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Effects of the infectious period
distribution on predicted transitions
in childhood disease dynamics
Olga Krylova and David J. D. Earn

Department of Mathematics and Statistics, McMaster University, Hamilton, Ontario, Canada L8S 4K1

The population dynamics of infectious diseases occasionally undergo rapid
qualitative changes, such as transitions from annual to biennial cycles or to
irregular dynamics. Previous work, based on the standard seasonally forced
‘susceptible–exposed–infectious–removed’ (SEIR) model has found that
transitions in the dynamics of many childhood diseases result from bifur-
cations induced by slow changes in birth and vaccination rates. However,
the standard SEIR formulation assumes that the stage durations (latent
and infectious periods) are exponentially distributed, whereas real distri-
butions are narrower and centred around the mean. Much recent work
has indicated that realistically distributed stage durations strongly affect
the dynamical structure of seasonally forced epidemic models. We investi-
gate whether inferences drawn from previous analyses of transitions in
patterns of measles dynamics are robust to the shapes of the stage duration
distributions. As an illustrative example, we analyse measles dynamics in
New York City from 1928 to 1972. We find that with a fixed mean infectious
period in the susceptible–infectious–removed (SIR) model, the dynamical
structure and predicted transitions vary substantially as a function of the
shape of the infectious period distribution. By contrast, with fixed mean
latent and infectious periods in the SEIR model, the shapes of the stage dur-
ation distributions have a less dramatic effect on model dynamical structure
and predicted transitions. All these results can be understood more easily by
considering the distribution of the disease generation time as opposed to the
distributions of individual disease stages. Numerical bifurcation analysis
reveals that for a given mean generation time the dynamics of the SIR and
SEIR models for measles are nearly equivalent and are insensitive to the
shapes of the disease stage distributions.

1 Introduction
Mathematical modelling has proven to be an extremely powerful tool for
understanding epidemiological patterns and predicting how demographic
changes and control measures influence infectious disease dynamics [1–3].
The most commonly used framework for modelling transmission dynamics
involves dividing the population into compartments based on disease status
and using ordinary differential equations (ODEs) to specify flows between
the compartments. For diseases that confer permanent immunity, the simplest
case is the SIR model [1,4], in which the compartments represent susceptible,
infectious and removed individuals, while the SEIR model also includes an
exposed compartment, containing individuals who are in a latent stage
(infected but not yet infectious). These simple models implicitly assume that
the time an individual spends in each disease stage (e.g. latent or infectious)
is drawn from exponential distributions [2,5], which are unlike real
distributions of disease stage durations.

The dynamical effects of exponential versus more realistic distributions of
stage durations have been explored extensively in the literature [6–12], which
has revealed that changing the shapes of these distributions while keeping
their means fixed can have a large impact on predicted dynamics. Conse-
quently, it is important to re-evaluate any inferences drawn about real data
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from models that assume exponentially distributed stage dur-
ations. In this paper, we study the dynamics of a family of
SIR and SEIR models with stage duration distributions that
range from exponential, to realistically bell-shaped, to fixed.
We investigate how the shapes of latent and infectious period
distributions affect our predictions concerning epidemiological
transitions (e.g. from annual to biennial epidemic cycles) and
compare our results with conclusions previously made based
on exponentially distributed models [13–15]. As an illustrative
example, we apply our analysis to measles epidemics in
New York City from 1928 to 1972.

1.1. The shapes of real distributions of disease
stage durations

Many authors have estimated infectious period distributions by
fitting standard probability distributions (e.g. normal [16–18],
log-normal [19,20], gamma [9,21] or fixed [16,17]) to empirical
data. For transmission modelling, a gamma distribution with
an integer shape parameter—also known as an Erlang distri-
bution—is strongly preferred on theoretical grounds: the
Erlang distribution is equivalent to a sequence of independent
and identically distributed exponential distributions [6,22–24],
so compartmental transmission models with Erlang-distributed
stage durations can be expressed as ODEs (as opposed to the
integro-differential equations required to express compartmen-
tal models with arbitrarily distributed stage durations).

