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Abstract

Compartmental epidemic models have been used extensively to study the historical spread

of infectious diseases and to inform strategies for future control. A critical parameter of any

such model is the transmission rate. Temporal variation in the transmission rate has a pro-

found influence on disease spread. For this reason, estimation of time-varying transmission

rates is an important step in identifying mechanisms that underlie patterns in observed dis-

ease incidence and mortality. Here, we present and test fast methods for reconstructing

transmission rates from time series of reported incidence. Using simulated data, we quantify

the sensitivity of these methods to parameters of the data-generating process and to mis-

specification of input parameters by the user. We show that sensitivity to the user’s estimate

of the initial number of susceptible individuals—considered to be a major limitation of similar

methods—can be eliminated by an efficient, “peak-to-peak” iterative technique, which we

propose. The method of transmission rate estimation that we advocate is extremely fast, for

even the longest infectious disease time series that exist. It can be used independently or as

a fast way to obtain better starting conditions for computationally expensive methods, such

as iterated filtering and generalized profiling.

Author summary

Many pathogens cause recurrent epidemics. Patterns of recurrence are strongly affected

by seasonality of the transmission rate, which can arise from seasonal changes in weather

and host population behaviour (e.g., aggregation of children in schools). To understand

and predict recurrent epidemic patterns, it is essential to reconstruct the time-varying

transmission rate, which is never observed directly. Existing transmission rate estimation

methods tend to fall into one of two categories: accurate but too slow to apply to long time

series of reported incidence, or fast but inaccurate unless the number of individuals ini-

tially susceptible to infection is known precisely. Here, we introduce and compare fast

methods inspired by the algorithm that Fine and Clarkson pioneered in the early 1980s.
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The method that we suggest accurately reconstructs seasonally varying transmission rates,

even with crude information about the initial size of the susceptible population.

1 Introduction

The transmission rate of an infectious disease is a salient quantity in the study of epidemics.

Changes in the transmission rate over time greatly influence the spread of infection [1, 2].

Quantifying how it changes over time can elucidate factors governing disease spread (e.g.,
weather [3], contact patterns [4]), inform epidemic forecasts, and suggest strategies for epi-

demic control [5].

In practice, we do not observe transmission directly. Instead, we observe the number of

cases of infection (disease incidence) or number of deaths from infection (disease mortality)

reported over time, and must reconstruct time-varying transmission rates from these data [6–

13]. Utilizing historical mortality records, it is possible to identify patterns in transmission dat-

ing far back in time. Most notably, the London Bills of Mortality and the Registrar General’s

Weekly Returns enable investigation of transmission patterns continuously from the mid-17th

century to the present, for a number of infectious diseases including cholera [14] and smallpox

[15].

A mechanistic understanding of long infectious disease time series—three centuries of

weekly data in the case of smallpox [15]—requires methods of transmission rate estimation

that are both accurate and fast, and therefore tractable for long time scales. Simulation-based

methods of transmission rate estimation from reported incidence or mortality have been

developed using the susceptible-infected-removed (SIR) model for infectious disease dynamics

[16]. Markov chain Monte Carlo (MCMC [17, 18]) and sequential Monte Carlo (as in iterated

filtering [8, 19, 20]) methods are statistically rigorous, but not tractable for long time scales

owing to high computational cost. Generalized profiling [21, 22], which combines trajectory

and gradient matching, is faster, but still too slow for convenient exploration of time series

spanning hundreds of years. (Several CPU hours were required to apply generalized profiling

to just 26 years of weekly data [22].)

In comparison, Finkenstädt and Grenfell’s popular “time series SIR” (tSIR) method [7, 23]

is extremely fast, using a simple discretization of a continuous-time SIR model to reduce trans-

mission rate estimation to a local regression problem. However, the tSIR method assumes that

the duration of infection is equal to the time step, that natural death of susceptible individuals

can be ignored, and that cumulative incidence approximates cumulative births. The latter two

assumptions are reasonable for pre-vaccination measles, when most susceptible individuals

were eventually infected [6]. However, in many contexts (e.g., with pathogens less transmissi-

ble than measles), susceptible mortality over time scales of interest and the difference between

incidence and births are non-negligible.

In their unpublished PhD and MSc theses, Krylova (Ch. 4 in [24]) and deJonge [25] sepa-

rately modified a fast discretization method originally proposed by Fine and Clarkson [6]. Kry-

lova’s approach has been employed to estimate the amplitude of seasonal variation in measles

transmission in 20th century New York City [9]. Unlike the tSIR method and unlike Fine and

Clarkson, Krylova’s and deJonge’s methods do not place constraints on the infectious period

or ignore susceptible mortality.

Here, we present a new algorithm based on deJonge’s method and compare its performance

to the methods of Fine and Clarkson and Krylova. Our main investigative approach is to apply
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each method to simulated reported incidence data with known underlying transmission rate,

so that error in transmission rate estimates can be quantified exactly.

Our analysis of the methods reveals a shared sensitivity to process and observation error.

We mitigate this issue by introducing a smoothing step. The methods are additionally sensitive

to error in the user’s estimate of the initial number of susceptible individuals, which is rarely

known with any precision. We propose a fast, iterative technique for estimating this parameter

from time series of incidence, births, and natural mortality, eliminating a long-standing barrier

to the use of fast methods of transmission rate reconstruction.

2 Methods

In xx2.1 and 2.2 below, we present three fast methods for estimating time-varying transmission

rates, based on a mechanistic model of disease spread. In xx2.3–2.7, we outline our systematic

analysis of the sensitivity of the methods to parameters of the data-generating process and to

error in the user-specified values of input parameters. Finally, in x2.8, we introduce peak-to-

peak iteration (PTPI), a technique for estimating the initial number of susceptible individuals.

Essential notation is summarized in Table 1.

2.1 Model of disease transmission

We assume that the principal mechanisms of disease spread in the focal population are cap-

tured by the SIR model [16], formulated with time-varying rates of birth, death, and transmis-

sion. Expressing the model as a system of ordinary differential equations, we write

dS
dt
¼ nðtÞN̂ 0 � bðtÞSI � mðtÞS ; ð1aÞ

dI
dt
¼ bðtÞSI � gI � mðtÞI ; ð1bÞ

dR
dt
¼ gI � mðtÞR ; ð1cÞ

where S, I, and R are the numbers of individuals who are susceptible, infected, and removed,

respectively; N = S + I + R is the population size; and N̂ 0 ¼ Nð0Þ is the population size at an

initial time, defined to be 0 years for simplicity. (We reserve the notation N0 for N(t0), where

t0 > 0 years is the length of a transient; see Table 1.)

The time-varying parameters are

ν(t) birth rate, the number of births per unit time relative to N̂ 0;

μ(t) natural mortality rate, the number of natural deaths per unit time per capita (i.e., relative

to N); and

β(t) transmission rate, the number of infections per unit time per susceptible per infected.

The constant parameter γ is the rate of removal from the infected compartment (due to

recovery or death from disease) per infected individual.

In Eq (1a) and Eq (1b), we use mass action incidence β(t)SI rather than standard incidence

β(t)SI/N. Mass action incidence is essential for reproducing transitions in epidemic patterns

resulting from changes in the birth rate [2, 28]. In Eq (1a), we write the net birth rate as nðtÞN̂ 0

rather than ν(t). This formulation is for convenience: the factor of N̂ 0 does not affect dynamics,

but ensures that ν(t) and μ(t) have the same scale.
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Table 1. Notation. Unless otherwise stated, simulations of reported incidence time series use the reference values listed here. If a symbol is to be interpreted differently in

relation to disease incidence and disease mortality data, then the correct definition is indicated by (I) and (M), respectively.

Symbol Name Definition Ref. val. Unit Notes

tk kth observation time Time of the kth observation in time series data, for

k = 0, . . ., n.

t0 + kΔt years

t0 Transient period Duration of the transient in system (1) that is ignored

in simulations of reported incidence, before

observations are recorded.

2000 years System (1) is numerically integrated between t = 0

years and t = t0, and observed starting at t = t0. This

is done so that simulations reflect dynamics near the

attractor of system (1).

Δt Observation interval Time between successive observations in time series

data.

1 weeks Disease mortality is reported weekly in the London

Bills of Mortality.

n Time series length Time between the initial and final observations in time

series data, in units Δt, given by (tn − t0)/Δt.
1042 — If Δt = 1 week, then 1042Δt = b20 × 365/7cΔt’ 20

years.

[�]Δt Nearest kΔt rounding For time lengths t, t�
Dt ¼

t
Dt

� �
Dt

�
, where [�] denotes

nearest integer rounding.

— —

h�i Long-term averaging For functions x(t), hxi ¼ limt!1
1

t

R t
0
xðsÞ ds. For

sequences xk, hxi ¼ limn!1
1

n

Pn
k¼0

xk.
— —

(S(t), I(t),
R(t))

State Number of (susceptible, infected, removed)

individuals in the population at time t.
— — “Removed” individuals have either recovered from

the disease and gained permanent immunity or died

from the disease.

N(t) Population size S(t) + I(t) + R(t). — —

B(t) Births Number of births that occur during the time interval

[t − Δt, t).
— —

Q(t) Cumulative incidence Number of susceptibles who become infected during

the time interval [t0, t).
— —

Z(t) Incidence Number of susceptibles who become infected during

the time interval [t − Δt, t).
Q(t) −
Q(t − Δt)

—

C(t) Reported disease (I)

incidence or (M)

mortality

Number of (I) infections or (M) disease-induced

deaths reported during the time interval [t − Δt, t).
Eq (31) — C is an abbreviation of “cases”, which are reported as

infections or as deaths.

(S0, I0,

R0)

Initial state (t = t0) (S(t0), I(t0), R(t0)). (S�, I�,
R�)

— (S�, I�, R�) denotes the state of system (1) after

numerical integration between t = 0 years and t = t0
with seasonally forced transmission rate β(t) (Eq

(27)), constant vital rates νc and μc, and initial state

(t = 0 years) ðŜ; Î ; R̂Þ (Eq (32); see below).

N0 Initial population size

(t = t0)

N(t0). S� + I� +

R�
—

ðŜ; Î ; R̂Þ Endemic equilibrium Endemic equilibrium of system (1) with constant

transmission rate (β � hβi) and constant vital rates

(ν� μ� μc).

Eq (32) —

N̂ 0
Initial population size

(t = 0 years)

N(0). 106 —

xk Estimation input/

output

Within an estimation algorithm (Boxes 1–3), the

supplied or estimated value of x(tk) (x = C, B, μ, Z, S, I,
β).

— varies

ν(t) Birth rate Number of births per unit time relative to N̂ 0, at time

t.
νc year−1 In simulations of reported incidence, ν(t) is modeled

as a constant νc. In general, estimation of β(t) from

data does not require the underlying ν(t) to be

constant.

νc Birth rate (constant) See ν(t) above. 0.04 year−1

μ(t) Natural mortality rate Number of natural deaths per unit time per capita, at

time t.
μc year−1 In simulations of reported incidence, μ(t) is modeled

as a constant μc. In general, estimation of β(t) from

data does not require the underlying μ(t) to be

constant.

μc Natural mortality rate

(constant)

See μ(t) above. 0.04 year−1

(Continued)
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The SIR model (1) assumes that the focal population is homogeneously mixed and sub-

ject to the mass action principle, which states that incidence is proportional to the product

of the densities of susceptibles and infecteds [16]. The model further assumes that the latent

period (time from infection to onset of infectiousness) can be ignored and that the infec-

tious period (time from onset of infectiousness to recovery or death from disease) is expo-

nentially distributed [29]. The distributions of the latent and infectious periods affect

disease dynamics [28, 30, 31], but Krylova and Earn [28] showed that the effect on long-

term dynamical structure is typically small when the mean generation interval is fixed (see

Fig 11 in [28]). For this reason, we assign the mean generation interval implied by the SIR

model (1) (tgen = γ−1) the value of the sum of the observed mean latent and infectious peri-

ods. This sum is the true mean generation interval if the latent and infectious periods are

both exponentially distributed, and is a good estimate of the true mean generation interval

more generally [28].

Transmissibility of infection is typically measured by the basic reproduction number R0,

defined as the number of individuals that a typical infected person is expected to infect in

an otherwise completely susceptible population [16]. If the birth and death rates are constant

(ν� νc and μ� μc), and if the transmission rate has a well-defined average hβi [32], then the

Table 1. (Continued)

Symbol Name Definition Ref. val. Unit Notes

tgen Mean generation

interval

Mean time between onset of infection (in infector) and

subsequent transmission of infection (by infector) [26,

27].

13 days The reference value is the sum of the observed mean

latent and infectious periods, which for measles are 8

days and 5 days, respectively [16].

γ Removal rate Number of removals (recoveries or deaths from

disease) per unit time per infected.

1/tgen day−1

prep Case reporting

probability

(I) Probability that an infection is reported, or (M) the

case fatality ratio times the probability that a death

from disease is reported.

0.25 or 1 — If we simulate data with under-reporting, then we

use prep = 0.25 as a reference value. Otherwise, we set

prep = 1.

trep Mean case reporting

delay

Mean time between infection and reporting of (I)

infection or (M) disease-induced death.

2 or 0 weeks If we simulate data with reporting delays, then we

use trep = 2 weeks as a reference value. Otherwise, we

set trep = 0 weeks.

β(t) Transmission rate Number of infections per unit time per susceptible per

infected, at time t.
Eq (27) year−1 In simulations of reported incidence, β(t) is modeled

by the seasonal forcing function defined in Eq (27).

In general, estimation of β(t) from data does not

require it vary seasonally or even periodically.

hβi Mean transmission

rate

Continuous-time average of the seasonally forced β(t),
equal to limt!1

1

t

R t
0
bðsÞ ds.

β� year−1 β� � 5.6 × 10−4year−1 is the value of hβi that satisfies

Eq (2) with R0 ¼ 20, νc = μc = 0.04 year−1, tgen = γ−1

= 13 days, and N̂ 0 ¼ 106.

R0 Basic reproduction

number

Number of individuals that a typical infected person is

expected to infect in an otherwise completely

susceptible population.

Eq (2) — For measles in the 20th century, R0 � 20 [16].

α Seasonal amplitude Amplitude of the seasonally forced β(t) relative to hβi. 0.08 — For measles, α� 0.08 [2]. We require α 2 [0, 1] to

ensure that the seasonal forcing function defined in

Eq (27) is non-negative.

ϕ(t; �) Environmental noise

(realized)

Phase shift in the seasonally forced β(t), at time t. Normal
(0, �2)

— ϕ is a realization of a continuous-time stochastic

process defined by a set {F(t; �)} of independent and

Normal(0, �2)-distributed random variables.

� Standard deviation of

environmental noise

See ϕ(t; �) above. 0.5 —

q Loess smoothing

parameter

Rough number of nearest neighbours weighted in local

regression (i.e., when fitting loess curves to time

series), determining the degree of smoothing.

— — See x2.2.6 for an exact definition.

https://doi.org/10.1371/journal.pcbi.1008124.t001
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basic reproduction number for the SIR model (1) can be written as [28]

R0 ¼
ncN̂ 0

mc
�
hbi

gþ mc
: ð2Þ

2.2 Estimating β(t) from time series data

Here, we examine three fast methods for estimating time-varying transmission rates β(t). The

methods take as input (i) time series of reported disease incidence or disease mortality, (ii)

time series of births and natural mortality, and (iii) values for input parameters, such as the

mean generation interval tgen. By assumption, the time series data are available at discrete,

equally spaced time points

tk ¼ t0 þ kDt ; k ¼ 0; . . . ; n ; ð3Þ

where Δt is the observation interval. The methods return as output a time series estimate

of β(t), denoted by fðtk; bkÞg
n
k¼0

or simply βk, which can be averaged (x2.2.5) or smoothed

(x2.2.6) to distill temporal patterns of interest.

Missing data must be imputed: the three methods are recursive, so they break down as soon

as they encounter a missing value. Imputation can be accomplished most simply via linear

interpolation between available data. More sophisticated techniques accounting for uncer-

tainty in missing values are described in [33].

2.2.1 FC method. We review the method first described by Fine and Clarkson [6],

referred to here as the “FC method”. Let S(t) and I(t) be the number of susceptibles and infec-

teds in the population at time t. S decreases when susceptibles become infected or die and

increases when susceptibles are born. Let Z(t) and B(t) be the number of infections and births,

respectively, that occur during the time interval [t − Δt, t). Assuming that natural mortality

was negligible, Fine and Clarkson reconstructed S from Z and B with the recursion

Sðt þ DtÞ � SðtÞ þ Bðt þ DtÞ � Zðt þ DtÞ : ð4Þ

Fine and Clarkson further assumed that the observation interval Δt was equal to the mean gen-

eration interval tgen, so that prevalence could be approximated by incidence. That is,

IðtÞ � ZðtÞ ð5Þ

for all t. They derived an expression for Z(t + Δt) via the mass action principle

Zðt þ DtÞ � bðtÞSðtÞIðtÞDt : ð6Þ

Rearranging Eq (6), they obtained an estimate of β(t), given by

bðtÞ �
Zðt þ DtÞ
SðtÞIðtÞDt

: ð7Þ

Fine and Clarkson applied Eqs (4), (5), and (7) to estimate S(tk), I(tk), and β(tk) (for k = 0,

. . ., n), after specifying (i) the initial number of susceptibles S0 = S(t0), and (ii) values of Z(tk)
and B(tk) from incidence and birth data, respectively.

A limitation of the FC method is the constraint requiring Δt = tgen. For some diseases, this

is a minor issue, because incidence and birth data can be aggregated so that the time between

successive aggregates is approximately equal to tgen. For example, the mean generation interval

of measles is approximately two weeks, so Fine and Clarkson [6] aggregated pairs of weekly
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observations. A second, more serious limitation is the assumption, implicit in Eqs (4) and (5),

that natural mortality is negligible. We discuss this issue in x3.1.

2.2.2 S method. Krylova (Ch. 4 in [24]) generalized the FC method in order to eliminate

the constraint requiring Δt = tgen and account for natural mortality. Her approach is based on

the SEIR model, which distinguishes “exposed” individuals in the latent stage of infection from

infectious individuals. Here, we adapt Krylova’s approach to the SIR model (1) and refer to

our approach as the “S method.”

We define S, I, Z, and B as in the FC method. Let μ(t) be the per capita natural mortality

rate at time t, and let Q(t) be the total number of infections occurring between the initial obser-

vation time t0 and current time t (i.e., cumulative incidence). The observation interval Δt is no

longer constrained to be equal to the mean generation interval tgen.

We reconstruct S recursively by discretizing Eq (1a):

Sðt þ DtÞ � SðtÞ þ Bðt þ DtÞ � Zðt þ DtÞ � mðtÞSðtÞDt : ð8Þ

Eq (8) is the result of applying the forward Euler method for numerical integration to Eq (1a),

and replacing the incidence and birth terms with Z(t + Δt) and B(t + Δt), respectively. Eq (8) is

identical to Eq (4) of the FC method, except that it includes a natural mortality term.

In order to estimate β(t), we note that, by definition, dQ/dt is the rate at which individuals

enter the infected compartment. From Eq (1b), this is

dQ
dt
¼ bðtÞSðtÞIðtÞ : ð9Þ

If the mean generation interval tgen is short enough that I and μ are roughly constant between

times t and t + tgen, then dI/dt� 0 in that interval, and using Eq (1b) we can write

bðtÞSðtÞIðtÞ � ðgþ mðtÞÞIðtÞ � ðgþ mðt þ tgenÞÞIðt þ tgenÞ : ð10Þ

In this case, dQ/dt is also (approximately) the rate at which individuals leave the infected com-

partment, tgen time after infection:

dQ
dt
� ðgþ mðt þ tgenÞÞIðt þ tgenÞ : ð11Þ

Note that Eq (11) is also valid if the generation interval is narrowly distributed around its

mean tgen (even if tgen is long).

Discretizing Eqs (9) and (11) using forward Euler, we obtain two approximations of

Z(t + Δt):

Zðt þ DtÞ ¼ Qðt þ DtÞ � QðtÞ �

(
bðtÞSðtÞIðtÞDt from Eq ð9Þ;

ðgþ mðt þ tgenÞÞIðt þ tgenÞDt from Eq ð11Þ:
ð12Þ

Rearranging Eq (12) yields an estimate of β(t), given by

bðtÞ �
Zðt þ DtÞ
SðtÞIðtÞDt

; ð13Þ

and an estimate of I(t), given by

IðtÞ �
Zðt þ Dt � tgenÞ
ðgþ mðtÞÞDt

: ð14Þ

Since data are available only at the observation times tk (Eq (3)), the value of Z(t + Δt − tgen) in
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Eq (14) will be observed only if tgen is an integer multiple of Δt. In general, tgen is not divisible

by Δt. Therefore, in practice, we replace tgen in Z(t + Δt − tgen) with the nearest integer multiple

of Δt, denoted here by [tgen]Δt:

IðtÞ �
Zðt þ Dt � tgenÞ
ðgþ mðtÞÞDt

: ð15Þ

Thus, the S method is defined by Eq (13), coupled with Eqs (8) and (15) for the reconstruc-

tion of S and I. The S method requires users to specify (i) input parameters S0 = S(t0) and tgen =

γ−1, and (ii) values of Z(tk), B(tk), and μ(tk) from incidence, birth, and natural mortality data,

respectively.

The FC method is a special case of the S method, obtained by setting Δt = tgen and μ(t)� 0.

2.2.3 SI method. DeJonge [25] improved Krylova’s method (Ch. 4 in [24]) by reconstruct-

ing I directly from Eq (1b) instead of relying on the approximation in Eq (11). Here, we

improve deJonge’s discretization, which employs the forward Euler method, by instead com-

bining forward and backward Euler. One way to do this is to use the trapezoidal method:

whereas forward and backward Euler take f 0(t)Δt and f 0(t + Δt)Δt, respectively, to approximate

integrals
R tþDt
t f 0ðtÞ dt, the trapezoidal method takes the average 1

2
½f 0ðtÞ þ f 0ðt þ DtÞ�Dt, which

is less prone to error. Our discretization, which we call the “SI method”, is consistently more

accurate than deJonge’s and others (see xS9 of S1 Text for a comparison of nine possible algo-

rithms). Numerically integrating Eq (1a) and Eq (1b) using the trapezoidal method, and

replacing the incidence and birth terms with Z(t + Δt) and B(t + Δt), respectively, we obtain

Sðt þ DtÞ �
1 � 1

2
mðtÞDt

� �
SðtÞ þ Bðt þ DtÞ � Zðt þ DtÞ

1þ 1

2
mðt þ DtÞDt

ð16Þ

and

Iðt þ DtÞ �
1 � 1

2
gþ m tð Þð ÞDt

� �
IðtÞ þ Zðt þ DtÞ

1þ 1

2
gþ m t þ Dtð Þð ÞDt

: ð17Þ

Eq (17) eliminates an important problem with Eq (15) of the S method, which estimates I(t)�
0 if Z(t + Δt − [tgen]Δt) = 0, leading to division by zero in Eq (13).

