(t)) ¼ (xS(t),xE(t),xI(t)) and refer to the
components of x by xi(t) for i [ fS,E,Ig. In this
short-hand, we re-write equations (2.3) as ẋ ¼ f(x;t,u),
where u collects all the unknown parameters. In our
model, u ¼ ( p0,p1,v,b0,b1,b2,1,. . ., b2,12). Elements of f
will be referenced in the same manner as elements of x.

We begin by representing x(t) in terms of a basis
expansion

xðtÞ ¼ FðtÞC ð3:1Þ

for F(t) ¼ (f1(t),. . ., fk(t)) a vector of basis functions
and coefficient matrices C ¼ (CS CE CI). Throughout
we have used as F the cubic B-spline basis with knots
at weekly intervals over 1939–1965. This basis has
been chosen for its flexibility and numerical properties,
but any sufficiently flexible choice of basis can be
employed. Parameters are then estimated through a
two-level optimization. First, for any value of the
parameter vector u, C is chosen by

ĈðuÞ ¼ argmin
C

XN
i¼1

ðI o
i �FðtiÞCI Þ2

(

þl
X

j[fS ;E;Ig
wj

ð
_FðtÞCj � fjðFðtÞC ; t; uÞ

� �2
dt

9=
;:
ð3:2Þ

The first term on the right-hand side of equation (3.2) is
the sum of squared deviations between the observed
case-report data (scaled to compensate for under-
reporting) and the estimated trajectory F(ti)CI. This
is the fitting criterion for estimating parameters by
least-squares trajectory matching. The second term is
a weighted sum of squared deviations between the gra-
dients (time derivatives) of the estimated trajectories
for each state variable, Ḟ (t)Ci, and the corresponding
gradients generated by the model, fi(F(t)C;t,u). This
is the fitting criterion for estimating parameters by gra-
dient matching. In contrast with previous approaches,
the gradient matching term includes unmeasured state
variables, because the complete system state is esti-
mated along with model parameters (a property
shared by Monte Carlo methods for state–space
models). The parameter l determines the relative

http://rsif.royalsocietypublishing.org/
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importance given to trajectory-matching and gradient-
matching components of the fitting criterion.

The combined fitting criterion (3.2) means that the
estimated trajectories only approximately satisfy
equations (2.3). This contrasts with trajectory match-
ing, in which estimated trajectories are solutions to
the deterministic equations (2.3). In this way, equation
(3.2) allows the data to impose deviations from the
model if appropriate. This allows parameter estimates
to be robust to departures from the model, either
through imperfect specification of the functional forms
of process rates, or stochastic departures from the deter-
ministic paths predicted by the differential equations
(for example, under suitable technical assumptions,
the methods in Brunel [36] can be extended to show
that gradient matching remains valid when the
dynamics are stochastic with f(x;t,u) being the expected
value of ẋ given x(t)).

Here, equation (3.2) is expressed in similar terms to
penalized objective functions for a nonparametric
regression. Replacing the second term in equation
(3.2) with l

Ð
(d2F(t)C/dt2)2dt corresponds exactly to

standard smoothing spline regression models, as studied
for example in Wahba [44]. In that situation, the value
of l controls the smoothness of the resulting regression
function. Higher values of l lead to smoother function
estimates, so the optimal value of l becomes small as
the sample size increases. In our application, we think
of equation (3.2) as allowing the data to impose devi-
ations from the differential equation model, if
appropriate. We thus default to thinking of l as large,
rather than small, so that estimated rates of change in
state variables are always close to what the model
predicts, given the estimated system state.