The Erlang distribution with shape parameter n and scale
parameter ng, Erlang (n, ng), has probability density

f ðx; n; ngÞ ¼ ðngÞn

ðn$ 1Þ! xðn$1Þe$ngx; x . 0; n [ N: ð1:1Þ

The mean is 1/g and the variance is 1/ng2.
The Erlang distribution is more restricted in shape than

the general gamma distribution, but it is sufficiently flexible to
provide a good approximation of realistic stage duration distri-
butions. Figure 1 shows the probability density function of the
Erlang distribution with mean 1/g ¼ 13 days (vertical line)
and various shape parameters (n ¼ 1, 2, 3, 5, 8, 20, 100).

We write SInR and SEmInR to refer to the Erlang-distributed
SIR and SEIR models, where m and n refer to the shape par-
ameters of the latent and infectious period distributions,
respectively. Thus, SI1R (n ¼ 1) and SE1I1R (m ¼ 1, n ¼ 1)
denote the standard SIR and SEIR models with exponentially
distributed latent and infectious periods. Estimated values of
n and m can be inferred from appropriate clinical data and
vary widely for different infectious diseases, for example,
m ¼ 2, n ¼ 3 for SARS and m ¼ 20, n ¼ 20 for measles [9].

1.2. The Erlang-distributed epidemic models
In our analysis, we use standard Erlang-distributed SIR
(equation (1.2)) and SEIR models [6,8–10,23,24].

dS
dt
¼ nN0 $ bSI $ mS; ð1:2aÞ

dI1

dt
¼ bSI $ ðngþ mÞI1; ð1:2bÞ

dI2

dt
¼ ngI1 $ ðngþ mÞI2 ð1:2cÞ

..

.

and
dIn

dt
¼ ngIn$1 $ ðngþ mÞIn: ð1:2dÞ

Here, S, I and R are the numbers of susceptible, infectious
and recovered (immune) individuals in the population. m, b
and g are the rates of per capita death, transmission and recov-
ery, respectively. m quantifies death from ‘natural causes’
(disease-induced mortality is assumed to be negligible). b is
the rate at which contacts between susceptible and infectious
individuals cause new infections (per susceptible per infected).
The term nN0 denotes the number of births per unit time, where
N0 is the population size at a particular ‘anchor time’ t0 and n

represents births per capita at time t0, but not at other times
(see also §§2.1 and 2.2 and electronic supplementary material,
section ‘Models’). This term is particularly important, because
secular changes in this birth rate can induce dynamical tran-
sitions [3,13–15]. In our formulation, the birth term (nN0) is
different from the birth term in typical SIR-based model formu-
lation, which assumes that births balance deaths with birth rate
being mN. We estimate nN0 based on demographic data and do
not assume that it scales with population size (e.g. we do not
assume that the birth rate is mN).

In equation (1.2), the infectious stage is broken up into
a sequence of n substages, each exponentially distributed
with mean 1/(ng). The full infectious period distribution is
the Erlang distribution with shape parameter n and scale
parameter ng, Erlang(n, ng).

Transmission of childhood diseases such as measles is
strongly influenced by seasonal changes in contact rates
among children [13,25]. We assume that the transmission
rate varies sinusoidally over the course of a year,

bðtÞ ¼ kblð1þ a cosð2ptÞÞ; ð1:3Þ
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Figure 1. Probability density functions for several Erlang distributions with
the same mean (13 days, marked with a vertical grey line) but different
shape parameter n (see equation (1.1)). The most extreme cases are the
exponential distribution (n ¼ 1) and the Dirac delta distribution (n!
1). (Online version in colour.)
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where kbl is the mean transmission rate and a is the ampli-
tude of seasonal forcing. (See the electronic supplementary
material, section ‘Models’.)