Discretizing Eq (9) using forward and backward Euler, we obtain two approximations of

Z(t + Δt):

Zðt þ DtÞ ¼ Qðt þ DtÞ � QðtÞ �

(
bðtÞSðtÞIðtÞDt from forward Euler;

bðt þ DtÞSðt þ DtÞIðt þ DtÞDt from backward Euler:
ð18Þ

Rearranging Eq (18) yields two estimates of β(t),

bðtÞ �

ZðtþDtÞ
SðtÞIðtÞDt from forward Euler;

ZðtÞ
SðtÞIðtÞDt from backward Euler;

8
<

:
ð19Þ

whose average supplies a more accurate estimate (see xS9 of S1 Text), given by

bðtÞ �
ZðtÞ þ Zðt þ DtÞ

2SðtÞIðtÞDt
: ð20Þ

Thus, the SI method is defined by Eq (20), coupled with Eqs (16) and (17) for the recon-

struction of S and I. Compared to the S method, the SI method, in principle, requires one
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additional input parameter, namely the initial number of infecteds I0 = I(t0). In x3.6, we show

that, in practice, this additional information is not necessary.

2.2.4 Estimating true incidence from reported incidence. Let C(t) be the number of

infections reported during the time interval [t − Δt, t). We estimate true incidence Z from

reported incidence C via

ZðtÞ �
1

prep
Cðt þ ½trep�DtÞ ; ð21Þ

where prep is the probability that an infection is reported and [trep]Δt is the mean time between

infection and reporting, rounded to the nearest integer multiple of the observation interval Δt.
Eq (21) has the limitation that multiplying by p� 1

rep does not correct for under-reporting if,

by chance, C(t + [trep]Δt) = 0. In this situation, not only is the result Z(t)� 0 incorrect, but we

divide by zero in the FC and S methods when we substitute Eqs (5) and (15) in Eqs (7) and

(13), respectively. If C(t + [trep]Δt) = C(t + [trep]Δt + Δt) = 0, then the SI method also suffers: Eq

(20) gives β(t)� 0. To circumvent these issues, we replace zeros in reported incidence time

series by linearly interpolating between nonzero values prior to estimating true incidence

using Eq (21). We do not replace leading and trailing zeros.

If what we observe is deaths from disease, rather than infections, then we have the compli-

cation that only a fraction of infections end in death. In this situation, we can still use Eq (21)

to estimate Z, provided we interpret (i) C as reported disease mortality, (ii) prep as the case

fatality ratio times the probability that a death from disease is reported, and (iii) trep as the

mean time between infection and reporting of disease-induced death.

A more sophisticated method of inferring true incidence from reported data is described in

[34].

2.2.5 Averaging raw estimates of β(t). Given fixed time series data and input parameters,

the FC, S, and SI methods return estimates of β(t) that are entirely determined (not random).

In the absence of additional data observed from the same population, it is difficult to assign

confidence to the output.

However, if an estimate ~bðtÞ is approximately periodic (with apparent period T) and con-

tains m complete cycles, and if we assume β(t) is truly periodic, then we can view ~bðtÞ as con-

taining a sample of m estimates of the true cycle, with some variance, and use its mean as an

estimator instead of any one of the m cycles. For such an estimate ~bðtÞ defined on the interval

[t0, t0 + mT), the mean and variance are given by

�xðtÞ ¼
1

m

Xm� 1

i¼0

~bðt þ iTÞ ; t 2 ½t0; t0 þ TÞ ; ð22aÞ

s2ðtÞ ¼
1

m � 1

Xm� 1

i¼0

½~bðt þ iTÞ � �xðtÞ�2 ; t 2 ½t0; t0 þ TÞ : ð22bÞ

In x3.3, we apply the S and SI methods to simulated data to estimate an underlying, seasonally

forced β(t) (Eq (27)), which has a period of 1 year. We linearly interpolate the raw time series

estimate βk and compute the average 1-year cycle in the interpolant βint(t) using Eq (22a).

Comparing this average to the true 1-year cycle, we are able to assess bias in the two methods.

Note that �xðtÞ and s2(t) can be used to obtain a formal, likelihood-based measure of confi-

dence in estimates ~bðtÞ (see x2.3.4 in [35]).
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2.2.6 Smoothing raw estimates of β(t). Process and observation error introduce random

fluctuations in reported incidence on top of longer-term (e.g., seasonal) variation. In x3.2, we

show that noise in reported incidence is spuriously amplified in βk, the raw time series estimate

of β(t).
To distill temporal patterns of interest from the noise, we fit a smooth loess (short for local

regression; see Ch. 8.1 in [36]) curve βloess(t; q) to the points fðtk; bkÞg
n
k¼0

and use βloess(t; q) as

our final estimate of β(t). Here, q 2 {5, . . ., n + 1} is an integer-valued parameter controlling

the degree of smoothing. At times t 2 [t0, tn], the fitted value βloess(t; q) is obtained as follows:

1. Order the distances dk = |tk − t| of the time points tk (Eq (3)) from t, letting dki denote the

ith smallest distance (for i = 1, . . ., n + 1).

2. Fit a quadratic polynomial p2(t) to the points fðtk; bkÞg
n
k¼0

. This is done by weighted least

squares using tricube weights

wk ¼
1 �

dk
dkq

� �3
 !3

if 0 � dk < dkq ;

0 if dk � dkq :

8
>>><

>>>:

ð23Þ

Hence only time points tk nearer to t than the qth nearest time point are weighted in the fit.

3. Define βloess(t; q) = p2(t).

Typically, smoother fits are obtained with greater q [36, 37].

The optimal value of q for a given time series βk, denoted by qopt, is that which minimizes

error in βloess(t; q) relative to β(t). In x3.4, we estimate β(t) from simulated data, smooth βk
using each value of q on a grid, and use our knowledge of β(t) to determine qopt. We show that

it is possible for smoothing to eliminate much of the error in βk attributable to process and

observation error. Thus, in x2.2.7, we explicitly define the FC, S, and SI methods with loess

smoothing as a final step.

In practice, β(t) is not known, so we cannot determine qopt. In this case, qopt can be esti-

mated using statistical methods, such as time series cross-validation [38]. However, reasonable

results can be obtained much more quickly by inspecting βloess(t; q) directly and increasing q
from 4 until a desirable degree of smoothing is achieved (e.g., until noise on the time scale of

weeks is visibly reduced, and patterns on the time scale of months are easier to discern).

2.2.7 Summary. In Boxes 1–3 below, we summarize the three methods derived in

xx2.2.1–2.2.6 for estimating time-varying transmission rates β(t) from time series data with

observation times tk (Eq (3)). We use the notation xk to refer to the value supplied or computed

for x(tk) within the estimation algorithms (x = C, B, μ, Z, S, I, β).

In Box 4, we provide instructions for input specification based on our analysis of the

methods.

Box 1. FC method (Fine & Clarkson 1982 [6])

Zk  
1

prep
Ckþr; where r ¼

½trep�Dt
Dt

; ð24aÞ

Sk  Sk� 1 þ Bk � Zk ; ð24bÞ
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Ik  Zk ; ð24cÞ

bk  
Zkþ1

SkIkDt
; ð24dÞ

where Δt is assumed to be roughly equal to tgen, and natural mortality is assumed to be

negligible. Users must specify:

• a time series fðtk;CkÞg
n
k¼0

of reported incidence or reported disease mortality, with

zeros replaced via linear interpolation between nonzero values;

• a time series fðtk;BkÞg
n
k¼0

of births;

• input parameters S0, tgen, prep, and trep.

Box 2. S method (adapted from Krylova 2011 [24])

Zk  
1

prep
Ckþr ; where r ¼

½trep�Dt
Dt

; ð25aÞ

Sk  Sk� 1 þ Bk � Zk � mk� 1Sk� 1Dt ; ð25bÞ

Ik  
Zkþ1� g

ðgþ mkÞDt
; where g ¼

½tgen�Dt
Dt

; ð25cÞ

bk  
Zkþ1

SkIkDt
; ð25dÞ

bloessðt; qÞ  loess curve fit to time series fðtk; bkÞg
n
k¼0
: ð25eÞ

Users must specify:

• a time series fðtk;CkÞg
n
k¼0

of reported incidence or reported disease mortality, with

zeros replaced via linear interpolation between nonzero values;

• a time series fðtk;BkÞg
n
k¼0

of births;

• a time series fðtk; mkÞg
n
k¼0

of the per capita natural mortality rate;

• input parameters S0, tgen = γ−1, prep, and trep;

• loess smoothing parameter q.
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Box 4. Instructions for input specification

• βk is sensitive to mis-specification of S0, but not I0 (cf. x3.6.1). If the user’s estimate of

S0 is uncertain, and if the incidence time series Zk is roughly periodic, then a more

accurate estimate of S0 may be obtained via peak-to-peak iteration (PTPI; cf. x3.7).

• If Sk is negative for any k, then it is likely that the case reporting probability prep was

underestimated or that births were systematically under-reported by Bk. This can be

resolved by correcting the estimate of prep or correcting Bk, then restarting the algo-

rithm. Users should apply close to the minimal correction necessary to prevent nega-

tive Sk.

• q must be tuned to the βk time series. An estimate of qopt can be obtained using statisti-

cal methods, such as time series cross-validation [38]. However, q can be tuned quickly

through visual inspection of βloess(t; q): one can increase q from 5 until a desirable

degree of smoothing is achieved (e.g., until noise on the time scale of weeks is visibly

reduced, and patterns on the time scale of months are easier to discern).

Box 3. SI method (adapted from deJonge 2014 [25])

Zk  
1

prep
Ckþr ; where r ¼

½trep�Dt
Dt

; ð26aÞ

Sk  
1 � 1

2
mk� 1Dt

� �
Sk� 1 þ Bk � Zk

1þ 1

2
mkDt

; ð26bÞ

Ik  
1 � 1

2
gþ mk� 1ð ÞDt

� �
Ik� 1 þ Zk

1þ 1

2
gþ mkð ÞDt

; ð26cÞ

bk  
Zk þ Zkþ1

2SkIkDt
; ð26dÞ

bloessðt; qÞ  loess curve fit to time series fðtk; bkÞg
n
k¼0
: ð26eÞ

Users must specify:

• a time series fðtk;CkÞg
n
k¼0

of reported incidence or reported disease mortality, with

zeros replaced via linear interpolation between nonzero values;

• a time series fðtk;BkÞg
n
k¼0

of births;

• a time series fðtk; mkÞg
n
k¼0

of the per capita natural mortality rate;

• input parameters S0, I0, tgen = γ−1, prep, and trep;

• loess smoothing parameter q.
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2.3 Simulating reported incidence data

In order to compare the performance of the FC, S, and SI methods in estimating β(t), we apply

the methods to simulated reported incidence data with known underlying β(t). Here, we out-

line our methods for simulating these data using the SIR model (1).

2.3.1 Seasonal forcing of β(t) with environmental stochasticity. We reproduce seasonal

fluctuation in the transmission rate by modeling β(t) in Eq (1) as a sinusoidal forcing function

with period equal to one year:

bðtÞ ¼ hbi 1þ a cos
2pt

1 year

� �� �

: ð27Þ

Here, α 2 [0, 1] is the amplitude of seasonal forcing relative to the mean hβi. We introduce sto-

chastic fluctuation by adding a randomly generated phase shift:

b�ðtÞ ¼ hbi 1þ a cos
2pt

1 year
þ �ðt; �Þ

� �� �

: ð28Þ

ϕ is a realization of a continuous-time stochastic process consisting of independent, Normal(0,

�2)-distributed random variables. It models environmental stochasticity leading to random

noise in the transmission rate. Modeling environmental stochasticity with a random phase

shift rather than additive noise conveniently avoids negative βϕ(t): βϕ(t) oscillates between

hβi(1 − α) and hβi(1 + α) regardless of the distribution of the noise. In practice, we take the val-

ues of ϕ at times tk (Eq (3)) and linearly interpolate to obtain values in between. This helps to

make simulations of Eqs (1) and (9) with adaptive time steps (cf. x2.3.2) reproducible.

2.3.2 Generating incidence time series with demographic stochasticity. We supplement

Eq (1) with Eq (9), so that trajectories of the resulting system record changes in cumulative

incidence Q. In this system, we employ the noisy transmission rate βϕ(t) (Eq (28)) and constant

vital rates νc and μc. We then either (i) numerically integrate the differential equations to

approximate their solution, or (ii) treat the system more realistically as an event-driven, con-

tinuous-time Markov process (with event rates specified by terms in the differential equations)

and use the adaptive tau-leaping algorithm for stochastic simulation [39, 40]. The latter

approach accounts for demographic stochasticity in disease dynamics. We prevent disease

fadeout in simulations with demographic stochasticity by setting the rates of infected recovery

and death to zero whenever I = 1.

In both methods of simulation, we record the state of the system at times tk (Eq (3)), choos-

ing initial state

Sðt0Þ

Iðt0Þ

Rðt0Þ

Qðt0Þ

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

¼

S0

I0

R0

0

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

; ð29Þ

where S0 + I0 + R0 = N0 = N(t0). Finally, we derive incidence Z from Q via first differences:

ZðtÞ ¼ QðtÞ � Qðt � DtÞ : ð30Þ

2.3.3 Introducing observation error. Observation error due to under-reporting (prep <

1) and reporting delays (trep > 0 weeks) creates discrepancies between true incidence Z and

reported incidence C. We introduce random observation error to simulated incidence time
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series with delayed binomial sampling:

Cðt þ ½trep�DtÞ � BinomialðZðtÞ; prepÞ : ð31Þ

For simulations without observation error, we set prep < 1 and trep > 0 weeks.

2.3.4 Parametrization. The simulation method outlined in xx2.3.1–2.3.3 is parametrized

by

disease parameters hbi; a; �; tgen ;

population parameters N̂ 0 ¼ Nð0Þ; S0 ¼ Sðt0Þ; I0 ¼ Iðt0Þ; nc; mc; ; and

reporting parameters prep; trep; t0; Dt; n :

For most simulations, we assign parameters the reference values listed in Table 1. We consider

different values when we investigate the sensitivity of β(t) estimates to data-generating parame-

ters (cf. x2.6.1).

We bypass transient dynamics by choosing t0 = 2000 years and numerically integrating

system (1) between 0 years and t0 in order to obtain a point (S�, I�, R�) very near the attractor.

For this step, we exclude environmental noise, defining β(t) as in Eq (27), and take the initial

state to be the endemic equilibrium of the unforced system (system (1) with β� hβi and ν�
μ� μc):

Sð0Þ

Ið0Þ

Rð0Þ

0

B
B
B
B
B
@

1

C
C
C
C
C
A

¼

Ŝ

Î

R̂

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

¼

N̂ 0

R0

N̂ 0 1 � 1

R0

� �
mc
gþmc

� �

N̂ 0 1 � 1

R0

� �
g

gþmc

� �

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

: ð32Þ

2.4 Creating mock birth and natural mortality time series

In addition to reported incidence data, the FC, S, and SI methods require time series of births

and the per capita natural mortality rate. For simplicity, we create mock time series by (i)

choosing constant vital rates n0c and m0c, then (ii) setting Bk ¼ n0cN̂ 0Dt and mk ¼ m
0
c for all k.

Note that n0cN̂ 0Dt is the result of integrating the net birth rate in the SIR model (1), given by

nðtÞN̂ 0, between successive observation times using n � n0c.

We specify n0c ¼ nc and m0c ¼ mc, where νc and μc are the data-generating vital rates (cf.
x2.3.4), except when we investigate the sensitivity of β(t) estimates to incorrect vital data (cf.
x2.6.2). For example, to model under-reporting of births, we simply set n0c < nc.

2.5 Measuring β(t) estimation error

When we simulate reported incidence data, the underlying transmission rate β(t) is defined

beforehand via Eq (27) and known for all t. We use this knowledge to quantify the error in esti-

mates of β(t) obtained from the data. Specifically, given an estimate ~bðtÞ defined at time points

tk (Eq (3)), we compute the relative root mean square error (RRMSE), defined as

RRMSEðb; ~bÞ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

nþ 1

Xn

k¼0

bðtkÞ � ~bðtkÞ
�b

 !2
v
u
u
t ; ð33Þ
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where

�b ≔
1

nþ 1

Xn

k¼0

bðtkÞ : ð34Þ

Note that by “underlying transmission rate” we mean the transmission rate excluding environ-

mental noise. Although we simulate data using the noisy βϕ(t), defined in Eq (28), our aim is to

reconstruct the noiseless β(t), defined in Eq (27).

2.6 Sensitivity analysis

Error in β(t) estimation from reported incidence data depends on how the data were gener-

ated. The number of cases reported over time is influenced by features of the disease (e.g., the

natural history of infection), population (e.g., contact patterns), and case reporting (e.g., the

frequency and accuracy of reports). In our simulations of reported incidence, there are 14

data-generating parameters (cf. x2.3.4), whose values are summarized in the vector

θ ¼ ðhbi; a; �; N̂ 0; S0; I0; nc; mc; tgen; prep; trep; t0; Dt; nÞ : ð35Þ

Estimation error also depends on how accurately certain data-generating parameters are

specified by users of the FC, S, and SI methods. The initial observation time t0, observation

interval Δt, and time series length n are always known exactly. Other parameters (hβi, α, �, N̂ 0,

νc, and μc) influence our simulations of reported incidence, but in practice are not parameters

of the FC, S, and SI methods. In practice, users are required to specify only S0, tgen, prep, trep,

and (with the SI method) I0. However, when we test the methods here, we do specify vital rates

νc and μc in order to create mock (constant) birth and natural mortality time series (cf. x2.4).

The specified values of these 7 input parameters are summarized in the vector

θ0 ¼ ðS0
0
; I0

0
; n0c; m

0
c; t

0
gen; p

0
rep; t

0
repÞ : ð36Þ

First, we investigate the sensitivity of the methods to the data-generating parameter values

θ. Then, we examine their sensitivity to error in the user’s specification θ0 of the input parame-

ters. Here, we describe our analysis using the notation ~bðt; θ; θ0Þ to refer to transmission rate

estimates constructed with user input θ0, from data generated by parameter values θ.

2.6.1 Sensitivity to data-generating parameters. In x3.5, we consider the ideal situation

in which the input θ0 corresponds exactly to the data-generating θ. In this case, how sensitive is

error in ~bðt; θ; θ0Þ to θ? For example, is β(t) estimated more accurately for diseases with longer

mean generation interval tgen, etc.? To answer these questions, we perform the following steps

on a grid of data-generating parameter values θ:

1. Simulate 1000 reported incidence time series using θ.

2. Create corresponding mock (constant) birth and natural mortality time series (cf. x2.4),

specifying n0c ¼ nc and m0c ¼ mc in the input θ0.

3. Estimate β(t) from the simulated data, specifying S0
0
¼ S0, I0

0
¼ I0, t0gen ¼ tgen, p0rep ¼ prep, and

t0rep ¼ trep in the input θ0.

4. Compute the median RRMSE in the estimates ~bðtk; θ; θ
0
Þ (1000 estimates corresponding to

1000 simulations).

We repeat this analysis 6 times, corresponding to 2 methods of β(t) estimation (S or SI) and 3

methods of data simulation:
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• without demographic stochasticity and without observation error (fixing prep = 1, trep = 0

weeks),

• with demographic stochasticity but without observation error (fixing prep = 1, trep = 0 weeks),

or

• with demographic stochasticity and with observation error (fixing prep = 0.25 unless sensitiv-

ity to prep is considered, trep = 2 weeks).

Environmental stochasticity (� = 0.5) is included in all simulations.

2.6.2 Sensitivity to mis-specification of input parameters. In x3.6, we fix the data-gener-

ating θ and consider the more realistic situation in which components of the input θ0 differ

from the corresponding components of θ by a potentially large factor. In this case, how sensi-

tive is error in ~bðt; θ; θ0Þ to error in θ0? For example, how important is having an accurate esti-

mate of tgen, etc.? To answer these questions, we perform the following steps:

1. Simulate 1000 reported incidence time series using fixed data-generating parameter values

θ. (We assign the reference values listed in Table 1.)

2. For each point on a grid of input parameter values θ0:

a. Create mock (constant) birth and natural mortality time series, taking n0c and m0c from the

input θ0.

b. Estimate β(t) from the simulated data, taking S0
0
, I0

0
, t0gen, p0rep, and t0rep from the input θ0.

c. Compute the median RRMSE in the estimates ~bðtk; θ; θ
0
Þ (1000 estimates corresponding

to 1000 simulations).

We repeat this analysis 6 times, as outlined at the end of x2.6.1.

2.7 Asymptotic analysis

Here, we examine analytically the propagation of input error to the output of the SI method.

(Similar expressions for propagated errors are obtained by analyzing the S method.) Our anal-

ysis here supports numerical results presented in x3.6 concerning the sensitivity of β(t) estima-

tion error to mis-specification of input parameters.