The weights wi allow us to place more or less empha-
sis on each of equations (2.3a)–(2.3c). We have placed
relative weight 100 on the equation for S. This has been
chosen to roughly mimic the expected size of departures
from equations (2.3) associated with demographic sto-
chasticity. The model is a ‘flow-through’ system, with
all newborns passing through the S, E and I stages in
turn. Therefore, the long-term average inflow and out-
flow rates are the same for each compartment, and
roughly equal (on average) to the birth rate. We, there-
fore, expect approximately equal temporal variability in
the rates of transitions between states S, E and I, so
roughly equal values of the weights wi would be appro-
priate for fitting to untransformed state variables and
data. Our fitting was done on a log-scale, however,
and this transformation reduces the standard deviations
in the rates of change in inverse proportion to the total
population in each state. To undo this effect of the
transformation, we should use weights with wi

2 pro-
portional to total population in each disease state.
The factor of 100 is somewhat smaller than the value
that this argument suggests, to allow for unmeasured
migration processes. The resulting parameter estimates
were insensitive to this choice; reversing the relative
weighting of the variables resulted in less than a 5 per
cent change in any parameter estimate. Note that
while only I is measured, all state variables appear in
the second term and so the minimization problem is
feasible in principle.
J. R. Soc. Interface (2011)
In practice, the integral in the second term of
equation (3.2) cannot be computed analytically and
instead it is approximated by a numerical quadrature
rule. We have used a rule that places one quadrature
point tq at the midpoint between knots—i.e. halfway
through each week. This allows the basis expansion to
exactly solve equations (2.3) at those points, making
the second term in equation (3.2) zero if need be. The
resulting objective is written as

XN
i¼1

ðI o
i �FðtiÞCI Þ2

þ l
X

j[fS;E;Ig

wj

K

XK
q¼1

ðḞ ðtqÞCj � fjðFðtqÞC ; tq ; uÞÞ2:

ð3:3Þ

This is now a sum of squares criterion which can be
minimized by a Newton–Raphson algorithm. This
minimization is not guaranteed to avoid local minima
and it is therefore important to find useful initialization
values for C. A motivating factor in the transformation
from equations (2.1) to (2.3) is that CI can be initialized
by smoothing the observed Ii

o. From the starting values
for CS, CE can be obtained by conducting the minimiz-
ation with CI held fixed. Even then, the minimum found
should be examined for clear lack of agreement using
diagnostic plots such as those at the bottom of
figure 4. When the equations cannot be written in
such a way as to make some of the states directly obser-
vable, initial values for C can be obtained from a
solution of equation (2.1) at the starting parameters.

Using the definition (3.2), Ĉ is represented as a func-
tion of u. We think of Ĉ(u) as defining, for each u, an
estimated system trajectory in terms of the basis expan-
sion (3.1). For choosing u it is then natural to apply a
sum of squares criterion, as would be used in nonlinear
regression (e.g. [45]):

û ¼ argmin
u

XN
i¼1

ðI o
i �FðtÞĈ I ðuÞÞ2: ð3:4Þ

This sum-of-squares criteria can be minimized by a
Gauss–Newton algorithm with gradients of ĈI(u)
obtained through the implicit function theorem.

The problems (3.2) and (3.4) can be generalized in a
number of ways. Sums of squares while convenient to
work with numerically are not strictly necessary and a
log likelihood of the observations given the states
could be used instead, as could alternative forms
of the penalty. It is also not necessary to have a
parameter-free comparison between a state variable
and observations. However, as noted above, the ability
to obtain approximate trajectories for some state vari-
ables via smoothing is helpful in providing starting
values for equation (3.2). While we have instantiated
equation (3.2) as an unconstrained problem, constraints
between the states corresponding to conservation laws
for example can be incorporated. Linear constraints,
on state variables, in particular, can be translated
into linear constraints on C to be enforced when mini-
mizing (3.2). Nonlinear constraints can be enforced at

http://rsif.royalsocietypublishing.org/
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each point tq used in equation (3.3). When deciding to
impose such constraints a choice must be made between
robustness to model violations and the maintenance of
conservation laws.