A fundamental characteristic of an infectious disease is its
basic reproduction number, R0; which is the mean number of
susceptible individuals infected by one infectious individual
in a completely susceptible population [1]. Formally defining
and interpreting R0 in the presence of periodic forcing of
parameters requires considerable mathematical care [26,27];
however, what is important for our purposes here is that
the threshold for disease spread is determined by the more
easily defined basic reproduction number for the time-
averaged system [28]—i.e. the autonomous system in which
b(t) is replaced by kbl—and this is what we shall always
mean when referring to ‘R0’. Thus, R0 is the product of the
mean transmission rate kbl (cf. equation (1.3)) and the mean dur-
ation of infectiousness Tinf, and an epidemic can occur only if
R0 . 1: The exact expression for Tinf for Erlang-distributed
models is cumbersome (see the electronic supplementary mate-
rial, section ‘Models’) but for typical respiratory infections—for
which the duration of infection is much shorter than the
average host lifetime 1/m—it is always true that Tinf & 1/g
and hence

R0 &
nN0

m

kbl
g
: ð1:4Þ

The first factor here (nN0/m) does not normally appear in for-
mulae for R0 because it is typically assumed that births
balance deaths, and the population size is often absorbed
into the transmission rateb (see the ‘Models’ section of the elec-
tronic supplementary material for a more formal discussion of
this point). We assume that n changes slowly enough that it can
be regarded as constant for the purposes of defining R0 at a
given time.

Detailed descriptions of the SInR and SEmInR models can be
found in the electronic supplementary material, section ‘Models’.

1.3. Dynamics of epidemic models with
Erlang-distributed stage durations

In the past 20 years, the SInR and SEmInR models—and
other more general models—have received a great deal of
attention. Equilibrium stability analyses have been conducted
on ‘unforced’ models that assume constant contact rates
[6,7,29–32], and bifurcation analyses have been conducted
on ‘forced’ models in which contact rates vary seasonally
[6–12,33]. Lloyd [7] found that the biennial pattern observed
in the SI1R model is reproduced by the SInR model but with
much weaker seasonality. Nguyen & Rohani [10] found that
complex dynamics of whooping cough could be understood
based on the multiple coexisting attractors of an SE1I5R
model, whereas the simple SE1I1R model with the same
mean latent and infectious periods always predicts an asymp-
totically annual cycle. Wearing et al. [9] argued that the
traditional assumptions of exponentially distributed latent
and infectious periods may lead to underestimation of the
basic reproduction number, R0; and hence to underestimation
of the levels of control required to curtail an epidemic.

The primary theme of recent work on SInR and SEmInR
models has been that the shapes of stage duration distri-
butions can significantly affect the qualitative dynamics of
infectious diseases. Given this, it is important to re-examine
previous work that has attempted to explain observed disease

dynamics based on SI1R or SE1I1R models, and determine
whether the conclusions of these previous studies remain
valid when the analyses are repeated using models with
more realistically distributed stage durations. Our particular
focus in this paper is on epidemiological transition analysis,
by which we mean predicting qualitative changes in epidemic
dynamics induced by demographic and behavioural changes
in the host population [3,13,15]. As an illustrative example,
we analyse measles incidence in New York City for the
period 1928–1972, which was first investigated by London &
Yorke [25,34] and has been the subject of numerous studies
over the past 40 years [13,15,35,36]. We also investigate
whether the dynamics of a given SEmInR model can be
approximated with an SInR model.

We begin by describing the method of transition analysis
in §2. In §3, we apply transition analysis, based on SInR and
SEmInR models, to measles dynamics in New York City from
1928 to 1972. We consider the role of the distribution of
the disease generation time (as opposed to the latent and
infectious periods) in §4 and summarize our results in §5.