2.7.1 Explicit solutions of the (Sk, Ik) difference equations. The SI method uses Eq (26a)

to Eq (26c) to recursively reconstruct S(t) and I(t) from time series of reported incidence,

births, and natural mortality. After substitution of Eq (26a), Eq (26b) and Eq (26c) can be writ-

ten as

Skþ1 ¼
1 � 1

2
mkDt

1þ 1

2
mkþ1Dt

Sk þ
Bkþ1 �

1

prep
Ckþ1þr

1þ 1

2
mkþ1Dt

; k ¼ 0; 1; . . . ; ð37aÞ

Ikþ1 ¼
1 � 1

2
ðgþ mkÞDt

1þ 1

2
ðgþ mkþ1ÞDt

Ik þ
1

prep
Ckþ1þr

1þ 1

2
ðgþ mkþ1ÞDt

; k ¼ 0; 1; . . . ; ð37bÞ

where r = [trep]Δt/Δt is the mean case reporting delay in units of the observation interval,

rounded to the nearest integer. Eq (37) are linear, first order difference equations, whose

explicit solutions are obtained using standard algebraic techniques (see Eq 1.2.4 in [41]) and
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given by

Sk ¼ S0

Yk� 1

j¼0

1 � 1

2
mjDt

1þ 1

2
mjþ1Dt

þ
Xk� 1

i¼0

ðBiþ1 �
1

prep
Ciþ1þrÞ

Yk� 1

j¼iþ1

1 � 1

2
mjDt

1þ 1

2
mjþ1Dt

; k ¼ 0; 1; . . . ; ð38aÞ

Ik ¼ I0
Yk� 1

j¼0

1 � 1

2
ðgþ mjÞDt

1þ 1

2
ðgþ mjþ1ÞDt

þ
Xk� 1

i¼0

1

prep
Ciþ1þr

Yk� 1

j¼iþ1

1 � 1

2
ðgþ mjÞDt

1þ 1

2
ðgþ mjþ1ÞDt

; k ¼ 0; 1; . . . ; ð38bÞ

with the conventions
Xa

i¼b

xi ¼ 0 and
Ya

i¼b

xi ¼ 1 if a< b. As we show in x2.7.2, explicit solutions

of Eq (37) facilitate asymptotic analysis.

2.7.2 Propagation of input error to (Sk, Ik). We consider the special case in which the

vital rates are constant and set Bk ¼ ncN̂ 0Dt and μk = μc for all k (cf. x2.4). Then Eq (38) sim-

plify to

SkðS0; nc; mc; prepÞ

¼ S0

1 � 1

2
mcDt

1þ 1

2
mcDt

� �k

þ
Xk� 1

i¼0

ncN̂ 0Dt � 1

prep
Ciþ1þr

1þ 1

2
mcDt

1 � 1

2
mcDt

1þ 1

2
mcDt

� �k� 1� i ð39aÞ

IkðI0; mc; tgen; prepÞ

¼ I0
1 � 1

2
ðgþ mcÞDt

1þ 1

2
ðgþ mcÞDt

� �k

þ
Xk� 1

i¼0

1

prep
Ciþ1þr

1þ 1

2
ðgþ mcÞDt

1 � 1

2
ðgþ mcÞDt

1þ 1

2
ðgþ mcÞDt

� �k� 1� i ð39bÞ

where we have made explicit the dependence of Sk and Ik on input parameters S0, I0, νc, μc, tgen

= γ−1, and prep. Using Eq (39), we can derive exact expressions for the error propagated to Sk
and Ik in the SI method as a result of assigning an incorrect value to an input parameter.

If the initial number of susceptibles is truly S0, but we specify S0
0
¼ oS0, where ω> 0, then

the error propagated to Sk is

ErrðSk; S0  oS0Þ ¼ SkðoS0; nc; mc; prepÞ � SkðS0; nc; mc; prepÞ

¼ ðo � 1ÞS0

1 � 1

2
mcDt

1þ 1

2
mcDt

� �k

¼ ðo � 1ÞS0

1 � Dt
2tlife

1þ Dt
2tlife

 !k

� !
k!1

0 ;

ð40Þ

where tlife ¼ m� 1
c is the life expectancy in the population. Similarly, specifying I0

0
¼ oI0 for I0

yields an error
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ErrðIk; I0  oI0Þ ¼ IkðoI0; mc; tgen; prepÞ � IkðI0; mc; tgen; prepÞ

¼ ðo � 1ÞI0
1 � 1

2
ðgþ mcÞDt

1þ 1

2
ðgþ mcÞDt

� �k

¼ ðo � 1ÞI0
1 � Dt

2tinf

1þ Dt
2tinf

 !k

� !
k!1

0

ð41Þ

in Ik, where tinf = (γ + μc)
−1 is the mean time between infection and removal from the infected

compartment, accounting for the possibility of natural death during infection. Eqs (40) and

(41) show that the errors propagated to Sk and Ik vanish as k!1; we exploit this fact to

improve susceptible reconstruction (cf. x2.8).

Mis-specifying νc by assigning a value n0c ¼ onc creates an error in Sk that increases in mag-

nitude over time and converges to a limit:

ErrðSk; nc  oncÞ

¼ SkðS0;onc; mc; prepÞ � SkðS0; nc; mc; prepÞ

¼
Xk� 1

i¼0

ðo � 1ÞncN̂ 0Dt
1þ 1

2
mcDt

1 � 1

2
mcDt

1þ 1

2
mcDt

� �k� 1� i

¼
ðo � 1ÞncN̂ 0Dt

1þ 1

2
mcDt

Xk� 1

i¼0

1 � 1

2
mcDt

1þ 1

2
mcDt

� �i

¼
ðo � 1ÞncN̂ 0

mc
1 �

1 � 1

2
mcDt

1þ 1

2
mcDt

� �k
" #

� !
k!1

ðo � 1ÞncN̂ 0tlife :

ð42Þ

Unlike Eq (42), the exact expression for Err(Sk, μc ωμc) is not readily simplified and is diffi-

cult to interpret:

ErrðSk; mc  omcÞ

¼ SkðS0; nc;omc; prepÞ � SkðS0; nc; mc; prepÞ

¼ S0

1 � 1

2
omcDt

1þ 1

2
omcDt

� �k

þ
Xk� 1

i¼0

ncN̂ 0Dt � 1

prep
Ciþ1þr

1þ 1

2
omcDt

1 � 1

2
omcDt

1þ 1

2
omcDt

� �k� 1� i

� S0

1 � 1

2
omcDt

1þ 1

2
omcDt

� �k

�
Xk� 1

i¼0

ncN̂ 0Dt � 1

prep
Ciþ1þr

1þ 1

2
mcDt

1 � 1

2
mcDt

1þ 1

2
mcDt

� �k� 1� i

:

ð43Þ

However, if Ck has a well-defined long-term average hCi (this will be true if, for instance, Ck
is periodic), then Err(Sk, μc ωμc) has a well-defined long-term average hErr(Sk, μc ωμc)i

with a simple form. Replacing Ci+1+r in Eq (43) with hCi, simplifying the resulting expression,
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then taking the limit as k!1, we obtain

hErrðSk; mc  omcÞi

¼ lim
k!1

S0

1 � 1

2
omcDt

1þ 1

2
omcDt

� �k

þ
ncN̂ 0Dt � 1

prep
hCi

omcDt
1 �

1 � 1

2
omcDt

1þ 1

2
omcDt

� �k
" #(

� S0

1 � 1

2
mcDt

1þ 1

2
mcDt

� �k

�
ncN̂ 0Dt � 1

prep
hCi

mcDt
1 �

1 � 1

2
mcDt

1þ 1

2
mcDt

� �k
" #)

¼ 1

o
� 1

� �
ncN̂ 0Dt � 1

prep
hCi

� � tlife
Dt

;

ð44Þ

We can similarly show the following, still assuming that hCi is well-defined:

hErr Ik; mc  omcð Þi ¼
hCiðt0inf � tinfÞ

prepDt
; t0inf ¼ ðgþ omcÞ

� 1
; ð45Þ

hErr Ik; tgen  otgen
� �

i ¼
hCiðt0inf � tinfÞ

prepDt
; t0inf ¼

1

o
gþ mc

� �� 1

; ð46Þ

hErr Sk; prep  oprep
� �

i ¼ 1 � 1

o

� � hCitlife
prepDt

; ð47Þ

hErr Ik; prep  oprep
� �

i ¼ 1

o
� 1

� � hCitinf
prepDt

: ð48Þ

Here, t0inf is the (incorrect) mean time spent infected that results when ωμc is incorrectly speci-

fied for μc (Eq (45)) or ωtgen is incorrectly specified for tgen (Eq (46)).

2.7.3 Propagation of error in (Sk, Ik) to βk. Let βk(Zk, Zk+1, Sk, Ik) be the raw SI method

estimate of β(tk), given by the right hand side of Eq (26d). Suppose that, due to propagated

error (cf. x2.7.2), the arguments are incorrect by a factor, so that

Zk ¼ oZZðtkÞ ; Zkþ1 ¼ oZZðtkþ1Þ ; Sk ¼ oSSðtkÞ ; Ik ¼ oIIðtkÞ ; ð49Þ

where ωZ, ωS, ωI> 0. Then the computed βk will have relative error

bkðZk;Zkþ1; Sk; IkÞ � bkðZðtkÞ;Zðtkþ1Þ; SðtkÞ; IðtkÞÞ
bkðZðtkÞ;Zðtkþ1Þ; SðtkÞ; IðtkÞÞ

¼
oZ

oSoI
� 1 : ð50Þ

Hence severe underestimation of Sk or Ik (ωS� 1 or ωI� 1) causes the relative error in βk to

blow up.

2.8 Estimating S0 via peak-to-peak iteration

Reconstruction of susceptibles S(t) is a necessary step in the reconstruction of β(t) using the

FC, S, and SI methods. In x3.6, we show that susceptible reconstruction requires accurate spec-

ification of the initial number of susceptibles S0 = S(t0). However, reliable estimates of S0 have,

to this point, been difficult to obtain in practice.

We propose a technique for iteratively improving estimates of S0, requiring only incidence,

birth, and natural mortality data at times tk (Eq (3)). Crucially, our technique, which we call
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“peak-to-peak iteration” (PTPI), enables accurate susceptible reconstruction without direct

observation of the susceptible population size at the initial time.

Our approach is motivated by application of the SI method to simulated data. When we

incorrectly guessed the value of S0 and attempted to reconstruct S(t) via Eq (26b), the absolute

error in the reconstruction fðtk; SkÞg
n
k¼0

decreased monotonically over time (k). (Eq (40) shows

that the error propagated from S0 to Sk vanishes as k!1.) Consequently, if the underlying

dynamics are at least approximately periodic, and if t0 and tn occur at the same phase of the

cycle, then Sn is actually a better estimate of S0 than our initial guess. In this situation, instead

of reconstructing β(t) directly, we can use Sn as an updated estimate of S0, and reconstruct S(t)
more accurately. This procedure can be repeated any number of times, and, with simulated

data, we observe rapid convergence to an accurate estimate of S0 (cf. x3.7).

The key point is that the reconstructed final state can be used as an improved estimate of

the initial state only if the initial and final states occur at the same phase of the cycle. This will

not be true unless the observation period (the time between the first and last observations in

time series data) is an integer multiple of the period of the underlying dynamics. We can

ensure this by choosing appropriate times at which to start and stop S(t) reconstruction. In

noisy periodic data, the points in a cycle that are easiest to identify robustly are the peaks. Con-

sequently, we ignore observations (i) prior to the time ta of the first peak in the incidence time

series and (ii) after the time tb of the last peak that occurs near an integer multiple of the appar-

ent period after the first peak. For the truncated time series, the iterations converge to an accu-

rate estimate of S(ta) starting from an initial guess, and we recover the corresponding accurate

estimate of S0 by solving Eq (26b) backwards in time, from ta to t0:

Sk� 1 �
1þ 1

2
mkDt

� �
Sk � Bk þ Zk

1 � 1

2
mk� 1Dt

: ð51Þ

The complete PTPI algorithm, which consists of finding ta and tb (truncation step) and esti-

mating S0 (iteration step), is outlined in Boxes 5 and 6 below. In x3.7, we assess the perfor-

mance of PTPI by applying the technique to simulated data with known underlying S0,

starting from an incorrect initial estimate of S0.

Box 5. Peak-to-peak iteration: Truncation step

Goal: Given a roughly periodic time series fðtk;ZkÞg
n
k¼0

of incidence, we want to find the

time ta of the first peak and the time tb of the last peak occurring at the same phase of the

cycle. These times are necessary for the iteration step (Box 6).

Algorithm:

i. Smooth the raw incidence time series Zk by applying a (2ℓ1 + 1)-point central mov-

ing average, computed via

�Zk ¼
1

2‘1 þ 1

X‘1

i¼� ‘1

Zkþi ; k ¼ ‘1; . . . ; n � ‘1 : ð52Þ

Choose minimal ℓ1 large enough to remove spurious peaks in Zk caused by noise,

while retaining true peaks.

ii. Identify the period T of the smoothed incidence time series fðtk; �ZkÞg
n� ‘1
k¼‘1

from

its power spectrum, and calculate the number of embedded cycles, given by

m ¼ btn� ‘1 � t‘1T c.
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iii. Construct the set I indexing peaks in fðtk; �ZkÞg
n� ‘1
k¼‘1

:

I ¼ fk 2 f‘1 þ ‘2; . . . ; n � ‘1 � ‘2g : �Zk >
�Zk�i for all i ¼ 1; . . . ; ‘2g : ð53Þ

Choose minimal ℓ2 large enough to ensure that I indexes true peaks in �Zk, but

not spurious peaks caused by noise (any that remain after smoothing).

iv. Define T ¼ ftk : k 2 Ig, the set of times of peaks in �Zk, and record the time of

the first peak, given by ta ¼ min ðT Þ.

v. For i = 0, . . ., m, define τi = ta+ iT and find the element of T nearest τi, namely

arg min
t2T

jti � tj. The resulting subset T phase should contain successive time points

that are roughly one period apart, i.e., the corresponding peaks in �Zk should occur

at the same phase of the cycle.

vi. Record the time of the last such peak, given by tb ¼ maxðT phaseÞ.

Box 6. Peak-to-peak iteration: Iteration step

Goal: We want to produce an accurate estimate of the initial number of susceptibles S0 =

S(t0), given

• a roughly periodic time series fðtk;ZkÞg
n
k¼0

of incidence,

• a time series fðtk;BkÞg
n
k¼0

of births,

• a time series fðtk; mkÞg
n
k¼0

of the per capita natural mortality rate,

• times ta and tb as defined in the truncation step (Box 5), and

• an initial estimate of S0.

Algorithm:

i. Define an initial estimate of S(ta). (We use the initial estimate of S0.)

ii. Reconstruct S(t) between times ta and tb using Eq (26b), starting with the current

estimate of S(ta).

iii. Update the estimate of S(ta) with the estimate of S(tb) obtained in (ii).

iv. Repeat (ii) and (iii) until the sequence of estimates of S(ta) converges (to within a

desirable tolerance).

v. Reconstruct S(t) between times t0 and ta using Eq (51), starting with the final esti-

mate of S(ta) obtained in (iv). The reconstruction is performed backwards in time,

from ta to t0.

vi. Record the estimate of S0 = S(t0) computed in (v). This value can be passed back

to Eq (26b), allowing for reconstruction of S(t) between times t0 and tn, as usual.
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3 Results

In x3.1, we compare the performance of the FC, S, and SI methods in estimating β(t) from an

idealized reported incidence time series. In x3.2, we show how process and observation error

create spurious noise in estimates of β(t). In xx3.3 and 3.4, we examine averaging and smooth-

ing as ways to distill temporal patterns of interest from noisy estimates of β(t). In xx3.5 and 3.6,

we summarize our systematic analysis of the sensitivity of β(t) estimation error to data-gener-

ating parameters and to mis-specification of input parameters by the user. In x3.7, addressing

apparent sensitivity to mis-specification of the initial number of susceptibles S0, we assess the

performance of PTPI as a method of estimating S0. Finally, in x3.8, we report the run times of

the S and SI methods and PTPI.

The results reported here are entirely reproducible using the annotated R code available in

S1 File.

3.1 Example of β(t) estimation using the FC, S, and SI methods

We applied the FC, S, and SI methods without input error to estimate S(t) and β(t) from an

idealized reported incidence time series, simulated without process or observation error. The

time series estimates Sk and βk are shown in Fig 1. The S and SI methods estimated S(t) and

β(t) accurately at every time point, whereas the FC method captured seasonality but failed

otherwise. In the FC method, Sk neglects natural mortality (Eq (24b)), so it increases without

bound while βk decays to zero due to division by Sk (Eq (24d)).

Fig 1A confirms that the absolute error in the FC method estimate of S(t) increases linearly

as μc hSit, where μc is the constant per capita natural mortality rate and hSi is the continuous-

time average of S(t). In practice, the FC method fails whenever natural mortality in the under-

lying population is non-negligible. Since the S and SI methods address this limitation at effec-

tively no computational cost, we do not present further analysis of the FC method.

In Fig 1B, the SI method estimate of β(t) was very accurate (RRMSE� 0.2%), whereas the S

method estimate peaked too early and too high (RRMSE� 2.4%).

3.2 Effects of process and observation error

We applied the S and SI methods without input error to four reported incidence time series

Ck, simulated using the same parameter values but with different levels of process and obser-

vation noise. The first simulation was purely deterministic, while the remaining three

included (i) environmental stochasticity [ES], (ii) ES and demographic stochasticity

[ES+DS], or (iii) ES, DS, and observation error [ES+DS+OE]. Fig 2 shows the resulting esti-

mates Zk, Ik, and βk of true incidence Z(t), prevalence I(t), and the seasonally forced trans-

mission rate β(t).

Noise of any type introduces random fluctuations in Ck on top of longer-term (e.g., sea-

sonal) variation. Noise in Ck is propagated to Zk (Fig 2A) and Ik (Fig 2B), because (i) in both

the S and SI methods, we scale Ck+r by a constant factor of p� 1
rep � 1 to compute Zk (Eqs (25a)

and (26a)); (ii) in the S method, we scale Ck+1−g+r by a constant factor of [prep(γ + μk)Δt]−1 to

compute Ik (Eq (25c) after substitution of Eq (25a)); and (iii) in the SI method, Ik contains a

weighted sum of Ci terms (Eq (38b)).

Noise in Zk and Ik is amplified in βk (Fig 2C), distorting the correct temporal pattern, for

the following reason. When Z and I are close to zero, small absolute changes in either yield

large relative changes in the ratio Z/I and in turn βk, which contains a factor of Zk+1/Ik in the S

method (Eq (25d)) and (Zk + Zk+1)/(2Ik) in the SI method (Eq (26d)). Hence low amplitude
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noise in Zk and Ik appears as spurious, higher amplitude noise in βk. This is an important issue

in practice, because the incidence of endemic diseases is typically very small relative to the pop-

ulation size, and periodic fluctuations bringing incidence even closer to zero are common for

many diseases [4, 14, 42].

Fig 2 shows that the SI method is much better than the S method at resisting noise propaga-

tion. One reason is the effective smoothing of incidence in the SI method, which replaces Zk+1

with (Zk + Zk+1)/2 in the computation of βk (compare Eqs (25d) and (26d)). We expose a sec-

ond reason in x3.2.1 below by comparing the variance in Ik induced by observation error,

between the two methods. (We expect similar results for process error.)

Fig 1. Example of S(t) and β(t) estimation using the FC, S, and SI methods. Plotted are the susceptible population

size S(t) and seasonally forced transmission rate β(t) (Eq (27)) underlying 20 years of weekly reported incidence,

together with time series estimates Sk and βk obtained from the data by the FC [blue], S [green], and SI [red] methods.

The reported incidence time series (Δt = 1 week, n = b20 × 365/7c = 1042) was simulated without process or

observation error (� = 0, prep = 1), using reference values (Table 1) for all other data-generating parameters. The three

estimation methods were applied without input error, i.e., all input parameters were assigned their true (data-

generating) values. [Panel A] S(t) scaled by 1/N0, describing the number of susceptibles as a proportion of the initial

population size. Grey lines show that the absolute error in the FC method estimate of S(t) increases linearly as μc hSit,
where μc is the constant per capita natural mortality rate and hSi is the continuous-time average of S(t). [Panel B] β(t)
scaled by 1/hβi, describing the transmission rate relative to its mean. RRMSE (Eq (33)) in the βk time series generated

by the (FC, S, SI) method is roughly (0.3355, 0.0240, 0.0021).

https://doi.org/10.1371/journal.pcbi.1008124.g001
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3.2.1 Propagation of noise from Ck to Ik. Consider the S and SI method estimates of

prevalence I(tk),

I½S�k ¼
Ckþ1� gþr

prepðgþ mcÞDt
; ð54aÞ

I½SI�k ¼ I0
1 � 1

2
ðgþ mcÞDt

1þ 1

2
ðgþ mcÞDt

� �k

þ
Xk� 1

i¼0

Ciþ1þr

prep 1þ 1

2
ðgþ mcÞDt

� �
1 � 1

2
ðgþ mcÞDt

1þ 1

2
ðgþ mcÞDt

� �k� 1� i

: ð54bÞ

Fig 2. Effects of process and observation error on the S and SI methods. Plotted are the estimates [Row A] Zk, [Row

B] Ik, and [Row C] βk of true incidence Z(t), prevalence I(t), and the seasonally forced transmission rate β(t) (Eq (27))

obtained by applying the [Left] S and [Right] SI methods without input error to each of four simulated reported

incidence time series (indicated by the legend; Δt = 1 week, n = b 3 × 365/7c = 156). The first simulation was purely

deterministic [dark grey] (� = 0, prep = 1), while the remaining three accounted for (i) environmental stochasticity [ES,

light grey] (� = 0.5, prep = 1), (ii) ES and demographic stochasticity [ES+DS, blue] (� = 0.5, prep = 1), or (iii) ES, DS, and

observation error [ES+DS+OE, red] (� = 0.5, prep = 0.25). Reference values (Table 1) were assigned to all other data-

generating parameters, in all four simulations. The left and right panels in Row A are identical, because the S and SI

methods compute Zk identically (compare Eqs (25a) and (26a)). RRMSE in the βk time series is (0.0239, 0.0375, 0.1126,

0.1432) with the S method and (0.0021, 0.0153, 0.0494, 0.0591) with the SI method (order follows the legend). Note

that the underlying β(t) was the same in all simulations; it is not plotted in Row C, but is close to perfectly represented

by the dark grey curve in the right panel (RRMSE� 0.2%). Due to process error, the underlying Z(t) and I(t) (also not

shown) varied between the deterministic, ES, and ES+DS simulations.

https://doi.org/10.1371/journal.pcbi.1008124.g002
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Here, g = [tgen]Δt/Δt and r = [trep]Δt/Δt are the mean generation interval and case reporting

delay in units of the observation interval, rounded to the nearest integer. These estimates are

obtained from Eq (25c) (after substitution of Eqs (25a)) and (38b) when we assume a constant

natural mortality rate μc. Following x2.3.3, suppose reported incidence is generated from true

incidence Z(tk) via Ckþr �
ind: BinomialðZðtkÞ; prepÞ. Then the variance of Ck+r is

VarðCkþrÞ ¼ ZðtkÞprepð1 � prepÞ : ð55Þ

It follows from Eqs (54) and (55) and the identity Var(aX) = a2 Var(X) that

Var I½S�k
� �

¼
ð1 � prepÞZðtkþ1� gÞ

prep½ðgþ mcÞDt�
2
; ð56aÞ

VarðI½SI�k Þ ¼
Xk� 1

i¼0

ð1 � prepÞZðtiþ1Þ

prep 1þ 1

2
ðgþ mcÞDt

� �2

1 � 1

2
ðgþ mcÞDt

1þ 1

2
ðgþ mcÞDt

� �2ðk� 1� iÞ

: ð56bÞ

If Z(t) has a well-defined average hZi, then replacing instances of Z in Eq (56) with hZi and tak-

ing the limit as k!1, we obtain the average variances

hVarðI½S�k Þi ¼
ð1 � prepÞhZi

prep½ðgþ mcÞDt�
2
; ð57aÞ

hVarðI½SI�k Þi ¼ lim
k!1

ð1 � prepÞhZi

prep 1þ 1

2
ðgþ mcÞDt

� �2

Xk� 1

i¼0

1 � 1

2
ðgþ mcÞDt

1þ 1

2
ðgþ mcÞDt

� �2i
( )

¼ lim
k!1

ð1 � prepÞhZi
2prepðgþ mcÞDt

1 �
1 � 1

2
ðgþ mcÞDt

1þ 1

2
ðgþ mcÞDt

� �2k
" #( )

¼
ð1 � prepÞhZi

2prepðgþ mcÞDt
:

ð57bÞ

Comparing these with hVar(Ck)i = hZiprep(1 − prep) using reference parameter values tgen =

γ−1 = 13 days, μc = 0.04year−1, and Δt = 1 week, we obtain

hVarðI½S�k Þi
hVarðCkÞi

¼
1

p2
rep½ðgþ mcÞDt�

2
¼

1

p2
rep

tinf
Dt

� �2

�
3:44

p2
rep

; ð58aÞ

hVarðI½S�k Þi
hVarðCkÞi

¼
1

2p2
rep½ðgþ mcÞDt�

2
¼

1

2p2
rep

tinf
Dt

� �2

�
0:93

p2
rep

; ð58bÞ

where tinf = (γ + μc)
−1 is the mean time spent infected. Hence, while both the S and SI methods

suffer from propagation of noise from reported incidence Ck to estimated prevalence Ik, partic-

ularly for prep� 1, the S method tends to be much worse (by a factor of 3.44/0.93� 3.7 in this

example). Comparative resistance to noise propagation is a distinct advantage of the SI method

over the S method.