Hooker [46] demonstrated that in the limit l!1,
the generalized profiling method is equivalent to fitting
both parameters and initial conditions to the data by
ordinary least squares. However, for finite values of l,
the method provides robustness to model misspecifi-
cation and to disturbances of the dynamical system. It
also results in optimization surfaces for both equations
(3.2) and (3.4) that have fewer local maxima than
attempting to fit the data by trajectory matching to sol-
utions of equations (2.3). This leads to the strategy,
when poor optima are found, of initially using a small
value of l and then increasing it in a similar manner
to the use of ‘temperature’ in simulated annealing.
estimated trajectory. Solid lines show the solution to
equations (2.3) starting at the estimated system state at t ¼
1943. Discrepancy between the data (stars) and the solid
lines represent forwards prediction error. (a) With l ¼ 1 the
estimated trajectory is close to the data, but the solution to
equations (2.3) diverges quickly from the estimated trajectory.
(b) With l ¼ 106 the solution to equations (2.3) remain near
the estimated trajectory, but the estimated trajectory does
not follow the data closely.
4. CHOOSING THE SMOOTHING
PARAMETER

While the methodology in Ramsay et al. [23] allows
for computationally efficient and statistically robust
parameter estimation, no guide was provided on how
to choose the ‘smoothing parameter’ l. As discussed
above, it is natural to think of l as being large, meaning
that standard cross-validation methods that are designed
to set l! 0 are unlikely to yield appropriate values.

Ellner [47] suggested the approach of forwards cross-
validation for these models. This method combines both
estimates Ĉ(û) and û to predict future responses.
Specifically, let x(t,u, x0) denote the solution, at time
t, of equations (2.3) with x(0) ¼ x0. Then we define
the forward prediction error

FPE1ðlÞ ¼
XN
i¼1

ðI o
i � xI ðh; û l;Fðti � hÞCI ðû lÞÞÞ2:

ð4:1Þ

The terms in FPE1 are the (squared) errors made in
predicting the observation at time ti by starting from
the estimated trajectory at time ti 2 h, and solving
the differential equation model from time ti 2 h to
time t.

Forwards cross-validation is illustrated graphically in
figure 2. The dots are the data, and the solid line is the
estimated trajectory obtained from the generalized pro-
filing approach for an overly small (figure 2a) and an
overly large (figure 2b) value of l. The dotted curve is
a solution of the model with the corresponding par-
ameter estimates û(l), starting from the estimated
trajectory at t ¼ 1943. In figure 2a, because l is
very small, the generalized profiling criterion empha-
sizes trajectory matching, so the estimated trajectory
is close to the data. However, the estimated trajectory
is not very close to being a solution of the model, so
the model solution diverges from the trajectory (and
from the data), generating large forward prediction
errors. In figure 2b, l is large, so the estimated trajec-
tory is very close to being a solution of the model.
However, the estimated trajectory is far from the
data, so again the forward prediction errors are large.
J. R. Soc. Interface (2011)
A good choice of l will lie somewhere between these
extremes.

Because of the computational cost of solving the
differential equations, it will frequently be useful to
use a small set of K starting observation times tik, k ¼
1,. . .,K and to solve equations (2.3) over a longer time
interval. A single solution can then be compared with
the next L observations. These solutions may overlap
so that some observations are included more than
once. For example, taking every second starting point
t0, t2,. . ., tN22, we could solve equations (2.3) for the
next two observations. If tiþ1– ti ¼ h, this gives us

FPE3ðlÞ ¼
XðN�2Þ=2

i¼1

I 0
2iþ1 � xI ðh; û l;Fðt2iþ1ÞCðû lÞÞ

� �2
þ I 0

2iþ2 � xI ð2h; û l;Fðt2iþ1ÞCðû lÞÞ
� �2

:

ð4:2Þ

For our data, we took starting times tik at the begin-
ning of each quarter and solved equations (2.3) for the
following year, or 52 observations. We have chosen
starting points at observation times and assumed a con-
stant interval between observations for the sake of
notational convenience; clearly, neither choice is strictly
necessary. In practice, forwards prediction error can be
minimized by a grid search, which is typically best
carried out on a logarithmic scale.