2. Predicting epidemiological transitions
Many infectious disease time series display occasional, rapid
changes in qualitative dynamics, such as transitions from
annual to biennial cycles or to irregular dynamics [1,35].
Previous work has shown that these transitions appear to be
driven by demographic and behavioural changes that induce
bifurcations in the SE1I1R model [3,13,15]. We would like to
know whether the qualitative inferences made previously
based on the SE1I1R model remain valid when the analysis is
repeated with more realistic SEmInR models.

Earn et al. [13] used the SE1I1R model to show that knowing
the changes in birth and vaccination rates—or, more generally,
changes in the rate at which susceptible individuals are
recruited into the population—it is possible to predict the
occurrence of bifurcations that change the period of epidemic
cycles. We briefly revisit that argument here in the more
general context of the SInR model.

2.1. Theoretical motivation for transition analysis
In equation (1.2a), the factor n was formulated as the birth
rate but can be thought of more generally as the susceptible
recruitment rate. Suppose that this rate changes to n0, which
might occur because the birth rate has changed or because
we have begun to vaccinate a proportion p of the population
(in which case n0 ¼ n(1 2 p)). To understand the dynamical
effect of this change from n to n0, consider the following
simple change of variables:

S0 ¼ n

n0
S; I0k ¼

n

n0
Ik; for 1 ' k ' n: ð2:1Þ

If we insert these expressions in equation (1.2) and solve the
equations for the primed variables we obtain, for example,

dS0

dt
¼ nN0 $ b

n0

n
S0I0 $ mS0: ð2:2Þ

That is, the equations for the primed variables are identical
to the original equations (with the original susceptible
recruitment term n), but with the transmission rate changed
from b to bn0/n. Thus, the dynamical effect of a change in
susceptible recruitment by a given factor is identical to the
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dynamical effect of changing the transmission rate by exactly
that factor,

n! n0 ) b! b
n0

n
and R0 ! R0

n0

n
: ð2:3Þ

Consequently, we can use a bifurcation diagram with the trans-
mission rate b, or equivalently the basic reproduction number
R0 (because R0 is proportional to b), as the control parameter
to predict transitions in dynamical behaviour induced by
changes in susceptible recruitment rate. Figure 2 shows such
a bifurcation diagram based on the sinusoidally forced SI1R
model (equation (1.2), n ¼ 1) with parameters chosen to corre-
spond to measles (and with an estimated value of R0 ¼ 17 at
some given time, say t0, marked with a dotted vertical line).
If the susceptible recruitment rate was n0 at time t0 and n1 at
time t1, then we would predict that at time t1 the system
would behave as if the basic reproduction number had chan-
ged by the factor n1/n0, i.e. the effective reproduction number
at time t, is

R0;eff ¼ R0
n1

n0
: ð2:4Þ

There is an important subtlety upon which our ability
to predict transitions depends critically. In the equation for
dS/dt (equations (1.2a)), the susceptible recruitment rate
appears as a constant (n does not depend explicitly on time
t or population size N ), and we use mass-action incidence

(bSI) rather than standard incidence (bSI/N ). If the suscep-
tible recruitment term were taken to be nN rather than nN0,
and we were to use standard incidence then the variable
change in equation (2.1) would have no effect (the differential
equations are invariant to the scaling transformation given by
equation (2.1)) and we would never predict dynamical tran-
sitions resulting from changes in the susceptible recruitment
rate. One can debate on theoretical grounds whether one
model formulation or another is most plausible biologically
[38]; we favour our formulation because it leads to correct
predictions concerning dynamical transitions [13,15]. We
are interested in the effects of changes in n over time, but
the changes of interest occur slowly compared with the epi-
demic timescale, which is why we can treat n as constant in
the dS/dt equation.