3.3 Averaging the raw estimate of β(t)
Fig 3A displays two raw estimates βk (S and SI methods, applied without input error) of a sea-

sonally forced β(t), each spanning 1000 years (only the first 10 years are shown). The estimates
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embed 1000 1-year cycles, which are displayed in Fig 3B and 3C together with their 1-year

average (cf. x2.2.5).

Both estimates suffered from spurious noise distorting the correct seasonal pattern, caused

by process and observation error in the data-generating process (cf. x3.2). As in Fig 2C, the var-

iance was markedly smaller with the SI method. Averaging the embedded 1-year cycles recov-

ered the true 1-year cycle from the noise. In the absence of input error, the S method appears

to carry a slight bias (peaking early and too high, as in Fig 1), whereas the SI method is nearly

unbiased.

While some existing infectious disease time series span several centuries [15], in practice,

averaging as in Fig 3B and 3C is sensible only over time intervals during which the underlying

seasonal pattern in transmission is roughly stationary.

Fig 3. Bias and variance in 1-year cycles embedded in three estimates of a seasonally forced β(t). [Panel A] In black, the seasonally forced β(t) (Eq (27))

underlying 1000 years of simulated reported incidence data. In (transparent) colour, raw estimates βk obtained from the data by the S [green] and SI [red]

methods, both applied without input error. Only the first 10 of 1000 years are shown. [Panels B and C] In black, the true 1-year cycle in the seasonally forced

β(t). In light (transparent) colour, the 1000 1-year cycles embedded in the linear interpolant βint(t) of βk. In dark colour, the average 1-year cycle (Eq (22a)) in

βint(t). Results are shown for both the S [Panel B, green] and SI [Panel C, red] methods. [Panel D] Like Panel C, except for a smooth loess curve βloess(t; q)

(q = 53) fit to βk, instead of the interpolant βint(t). [Details] A reported incidence time series with 1000 years of weekly observations (Δt = 1 week, n = 52153)

was simulated with environmental noise in transmission (� = 0.5), demographic stochasticity, and random under-reporting of cases (prep = 0.25), using

reference values (Table 1) for the remaining parameters.

https://doi.org/10.1371/journal.pcbi.1008124.g003
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3.4 Smoothing the raw estimate of β(t)
Regardless of whether averaging is employed, comparison of Fig 3C and 3D shows that it is

helpful to smooth the βk time series by fitting a loess curve βloess(t; q) (cf. x2.2.6). An appropri-

ate degree of smoothing (i.e., choice of loess smoothing parameter q) eliminated spurious

noise without significantly increasing bias.

Fig 4A quantifies the effect of smoothing βk using the optimal value qopt for parameter q (cf.
x2.2.6). It plots RRMSE before and after smoothing as a function of the amount of noise in the

simulated reported incidence data, which was modulated by varying the case reporting proba-

bility prep between 0.01 and 1 (more noise for smaller prep; see Eq (31)).

Fig 4. Reduction in β(t) estimation error with optimal loess smoothing. The horizontal axis measures the case

reporting probability prep, for which 41 values equally spaced on a logarithmic scale between 0.01 and 1 were

considered. Using each value of prep and reference values (Table 1) for all other parameters, 100 reported incidence

time series (Δt = 1 week, n = 1042) were simulated accounting for environmental noise in transmission (� = 0.5),

demographic stochasticity, and random under-reporting of cases (measured by prep). The underlying seasonally forced

β(t) (Eq (27)) was estimated from reported incidence using the S and SI methods, both applied without input error,

yielding two raw estimates βk per simulation. Smooth loess curves βloess(t; q) (q = 10, . . ., 110; cf. x2.2.6) were fit to each

βk time series. The optimal q for a given time series, denoted by qopt, was defined as the value that minimized RRMSE

(Eq (33)) in βloess(tk; q). Overall, for each value of prep and each β(t) estimation method (S and SI), 100 values of qopt

were obtained corresponding to 100 βk time series. Plotted on the vertical axis as functions of prep are the median and

5th and 95th percentiles of [Panel A] RRMSE in the raw estimates βk [dashed lines] and optimal loess estimates

βloess(tk; qopt) [solid lines] and [Panel B] qopt. Lines and bands indicate the median and 5th–95th percentile range,

respectively. Results for the S and SI methods are shown in green and red, respectively.

https://doi.org/10.1371/journal.pcbi.1008124.g004
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Using the optimal loess estimate βloess(tk; qopt) instead of the raw estimate βk significantly

reduced RRMSE—by at least 46% for the S method and 17% for the SI method across all simu-

lations. Although raw estimates generated by the SI method were consistently more accurate

(expected in light of Fig 3B and 3C), optimal loess estimates were comparable between the S

and SI methods for prep > 0.2 (RRMSE� 3%). For prep < 0.2 (severe under-reporting of

cases), optimal smoothing failed to an increasing extent to recover the underlying β(t) from

noise in βk. In this setting, the S method was greatly outperformed by the SI method, which is

more resilient to noise in reported incidence (cf. x3.2).

Fig 4B shows that median qopt was roughly constant for prep > 0.1, with

median qopt �

(
65 for the S method ;

53 for the SI method :
ð59Þ

More smoothing (greater q) was required to minimize RRMSE for prep > 0.1. More generally,

Fig 4 indicates that the S and SI methods should always include a smoothing step. Hence, in

the remaining analysis, we always smooth βk.

3.5 Sensitivity to data-generating parameters

Here, we characterize the sensitivity of β(t) estimation error to parameters of the data-generat-

ing process. As in xx3.1–3.4, we consider the ideal case in which the user-specified values of all

input parameters are equal to the true (data-generating) values. The details of our analysis are

outlined in x2.6.1.

Fig 5 plots the median RRMSE in estimates of a seasonally forced β(t) (Eq (27)) from 1000

realizations of a reported incidence time series, as a bivariate function of the mean hβi and

amplitude α of seasonal forcing. To aid interpretation, the hβi axis was scaled to measure the

basic reproduction number R0 (Eq (2)).

Fig 6 plots median RRMSE as a univariate function of each of 6 additional parameters—the

initial states S0 and I0, vital rates νc and μc, mean generation interval tgen, and case reporting

probability prep—with the focal parameter assigned values between 1

4
and 4 times its reference

value (Table 1). The horizontal axis measures the ratio of the focal parameter’s data-generating

value to its reference value, so that commensurate deviations from the reference case can be

compared across the 6 parameters.

In order to produce Figs 5 and 6, we assigned reference values (Table 1) to all but the focal

data-generating parameter(s) (e.g., all except hβi and α in Fig 5). We fit loess curves βloess(t; q)

to all raw estimates βk of β(t), and recorded the RRMSE in βloess(tk; q). Motivated by Fig 4B

and Eq (59), we fixed q = q�, taking q� = 65 with the S method and q� = 53 with the SI method.

A pattern in our interpretation of Figs 5 and 6 below is that error in β(t) estimation is sensi-

tive to a parameter if changes in that parameter (i) cause incidence Z(t) or prevalence I(t) to

approach zero more frequently or more closely, or (ii) increase noise in estimated incidence Zk
or estimated prevalence Ik. Both outcomes incorrectly increase noise in βk (cf. x3.2).

When the noise in βk is extreme, setting q = q� can undersmooth the time series (q� < qopt).

In this case, smaller RRMSE is attainable by determining qopt and setting q = qopt. Nevertheless,

we did not find qopt for each of the 5 × 106 time series considered by Figs 5 and 6, which would

have increased the total computation time by a factor of 100. Consequently, Figs 5 and 6 may

overestimate the sensitivity of β(t) estimation error to data-generating parameters. (In xS5.3 of

S1 Text, we show that the quantitative effect of choosing q� over qopt is likely to be small.)

3.5.1 Sensitivity to the basic reproduction number R0 and seasonal amplitude α (Fig

5). For fixed α, median RRMSE was a non-monotonic function of R0. The reason is that
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Fig 5. Sensitivity of β(t) estimation error to the mean hβi and amplitude α of seasonal forcing. Contained in each

panel are heatmaps of median RRMSE (Eq (33)) in estimates of a seasonally forced β(t) (Eq (27)) from simulated

reported incidence time series, as a bivariate function of the mean hβi and amplitude α of seasonal forcing. The hβi axis

has been scaled to measure the basic reproduction number R0 (Eq (2)). When simulating reported incidence, reference

values (Table 1) were assigned to all data-generating parameters except hβi and α. A grid of ðR0; aÞ pairs with levels

R0 ¼ 2; 3; . . . ; 32 and α = 0, 0.01, . . ., 0.2 was considered, with hβi defined for each value of R0 via Eq (2). For each

parametrization, 1000 simulations were performed with environmental stochasticity [ES] (� = 0.5) and with or without

demographic stochasticity [DS] and observation error [OE], as indicated by row: [Row A] without DS or OE (prep = 1,

trep = 0 weeks), [Row B] with DS but without OE (prep = 1, trep = 0 weeks), [Row C] with DS and OE (prep = 0.25, trep = 2

weeks). Corresponding mock birth and natural mortality time series were created, then β(t) was estimated from the data

using [Left] the S method and [Right] the SI method, all without input error. For each set of estimates of β(t) (1000

estimates per parametrization, per simulation method, per estimation method), the median RRMSE was calculated (after

smoothing with fixed q; see Eq (59)) and displayed as one point in the appropriate heatmap, coloured according to the

logarithmic scale on the right. The darkest blue indicates median RRMSE less than 0.01.

https://doi.org/10.1371/journal.pcbi.1008124.g005
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changes in (effective) R0 are responsible for dynamical transitions that alter the structure of

solutions of the SIR model (1) [28, 42, 43]. Specifically, as R0 is increased from 2 to 32, mini-

mum incidence Zmin and minimum prevalence Imin on the attractor varies non-monotonically

(see Fig 2 in [28]). Smaller Zmin and Imin yield more noise in βk, and correspondingly greater

Fig 6. Sensitivity of β(t) estimation error to data-generating parameters other than hβi and α. Plotted in each panel

is the median RRMSE (Eq (33)) in estimates of a seasonally forced β(t) (Eq (27)) from simulated reported incidence

time series (Δt = 1 week, n = 1042), as a univariate function of each of 5 or 6 data-generating parameters (indicated by

the legend). When simulating reported incidence, reference values (Table 1) were assigned to all but the focal

parameter, which was assigned 41 values logarithmically spaced between 1

4
and 4 times its reference value. The

horizontal axis (logarithmic scale) measures the ratio of the focal parameter’s true value to its reference value, so that

commensurate deviations from the reference case can be compared across parameters. For each parametrization, 1000

simulations were performed with environmental stochasticity [ES] (� = 0.5) and with or without demographic

stochasticity [DS] and observation error [OE], as indicated by row: [Row A] without DS or OE (prep = 1, trep = 0

weeks), [Row B] with DS but without OE (prep = 1, trep = 0 weeks), or [Row C] with DS and OE (prep = 0.25 except

when prep is the focal parameter, trep = 2 weeks). Corresponding mock birth and natural mortality time series were

created, then β(t) was estimated from the data using [Left] the S method and [Right] the SI method, all without input

error. For each set of estimates of β(t) (1000 estimates per parametrization, per simulation method, per estimation

method), the median RRMSE was calculated (after smoothing with fixed q; see Eq (59)) and displayed as one point in

the appropriate panel and graph.
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RRMSE. For fixed R0, Imin decreases monotonically as α is increased from 0 to 1 (see Fig 11 in

[43]), so we expect median RRMSE to increase monotonically with α, as observed in Fig 5.

3.5.2 Sensitivity to the initial state (S0, I0) (Fig 6). RRMSE is sensitive to the data-gener-

ating S0, but not I0. The reference values of S0 and I0 are taken from a point (S�, I�, R�) on the

attractor of the SIR model (1) with seasonally forced β(t) and constant vital rates νc and μc (cf.
x2.3.4). When S0 is far from S�, the solution of system (1) undergoes extreme fluctuation before

relaxing to the attractor, and both Z and I approach zero during the transient, generating spu-

rious noise at the start of the βk time series.

Note that I0 differing from I� has a much smaller effect on dynamics than S0 differing from

S� by the same factor. Since I� � S�, the perturbation of (S0, I0, R0) from the attractor is much

smaller.

3.5.3 Sensitivity to vital rates νc and μc (Fig 6). Median RRMSE was a non-monotonic

function of the data-generating birth rate νc. This behaviour arises because scaling νc is dynam-

ically equivalent to scaling R0 by the same factor [2, 28], and median RRMSE is a non-mono-

tonic function of R0 (cf. x3.5.1 above).

Changing the data-generating natural mortality rate μc had a negligible effect on RRMSE.

This is unsurprising, because natural death is dominated by recovery and disease-induced

death in governing the rate of infected decrease. That is, γ� μ(t) in Eq (1b), so changes in μc

by up to a factor of 4 have little effect on dynamics.

3.5.4 Sensitivity to the mean generation interval tgen (Fig 6). Median RRMSE

increased rapidly as the data-generating tgen was made smaller than 2−4/5 (roughly 0.57)

times its reference value of 13 days. A period-doubling bifurcation occurs near this value of

tgen, and the attractor of the SIR model (1) acquires a 2-year cycle with much smaller Zmin

and Imin (see xS5.3.1 of S1 Text). Propagation of noise to βk intensifies, resulting in greater

RRMSE.

The performance of the S method fluctuates more as a function of tgen than that of the SI

method. This occurs because the S method rounds tgen in the numerator of Eq (25c) to the

nearest integer multiple of Δt, and the rounding error oscillates as a function of tgen. The SI

method does not require rounding, so these fluctuations are not observed.

3.5.5 Sensitivity to the case reporting probability prep (Fig 6). When the reported inci-

dence data contain observation error (Fig 6C), RRMSE is additionally sensitive to the case

reporting probability prep. Decreasing prep increases noise in reported incidence Ck (Eq (31)),

which is propagated to estimated incidence Zk, estimated prevalence Ik, and in turn βk (cf.
x3.2).

Fig 6 suggests weak sensitivity to prep. However, noise in Zk and Ik is amplified in βk to the
extent that Z and I are close to zero (cf. x3.2). Hence, for example, if the data-generating tgen

were assigned a value smaller than half its reference value of 13 days, then we would have

observed more acute sensitivity to prep as a result of closer approaches to zero by Z and I (cf.
x3.5.4 above).

3.5.6 S method versus SI method (Figs 5 and 6). Both the S and SI methods performed

well, estimating β(t) with median RRMSE less than 10% across most parametrizations. How-

ever, by resisting noise propagation (cf. x3.2), the SI method was significantly less sensitive to

the data-generating parameters and to the addition of demographic stochasticity and observa-

tion error.

3.6 Sensitivity to mis-specification of input parameters

In x3.5, we considered the ideal situation in which the user knows the true (data-generating)

values of the input parameters. Here, we examine the more realistic situation in which the
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user specifies input parameters with some error. The effect of mis-specification is particularly

important for parameters that are difficult to estimate accurately, such as the case reporting

probability prep. The details of our analysis are outlined in x2.6.2.

We restrict our attention to application of the SI method to reported incidence data simu-

lated with process and observation error. Differences in RRMSE between methods of data

simulation and β(t) estimation are dominated (by an order of magnitude) by the increase in

RRMSE resulting from mis-specified input parameters.

Fig 7A plots the median RRMSE in estimates of β(t) from 1000 realizations of a reported

incidence time series, as a univariate function of the factor by which an input parameter—

one of the initial states S0 and I0, mean generation interval tgen, vital rates νc and μc, and case

reporting parameters prep and trep—was mis-specified. The specified value of the focal parame-

ter was varied between 1

4
and 4 times its true (data-generating) value, and the remaining

parameters were specified without error.

3.6.1 Sensitivity to error in the specified initial state ðS0
0
; I0

0
Þ. Fig 7 shows that error in

the specified value of S0 is propagated non-negligibly to estimates of β(t), while mis-specifica-

tion of I0 has practically no effect on β(t) estimation error. Eqs (40) and (41) show that specify-

ing incorrect values S0
0

and I0
0

for S0 and I0 creates errors in Sk and Ik that vanish geometrically

as k!1. However, since tlife� tinf, the decay is significantly slower in Sk. Indeed, with refer-

ence values μc = 0.04 year−1, tgen = γ−1 = 13 days, and Δt = 1 week, we find that a factor of 10

reduction in error between times tk and tk+i requires just i = 5 in the infected time series, com-

pared to i = 3002 in the susceptible time series (roughly 58 years with Δt = 1 week). Hence, in

practice, accurate reconstruction of S(t), I(t), and in turn β(t) relies on accurate specification of

S0, but not I0. We address sensitivity to mis-specification of S0 in x3.7 below.

3.6.2 Sensitivity to error in the specified birth rate n0c and case reporting probability p0rep
Mis-specifying νc or prep by a factor of 21/10 (7.2%) yielded median RRMSE greater than 30%.

Mis-specifying by a factor of 2−1/10 (−6.7%) led to even worse estimates of β(t), with median

Fig 7. Sensitivity of β(t) estimation error to the user-specified values of input parameters. [Panel A] Median RRMSE (Eq (33)) in estimates of β(t)
from simulated reported incidence time series (Δt = 1 week, n = 1042), as a univariate function of the factor by which an input parameter was mis-

specified. One thousand simulations were performed using fixed values (Table 1) for all data-generating parameters. The simulations accounted for

environmental stochasticity [ES] (� = 0.5), demographic stochasticity [DS], and observation error [OE] (prep = 0.25, trep = 2 weeks). For each simulation,

corresponding mock birth and natural mortality time series were created, and β(t) was estimated from the data using the SI method. True (data-

generating) values were specified for all input parameters except the focal parameter (indicated by the legend), for which 41 values logarithmically

spaced between 1

4
and 4 times the true value were specified in turn. Each input parametrization yielded 1000 estimates of β(t), whose median RRMSE

was calculated (after smoothing with fixed q; see Eq (59)) and displayed as one point in the appropriate graph. [Panel B] Result of repeating the analysis

from Panel A in which S0 was specified with varying amounts of error, but with the initially erroneous value of S0 updated using the method of peak-to-

peak iteration (PTPI; 25 iterations) prior to β(t) estimation. The original result, obtained without PTPI, is presented for comparison.

https://doi.org/10.1371/journal.pcbi.1008124.g007
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RRMSE exceeding 100% (not visible in Fig 7A). Eqs (42) and (47) show that specifying incor-

rect values n0c and p0rep for νc and prep generates absolute errors in Sk that tend to increase over

time (k) to a limit. In practice, systematic underestimation of births by the Bk time series (mod-

eled here by n0c < nc) and overestimation of incidence by the Zk time series (p0rep < prep) can

cause Sk to eventually take negative values. Once this happens, attempts by the S and SI meth-

ods to reconstruct β(t) fail completely.

While this failure may seem concerning, it should be viewed as a tool for diagnosing incor-

rect birth and case reporting rates: if the S or SI method yields negative Sk for any k, then one

should speculate that births were underestimated or that incidence was overestimated, and

retry the algorithm with a scaled up Bk time series and/or with greater prep (as Zk is computed

by scaling reported incidence by a factor of p� 1
rep; see Eqs (25a) and (26a)). Of course, overcor-

rection is also undesirable (cf. right half of Fig 7A). In our work, we have found that a brief

exploration of possible adjustments—factors by which to increase Bk and/or prep—suffices to

identify ones that prevent both negative Sk and pronounced transient dynamics at the start of

the susceptible time series (indicating under- or overcorrection).