Morton [48] suggested a similar approach for
choosing smoothing parameters in nonparametric
regression, based on predicting forward from an esti-
mate of both the curve and its derivative. Hooker &
Ellner [49] demonstrated that this approach will
not, in general, yield consistent estimators of non-
parametric functions. However, the strategy of
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minimizing FPEL(l) can be justified from the point of
view of fitting deterministic equations such as
equations (2.1) in a way such that consistent estimates
are obtained when the equations are correct but the
estimates are robust to model violations either from
stochastic effects or errors in the functional forms [49].
In particular, generalized profiling does not involve spe-
cifying (and then fitting) a stochastic model for the
system dynamics—only the deterministic ‘skeleton’ is
specified, and the observation process. The properties
of generalized profiling for estimating process noise in
an explicitly specified stochastic system have not been
studied. The choice of L and of the tik allow the user
to choose a level of robustness in parameter estimation
that optimizes for a desired range of extrapolation
forwards in time.
(plotted for the year 1952; other years will be shifted slightly
upwards or downwards owing to the long-term linear trend
b̂1). Solid lines show the generalized profiling estimate, while
the dashed lines show pointwise 95% CI.
5. CONFIDENCE INTERVALS

To estimate the variability of parameter estimates
resulting from the equations above, we use a modifi-
cation of the confidence intervals suggested by
Ramsay et al. [23]. An initial covariance estimate is
given by

V�1
0 � ŝ2½Jðû ÞTJðû Þ��1; ð5:1Þ

where J is a matrix with rows

JiðuÞ ¼ FðtiÞ
d
du

CI ðuÞ:

Here, ŝ2 is the residual variance. This formulation is
derived from asymptotic results in nonlinear regression
and is based on the assumption that the errors e i ¼

Ii
o 2 F(ti)CI(u) are independent. Because the smooth-

ing process above can create dependence among the
residuals at finite samples, we instead introduce a cor-
rection based on a Newey–West covariance estimate
to allow for dependence induced by the estimate
CI(u). We derive this estimate by a modification of
asymptotic results for maximum-likelihood estimates
(e.g. [50]). Observing that

Jðû ÞTe ¼ 0

a Taylor expansion results in

ðû �uÞ¼ Jðu�ÞTJðu�Þþ d
du

Jðu�ÞTe
� 	�1

Jðû Þ�V0J ð̂uÞ

from which we obtain a covariance estimate

Covðû Þ � V�1
0 CovðJÞV�1

0 :

In non-linear regression, the rows of J are considered
independent, resulting in (5.1). In order to account for
potential serial dependence, we employ a Newey–
West estimate [51] for the covariance of J,

CovðJÞ � V0 þ
Xm
k¼1

1� k
m þ 1

� �
ðVk þ VT

k Þ;

Vk ¼
ŝ2

n

Xn

i¼kþ1

Ji�kJT
i :
J. R. Soc. Interface (2011)
Effectively, these estimates allow for local depen-
dence between the e i. Guided by the asymptotic
theory [51], the number of terms m was chosen
as the maximum of 5 and n1/4; empirically, the
resulting confidence intervals are insensitive to the
choice of m.
6. RESULTS

The statistical methods described above were
implemented in MATLAB, using the software tools pro-
vided by Hooker [52]. Matlab code to run this analysis
is available in the electronic supplementary material.
The same functionality can be found in the CollocInfer
package [53] for the R statistical programming
language.