2.2. The method of transition analysis
Given a time series of reported disease incidence or mortality
(for a disease for which we have estimates of the mean latent
and infectious periods), a full transition analysis proceeds as
follows [13,15]. First, in order to clarify what needs to be
explained, plot the disease time series together with its esti-
mated frequency structure at each time point (e.g. Fourier
power spectra for subsets of the full time series or, preferably,
a wavelet spectrum for the full time series [39,40]). Second,
for some ‘anchor time’ t0 in the time series, obtain an estimate
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Figure 2. Asymptotic and perturbation analysis of the sinusoidally forced SI1R model (equations (1.2), n ¼ 1) parameterized for measles (g21 ¼ 13 days, n ¼
0.02 yr21, a ¼ 0.08). (a) Asymptotic analysis: the bifurcation diagram for the model with control parameter R0. The ordinate shows the proportional prevalence
of infection at the start of each year, so annual cycles are indicated by a single point at each R0, biennial cycles by two points, triennial cycles by three, and so on.
Heavy curves correspond to stable cycles while light curves indicate unstable cycles. A dotted vertical line is drawn at R0 ¼ 17, indicating the estimate of the basic
reproduction number at the ‘anchor time’ t0. Two types of bifurcations occur in this diagram: period doublings (also called pitchforks or flips) and tangent bifur-
cations (also called folds or saddle – node bifurcations). (b) Perturbation analysis: the natural period of damped oscillations (the transient period) onto each attractor,
as described in step 2 of §2.2. The transient period curves are labelled according to the corresponding attractor in the (a): transient period of the annual attractor (1),
biennial attractor (2), triennial (3) and so on. The light line indicates a region where the annual cycle is unstable and the period of repelled transients is phase-
locked at exactly 2 years [37]. (Online version in colour.)
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of the basic reproduction number R0; preferably using data
other than the focal time series (e.g. annual age-specific
data [1]). Third, estimate the susceptible recruitment rate n

at each point of the disease time series and infer the effective
reproductive number R0;eff at all times by inserting the esti-
mated n values into equation (2.4) (where n0 ¼ n(t0) and
n1 ¼ n(t) for an arbitrary time t). Fourth, identify time inter-
vals during which n is roughly constant (hence during which
the dynamical features of the disease time series can be
expected to be approximately stationary). Finally, based
on the estimated value of R0;eff in each of the ‘dynamically
stationary time intervals’, predict transitions in qualitative
dynamical behaviour (e.g. changes in the structure of the
wavelet spectrum, especially the positions of peaks), as follows.

(1) Asymptotic analysis (to identify the periods of attractors of
the model, which are reached asymptotically) [10–15]:
construct a bifurcation diagram with R0 as the control
parameter, over a range of R0 that includes the value esti-
mated for time t0 and the full range of R0;eff determined
via equation (2.4) (figure 2a). From this diagram, we can
easily infer the periods of cyclical attractors of the
system. We call these resonant periods because they are
exact subharmonics (i.e. integer multiples) of the period
of seasonal forcing (1 year). (See the electronic supplemen-
tary material ‘Bifurcation analysis of the seasonally forced
SIR model using XPPAUT’ for a step-by-step guide to
creating diagrams such as figure 2 using XPPAUT [41].)

(2) Perturbation analysis (to estimate the periods of the
transients associated with each attractor): over the same
range of R0 as in the asymptotic analysis, plot the periods
of the transients associated with—i.e. the periods of
damped oscillations onto—each cyclical attractor (figure
2b). We call these non-resonant periods because they can
take any real value and are not entrained by seasonal for-
cing. Non-resonant periods may be detected in observed
epidemic time series, because transients can be sustained
by demographic stochasticity [15,42]. Non-resonant
periods can be calculated by linearizing about the fixed
points and cycles of the model’s 1-year-stroboscopic map
[14,15]. If the period of a given attractor is k and the domi-
nant eigenvalue of the associated k-cycle of the
stroboscopic map is lk (which is complex for typical dis-
ease parameters), then the associated transient period is