3.7 Solution of the S0 estimation problem using PTPI

In x3.6, we showed that the performance of the S and SI methods is highly sensitive to mis-

specification of the initial number of susceptibles S0. Here, we assess PTPI as a way to itera-

tively improve initially poor estimates of S0 prior to reconstruction of S(t) and β(t).
Fig 8 demonstrates PTPI for an example in which S0 was overestimated by a factor of 4 by a

user of the SI method. PTPI yielded increasingly accurate estimates of S0 and correspondingly

more accurate reconstructions of S(t) (Fig 8B) and β(t) (Fig 8C). Fig 7B repeats our analysis

from x3.6, except using PTPI (25 iterations) to update the incorrect estimate of S0 prior to

reconstructing β(t). We see that application of PTPI in conjunction with the SI method enables

accurate β(t) reconstruction independently of errors in the initial estimate of S0. This result is

unsurprising in light of Fig 9, which shows that PTPI converges rapidly (in fewer than 10 itera-

tions) to an accurate estimate of S0 independently of the initial guess. Due to process error in

the underlying dynamics, the relative error in the limiting estimate of S0 varied between the

1000 realizations of reported incidence considered (5th–95th percentile range [−11.9, 12.5]%,

median 0.9%). Process error creates variance in the time between peaks in incidence (see Fig

8A), violating the periodicity assumption of PTPI (the theoretical basis of the technique; cf.
x2.8). Nevertheless, Figs 7–9 demonstrate that PTPI can significantly improve S(t) and β(t)
reconstruction from roughly periodic incidence data.

3.8 Run time

We implemented the S and SI methods and PTPI in R and ran them on a MacBook Pro with a

2.4 GHz Quad-Core Intel Core i5 chip. The S and SI methods are both extremely fast, requir-

ing a total of 0.124 and 0.376 seconds, respectively, to generate a reconstruction of β(t) from

1000 years of weekly reported incidence (Δt = 1 week, n = 52142). Application of PTPI in con-

junction with either method increases the run time with each iteration, but the total run time

remains inconsequential due to the rate of convergence of the iterations to a limiting estimate

of S0. For example, when we applied PTPI to the same simulated data, the truncation step

(Box 5) added 0.094 seconds to the total run time, while the iteration step (Box 5) added 1.01

seconds per iteration on average.
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4 Discussion

We have compared three fast methods of estimating the time-varying transmission rate β(t)
from reported incidence time series, all based on discretizations of the SIR model (1). Fine and

Clarkson’s method [6], referred to here as the FC method, fails rapidly in practice, because it

treats natural mortality in the susceptible population as negligible. Although Krylova’s method

[24], adapted here as the S method, corrects this limitation of the FC method and is accurate

Fig 8. Example of S(t) and β(t) reconstruction with an overestimate of S0 corrected by peak-to-peak iteration

(PTPI). [Panel A] Truncation step of PTPI (Box 5). Plotted is a reconstruction of true incidence Z(t) from a simulated

reported incidence time series, before [Zk, black] and after [�Zk, yellow] smoothing with a 13-point central moving

average. Vertical lines indicate peaks in �Zk. The times of the first peak in �Zk and the last peak occurring at the same

phase of the cycle (in this case, the last peak) are denoted by ta and tb. [Panel B] Iteration step of PTPI (Box 6), where

the initial estimates of both S0 = S(0) and S(ta) were taken to be 4 times the true (data-generating) value of S0. Plotted in

grey are successive reconstructions of S(t) between times ta and tb, generated by updating the estimate of S(ta) with the

estimate of S(tb) obtained in the previous iteration. Dashed continuations to the left of ta display estimation of S0

backwards in time from estimates of S(ta). Plotted in black is the result of reconstructing S(t) starting from the final

estimate of S0, which was obtained after 25 iterations and had a relative error of roughly 1.4% (compared to 300% in

the initial estimate). [Panel C] The sequence of reconstructions of β(t) corresponding to the estimates of S0 shown in

Panel B. [Details] Twenty years of weekly reported incidence (Δt = 1 week, n = 1042) were simulated with

environmental noise in transmission (� = 0.5), demographic stochasticity, and random under-reporting of cases

(prep = 0.25), using reference values (Table 1) for the remaining parameters. Z(t), S(t) and β(t) were reconstructed from

reported incidence using the SI method without input error (apart from mis-specification of S0).

https://doi.org/10.1371/journal.pcbi.1008124.g008
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for certain simulated data, her method suffers from extreme sensitivity to process and observa-

tion error. Specifically, noise in reported incidence is spuriously propagated to its estimates of

β(t). Our algorithm for transmission rate estimation, referred to here as the SI method and

based on deJonge’s method [25], is much more resilient to noise in reported incidence and

therefore superior to the S method.

Like its predecessors, the SI method is sensitive to (i) certain input parameters: the initial

number of susceptible individuals S0, the case reporting probability prep, and the mean genera-

tion interval tgen; as well as (ii) vital data: times series of births and natural mortality without

substantial systematic errors.

The requirement of a good estimate of S0 has been a major barrier to use of existing fast

methods of β(t) estimation (including those presented in [6, 24, 25]). We have proposed and

demonstrated PTPI as a valid and fast technique for obtaining accurate estimates of S0 from

poor initial guesses, conditional on periodic dynamics (epidemic recurrence with a fixed

period). Use of the SI method in conjunction with PTPI represents a major advance over the

existing fast methods.

Estimation of the case reporting probability prep is possible using maximum likelihood

approaches, including trajectory matching. However, a fast way to obtain a crude estimate of

prep is to divide cumulative reported incidence over the time interval [t0, tn], by the cumulative

Fig 9. Convergence of estimates of S0 obtained using peak-to-peak iteration (PTPI). S0 was estimated by applying

PTPI (25 iterations) to 1000 incidence time series (i.e., 1000 realizations of a reported incidence time series, scaled by

p� 1
rep). An initial guess for S0 was taken to be 1

4
or 4 times the true (data-generating) value. For each initial guess, this

process generated 1000 sequences of 26 estimates of S0. Plotted are the median [black lines] and 5th–95th percentile

range [grey bands] of the estimate of S0 at each iteration, for the first 10 iterations. The vertical axis measures (on a

logarithmic scale) the ratio of the estimated and true values of S0, hence convergence close to 1 [dashed green line]

represents convergence of the estimates close to the true value. [Details] One thousand reported incidence time series

(Δt = 1 week, n = 1042) were simulated with environmental noise in transmission (� = 0.5), demographic stochasticity,

and random under-reporting of cases (prep = 0.25), using reference values (Table 1) for the remaining parameters,

including S0 (hence S0 was the same in all simulations). True incidence was estimated from reported incidence via Eq

(26a) (with reporting parameters prep and trep correctly specified), yielding 1000 time series of estimated incidence.

Corresponding mock (constant) birth and natural mortality time series were created (with vital rates νc and μc

correctly specified), and these data (estimated incidence, births, natural mortality) were passed to the PTPI algorithm,

allowing for iterative re-estimation of S0.

https://doi.org/10.1371/journal.pcbi.1008124.g009
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incidence that is expected from the unforced SIR model (system (1) with β� hβi, ν� νc, and

μ� μc) at equilibrium:

prep �

Xn

k¼1

Ck

ncN̂ 0ð1 �
1

R0
Þðtn � t0Þ

:
ð60Þ

This approximation can be made in temporal subintervals to obtain a time-varying reporting

rate, which would replace the constant prep in Eq (26a). Sensitivity of the SI method to mis-

specification of the mean generation interval (tgen) may be of greater concern, though if the

distribution of the incubation period (time from infection to onset of symptoms) is narrow,

then tgen will be well approximated by the (observable) mean serial interval [44].

Overall, the SI method, in conjunction with PTPI, represents a highly tractable approach to

reconstructing susceptibles and β(t) from infectious disease time series that span decades or

centuries. It makes fewer assumptions about the disease and population of interest than the

regression-based tSIR method [7, 23] (i.e., it does not require an infectious period equal to

the observation interval, ignore susceptible mortality, or assume that cumulative incidence

approximates cumulative births). Moreover, it is significantly less complex and much less com-

putationally demanding than simulation-based methods of inference, such as iterated filtering

[8, 19, 20] and generalized profiling [21, 22].

Even when the observed infectious disease time series is short enough that simulation-

based methods are tractable, the approach to transmission rate reconstruction that we promote

here can be usefully employed to provide better starting conditions at negligible computational

cost.
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S0 Preliminaries1

This supplement to the manuscript is compiled from the source file S1_Text.Rnw using R2

version 4.0.2 (2020-06-22) [1] and these R package versions:3

## knitr tikzDevice colorRamps RColorBrewer scales
## 1.29 0.12.3.1 2.3 1.1-2 1.1.1
## deSolve adaptivetau
## 1.28 2.2-3

Our primary aim here is to make our results entirely reproducible by the reader. Our4

secondary aim is to make our methods available to potential users. To this end, we5

introduce our R package fastbeta, which implements6

– the FC, S, and SI methods for estimating time-varying transmission rates β(t) from7

time series data; and8

– peak-to-peak iteration (PTPI) for estimating the initial number of susceptible9

individuals S0 from time series data.10

All methods are based on the SIR model with time-varying rates of birth, death, and11

transmission:12

dS
dt

= ν(t)N̂0 − β(t)SI − µ(t)S , (1a)

dI
dt

= β(t)SI − γI − µ(t)I , (1b)

dR
dt

= γI − µ(t)R , (1c)

where γ = 1/tgen.13

The most recent version of fastbeta is located in our GitHub repository and can be14

installed using install_github() from the remotes package.15

if (!require(remotes)) install.packages("remotes")
remotes::install_github("davidearn/fastbeta")

However, readers attempting to compile this document from source must install fastbeta16

from the plos branch of the repository, which houses the version used at the time of this17

writing.18

if (!require(remotes)) install.packages("remotes")
remotes::install_github("davidearn/fastbeta", ref = "plos")
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For complete compilation instructions, refer to README.md .19

Here is a list of functions implemented in the plos version of fastbeta:20

library(fastbeta)
ls("package:fastbeta")

## [1] "compute_rrmse" "estimate_beta_FC" "estimate_beta_S"
## [4] "estimate_beta_SI" "get_peak_times" "make_data"
## [7] "make_par_list" "ptpi" "test_s2dgbeta"
## [10] "test_s2dgpars" "test_s2inpars"

We will introduce these on the fly. More complete documentation can be accessed by21

running ?fastbeta .22

In the sections to follow, we annotate the R code needed to reproduce results reported23

in the manuscript. Plotting commands have been suppressed, but are preserved in24

S1_Text.Rnw . Since our work involves millions of simulations, we have retained certain25

output in the directory RData/ to significantly reduce compilation time.26

S1 Example of β(t) estimation using the FC, S, and SI27

methods28

Fig 1 in the manuscript compares the output of the FC, S, and SI methods for a simulated29

time series of reported incidence. To reproduce Fig 1, we simulate time series data using30

system (1) with constant vital rates νc and µc and a seasonally forced transmission rate31

that includes environmental noise:32

βφ(t) = 〈β〉
[
1 + α cos

( 2πt

1 year
+ φ(t; ε)

)]
. (2)

Doing so, we obtain observations of reported incidence at equally spaced time points33

tk = t0 + k∆t , k = 0, . . . , n . (3)

We then apply each algorithm (FC, S, SI) to reconstruct the seasonally forced transmission34

rate from the data.35

As this simulate-estimate routine is our main investigative approach going forward, we36

describe each step in detail here (and reproduce Fig 1 in the process), but we do not repeat37

these details in later sections.38

S1.1 Creating a list of parameter values39

Simulating a reported incidence time series from system (1) requires a list of values for all40

data-generating parameters. Our function make_par_list() simplifies the task of41
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creating such a list. It does this by “filling in the blanks” when we want R0, 〈β〉, N0, S0, or42

I0 to depend in a complicated way on other parameters’ values.43

Below, we call make_par_list() , defining all arguments explicitly. Except for44

dt_weeks , which is the observation interval ∆t in weeks, the values of time and rate45

parameters must be supplied in units ∆t and per unit ∆t. In this call to46

make_par_list() , we indicate ∆t = 1 week, t0 = 2000 years, tgen = 13 days, and47

νc = µc = 0.04 year−1.48

## List of parameter values
par_list <- make_par_list(

dt_weeks = 1, # observation interval
t0 = 2000 * (365 / 7) * 1, # time of first observation
prep = 1, # case reporting probability
trep = 0, # case reporting delay
hatN0 = 1e06, # population size at 0 years
N0 = NA, # population size at `t0`
S0 = NA, # number susceptibles at `t0`
I0 = NA, # number infecteds at `t0`
nu = 0.04 * (7 / 365) * 1, # birth rate (relative to `hatN0`)
mu = 0.04 * (7 / 365) * 1, # natural mortality rate (per capita)
tgen = 13 * (1 / 7) / 1, # mean generation interval
Rnaught = 20, # basic reproduction number
beta_mean = NA, # mean of seasonal forcing
alpha = 0.08, # amplitude of seasonal forcing
epsilon = 0 # s.d. of environmental noise

)
unlist(par_list) # printed as a named vector

## dt_weeks t0 prep trep hatN0
## 1.000000e+00 1.042857e+05 1.000000e+00 0.000000e+00 1.000000e+06
## N0 S0 I0 nu mu
## 1.000000e+06 5.405182e+04 1.318586e+03 7.671233e-04 7.671233e-04
## tgen Rnaught beta_mean alpha epsilon
## 1.857143e+00 2.000000e+01 1.078457e-05 8.000000e-02 0.000000e+00

make_par_list() requires that exactly one of R0 and 〈β〉 (arguments Rnaught and49

beta_mean ) is defined in the function call. It sets the undefined parameter internally by50

enforcing the identity51

R0 =
νcN̂0

µc
· 〈β〉
γ + µc

. (4)

Above, we “omitted” beta_mean from the function call (by supplying a value NA ) and52

obtained the desired value in the output.53
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Values for N0, S0, and I0 (arguments N0 , S0 , and I0 ) were also set internally. This54

was done via numerical integration of system (1) with constant vital rates νc and µc and a55

seasonally forced transmission rate that excludes environmental noise:56

β(t) = 〈β〉
[
1 + α cos

( 2πt

1 year

)]
. (5)

After integrating between times t = 0 years and t = t0 (in this case 2000 years)57

make_par_list() chooses for N0, S0 and I0 the values of N∗ = N(t0), S∗ = S(t0), and58

I∗ = I(t0). This ensures that the initial state of any simulation using par_list is a point59

very near the attractor of the system being simulated.60

In the above call to make_par_list() , we indicated the default values of all61

arguments. In future calls to this function, we will not specify arguments explicitly except62

for clarity or to request a value different from the default.63

S1.2 Simulating time series data64

To reproduce the simulation considered in Fig 1, we pass par_list to our function65

make_data() , which returns the simulated time series data in a data frame.66

## Data frame containing time series data
df <- make_data(

par_list = par_list, # parametrization
n = 20 * 365 / 7, # time series length: ~20 years
with_dem_stoch = FALSE # no demographic stochasticity

)
head(df)

## t t_years beta beta_phi N S I
## 1 104285.7 2000.000 1.164734e-05 1.164734e-05 1e+06 54052.00 1319.000
## 2 104286.7 2000.019 1.164108e-05 1.164108e-05 1e+06 53910.11 1442.447
## 3 104287.7 2000.038 1.162241e-05 1.162241e-05 1e+06 53692.54 1573.095
## 4 104288.7 2000.058 1.159158e-05 1.159158e-05 1e+06 53398.91 1708.214
## 5 104289.7 2000.077 1.154904e-05 1.154904e-05 1e+06 53031.36 1844.220
## 6 104290.7 2000.096 1.149543e-05 1.149543e-05 1e+06 52594.95 1976.772
## R Q Z C
## 1 944629.0 0.0000 NA NA
## 2 944647.4 867.5997 867.5997 868
## 3 944734.4 1811.0116 943.4119 943
## 4 944892.9 2830.6905 1019.6789 1020
## 5 945124.4 3924.5379 1093.8474 1094
## 6 945428.3 5087.5473 1163.0094 1163

4



The output contains the following information:67

t tk
∆t

Time in units of the observation interval ∆t. Equal to
t0
∆t

+ (0, 1, . . . , n).

t_years tk Time in years. Equal to t0 + (0, 1, . . . , n)∆t.

beta β(tk)∆t Seasonally forced transmission rate without environmental noise
(Eq (5)), expressed per unit ∆t per susceptible per infected.

beta_phi βφ(tk)∆t Seasonally forced transmission rate with environmental noise
(Eq (2)), expressed per unit ∆t per susceptible per infected.

N N(tk) Population size.

S S(tk) Number of susceptible individuals.

I I(tk) Number of infected individuals.

R R(tk) Number of removed individuals.

Q Q(tk) Cumulative incidence.

Z Z(tk) Incidence.

C C(tk) Reported incidence.

In this example, there is no environmental noise, simply because par_list specified68

epsilon = 0 . Hence beta and beta_phi are identical in the returned data frame.69

S1.3 Estimating the time-varying transmission rate70

We apply the FC, S, and SI methods to estimate incidence Z, susceptibles S, infecteds I,71

and the seasonally forced transmission rate β from reported incidence and vital data. We72

have implemented these methods in our functions estimate_beta_FC() ,73

estimate_beta_S() , and estimate_beta_SI() . We will refer to these collectively as74

estimate_beta() , but note that there is no function by that name.75

The first argument of estimate_beta() expects a data frame df with columns t ,76

C , B , and (for the S and SI methods) mu . These specify equally spaced observation times77

tk (Eq (3)) in units of the observation interval ∆t (i.e., tk/∆t) and, at those times,78

reported incidence Ck, observed births Bk, and the observed per capita natural mortality79

rate µk expressed per unit ∆t.80

The second argument expects a list par_list with elements prep , trep , tgen ,81

S0 , and (for the SI method) I0 . These specify values for input parameters prep, trep, tgen,82

S0, and I0.83
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Here, we supply the data frame df obtained earlier using make_data() . Note that84

this data frame does not have columns B and mu . When these columns are missing in the85

function call, estimate_beta() creates mock (constant) time series as follows: (i) it looks86

in par_list for additional elements hatN0 , nu , and mu , specifying a population size N̂087

and constant vital rates ν ′c and µ′c, then (ii) it sets Bk = ν ′cN̂0∆t and µk = µ′c for all k.88

In practice, the argument par_list contains the user’s potentially incorrect estimates89

of the input parameters, such as the initial number of susceptibles individuals S0. For this90

example, there is no input error: we assign each input parameter its true (data-generating)91

value. That is, the par_list that we pass to estimate_beta() is precisely the92

par_list that we passed to make_data() earlier.93

## List of functions
estimate_beta <- list(

FC = estimate_beta_FC,
S = estimate_beta_S,
SI = estimate_beta_SI

)

## List of returned data frames
df_est <- lapply(estimate_beta, function(f) f(df, par_list))
lapply(df_est, head, n = 10)

## $FC
## t C Z Z_agg B B_agg S I beta
## 1 104285.7 NA NA NA 767.1233 NA 54051.82 NA NA
## 2 104286.7 868 868 NA 767.1233 NA NA NA NA
## 3 104287.7 943 943 1811 767.1233 1534.247 53775.06 1811 1.085364e-05
## 4 104288.7 1020 1020 NA 767.1233 NA NA NA NA
## 5 104289.7 1094 1094 2114 767.1233 1534.247 53195.31 2114 1.061314e-05
## 6 104290.7 1163 1163 NA 767.1233 NA NA NA NA
## 7 104291.7 1224 1224 2387 767.1233 1534.247 52342.56 2387 1.034483e-05
## 8 104292.7 1274 1274 NA 767.1233 NA NA NA NA
## 9 104293.7 1311 1311 2585 767.1233 1534.247 51291.80 2585 1.006868e-05
## 10 104294.7 1332 1332 NA 767.1233 NA NA NA NA
##
## $S
## t C Z B mu S I
## 1 104285.7 NA NA 767.1233 0.0007671233 54051.82 NA
## 2 104286.7 868 868 767.1233 0.0007671233 53909.48 NA
## 3 104287.7 943 943 767.1233 0.0007671233 53692.25 1609.707
## 4 104288.7 1020 1020 767.1233 0.0007671233 53398.18 1748.794
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## 5 104289.7 1094 1094 767.1233 0.0007671233 53030.34 1891.591
## 6 104290.7 1163 1163 767.1233 0.0007671233 52593.78 2028.824
## 7 104291.7 1224 1224 767.1233 0.0007671233 52096.56 2156.784
## 8 104292.7 1274 1274 767.1233 0.0007671233 51549.72 2269.909
## 9 104293.7 1311 1311 767.1233 0.0007671233 50966.30 2362.634
## 10 104294.7 1332 1332 767.1233 0.0007671233 50362.32 2431.251
## beta
## 1 NA
## 2 NA
## 3 1.180163e-05
## 4 1.171527e-05
## 5 1.159386e-05
## 6 1.147104e-05
## 7 1.133845e-05
## 8 1.120387e-05
## 9 1.106177e-05
## 10 1.092750e-05
##
## $SI
## t C Z B mu S I
## 1 104285.7 NA NA 767.1233 0.0007671233 54051.82 1318.586
## 2 104286.7 868 868 767.1233 0.0007671233 53909.53 1442.230
## 3 104287.7 943 943 767.1233 0.0007671233 53692.38 1572.434
## 4 104288.7 1020 1020 767.1233 0.0007671233 53398.43 1707.986
## 5 104289.7 1094 1094 767.1233 0.0007671233 53030.73 1844.252
## 6 104290.7 1163 1163 767.1233 0.0007671233 52594.34 1976.990
## 7 104291.7 1224 1224 767.1233 0.0007671233 52097.31 2101.398
## 8 104292.7 1274 1274 767.1233 0.0007671233 51550.68 2212.350
## 9 104293.7 1311 1311 767.1233 0.0007671233 50967.48 2305.321
## 10 104294.7 1332 1332 767.1233 0.0007671233 50363.73 2375.346
## beta
## 1 NA
## 2 1.164631e-05
## 3 1.162533e-05
## 4 1.158944e-05
## 5 1.153862e-05
## 6 1.147834e-05
## 7 1.140877e-05
## 8 1.133293e-05
## 9 1.124715e-05
## 10 1.115929e-05
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The output contains the following information:94

t tk
∆t

Time in units of the observation interval ∆t. Equal to t0
∆t

+ (0, 1, . . . , n).
Identical to input df$t .

C Ck Reported incidence. Identical to input df$C , except that missing values
and zeros (treated like missing values) have been imputed by linear
interpolation.

B Bk Observed births. Identical to input df$B if supplied. Otherwise, every
element is with(par_list, hatN0 * nu * 1) .

mu µk∆t Observed per capita natural mortality rate, expressed per unit ∆t.
Identical to input df$mu if supplied. Otherwise, every element is
with(par_list, mu) .

Z Zk Estimate of incidence Z(tk).

S Sk Estimate of susceptibles S(tk).

I Ik Estimate of infecteds I(tk).

beta βk∆t Raw estimate of the time-varying transmission rate β(tk) expressed per
unit ∆t per susceptible per infected.