The estimated seasonal pattern of variation in the
transmission parameter b(t)/g is plotted in figure 3
along with pointwise confidence intervals. A distinct
reduction in the transmission rate is evident over the
summer holidays. The pronounced peak around the
start of the school year may be owing to a higher rate
of mixing, frailty effects or possibly an artefact to do
with the influx of new susceptibles (which was not mod-
elled here). He et al. [27] included a pulse of recruitment
at the start of the school year, but assumed that contact
rate was a step-function taking one value during school
terms and another during holidays. As noted above, the
slight decrease towards the end of the year and sub-
sequent small peak may be artefacts owing to delayed
reporting in pre-Christmas period. We estimate that
the over-all level of b(t)/g to be b̂0/g ¼ 27.0+ 2.91 in
1953 and increased at rate b̂1/g ¼ 0.244+ 0.115 per
year. As expected, we estimated a substantial trend
in the reporting rate ( p̂0 ¼ 26.9+ 1.9% and p̂1 ¼

2 0.0097+ 0.002% per year). The flow of visitors into
the infectious pool was estimated as essentially zero,
but the objective function was effectively flat as a func-
tion of visiting rate at the point estimate of the
parameters, suggesting that the data contain very
little information about this parameter; this was also
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observed by He et al. [27] for large populations. For the
purposes of numerical stability, v was therefore removed
from the estimate of covariance used to compute
confidence intervals.

A further advantage of the methods outlined above
is that they provide readily accessible diagnostics for
assessing model fit, based on the two components of
the objective function: how well the estimated trajec-
tories match the data, and how well the estimated
gradients match the model. Figure 4a(i–iii) show the
comparison between the data and the estimated trajec-
tories. Figure 4b(i–iii) show the time-derivative of the
estimated trajectories and the value of the right-hand
side of equations (2.3) at each time point. These plots
may be inspected for systematic departures from the
corresponding trend. We observe that the observed
J. R. Soc. Interface (2011)
data (only available for I) appear to be distributed
around the estimated trajectory without obvious
systematic departures. Similarly, the derivative of the
estimated trajectory shows close agreement with that
predicted by equations (2.3), particularly in the E and
I variables. Departures from the predicted derivative
of the S trajectory are evident, but do not show any
systematic trends.

This analysis can be augmented by residual plots
(figure 5). Residuals correspond to figure 4, either
the departures of observations from their predicted
trends, or the difference between the derivative of
an estimated trajectory and the corresponding pre-
diction from equations (2.3). These are plotted
against predicted quantities so that any systematic
relationship can be made clearer and the model
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potentially revised to account for them. In this case,
the plots of figure 5 confirm that there are no sys-
tematic patterns of error in the trajectories or
gradients, so we can interpret the discrepancies as
stochastic departures of the real system from
equations (2.3).

The estimated trend in the number of susceptibles
(figure 4a(i–iii)), is owing to the estimated linear
J. R. Soc. Interface (2011)
trend b̂1 in the transmission parameter b(t). In both
cases, the rate of change is about 1 per cent per year
(1% per year decrease in S, 1% per year increase in
the mean of b(t)). However, there is very high uncer-
tainty regarding the trend in b (e.g. a tenfold smaller
trend is within two standard errors of the point esti-
mate), so we cannot be confident that the estimated
trends in S and b1 are real.

http://rsif.royalsocietypublishing.org/


1952 1952.2 1952.4 1952.6 1952.8 1953
10

15

20

25

30

35

es
tim

at
ed

 b
(t

)/
g

Figure 7. Estimates of b(t) from simulated data. Solid line: the
b(t) function used in generating the simulated data. Grey
lines: estimates for 250 stochastic simulations of the epidemic
process (Gillespie algorithm). Dashed line: mean estimate
from the stochastic simulations. Dashed-dotted line: estimate
with a very large l from an exact solution to equations (2.3).