Note that the FC method’s output has missing values in alternating rows. This is not a95

mistake: the FC method aggregates incidence and births over the mean generation interval96

(roughly 2 weeks in this example), instead of the observation interval (1 week). As a result,97

estimation of S(tk) and β(tk) is only possible at every other observation time. Aggregation98

is not a requirement of the S and SI methods.99

Be warned that estimate_beta() returns raw estimates of β(t). Smoothing the βk100

time series by fitting a loess curve βloess(t; q) is recommended in the event that it displays101

unwanted noise. Determining what degree of smoothing is optimal (i.e., choosing a good102

value for the loess smoothing parameter q) is non-trivial, and therefore not undertaken by103

estimate_beta() . We discuss this issue in more detail in §S4.104

Plotting the Sk and βk time series returned by estimate_beta() , we reproduce Fig 1.105

Note that we are simply plotting (with a scaling) df_est$FC$S , df_est$S$S , and106

df_est$SI$S , and separately df_est$FC$beta , df_est$S$beta , and df_est$SI$beta .107
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Fig 1. Example of S(t) and β(t) estimation using the FC, S, and SI methods.

S1.4 Measuring estimation error108

In the manuscript, we report the relative root mean square error (RRMSE) in each βk time109

series. We compute RRMSE using compute_rrmse() , which takes as arguments the two110

vectors we wish to compare, with the estimate passed second.111

sapply(df_est, function(x) compute_rrmse(df$beta, x$beta))

## FC S SI
## 0.335487234 0.024010753 0.002139994
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S2 Effect of process and observation error112

Fig 1 in the manuscript shows the output of the S and SI methods for idealized reported113

incidence data. Those data were simulated deterministically, i.e.,114

� without environmental stochasticity [ES] ( par_list with epsilon = 0 passed to115

make_data() ),116

� without demographic stochasticity [DS] ( with_dem_stoch = FALSE passed to117

make_data() ), and118

� without observation error [OE] ( par_list with prep = 1 passed to119

make_data() ).120

In Fig 2, we consider the effect of adding ES, DS, and OE in turn to the original121

deterministic simulation, on the βk time series generated by the S and SI methods. We122

produce these four simulations as follows:123

## List of lists of parameter values
par_list <- list(

xxxxxx = make_par_list(epsilon = 0, prep = 1), # deterministic
esxxxx = make_par_list(epsilon = 0.5, prep = 1), # ES
esdsxx = make_par_list(epsilon = 0.5, prep = 1), # ES+DE
esdsoe = make_par_list(epsilon = 0.5, prep = 0.25) # ES+DE+OE

)

## List of data frames containing time series data
df <- mapply(make_data,

par_list = par_list,
n = 3 * 365 / 7,
with_dem_stoch = c(FALSE, FALSE, TRUE, TRUE),
seed = 1305,
SIMPLIFY = FALSE

)
names(df)

## [1] "xxxxxx" "esxxxx" "esdsxx" "esdsoe"

names(df$esdsoe)

## [1] "t" "t_years" "beta" "beta_phi" "N" "S"
## [7] "I" "R" "Q" "Z" "C"
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Here, par_list is a list of lists, containing the parameter values desired for each124

simulation, and df is a list of data frames, containing the corresponding simulated data.125

The next code chunk applies the S and SI methods, without input error, to each126

simulated reported incidence time series.127

## List of lists of data frames containing estimation output
df_est <- list(

## List of data frames returned by S method
S = mapply(estimate_beta_S,

df = df,
par_list = par_list,
SIMPLIFY = FALSE

),
## List of data frames returned by SI method
SI = mapply(estimate_beta_SI,

df = df,
par_list = par_list,
SIMPLIFY = FALSE

)
)
names(df_est)

## [1] "S" "SI"

names(df_est$SI)

## [1] "xxxxxx" "esxxxx" "esdsxx" "esdsoe"

names(df_est$SI$esdsoe)

## [1] "t" "C" "Z" "B" "mu" "S" "I" "beta"

Hence each element of df_est contains the output of one of the S and SI methods for all 4128

reported incidence time series. Plotting the resulting 8 Zk, Ik, and βk time series (estimates129

of incidence, prevalence, and the seasonally forced transmission rate) yields Fig 2.130
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Fig 2. Effects of process and observation error on the S and SI methods.

We obtain the RRMSE in each βk time series with the following line of code.131

lapply(df_est, function(x) {
mapply(function(y, z) compute_rrmse(y$beta, z$beta), y = df, z = x)

})

## $S
## xxxxxx esxxxx esdsxx esdsoe
## 0.02393485 0.03352897 0.12261568 0.15458400
##
## $SI
## xxxxxx esxxxx esdsxx esdsoe
## 0.002145247 0.015053954 0.053576843 0.070091436
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S3 Averaging the raw estimate of β(t)132

Fig 3 in the manuscript considers the seasonally forced β(t) (Eq (5)) and three estimates,133

each spanning 1000 years. It overlays the 1000 1-year cycles embedded in each estimate134

and plots their 1-year average. To reproduce Fig 3, we simulate 1000 years of weekly135

reported incidence, including in the simulation environmental noise in transmission136

(ε = 0.5), demographic stochasticity, and random under-reporting of cases (prep = 0.25).137

## List of parameter values
par_list <- make_par_list(epsilon = 0.5, prep = 0.25)

## Data frame containing time series data
df <- make_data(

par_list = par_list,
n = 1000 * 365 / 7 + 1,
with_dem_stoch = TRUE,
seed = 1217

)

We estimate the seasonally forced β(t) using the S and SI methods, without input error.138

## List of functions
estimate_beta <- list(

S = estimate_beta_S,
SI = estimate_beta_SI

)

## List of returned data frames. Column `beta` in `df_est[[i]]`
## stores the raw estimate generated by `estimate_beta[[i]]`.
df_est <- lapply(estimate_beta, function(f) f(df, par_list))

The raw time series estimates βk contain spurious noise due to process and observation139

error. Hence, for comparison, we fit a loess curve βloess(t; q) to the time series returned by140

the SI method, where q is the loess smoothing parameter indicating (roughly) the number141

of nearest neighbours weighted in local regression. It turns out that q = 53 is a good choice142

for this parameter in this example (see §S4). To do the fitting, we call loess() with143

argument span indicating q as a proportion of time series length. Additional arguments144

are fully explained in the documentation, accessible by running ?loess and145

?loess.control .146
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## Object of class `loess` defining the fitted loess curve
SI_loess <- stats::loess(

formula = beta ~ t,
data = df_est$SI,
span = 53 / nrow(df_est$SI),
degree = 2,
na.action = "na.exclude",
control = loess.control(surface = "direct")

)

We will calculate the average 1-year cycle in the linear interpolant βint(t) of βk (S and147

SI methods), and in the loess curve βloess(t; q) fit to the same time series (SI method only).148

## List of interpolants. `fits[[i]]` is the interpolant
## of column `beta` in `df_est[[i]]`.
fits <- lapply(df_est, function(x) {

approxfun(x$t, x$beta, method = "linear", rule = 1)
})

## Appending the `loess` object from earlier
fits$SI_loess <- SI_loess

Before proceeding, we should verify that the βk time series contain 1000 1-year cycles.149

## First and last time points
t0 <- df_est$SI$t[1]
tn <- df_est$SI$t[nrow(df_est$SI)]

## 1-year period in units of the observation interval
period <- with(par_list, (365 / 7) / dt_weeks)

## Number of cycles
m <- floor((tn - t0) / period)
m

## [1] 1000

We must also specify the true 1-year cycle that each average 1-year cycle should estimate.150

We specify the true cycle with a reference time indicating the initial phase. For simplicity,151

we consider the cycle between times t0 and t0 + period to be the true cycle. Phases of152

this cycle are specified by times s between 0 and period . To estimate the value of the153

true cycle at phase s , we evaluate each fit in fits (2 linear interpolants and 1 loess154
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curve) at times t0 + s + (0:(m-1))* period and average the resulting m values.155

get_phase_average() computes this estimate for any s , for a given fit f .156

get_phase_average <- function(s, f) {
times <- t0 + (s %% period) + (0:(m-1)) * period
x <- if (inherits(f, "loess")) predict(f, times) else f(times)
mean(x, na.rm = TRUE)

}

Note that, whereas linear interpolants are just functions that we can evaluate at desired157

times, loess objects must be passed to predict() to obtain fitted values. Note also that158

the modulo operation s %% period makes get_phase_average() a periodic function of159

s .160

We construct the average 1-year cycle in each fit in fits by applying161

get_phase_average() on a desired grid of s values.162

s_grid <- seq(0, period, length.out = 150)
average_one_year <- data.frame(

s_grid,
lapply(fits, function(f) sapply(s_grid, get_phase_average, f = f))

)
head(average_one_year)

## s_grid S SI SI_loess
## 1 0.0000000 1.193014e-05 1.153366e-05 1.148309e-05
## 2 0.3499521 1.194339e-05 1.154372e-05 1.148619e-05
## 3 0.6999041 1.193943e-05 1.155337e-05 1.148787e-05
## 4 1.0498562 1.191978e-05 1.155581e-05 1.148843e-05
## 5 1.3998082 1.190497e-05 1.155318e-05 1.148760e-05
## 6 1.7497603 1.189256e-05 1.154800e-05 1.148552e-05

We reproduce Fig 3 by plotting, for each 1000-year estimate of β(t), the 1000 embedded163

1-year cycles and their 1-year average, all on the same 1-year axis.164
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Fig 3. Bias and variance in 1-year cycles embedded in three estimates of a seasonally
forced β(t), in the absence of input error.

S4 Smoothing the raw estimate of β(t)165

Figs 2C, 3B, and 3C demonstrate that, in the absence of input error, much of the error in166

raw estimates of β(t) is attributable to noise in the time series. The S and SI methods167

produce the correct temporal pattern, but it is distorted by noise. Comparison of Figs 3C168

and 3D shows that fitting a smooth loess curve βloess(t; q) to the raw time series estimate βk169

can lead to substantial improvement in both accuracy and interpretability.170

In practice, we would like to choose the value qopt of the loess smoothing parameter q171

that minimizes the error in βloess(t; q) relative to β(t). However, we cannot calculate (and172

therefore cannot minimize) the error in βloess(t; q) when β(t) is not known. In this173

situation, we can still estimate qopt using statistical methods (most notably time series174

cross-validation [2]) or by direct inspection of βloess(t; q) for each value of q on a grid.175

In our simulated data setting, we do know β(t) and can therefore determine qopt176

exactly. In this setting, it is instructive to quantify the reduction in error that is achieved177
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when the optimal loess estimate βloess(t; qopt) is chosen over the raw time series estimate βk.178

Fig 4 in the manuscript addresses this issue.179

To reproduce Fig 4, we consider 41 values of the case reporting probability prep and fix180

all other data-generating parameters. (Smaller values of prep generate noisier reported181

incidence time series, resulting in noisier βk.) Using each value of prep, we perform 100182

simulations of reported incidence.183

prep <- 10^seq(-2, 0, length.out = 41)
par_list <- make_par_list(epsilon = 0.5)
nsim <- 100
q <- 10:110

For each of these 41× 100 simulations, we carry out the following steps. We estimate the184

seasonally forced β(t) (Eq (5)) from the simulated reported incidence time series, without185

input error. (The underlying β(t) was the same across all simulations.) For each q between186

10 and 110, we fit a loess curve βloess(t; q) to the raw time series estimate βk. Finally, we187

record188

RRMSEraw = RRMSE in {(tk, βk)}nk=0 ,

RRMSEloess,min = min
q∈{10,...,110}

[
RRMSE in {(tk, βloess(tk; q))}nk=0

]
,

qopt = arg min
q∈{10,...,110}

[
RRMSE in {(tk, βloess(tk; q))}nk=0

]
.

Hence, for each value of prep, we obtain 100 values for each of RRMSEraw, RRMSEloess,min,189

and qopt. We can preallocate space for this output.190

out <- array(NA,
dim = c(length(prep), nsim, 3, 2),
dimnames = list(NULL, NULL,

c("rrmse_raw", "rrmse_loess_min", "qopt"),
c("S", "SI")

)
)

The fourth dimension of the output array enables our comparison of the distributions of191

RRMSEraw, RRMSEloess,min, and qopt for different methods of β(t) estimation—in this case,192

the S and SI methods. Our expectation based on Figs 2C, 3B, and 3C is that the S method193

requires more smoothing.194

The next code chunk does all of the hard work. Simulations are saved in the directory195

RData/loess/ . Main results are saved in the file RData/loess.RData .196
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for (i in seq_along(prep)) {

## Update `par_list` with current value of `prep`
par_list$prep <- prep[i]

## Create a directory for this loop's `.RData`
dirname <- paste0(

"RData/loess/",
## log10 current value of `prep`
"prep_log10v-", sprintf("%+05.0f", log(prep[i], 10) * 1000), "/"

)
if (!dir.exists(dirname)) {

dir.create(dirname, recursive = TRUE)
}

for (j in seq_len(nsim)) {

message(
"`prep` value ", i, " of ", length(prep), ", ",
"sim ", j, " of ", nsim

)

## File name for simulation
filename <- paste0(dirname, "sim", sprintf("%04.0f", j), ".RData")

## Simulate reported incidence data, if you haven't already
if (file.exists(filename)) {

load(filename)
} else {

df <- make_data(
par_list = par_list,
n = 20 * 365 / 7,
with_dem_stoch = TRUE,
seed = j

)
save(df, file = filename)

}

## Estimate the seasonally forced transmission rate from
## reported incidence
estimate_beta <- list(
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S = estimate_beta_S,
SI = estimate_beta_SI

)
df_est <- lapply(estimate_beta, function(f) f(df, par_list))

## Compute the error in each raw estimate
out[i, j, "rrmse_raw", ] <- sapply(df_est, function(x) {

compute_rrmse(df$beta, x$beta)
})

## Preallocate memory for the error in each loess estimate
## (one for each value of `q`, for each raw estimate)
rrmse_after_loess <- array(NA,

dim = c(length(q), 2),
dimnames = list(NULL, c("S", "SI"))

)

## Standardize missing values in the raw estimates. `loess()`
## handles `NA` but complains about `NaN` and `Inf`.
df_est <- lapply(df_est, function(x) {

x$beta[!is.finite(x$beta)] <- NA
x

})

for (k in seq_along(q)) {

## Fit a smooth loess curve to each raw estimate
loess_fit <- lapply(df_est, function(x) {

stats::loess(
formula = beta ~ t,
data = x,
span = q[k] / nrow(x),
degree = 2,
na.action = "na.exclude",
control = loess.control(

surface = "direct",
statistics = "none"

)
)

})
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## Compute the error in each loess estimate
rrmse_after_loess[k, ] <- sapply(loess_fit, function(x) {

compute_rrmse(df$beta, predict(x))
})

}

## Find the minimum error over all loess estimates.
## Also retrieve the value of `q` that minimized error.
out[i, j, "rrmse_loess_min", ] <- apply(rrmse_after_loess, 2, min)
out[i, j, "qopt", ] <- apply(rrmse_after_loess, 2, function(x) {

q[which.min(x)]
})

}

}

attr(out, "arg_list") <- list(
prep = prep,
par_list = par_list,
q = q

)
save(out, file = "RData/loess.RData")

For each value of prep, we desire the median and 5th and 95th percentiles of RRMSEraw,197

RRMSEloess,min, and qopt.198

pct <- apply(out, c(1, 3, 4), quantile, probs = c(0.05, 0.5, 0.95))

Plotting these as functions of prep, we reproduce Fig 3.199
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Fig 4. Reduction in β(t) estimation error with optimal loess smoothing.

In the manuscript, we report the minimum percentage reduction in RRMSE across all200

simulations. Borrowing our earlier notation, this is the minimum value of201

100×
(

1− RRMSEloess,min

RRMSEraw

)
. (6)

apply(out, 4, function(x) {
min(100 * (1 - x[, , "rrmse_loess_min"] / x[, , "rrmse_raw"]), na.rm = TRUE)

})

## S SI
## 46.38507 17.47202

We also report the median value of qopt across all simulations for which prep ≥ 0.1.202
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qstar <- apply(out[prep >= 0.1, , "qopt", ], 3, quantile,
probs = 0.5,
names = FALSE

)
qstar

## S SI
## 65 53

In our remaining analysis, we set q = q∗ when smoothing any βk time series, taking203

q∗ =

{
65 with the S method,
53 with the SI method.

(7)

For a given time series, this setting may not be optimal (q∗ 6= qopt), but can be justified, as204

we explain in the sections to follow.205

S5 Sensitivity to data-generating parameters206

Error in estimates of the seasonally forced β(t) (Eq (5)) from simulated reported incidence207

data is a function of data-generating parameters, given by208

θ = (〈β〉, α, ε, N̂0, S0, I0, νc, µc, tgen, prep, trep, t0, ∆t, n) . (8)

In order to measure the sensitivity of β(t) estimation error to θ, we must define grids of209

parameter values. For this task, it is helpful to associate with each parameter a reference210

value:211

〈β〉 β∗

α 0.08
ε 0.5

N̂0 106

S0 S∗

I0 I∗

νc 0.04 year−1

µc 0.04 year−1

tgen 13 days

t0 2000 years
∆t 1 week
n 1042

prep p∗rep
trep t∗rep

(9)

Here, S∗ and I∗ are the values of S and I at a point very near the attractor of system212

(1) with constant vital rates νc and µc and a seasonally forced transmission rate (Eq (5)).213

It follows that S∗ and I∗ vary with parameters of the system (specifically, 〈β〉, α, νc, µc,214

and tgen). See §S1.1 for details on how S∗ and I∗ are obtained using make_par_list()215

given values for other parameters.216

β∗ is the value of 〈β〉 that satisfies Eq (4) with R0 = 20, N̂0 = 106,217

νc = µc = 0.04 year−1, and tgen = γ−1 = 13 days:218

β∗ = 20 · 0.04 year−1

106 · 0.04 year−1
· ( 1

13
day−1 + 0.04 year−1)

≈ 5.6234× 10−4 year−1 .

(10)
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Finally,219

p∗rep =

{
1 for analysis without OE
0.25 for analysis with OE

t∗rep =

{
0 weeks for analysis without OE
2 weeks for analysis with OE

(11)
where an “analysis with OE” is one in which we desire simulations of reported incidence220

with observation error.221

S5.1 Sensitivity to R0 and α222

Fig 5 in the manuscript describes how β(t) estimation error depends on features of β(t)223

itself. For the seasonally forced β(t) (Eq (5)), these features are the mean 〈β〉 and224

amplitude α. Fig 5 casts error as a function of R0 and α, rather than 〈β〉 and α, but this225

formulation is equivalent, because R0 is proportional to 〈β〉 (Eq (4)). It is also more226

interpretable: unlike 〈β〉, R0 has a natural epidemiological meaning and is dimensionless227

(its numerical value does not depend on the chosen units of time).228

To reproduce Fig 5, we set all data-generating parameters other than 〈β〉 and α equal229

to their reference value in (9). We consider the grid of (R0, α) pairs with levels230

R0 = 2, 3, . . . , 32 and α = 0, 0.01, . . . , 0.2—defining 〈β〉 for each R0 using Eq (4)—and231

simulate 1000 reported incidence time series using each of these 31× 21 parametrizations.232

Rnaught <- seq(2, 32, by = 1)
alpha <- seq(0, 0.2, by = 0.01)
nsim <- 1000

We estimate β(t) from each simulated reported incidence time series, without input error,233

fit a loess curve βloess(t; q) to the raw estimate βk, and record the RRMSE in βloess(tk; q).234

For comparison, this is done using both the S and SI methods. We fix q = q∗ (Eq (7))235

independently of the βk time series being smoothed. (See §S5.3 for discussion of the236

consequences of using fixed q in this analysis.)237

This algorithm is implemented in our function test_s2dgbeta() (“sensitivity to238

data-generating β(t)”), which takes as arguments239

� par_list_ref , a list containing the reference values of all data-generating240

parameters;241

� Rnaught and alpha , numeric vectors specifying the desired grid of (R0, α) pairs;242

� with_dem_stoch , a logical scalar indicating whether simulations should account for243

demographic stochasticity;244

� nsim , the number of simulations to perform using each (R0, α) pair;245

23



� loess_par , a numeric vector of length 2 specifying the value of the loess smoothing246

parameter q used when fitting loess curves to raw transmission rate estimates βk.247

loess_par[1] is used with the S method. loess_par[2] is used with the SI248

method.249

s2dgbeta() returns a 4-dimensional array, whose [i, j, k, m] th entry is the RRMSE250

in an estimate of β(t) (S method if m = 1 , SI method if m = 2 ) from simulation k of251

nsim using the (i, j)th (R0, α) grid point.252

First, we consider simulations with environmental stochasticity (ε = 0.5), without253

demographic stochasticity, and without observation error (prep = 1, trep = 0).254

rrmse_esxxxx <- test_s2dgbeta(
par_list_ref = make_par_list(epsilon = 0.5, prep = 1, trep = 0),
Rnaught = Rnaught,
alpha = alpha,
with_dem_stoch = FALSE,
nsim = nsim,
loess_par = qstar

)
save(rrmse_esxxxx, file = "RData/s2dgbeta_esxxxx.RData")

Second, we consider simulations with environmental stochasticity (ε = 0.5), with255

demographic stochasticity, and without observation error (prep = 1, trep = 0).256

rrmse_esdsxx <- test_s2dgbeta(
par_list_ref = make_par_list(epsilon = 0.5, prep = 1, trep = 0),
Rnaught = Rnaught,
alpha = alpha,
with_dem_stoch = TRUE,
nsim = nsim,
loess_par = qstar

)
save(rrmse_esdsxx, file = "RData/s2dgbeta_esdsxx.RData")

Third, we consider simulations with environmental stochasticity (ε = 0.5), with257

demographic stochasticity, and with observation error (prep = 0.25, trep = 2 weeks).258

rrmse_esdsoe <- test_s2dgbeta(
par_list_ref = make_par_list(epsilon = 0.5, prep = 0.25, trep = 2),
Rnaught = Rnaught,
alpha = alpha,
with_dem_stoch = TRUE,
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nsim = nsim,
loess_par = qstar

)
save(rrmse_esdsoe, file = "RData/s2dgbeta_esdsoe.RData")

We apply get_rrmse_50pct() to the output of test_s2dgbeta() in order to259

compute the median RRMSE in each set of nsim estimates of β(t).260

get_rrmse_50pct <- function(rrmse, method) {
apply(rrmse[, , , method], c(1, 2), quantile, probs = 0.5)

}

get_rrmse_50pct() takes as arguments rrmse (any of the three arrays defined earlier)261

and method ( "S" or "SI" ). It returns an array whose [i, j] th entry is the median262

RRMSE for the (i, j)th (R0, α) grid point.263

Fig 5 displays heatmaps of median RRMSE obtained from the output of264

get_rrmse_50pct() . There is one heatmap for each choice of the arguments rrmse and265

method (3× 2 heatmaps in total). Navy fill indicates median RRMSE less than the266

minimum shown on the colour scale.267
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Fig 5. Sensitivity of β(t) estimation error to the mean 〈β〉 and amplitude α of seasonal
forcing. The 〈β〉 axis has been scaled to measure the basic reproduction number R0

(Eq (4)).
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S5.2 Sensitivity to S0, I0, νc, µc, tgen, and prep268

Fig 6 describes how β(t) estimation error varies as a function of data-generating269

parameters other than 〈β〉 and α: the initial states S0 and I0, vital rates νc and µc, mean270

generation interval tgen, and case reporting probability prep.271

To reproduce Fig 6, we explore lines in the data-generating parameter space by272

assigning all parameters their reference value in (9), except a focal parameter (one of S0,273

I0, νc, µc, tgen, and prep), which we assign each of 41 values logarithmically spaced between274

1
4
and 4 times its reference value. Using each of these 5× 41 or 6× 41 parametrizations (we275

fix prep = 1 when we desire simulations without observation error), we simulate 1000276

reported incidence time series.277

scale_factors <- 2^seq(-2, 2, length.out = 41)
nsim <- 1000

We estimate β(t) from each simulated reported incidence time series, without input error,278

fit a loess curve βloess(t; q) to the raw estimate βk, and record the RRMSE in βloess(tk; q).279

For comparison, this is done using both the S and SI methods. We fix q = q∗ (Eq (7))280

independently of the βk time series being smoothed. (See §S5.3 for discussion of the281

consequences of using fixed q in this analysis.)282

This algorithm is implemented in our function test_s2dgpars() . (“sensitivity to283

data-generating parameters”). Its arguments are identical to those of test_s2dgpars() ,284

except, instead of Rnaught and alpha , test_s2dgpars() has arguments285

� pars_to_vary , a character vector listing the data-generating parameters to be286

treated as a focal parameter;287

� scale_factors , a numeric vector listing the factors by which the reference value of288

each focal parameter is scaled to obtain the grid of values considered for that289

parameter.290

test_s2dgpars() returns a 4-dimensional array, whose [i, j, k, m] th entry is the291

RRMSE in an estimate of β(t) (S method if m = 1 , SI method if m = 2 ) from simulation292

k of nsim in which pars_to_vary[j] is assigned its reference value times293

scale_factors[i] .294

First, we consider simulations with environmental stochasticity (ε = 0.5), without295

demographic stochasticity, and without observation error (prep = 1, trep = 0 weeks).296

rrmse_esxxxx <- test_s2dgpars(
pars_to_vary = c("S0", "I0", "nu", "mu", "tgen"),
par_list_ref = make_par_list(epsilon = 0.5, prep = 1, trep = 0),
scale_factors = scale_factors,
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with_dem_stoch = FALSE,
nsim = nsim,
loess_par = qstar

)
save(rrmse_esxxxx, file = "RData/s2dgpars_esxxxx.RData")

Second, we consider simulations with environmental stochasticity (ε = 0.5), with297

demographic stochasticity, and without observation error (prep = 1, trep = 0 weeks).298

rrmse_esdsxx <- test_s2dgpars(
pars_to_vary = c("S0", "I0", "nu", "mu", "tgen"),
par_list_ref = make_par_list(epsilon = 0.5, prep = 1, trep = 0),
scale_factors = scale_factors,
with_dem_stoch = TRUE,
nsim = nsim,
loess_par = qstar

)
save(rrmse_esdsxx, file = "RData/s2dgpars_esdsxx.RData")

Third, we consider simulations with environmental stochasticity (ε = 0.5), with299

demographic stochasticity, and with observation error (prep = 0.25, trep = 2 weeks).300

rrmse_esdsoe <- test_s2dgpars(
pars_to_vary = c("S0", "I0", "nu", "mu", "tgen", "prep"),
par_list_ref = make_par_list(prep = 0.25, trep = 2),
scale_factors = scale_factors,
with_dem_stoch = TRUE,
nsim = nsim,
loess_par = qstar

)
save(rrmse_esdsoe, file = "RData/s2dgpars_esdsoe.RData")

In this third analysis, when S0, I0, νc, µc, or tgen is varied, prep is fixed and assigned its301

reference value, 0.25. When prep itself is varied, we consider for prep each value in the vector302

scale_factors * 0.25 .303

As with test_s2dgbeta() , we apply get_rrmse_50pct() to the output of304

test_s2dgpars() in order to compute the median RRMSE in each set of nsim estimates305

of β(t).306

Fig 6 displays the output of get_rrmse_50pct() , plotting median RRMSE as a307

function of each data-generating parameter. To be precise, the horizontal axis measures the308

ratio of the data-generating and reference values of the focal parameter, which ranges from309
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1
4
to 4 regardless of the focal parameter. This allows results for different parameters to be310

compared in one panel.311
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Fig 6. Sensitivity of β(t) estimation error to data-generating parameters other than 〈β〉
and α.
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S5.3 A note on smoothing312

To generate Figs 5 and 6, we fixed q = q∗ (Eq (7)) when fitting loess curves βloess(t; q) to313

raw transmission rate estimates βk. For a given βk time series, this setting may not have314

been optimal (q∗ 6= qopt), meaning that the RRMSE calculated for βloess(tk; q) was greater315

with q = q∗ than it would have been had we found qopt and used q = qopt.316

This is potentially problematic, because sensitivity to data-generating parameters is317

mediated by propagation of noise from the simulated reported incidence data to βk. We318

may have observed less sensitivity to a parameter (for example, tgen in Fig 6) had we319

smoothed more when there was extreme noise in βk (i.e., had we set q = qopt when320

qopt > q∗). We did not do this, because finding qopt for each of the 5× 106 time series321

considered by Figs 5 and 6 would have increased the total computation time by a factor of322

100. Hence Figs 5 and 6 may overestimate the sensitivity of β(t) estimation error to323

data-generating parameters.324

Nevertheless, we expect the quantitative effect of choosing q∗ over qopt to be relatively325

small. Consider the graph corresponding to tgen in the right panel of Fig 6C, which displays326

median RRMSE close to (0.12, 0.03, 0.045) when tgen is (2−1.5, 1, 21.5) · 13 days, respectively327

(13 days being the reference value). For these values of tgen, it is instructive to compare (i)328

simulated reported incidence time series Ck, (ii) raw transmission rate estimates βk from329

Ck, and (iii) the corresponding loess estimates βloess(t; q
∗) and βloess(t; qopt).330

S5.3.1 Ck and βk for tgen = (2−1.5,1,21.5) · 13 days331

First, we simulate a reported incidence time series Ck using each of tgen = (2−1.5, 1, 21.5) · 13332

days. All three simulations account for environmental stochasticity (ε = 0.5), demographic333

stochasticity, and observation error (prep = 0.25).334

## List of reference parameter values
par_list_ref <- make_par_list(epsilon = 0.5, prep = 0.25)

## List of lists of data-generating parameter values
par_list <- mapply(make_par_list,

tgen = 2^c(-1.5, 0, 1.5) * par_list_ref$tgen,
beta_mean = par_list_ref$beta_mean,
Rnaught = NA,
epsilon = 0.5,
prep = 0.25,
SIMPLIFY = FALSE

)

## List of data frames containing time series data
df <- mapply(make_data,
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par_list = par_list,
n = 20 * 365 / 7,
with_dem_stoch = TRUE,
seed = c(1836, 6183, 3618),
SIMPLIFY = FALSE

)

Plotting each Ck time series yields the following result. Note that we are simply plotting335

df[[i]]$C for i = 1, 2, 3.336
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We see that a period-doubling bifurcation occurs between tgen = 13 days and337

tgen = 2−1.5 · 13 days, with Ck attaining a much smaller minimum in the time series with a338

2-year cycle (generated by tgen = 2−1.5 · 13 days).339

Due to much closer approaches to zero by incidence and prevalence with340

tgen = 2−1.5 · 13 days, noise in Ck is amplified to a much greater extent in the raw341

transmission rate estimate βk. We show this by applying the SI method without input342

error to estimate the underlying, seasonally forced transmission rate β(t) (Eq (5))—which343

was the same across simulations—from each Ck time series.344

## List of data frames containing estimation output
df_est <- mapply(estimate_beta_SI,

df = df,
par_list = par_list,
SIMPLIFY = FALSE

)

Plotting βk shows that, indeed, propagation of noise from Ck to βk is much more severe345

when tgen = 2−1.5 · 13 days. Note that we are simply plotting df_est[[i]]$beta , scaled346

by with(par_list, 1/beta_mean) , for i = 1, 2, 3.347
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We calculate the RRMSE in each of these estimates as follows.348

rrmse_raw <- mapply(
function(x, y) compute_rrmse(x$beta, y$beta),
x = df,
y = df_est

)
rrmse_raw

## [1] 0.26917391 0.06715921 0.05893578

S5.3.2 βloess(t; q
∗) and βloess(t; qopt) for tgen = (2−1.5,1,21.5) · 13 days349

All three of these estimates of β(t) are greatly improved with loess smoothing. First, we350

consider smoothing all three βk time series with q = q∗.351

## List of `loess` objects encoding the fitted loess curves
loess_fit <- lapply(df_est,

function(x) {
loess(

formula = beta ~ t,
data = x,
span = qstar["SI"] / nrow(x),
degree = 2,
na.action = "na.exclude",
control = loess.control(surface = "direct")

)
}

)
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Plotting these loess estimates βloess(t; q
∗) yields the following result. Note that we are352

plotting (with a scaling) predict(loess_fit[[i]]) for i = 1, 2, 3.353
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We calculate the RRMSE in each of these estimates as follows.354

rrmse_loess_qstar <- mapply(
function(x, y) compute_rrmse(x$beta, predict(y)),
x = df,
y = loess_fit

)
rrmse_loess_qstar

## [1] 0.10502016 0.03356297 0.03478337

Next, we consider smoothing each βk time series with q = qopt. Of course, we must first355

find qopt.356

q <- 10:150

## Array of values of RRMSE. Entry `[i, j]` contains the RRMSE
## in the loess estimate obtained from `df_est[[j]]$beta` using
## `q[i]` for the loess smoothing parameter.
rrmse_loess <- mapply(

function(x, y) {
sapply(q, function(z) {

loess_fit <- loess(
formula = beta ~ t,
data = y,
span = z / nrow(y),
degree = 2,
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na.action = "na.exclude",
control = loess.control(

surface = "direct",
statistics = "none"

)
)
compute_rrmse(x$beta, predict(loess_fit))

})
},
x = df, y = df_est, SIMPLIFY = TRUE

)
dim(rrmse_loess)

## [1] 141 3

## Optimal value for loess smoothing parameter is that
## which minimizes RRMSE
qopt <- apply(rrmse_loess, 2, function(x) q[which.min(x)])
qopt

## [1] 150 50 52

## List of `loess` objects encoding the fitted loess curves
loess_fit <- mapply(

function(x, y) {
loess(

formula = beta ~ t,
data = x,
span = y / nrow(x),
degree = 2,
na.action = "na.exclude",
control = loess.control(surface = "direct")

)
},
x = df_est, y = qopt, SIMPLIFY = FALSE

)

As expected, the βk time series corresponding to tgen = 2−1.5 · 13 days requires the most357

smoothing (greatest qopt). Plotting these optimal loess estimates βloess(t; qopt) yields the358

following result. Once again, we are plotting (with a scaling) predict(loess_fit[[i]])359

for i = 1, 2, 3.360
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The RRMSE in each of these estimates is calculated as before.361

rrmse_loess_qopt <- mapply(
function(x, y) compute_rrmse(x$beta, predict(y)),
x = df,
y = loess_fit

)
rrmse_loess_qopt

## [1] 0.09848373 0.03346263 0.03475891

S5.3.3 Discussion362

Comparing βk, βloess(t; q
∗), and βloess(t; qopt) for each value of tgen, we find that when noise363

in βk is severe (in this example, when tgen = 2−1.5 · 13 days), even an optimal degree of364

smoothing cannot recover the true β(t) from the noise, due to underlying bias. No amount365

of variance reduction can correct the error due to bias. For this reason, smoothing βk using366

q∗ for the loess smoothing parameter q was never much worse than smoothing using the367

optimal value qopt, even when q∗ � qopt (as was the case with tgen = 2−1.5 · 13 days):368

## Summary of results
data.frame(

rrmse_raw,
qstar = as.numeric(qstar["SI"]),
rrmse_loess_qstar,
qopt,
rrmse_loess_qopt

)
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## rrmse_raw qstar rrmse_loess_qstar qopt rrmse_loess_qopt
## 1 0.26917391 53 0.10502016 150 0.09848373
## 2 0.06715921 53 0.03356297 50 0.03346263
## 3 0.05893578 53 0.03478337 52 0.03475891

This suggests that the decision to fix q = q∗ when generating Figs 5 and 6 does not greatly369

mischaracterize the effect of parameters like tgen on β(t) estimation error. Had we found370

qopt for each raw estimate βk, we would have calculated quantitatively similar RRMSE.371

S6 Sensitivity to error in input parameters372

Error in estimates of the seasonally forced transmission rate (Eq (5)) from simulated373

reported incidence data is also a function of the user-specified values of input parameters,374

given by375

θ′ = (S ′0, I
′
0, ν

′
c, µ

′
c, t
′
gen, p

′
rep, t

′
rep) . (12)

Input error arises when the user’s input mischaracterizes the data-generating process. In376

our simulated data setting, this occurs when the specified value of an input parameter377

differs from the value used to simulate data (e.g., when S ′0 6= S0, and so on).378

Fig 7A in the manuscript describes how β(t) estimation error varies as a function of379

input error. To reproduce Fig 7A, we simulate 1000 reported incidence time series using the380

reference values in (9) for all data-generating parameters. From each reported incidence381

time series, we estimate the underlying β(t) using the S and SI methods with different382

errors in the input. Specifically, we explore lines in the input parameter space by assigning383

all input parameters their true (data-generating) value, except a focal parameter (one of384

S0, I0, νc, µc, tgen, prep, and trep), which we assign each of 41 values logarithmically spaced385

between 1
4
and 4 times its true value. Hence, in total, we consider 7× 41 parametrizations386

of the S and SI methods. We fit loess curves βloess(t; q) to each raw transmission rate387

estimate βk generated in this process, fixing q = q∗ (Eq (7)), and record the RRMSE in388

βloess(tk; q
∗) (See §S6.1 for discussion of the consequences of using fixed q in this analysis.)389

The above algorithm is implemented in our function test_s2inpars() (“sensitivity to390

input parameters”), which takes as arguments391

� par_list_ref , a list containing values for all data-generating parameters, used in392

all simulations;393

� pars_to_vary , a character vector listing the input parameters to be treated as a394

focal parameter;395

� scale_factors , a numeric vector listing the factors by which the data-generating396

value of each focal parameter is scaled to obtain the grid of input values considered397

for that parameter;398
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� with_dem_stoch , a logical scalar indicating whether simulations should account for399

demographic stochasticity;400

� nsim , the number of simulations to perform;401

� loess_par , a numeric vector of length 2 specifying the value of the loess smoothing402

parameter q used when fitting loess curves to raw transmission rate estimates βk.403

loess_par[1] is used with the S method. loess_par[2] is used with the SI404

method.405

test_s2inpars() returns a 4-dimensional array, whose [i, j, k, m] th entry is the406

RRMSE in the estimate of β(t) from simulation k of nsim , generated by assigning407

pars_to_vary[j] its true (data-generating) value times scale_factors[i] in the input408

to the S ( m = 1 ) or SI ( m = 2 ) method.409

We reproduce Fig 7A starting with the following call to test_s2inpars() .410

rrmse_esdsoe <- test_s2inpars(
pars_to_vary = c("S0", "I0", "nu", "mu", "tgen", "prep", "trep"),
par_list_ref = make_par_list(epsilon = 0.5, prep = 0.25, trep = 2),
scale_factors = 2^seq(-2, 2, length.out = 41),
with_dem_stoch = TRUE,
nsim = 1000,
loess_par = qstar

)
save(rrmse_esdsoe, file = "RData/s2inpars_esdsoe.RData")

Fig 7A plots the median RRMSE obtained with each parametrization of the SI method.411

We retrieve medians from rrmse_esdsoe in the next code chunk. Note that some412

parametrizations cause the SI method to fail. For example, modest underestimation of νc413

by ν ′c or of prep by p′rep causes Sk—the SI method estimate of S(tk)—to become negative.414

When this happens, test_s2inpars() assigns RRMSE the value NA . Below, we415

calculate the median RRMSE only for those parametrizations that yield a full set of 1000416

values of RRMSE (no NA s).417

## Preallocate memory for median RRMSE:
## one value for each parametrization of the SI method
rrmse_50pct <- NA * rrmse_esdsoe[, , 1, "SI"]
dim(rrmse_50pct)

## [1] 41 7

## Define vector indexing parametrizations for which RRMSE
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## was never `NA`
ind_no_na <- which(

apply(!is.na(rrmse_esdsoe[, , , "SI"]), c(1, 2), all)
)

## Calculate median RRMSE for the indexed parametrizations
rrmse_50pct[ind_no_na] <- sapply(ind_no_na, function(i) {

ai <- arrayInd(i, dim(rrmse_50pct))
quantile(rrmse_esdsoe[ai[1], ai[2] , , "SI"],

probs = 0.5,
na.rm = TRUE

)
})

Fig 7B repeats the analysis from Fig 7A concerning mis-specification of S0, except with418

initially erroneous estimates of S0 corrected using peak-to-peak iteration (PTPI; see §S7419

below for an actual illustration of this technique) before being passed to the S and SI420

methods. We generate results with PTPI by repeating the last call to test_s2inpars()421

with the additional argument ptpi_iter = 25 , indicating that PTPI should be employed422

and stopped after 25 iterations. Since PTPI only affects results for S0, we set423

pars_to_vary = "S0" .424

rrmse_esdsoe_ptpi <- test_s2inpars(
pars_to_vary = "S0",
par_list_ref = make_par_list(epsilon = 0.5, prep = 0.25, trep = 2),
scale_factors = 2^seq(-2, 2, length.out = 41),
with_dem_stoch = TRUE,
nsim = 1000,
loess_par = qstar,
ptpi_iter = 25

)
save(rrmse_esdsoe_ptpi, file = "RData/s2inpars_esdsoe_ptpi.RData")

There are no issues with RRMSE being assigned NA in this analysis, so calculating median425

RRMSE is more straightforward.426

rrmse_ptpi_50pct <- apply(
rrmse_esdsoe_ptpi[, "S0", , "SI"], 1, quantile,
probs = 0.5,
names = FALSE

)
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We reproduce Fig 7 by plotting median RRMSE—saved in rrmse_50pct and427

rrmse_ptpi_50pct—as a function of the ratio of the specified value of the focal428

parameter to the true (data-generating) value.429
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Fig 7. Sensitivity of β(t) estimation error to the user-specified values of input parameters.