970 Parameterizing state–space models G. Hooker et al.

 on June 8, 2011rsif.royalsocietypublishing.orgDownloaded from 
In figure 6, we look more closely at how well the
fitted model captures the seasonal variation in disease
incidence, by replotting the data as a function of week
(within the year) and comparing this with model sol-
utions. Because of the high year-to-year variability,
the case reports for each week from 1940 to 1965 were
expressed as fractions of the total number of reports
for that calendar year, for both the data (box plots in
figure 6) and a forward solution of the deterministic
model (2.1) starting from the estimated system state
at the start of 1940 (solid and dashed curves). Whereas
the estimated trajectories (shown in figure 4) are
‘pulled’ towards the data by the trajectory matching
component of the fitting criterion (3.2), forward sol-
utions of equation (2.1) are free to go wherever they
are pushed by the estimated seasonal variation in
b(t), so this comparison is a genuine test of the fit. For-
ward solutions of the deterministic model follow fairly
well the observed seasonal pattern of incidence. The
main discrepancy is that the decrease and increase in
incidence at the start and end, respectively, of the
summer school holiday occur somewhat faster in
model solutions than in the data. Otherwise, with the
estimated seasonality of transmission rate (figure 3)
the deterministic model appears to capture all of the
qualitative properties of the observed seasonal pattern.
This phenomenon was also described in He et al. [27],
where it was explained as the effect of averaging over
large spatial scales—local epidemics, each with faster
onset and decline but at varying times, become blurred
when averaged. This represents a failure of the mixing
assumptions behind equations (2.1) and, as noted in He
et al. [27], can result in poor estimation of latent periods.
7. A SIMULATION STUDY

Our specific goal in this paper was to show how the
transmission rate b(t) could be reconstructed from a
real measles time series using generalized profiling.
While we have achieved that goal, it is ultimately
impossible to know whether real processes that we
have not modelled have influenced the success of our
approach. In addition, any real incidence time series
represents a single realization of a (very large) stochas-
tic process, and we do not know how our results might
vary for other realizations of the same process. There-
fore, to validate the generalized profiling method for
epidemiological time series, we conducted a simulation
study based on a finite population model for an SEIR
process. For the simulations, there is no uncertainty
about the processes that generated the data, and we
can examine the variability of our results across many
realizations of the identical process.

Specifically, our Gillespie algorithm simulations
employed a population of N ¼ 107 individuals subject
to a constant visitor impact of v ¼ 1026 individuals
over the same 26 year time period that we studied the
Ontario measles data. As in §2.3, we set s ¼ 365/8,
g ¼ 365/5 and set r(t) using the published Ontario
birth data. We set b(t) and p(t) equal to the functions
that we estimated by generalized profiling (§6). Obser-
vations were generated by binomial samples with
J. R. Soc. Interface (2011)
probability p(t) from transitions E! I over the pre-
vious week. Two hundred and fifty replicated histories
were created, each requiring about 10 CPU hours on a
current desktop workstation (one Pentium D 3 GHz

processor). For each replicate,the parameters in the
model were estimated using our methods. Each esti-
mation, including a search over l to minimize forward
prediction error, required less than 2 CPU hours on
the same workstation, and could be made considerably
shorter by more careful initialization of the optimiz-
ation and reducing the number of l values considered.

We are interested in both the bias of the estimates
and their variability. Two potential sources of bias
should be distinguished: bias owing to the use of the
generalized profiling objective function, and the bias
associated with the use of a finite collocation basis to
approximate system trajectories. The latter of these
can be assessed by choosing a very large value of l,
and estimating parameters from error-free deterministic
solutions to equations (2.3). Because a large value of l
places almost all emphasis on the second term in
equation (3.2), this is equivalent to defining Ĉ(u) as
the coefficients that give the best possible approxi-
mation by the basis expansion (3.1) of exact solutions
to the deterministic model (see [46]). Minimizing
equation (3.4) is then a straightforward nonlinear
least squares criterion. Since the data being fit in this
procedure come from exact solutions of the differential
equation without noise, the parameters will be esti-
mated perfectly except for bias due to approximation
of solutions by a finite basis expansion (3.1). The discre-
pancy between the original parameters and these can
therefore be labelled collocation bias. Additional discre-
pancy between the parameters estimated by the method
just described, and those estimated by generalized pro-
filing on the Gillespie simulation data, are estimation
bias resulting from the objective function.

Figures 7 and 8 present estimates of the parameters
on simulated data. In figure 7, the collocation bias is
given by the difference between the solid and dashed-
dot lines, while the estimation bias is the difference
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between the dashed line and the dashed-dot line. Both
biases are small relative to the true magnitude of b(t),
and the collocation bias is dominant, indicating that
the bias could be reduced by using a larger number of
terms on the basis expansion for trajectories. The
spread of b(t) estimates from different stochastic simu-
lations corresponds well to the confidence intervals in
figure 3. There was collocation bias present in most of
the other parameters (figure 8), and the trend in report-
ing rate shows some additional bias resulting from the
profiling objective function. The collocation bias was
highest for the visiting rate parameter, but (as noted
above) this parameter was largely not identifiable.
8. DISCUSSION

Parameter estimation for continuous-time epidemic
models from typically available data, such as a time
series of case reports, is complicated by the nonlinear
stochastic nature of the epidemic process, and by
sampling variability and reporting bias in the obser-
vation process. Until very recently, these difficulties
have been dealt with most effectively either by using a
discrete-time approximation to the model, e.g. the
TSIR model [20–22,24], or through the use of
quasilikelihood indirect inference methods [54].

We have presented a method for fitting differential
equation models that can deal with these challenges,
without having to specify and parameterize a model
for the stochastic deviations between the deterministic
model and real-world outcomes. Like Monte Carlo
methods (Bayesian MCMC and sequential Monte
Carlo), our method involves estimating the trajectories
of all state variables, measured and unmeasured, along
with estimating the model parameters that are our main
interest. But unlike Monte Carlo methods, this is
accomplished by numerical optimization (producing a
J. R. Soc. Interface (2011)
point estimate and confidence region for the coefficients
specifying the trajectories), rather than by repeated
sampling of possible trajectories to approximate the
joint posterior distribution of parameters and trajec-
tories. A naive MCMC approach to fitting the model
in our simulation studies would have been impossible
because of the computation time: �10 h simply to gen-
erate one proposal for state trajectories, so it would
have taken several months to fit each artificial dataset.
For this reason, successful applications of methods
based on Monte Carlo simulations for epidemic
models have employed alternative, more tractable,
models of stochastic dynamics (e.g. [26–27]). Our
methods avoid the computational cost of generating
many proposals, and also the difficult problem of speci-
fying a proposal distribution for trajectories and
parameters that efficiently explores the full posterior
distribution. Instead, inference can be based on asymp-
totic variance–covariance matrices for parameters and
reconstructed trajectories. An important direction for
further research is to compare the performance of
generalized profiling with Monte Carlo methods.

This study is the first empirical application of
forward cross-validation (FCV) for choosing the
smoothing parameter l in the generalized profiling
method; theoretical properties of FCV are presented
elsewhere [49]. FCV brings generalized profiling one
step closer to being fully data-driven, and thus objective
in the sense that results are not affected by ‘tuning par-
ameters’ that a user can set at will. However, the
complexity of the seasonal variation model for b(t)
(the number of spline knots) was specified a priori
based on the expected time scales of possible variation,
as in other recent studies [20–22,24–27]. We have sup-
ported our choice in two ways: increasing the number of
knots to verify that relevant features were not missed,
and providing confidence bands (figure 3) that indicate
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which features are well supported by the data. However,
a fully data-driven method for choosing the number of
knots for b(t) would be advantageous.