S6.1 A note on smoothing430

The exact choice of the loess smoothing parameter q in this analysis is not critical, because431

error in the raw transmission rate estimate βk is primarily due to bias caused by432

mis-specified input parameters. Moderate oversmoothing or undersmoothing of βk has a433

negligible effect on RRMSE when βk is extremely biased. (Fig 8 in the manuscript shows434

this clearly for the case of mis-specified S0.) Hence the decision to fix q = q∗ (Eq (7)) as435

done here does not have a visible quantitative effect.436

S7 Estimating S0 via PTPI: Example437

Fig 8 in the manuscript illustrates the use of peak-to-peak iteration (PTPI) to estimate the438

initial number of susceptible individuals S0 = S(t0) from times series Zk, Bk, and µk of439

(estimated) incidence, births, and the per capita natural mortality rate. The PTPI440

algorithm relies on the following:441

(a) Periodicity of Zk, meaning that Zk displays recurrent epidemics.442

(b) Accuracy of Zk, Bk, and µk. Systematic errors in these time series bias the443

reconstruction of susceptibles by PTPI, and ultimately the estimate of S0 to which444

the iterations converge. This makes sense, given that susceptible dynamics are the445

direct result of imbalance between susceptible recruitment through birth and446

susceptible depletion through infection and death.447
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To reproduce Fig 8, we simulate a reported incidence time series Ck with known448

underlying S0 (to be estimated).449

## List of data-generating parameter values
par_list <- make_par_list(epsilon = 0.5, prep = 0.25)

## Data frame containing time series data
df <- make_data(

par_list = par_list,
n = 20 * 365 / 7,
with_dem_stoch = TRUE,
seed = 1350

)

## True value of `S0` to be estimated
df$S[1]

## [1] 54052

We estimate true incidence Z from reported incidence Ck as in the SI method:450

Z(tk) ≈ Zk = 1
prep

Ck+r , r =
[trep]∆t

∆t
, . (13)

We do this using the true (data-generating) values of prep and trep, so that Zk estimates Z451

without systematic error. (We consider this ideal case in order to demonstrate the validity452

of the PTPI algorithm. The sensitivity of the method to input error is not explored here453

explicitly, but is likely captured by the expressions for Err(Sk, ξ ← ωξ) derived in §2.7.2 of454

the manuscript.)455

## Time series of estimated incidence
Z <- estimate_beta_SI(df, par_list)$Z

We will pass this Zk time series to the PTPI algorithm. The complete algorithm consists of456

a truncation step, described in Box 4 in the manuscript, followed by an iteration step,457

described in Box 5 in the manuscript. Below, we explain their implementation in R,458

generating Fig 8 in the process.459

S7.1 Truncation step460

The goal of the truncation step is to find the time ta of the first peak in Zk and the time tb461

of the last peak occurring at the same phase of the cycle. Here, Zk is a central moving462

average applied to the Zk time series to remove unwanted noise. (Noise creates “peaks” in463

Zk that we wish to ignore.)464
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Our function get_peak_times() automates the task of (i) applying a central moving465

average to any equally spaced, (roughly) periodic time series, then (ii) finding peak times.466

It takes as arguments467

� x , a numeric vector specifying an equally spaced, (roughly) periodic time series;468

� period , a numeric scalar specifying the period of x in units of the observation469

interval;470

� bw_mavg , an integer scalar (a bandwidth) indicating that the central moving average471

applied to x should include 2 * bw_mavg + 1 points;472

� bw_peakid , an integer scalar (a bandwidth) indicating that x_mavg[i] should be473

considered a peak if and only if x_mavg[i] > x_mavg[j] for all j such that474

0 < |i− j| < bw_peakid .475

In the last item above, x_mavg is a vector of length length(x) containing the central476

moving average applied to x . x_mavg[i] is equal to477

mean(x[(i-bw_mavg):(i+bw_mavg)]) for all i from bw_mavg+1 to length(x)-bw_mavg ,478

and equal to NA everywhere else (i.e., at the the edges).479

get_peak_times() returns a list containing x_mavg and two index vectors all and480

phase . all indexes all peaks in x_mavg , while phase indexes only those peaks in phase481

with the first peak (and is therefore a subset of all ).482

Before we construct a call to get_peak_times() , we must ascertain that our time483

series Zk of estimated incidence is roughly periodic and determine the period. Plotting Zk,484

it is clear that it is periodic with a 1-year cycle.485
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In general, it may be helpful to inspect the power spectrum of Zk to determine the period,486

but we do not do this here.487

We locate the peaks in Zk with the following call to get_peak_times() .488
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## List of index vectors for peaks in incidence time series
peaks <- get_peak_times(

x = Z,
period = with(par_list, (365 / 7) / dt_weeks),
bw_mavg = 6,
bw_peakid = 8

)

## All peaks
peaks$all[1:10]

## [1] 61 118 171 218 274 322 383 429 478 539

## All peaks in phase with first
peaks$phase[1:10]

## [1] 61 118 171 218 274 322 383 429 478 539

Above, we assigned period the value of 1 year in units of the observation interval. We489

chose bandwidths bw_mavg = 6 and bw_peakid = 8 using an simple tuning procedure.490

First, we chose the smallest value of bw_mavg that eliminated noise near peaks in Zk. This491

was determined by visual inspection of the moving average Zk ( peaks$x_mavg ). Next, we492

chose an arbitrary value of bw_peakid greater than 5 and less than half of period . This493

ensured that the definition of a peak was meaningful (a point greater than many of its494

nearest neighbours) and that peaks were not being compared against other peaks. The495

exact choice of bw_peakid tends not to be critical provided Zk is smooth near the peaks.496

Note that the two index vectors all and phase returned by get_peak_times() are497

identical. In this example, all peaks in Zk are in phase, because the time between peaks is498

precisely the period (1 year). This is not true in general. For example, a 2-year cycle can499

have major and minor peaks that are out of phase. In this case, all would index both500

major and minor peaks, but phase would index either minor peaks or major peaks (but501

not both).502

Plotting true incidence Z ( df$Z ), estimated incidence Zk ( Z ), and the central moving503

average Zk ( peaks$x_mavg ), as well as indicators of the times of peaks in Zk in phase504

with the first peak ( peaks$phase ), we reproduce Fig 8A (see below). Fig 8A verifies that505

all of the peaks of interest were identified by get_peak_times() .506

We conclude the truncation step of the PTPI algorithm by retrieving the index of the507

first peak in Zk and the index of the last peak occurring at the same phase of the cycle.508
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## Index of first peak
a <- with(peaks, phase[1])
## Index of last peak in phase with first peak
b <- with(peaks, phase[length(phase)])

The precise times ta and tb of these peaks are given by df$t[c(a, b)] .509

S7.2 Iteration step510

The goal of the iteration step is to use times series Zk, Bk, and µk of (estimated) incidence,511

births, and the per capita natural mortality rate to iteratively update an initial estimate of512

S0 = S(t0). This updating procedure depends on the result of the truncation step. The513

iteration step is implemented in our function ptpi() , which takes as arguments514

� df , a data frame with columns Z , B , and mu specifying time series Zk, Bk and µk515

of (estimated) incidence, births, and the per capita natural morality rate;516

� par_list , a list with elements hatN0 , nu , and mu , specifying a population size517

N̂0 and constant vital rates νc and µc, which are used to create mock vital data in the518

event that df does not possess columns B or mu ( ptpi() will set Bk = νcN̂0∆t519

and µk = µc for all k);520

� a , an integer scalar indicating the index of the first peak in df$Z ;521

� b , an integer scalar indicating the index of the last peak in df$Z in phase with the522

first peak;523

� initial_S0_est , a numeric scalar indicating an initial estimate of S0;524

� iter , an integer scalar indicating the number of iterations to perform before525

stopping.526

We carry out the iteration step with the following call to ptpi() . For this example,527

we suppose that our initial guess of S0 is 4 times greater than its true value, and ask for528

our estimate to be updated 25 times. We provide the peak indices a and b obtained in529

the truncation step (see above). Finally, in the first argument, we specify our incidence530

time series and nothing else, and in the second argument, we specify the data-generating531

values of N̂0, νc, and µc. This means that ptpi() will construct mock vital data without532

any systematic error and use it in conjunction with the supplied incidence time series.533

## List containing PTPI output
ptpi_out <- ptpi(

df = data.frame(Z),
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par_list = par_list,
a = a,
b = b,
initial_S0_est = df$S[1] * 4,
iter = 25

)

ptpi() returns a list with elements534

� S_mat , a numeric matrix with nrow(df) rows and iter+1 columns, containing the535

susceptible time series generated in each iteration;536

� S0 , a numeric vector of length iter+1 listing the initial estimate of S0 = S(t0) and537

the estimate obtained in each iteration (equivalent to S_mat[1, ] );538

� S0_final , a numeric scalar indicating the final estimate of S0 (equivalent to539

S0[length(S0)] );540

� SA , a numeric vector of length iter+1 listing the initial estimate of Sa = S(ta)541

(equal to the initial estimate of S0) and the estimate obtained in each iteration542

(equivalent to S_mat[a, ] );543

� SA_final , a numeric scalar indicating the final estimate of Sa (equivalent to544

SA[length(SA)] ).545

Examining ptpi_out , we find that the iterations converged to an accurate estimate of S0.546

## Ordered estimates of `S0`
ptpi_out$S0

## [1] 216208.00 138745.04 94654.54 73216.89 62793.50 57725.45 55261.27
## [8] 54063.13 53480.58 53197.33 53059.61 52992.64 52960.09 52944.26
## [15] 52936.56 52932.82 52931.00 52930.11 52929.68 52929.47 52929.37
## [22] 52929.32 52929.30 52929.29 52929.28 52929.28

## Relative error in final estimate of S0
(ptpi_out$S0_final - df$S[1]) / df$S[1]

## [1] -0.02077116

Fig 8B (see below) displays the iter+1 susceptible time series Sk obtained in each547

iteration of PTPI. To reproduce Fig 8B, we plot the columns of ptpi_out$S_mat , scaled548

by with(par_list, 1/N0) .549
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## Matrix with ordered susceptible time series as columns
ptpi_out$S_mat[1:10, 1:5]

## [,1] [,2] [,3] [,4] [,5]
## [1,] 216208 138745.0 94654.54 73216.89 62793.50
## [2,] NA 138657.8 94601.07 73179.87 62764.47
## [3,] NA 138394.6 94371.71 72966.93 62559.52
## [4,] NA 138099.7 94110.54 72722.18 62322.74
## [5,] NA 137625.1 93669.64 72297.67 61906.22
## [6,] NA 137078.8 93157.10 71801.53 61418.04
## [7,] NA 136581.0 92692.94 71353.74 60978.22
## [8,] NA 136327.4 92473.04 71150.21 60782.64
## [9,] NA 135470.3 91649.54 70343.06 59983.44
## [10,] NA 134793.7 91006.60 69716.46 59364.78

Note that the first column contains NA , but only up to index a (not shown), where the550

first iteration starts.551

Fig 8C (see below) displays the SI method estimate of the transmission rate552

corresponding to each estimate of S0 listed in ptpi_out$S0 . To reproduce Fig 8C, we pass553

each estimate of S0 to estimate_beta_SI() , specifying the true (data-generating) value554

of every other input parameter. We fit a loess curve βloess(t; q
∗) to each raw transmission555

rate estimate βk, and record βloess(tk; q
∗) as a column in a matrix beta_mat . Finally we556

plot the columns of beta_mat , scaled by with(par_list, 1/beta_mean) .557

## Matrix with ordered transmission rate time series as columns
beta_mat <- sapply(ptpi_out$S0,

function(x) {
par_list_with_err <- within(par_list, S0 <- x)
df_est <- estimate_beta_SI(df, par_list_with_err)
loess_fit <- loess(

formula = beta ~ t,
data = df_est,
span = qstar["SI"] / nrow(df_est),
degree = 2,
na.action = "na.exclude",
control = loess.control(surface = "direct")

)
predict(loess_fit)

}
)
beta_mat[1:10, 1:5]
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## [,1] [,2] [,3] [,4] [,5]
## [1,] NA NA NA NA NA
## [2,] 2.978043e-06 4.632868e-06 6.774538e-06 8.736727e-06 1.016727e-05
## [3,] 2.925529e-06 4.557144e-06 6.675664e-06 8.623999e-06 1.004922e-05
## [4,] 2.875193e-06 4.484526e-06 6.580771e-06 8.515711e-06 9.935726e-06
## [5,] 2.827043e-06 4.415025e-06 6.489875e-06 8.411877e-06 9.826795e-06
## [6,] 2.781082e-06 4.348645e-06 6.402980e-06 8.312501e-06 9.722428e-06
## [7,] 2.737311e-06 4.285386e-06 6.320081e-06 8.217575e-06 9.622613e-06
## [8,] 2.695731e-06 4.225250e-06 6.241182e-06 8.127098e-06 9.527348e-06
## [9,] 2.656352e-06 4.168251e-06 6.166301e-06 8.041095e-06 9.436658e-06
## [10,] 2.619180e-06 4.114399e-06 6.095452e-06 7.959580e-06 9.350560e-06
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Fig 8. Example of S(t) and β(t) reconstruction with an overestimate of S0 corrected by
peak-to-peak iteration.

S8 Estimating S0 via PTPI: Convergence558

Fig 9 in the manuscript displays the result of applying PTPI (25 iterations) to estimate S0559

from 1000 realizations of a reported incidence time series, starting from each of two initial560
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guesses: 1
4
and 4 times the true value. The aim of this analysis is to assess the bias and561

variance in the limiting estimate of S0.562

To reproduce Fig 9, we record the estimate obtained at each iteration (for each initial563

guess and simulation) in an array. The following code chunk preallocates space for this564

output and creates a list of parameter values to be used in simulations of reported565

incidence.566

## Array with entry `[i, j, k]` equal to the `i`th estimate of `S0`
## generated from the `j`th initial guess and the `k`th simulated
## reported incidence time series
out <- array(NA, dim = c(26, 2, 1000))

## List of data-generating parameter values
par_list <- make_par_list(epsilon = 0.5, prep = 0.25)

The next code chunk fills in the out array with our desired output and saves it in567

RData/ptpi_convergence.RData .568

for (k in 1:1000) {
## Data frame containing time series data
df <- make_data(

par_list = par_list,
n = 20 * 365 / 7,
with_dem_stoch = TRUE,
seed = k

)

## PTPI: truncation step
Z <- estimate_beta_SI(df, par_list)$Z
peaks <- get_peak_times(

x = Z,
period = with(par_list, (365 / 7) / dt_weeks),
bw_mavg = 6,
bw_peakid = 8

)

## PTPI: iteration step
out[, , k] <- sapply(c(0.25, 4),

function(x) {
ptpi_out <- ptpi(

df = data.frame(Z),
par_list = par_list,
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a = with(peaks, phase[1]),
b = with(peaks, phase[length(phase)]),
initial_S0_est = with(par_list, S0 * x),
iter = 25

)
ptpi_out$S0 # all 26 estimates of `S0` in a vector

}
)

}
attr(out, "par_list") <- par_list
save(out, file = "RData/ptpi_convergence.RData")

We want the median and 5th and 95th percentiles of the estimate of S0 obtained at each569

iteration (for each initial guess).570

pct <- apply(out, c(1, 2), quantile,
probs = c(0.05, 0.5, 0.95)

)

Plotting these as a functions of iteration, we reproduce Fig 9.571
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Fig 9. Convergence of estimates of S0 obtained using peak-to-peak iteration.

In the manuscript, we report the median and 5th and 95th percentiles of the relative572

error in the estimate of S0 obtained in the last iteration (for each initial guess). These are573

calculated as follows.574
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with(par_list, (pct[, 26, ] - S0) / S0)

## [,1] [,2]
## 5% -0.119343123 -0.119343062
## 50% -0.008528768 -0.008528708
## 95% 0.125379218 0.125379276

S9 Appendix: Choice of discretization in the SI method575

The SI method modifies a method presented in [3] by deJonge. Here, we cast the SI576

method and deJonge’s method as two possible algorithms from a set of nine, differing577

according to (i) how578

dS
dt

= ν(t)N̂0 − β(t)SI − µ(t)S , (14a)

dI
dt

= β(t)SI − γI − µ(t)I (14b)

are discretized (forward Euler, backward Euler, or trapezoidal method) in order to estimate579

susceptibles S(t) and infecteds I(t), and (ii) how580

dQ
dt

= β(t)SI (15)

is discretized (forward Euler, backward Euler, or both) in order to estimate the581

transmission rate β(t). (“Both” means that the two estimates of β(t) obtained by forward582

and backward Euler are averaged to generate a final estimate.) DeJonge’s method uses583

forward Euler throughout, whereas the SI method uses the trapezoidal method for Eqs (14)584

and both forward and backward Euler for Eq (15).585

Here, we show that the SI method is more accurate than deJonge’s method and the586

seven other algorithms. We further show that the SI method and deJonge’s method are587

nearly unbiased (asymptotically) in the absence of input error.588

S9.1 Nine discretization schemes589

Our function estimate_beta_SI() takes a third argument method , which must be590

assigned a vector of length 2. method[1] has options "forward" , "backward" , and591

"trapezoid" (default), telling estimate_beta_SI() how to numerically integrate592

Eqs (14). method[2] has options "forward" , "backward" , and "both" , (default)593

telling estimate_beta_SI() how to numerically integrate Eq (15).594
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Eqs (16) below lay out the algorithm carried out by estimate_beta_SI() , conditional595

on method[1] and method[2] .596

Zk ← 1
prep

Ck+r (16a)

Sk ←


(1− µk−1∆t)Sk−1 +Bk − Zk if method[1] = "forward"
Sk−1+Bk−Zk

1+µk∆t
if method[1] = "backward"

(1− 1
2
µk−1∆t)Sk−1+Bk−Zk

1+ 1
2
µk∆t

if method[1] = "trapezoid"
(16b)

Ik ←


[1− (γ + µk−1)∆t]Ik−1 + Zk if method[1] = "forward"
Ik−1+Zk

1+(γ+µk)∆t
if method[1] = "backward"

[1− 1
2

(γ+µk−1)∆t]Ik−1+Zk

1+ 1
2

(γ+µk)∆t
if method[1] = "trapezoid"

(16c)

βk ←


Zk+1

SkIk∆t
if method[2] = "forward"

Zk

SkIk∆t
if method[2] = "backward"

Zk+Zk+1

2SkIk∆t
if method[2] = "both"

(16d)

Hence the SI method corresponds to method = c("trapezoid", "both") , while597

deJonge’s method corresponds to method = c("forward", "forward") .598

S9.2 Comparison of RRMSE, bias, and variance599

We will compare the nine algorithms described in Eqs (16) using two metrics. First, we600

consider performance as measured by the RRMSE in the raw transmission rate estimates601

βk. Second, we consider bias in the average 1-year cycle, calculated from the linear602

interpolant of βk as in §S3.603

S9.2.1 RRMSE604

We simulate 100 reported incidence time series Ck using each of 41 values for the case605

reporting probability prep, logarithmically spaced between 0.01 and 1. (Smaller values of606

prep generate noisier Ck, leading to noisier βk.)607

prep <- 10^seq(-2, 0, length.out = 41)
par_list <- make_par_list(epsilon = 0.5)
nsim <- 100

We estimate the underlying, seasonally forced transmission rate β(t) (Eq (5)) from each608

simulated reported incidence time series using each algorithm described in Eqs (16), and609

record the RRMSE in each raw estimate βk. We can preallocate space for this output.610
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method1_names <- c("forward", "backward", "trapezoid")
method2_names <- c("forward", "backward", "both")
out <- array(NA,

dim = c(length(prep), nsim, 3, 3),
dimnames = list(NULL, NULL, method1_names, method2_names)

)

The next code chunk implements the steps in this routine, saving main results in the611

file RData/euler.RData . We can reuse simulations from §S4, which were saved in the612

directory RData/loess/ .613

for (i in seq_along(prep)) {

## Update `par_list` with current value of `prep`
par_list$prep <- prep[i]

## Create a directory for this loop's `.RData`
dirname <- paste0(

"RData/loess/",
## log10 current value of `prep`
"prep_log10v-", sprintf("%+05.0f", log(prep[i], 10) * 1000), "/"

)
if (!dir.exists(dirname)) {

dir.create(dirname, recursive = TRUE)
}

for (j in seq_len(nsim)) {

message(
"`prep` value ", i, " of ", length(prep), ", ",
"sim ", j, " of ", nsim

)

## File name for simulation
filename <- paste0(dirname, "sim", sprintf("%04.0f", j), ".RData")

## Simulate reported incidence data, if you haven't already
if (file.exists(filename)) {

load(filename)
} else {

df <- make_data(
par_list = par_list,
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n = 20 * 365 / 7,
with_dem_stoch = TRUE,
seed = j

)
save(df, file = filename)

}

for (m1 in method1_names) {
for (m2 in method2_names) {

## Estimate the seasonally forced transmission rate
## from reported incidence
df_est <- estimate_beta_SI(df, par_list, method = c(m1, m2))

## Record the error
out[i, j, m1, m2] <- compute_rrmse(df$beta, df_est$beta)

}
}

}

}

attr(out, "arg_list") <- list(
prep = prep,
par_list = par_list

)
save(out, file = "RData/euler.RData")

We desire the median and 5th and 95th percentiles of RRMSE for each value of prep, for614

each of the nine algorithms used to estimate β(t).615

pct <- apply(out, c(1, 3, 4), quantile, probs = c(0.05, 0.5, 0.95))

Plotting these as functions of prep, and stratifying the results by method[1] (panel title)616

and method[2] (legend label) yields the following figure.617
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Fig 10. Performance of the nine discretization schemes, as measured by RRMSE in the
raw transmission rate estimate βk. Panel titles specify the discretization of Eqs (14).
Legend labels specify the discretization of Eq (15).

For every choice of method[1] (panel title), the best choice of method[2] (legend618

label) was typically "both" . On the other hand, for a given choice of method[2] , the619
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best choice of method[1] (by a small margin) was typically the one that avoided620

mismatch with method[2] . That is, when forward and backward Euler were used to621

discretize Eq (15), RRMSE was typically smallest when forward and backward Euler,622

respectively, were used to discretize Eqs (14). Similarly, when both forward and backward623

Euler were used to discretize Eq (15), RRMSE was typically smallest when the trapezoidal624

method was used to discretize Eqs (14). This combination, with625

method = c("trapezoid", "both") , gave the best performance overall.626

S9.2.2 Bias and variance627

In §S3, we looked at bias and variance in the 1-year cycles embedded in raw transmission628

rate estimates βk spanning 1000 years. There, we compared the S and SI methods. Here,629

we compare the nine algorithms described in Eqs (16).630

We simulate 1000 years of weekly observations of reported incidence, including in the631

simulation environmental noise in transmission (ε = 0.5), demographic stochasticity, and632

random under-reporting of cases (prep = 0.25).633

par_list <- make_par_list(epsilon = 0.5, prep = 0.25)
df <- make_data(

par_list = par_list,
n = 1000 * 365 / 7 + 1,
with_dem_stoch = TRUE,
seed = 1352

)

We estimate the seasonally forced β(t) using all nine discretization schemes, without input634

error.635

df_est <- mapply(
function(x) {

mapply(
function(y) {

estimate_beta_SI(df, par_list, method = c(x, y))
},
y = method2_names, SIMPLIFY = FALSE

)
},
x = method1_names, SIMPLIFY = FALSE

)

We linearly interpolate each raw time series estimate βk.636
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fits <- lapply(df_est, function(x) {
lapply(x, function(y) {

approxfun(y$t, y$beta, method = "linear", rule = 1)
})

})

As in §S3, we define the initial observation time t0 , period period , and number of cycles637

m , then use get_phase_average() to calculate the average 1-year cycle in the linear638

interpolants.639

## First and last time points, retrievable
## from any data frame in the list
t0 <- df_est[[1]][[1]]$t[1]
tn <- df_est[[1]][[1]]$t[nrow(df_est[[1]][[1]])]

## 1-year period in units of the observation interval
period <- with(par_list, (365 / 7) / dt_weeks)

## Number of cycles
m <- floor((tn - t0) / period)

get_phase_average <- function(s, f) {
x <- f(t0 + (s %% period) + (0:(m-1)) * period)
mean(x, na.rm = TRUE)

}

s_grid <- seq(0, period, length.out = 150)
average_one_year <- lapply(fits, function(x) {

data.frame(
s_grid,
lapply(x, function(f) sapply(s_grid, get_phase_average, f = f))

)
})

We plot the 1000 individual cycles and their average on the same 1-year axis, yielding a640

9-panel plot.641
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Fig 11. Bias and variance incurred by the nine discretization schemes. Row names specify
the discretization of Eqs (14). Column names specify the discretization of Eq (15).

Following the pattern of Fig 10, Fig 11 shows that mismatch between method[1] and642

method[2] is detrimental: in the off-diagonal panels, the average 1-year cycle fails to643

capture the correct seasonal amplitude. In addition, use of backward Euler to discretize644

Eqs (14) appears ill-advised: in the panels from the second row, the average 1-year cycle645

lags the true cycle. Finally, it is apparent that the SI method (bottom right panel) and646

deJonge’s method (top left panel) are both nearly unbiased.647
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All methods appear prone to propagating noise from reported incidence (due to process648

and observation error) to βk. However, the SI method and deJonge’s method stand out as649

being the least and most susceptible, respectively, to propagation of spurious noise. This650

likely accounts for the difference in their performance shown in Fig 10.651
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