Our results for measles in Ontario provide general
support for the ‘term time’ model of seasonal variation,
in which the dominant factor is assumed to be differ-
ences in contact rate between school terms and school
holidays. However, our estimate of b(t) differs from
the term time model in two respects. First, we did not
detect any major decreases in transmission during
short school holidays comparable in size to the decrease
during the summer holiday, even with a weekly basis for
estimating transmission seasonality. Second, our esti-
mate includes some variation during the school year,
in particular, the confidence bands in figure 3 imply
that transmission is highest at the start of each school
year and then declines, possibly with a secondary
peak shortly after the new year. As we noted above,
this within-term trend may be owing to the ‘staggered’
recruitment of individuals into the susceptible pool (a
new cohort at the start of each school year), which
our model omits. In addition to estimating the seasonal
trend, our estimate of b(t) leads to an estimate of R0,
roughly given by the mean of b(t)/g. Here, our results
are somewhat surprising. The published estimate is
R0 � 11–12 based on age-structured case reports
from London, Ontario in 1912–1913. References
[40,55,56] assumed this value in their analysis of
incidence patterns in childhood diseases. Our estimate
is considerably higher than that (figure 3), but it is
within the range of values estimated for developed
world cities prior to vaccination (Bauch & Earn [40],
table 4 in appendix). Similarly, He et al. [27] estimated
values of R0 for measles in Britain that were roughly
double previous estimates based on serological and
age-dependent incidence data. Their model, like ours,
makes a number of simplifying assumptions (homo-
geneous mixing, neglect of age structure, etc.) so these
estimates should be interpreted cautiously until they
are supported by more extensive studies using more
realistic models.

Throughout this paper, we have kept the mean
latent period 1/s and the mean infectious period 1/g
fixed at their clinically observed values. Instead they
could be estimated along with b(t) within the general-
ized profiling method. Estimating s and g from the
Ontario measles data yielded unrealistically large
values, reducing both disease stages from days to
hours and compensating for this by substantially
increasing b(t). This phenomenon was not found
when these parameters were estimated from Gillespie
process simulations of the model. In He et al. [27], two
model errors were suggested to lead to different
biases in the estimation of disease stage durations—
unmodelled demographic stochasticity leading to shorter
estimates, and spatial aggregation of data leading to
longer estimates. Given these alternatives, our results
suggest that the demographic stochasticity is a stronger
influence than spatial aggregation in these data.

The potential for further model mis-specification
suggests the investigation of the role of generalized pro-
filing in model selection. Diagnostic plots such as those
in figures 4 and 5 are clearly one way of demonstrating
J. R. Soc. Interface (2011)
lack of fit, as is poor estimation of known constants.
More generally, the comparison between alternative
process models, for example, could be carried out by a
number of statistics; minimum FPE(l), the minimizing
value of equation (3.4) or the size of the second term in
equation (3.2) are obvious candidates. The properties of
model selection based on these statistics have not been
theoretically studied. Other questions of interest that
have not received extensive treatment is to examine
the uncertainty of the qualitative behaviour of
equations (2.1); is it possible to determine from real
data that a particular system is stable, cyclic or
unstable?

Future work will apply this method to other disease
time series and address biological issues. For example,
we have weekly case reports for all reportable infectious
diseases in Ontario over the period examined in this
paper. If we consider childhood diseases with the same
mean age of infection then the relevant contact pattern
should be identical in all cases. If the estimated trans-
mission rate variation is different for different diseases
then we might infer that seasonal effects other than
contact rate variation influence the seasonality of trans-
mission differently for different diseases (e.g. one can
imagine that humidity or temperature changes affect
some pathogens more than others).

We have applied our methods to a recurrent infec-
tious disease, but inferring transmission rate variation
from case report data is also important for real-time
estimation in the context of disease invasions, where
one is often interested in understanding how various
control measures are impacting transmission (or, in
principle, in detecting evolution of transmissibility of
the causative agent). In this situation, it is typical
now to have daily case reports so methods have recently
been developed that exploit daily data to estimate b(t)
without relying on a specific epidemiological model such
as the SEIR framework [57,58]. With daily case data,
and an estimate of the distribution of the serial interval
(the time from acquiring to transmitting the infection),
one can associate reported cases with transmission
events in the past, and consequently estimate the
daily reproductive ratio R(t) (or, equivalently, b(t) ≃
R(t)/Tinf, where Tinf is the mean infectious period).
The extent to which these methods can be adapted use-
fully for weekly time series of recurrent epidemics
remains to be seen. Conversely, generalized profiling
can be applied to daily time series, and this would pro-
vide a useful comparison for results obtained with the
Wallinga–Teunis method [57], and other methods to
estimate R(t) for disease invasions (e.g. [59–61]).
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