Tk ¼
2pk

jArgðlkÞj
: ð2:5Þ

(3) Stochastic analysis (to estimate the relative importance
of transient versus asymptotic dynamics): the wavelet
spectrum has peaks at the most important periods in
the time series (which we attempt to predict with steps
1 and 2) but also shows the magnitude of the peaks,
which cannot be estimated by asymptotic and pertur-
bation analysis of a deterministic model. The relative
magnitudes of spectral peaks of observed time series
can be estimated from spectra of simulations of stochastic
realizations of the model, with the expectation that
smaller population sizes (which are subject to greater
demographic stochasticity) will stimulate more transient
dynamics, leading to larger spectral peaks at non-
resonant periods [3,15]. Because the stochastic analysis
addresses the details rather than the main features of
dynamical transitions, we do not conduct it in this

paper (though we make occasional reference to stochastic
effects). We note, however, that understanding these
details is an area of very active research, and powerful
analytical approaches for estimating power spectra for
recurrent epidemic processes have been developed
recently [11,43–45]. Ultimately, a complete transition
theory would need to account for all the dynamical
characteristics of stochastic epidemic models, which
include alternation between asymptotic and transient
behaviour [15], switching between different attractors
[13,46], phase-locked cycles at one fixed period [37] and
interactions with repellors [47].

In §3, we use the SInR and SEmInR models to conduct tran-
sition analysis of the well-known New York City measles
time series [34]. Our main question is: do we predict different
transitions if we base our theoretical analysis on the SInR
rather than on the SI1R model, or the SEmInR rather than
SE1I1R model?

Another question that we will address is: can we approxi-
mate the dynamics of the SEmInR model using the SInR
model? This question is motivated by the fact that the
dynamics of the SE1I1R model can be approximated using
the SI1R model. It is well-known that the equilibrium and
stability properties (e.g. the period of damped oscillations
onto the equilibrium) of the unforced SI1R and SE1I1R
models correspond if the mean infectious period in the SI1R
model is associated with the sum of the mean latent and
mean infectious periods in the SE1I1R model [1, p. 668]. The
measles bifurcation diagram shown in figure 2 for the sinu-
soidally forced SI1R model is virtually identical to the term-
time forced SE1I1R measles bifurcation diagram produced
previously by Earn et al. [13]. Therefore, we analyse the
SInR model with mean infectious period 1/g ¼ 13 days (the
sum of the real mean latent period of 8 days and the real
mean infectious period of 5 days for measles).

3. Transition analysis using SInR and
SEmInR models

In this section, we use the well-known measles incidence time
series for New York City (1928–1972) as an illustrative
example with which to compare the results of transition
analysis using SInR and SEmInR models with stage duration
distributions varying from exponential to fixed. The
New York City measles data were originally digitized and
studied by London & Yorke [25,34]. Previous transition
analysis of these data [13,15] has been restricted to the pre-
vaccine period (up to 1963). Here, we are able to extend
our analysis to 1972 using vaccination data for 1963–1972
(see the electronic supplementary material, section ‘Vacci-
nation level calculations’).

3.1. Description of the data
3.1.1. Reported incidence and inferred frequency structure
Figure 3a shows monthly reported cases of measles in
New York City (together with estimated susceptible recruit-
ment rate) and figure 3b shows the frequency structure of
the data over time as a wavelet spectrum. Two spectral
peaks are evident for the full duration of the time series,
one at a period of 1 year and a second at a period that
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changes over time (2–3 years from 1928 to about 1946,
exactly 2 years from about 1946 to 1965, and 2–4 years
from about 1965 to the end of 1972).

3.1.2. Estimated susceptible recruitment
Based on age-incidence and age-seroprevalence data for
England and Wales (1950–1968), the basic reproduction
number for measles has been estimated to be R0 ≃ 17 in the
pre-vaccination era [1, fig. 3.9 and 3.10, and table 4.1, p. 70].
Because, in New York City, the birth rate was approximately
the same as in England and Wales (in the pre-vaccination
era), we use this value as an estimate for R0 in New York
City in 1960, which we take to be our ‘anchor time’ t0.

Measles vaccine was introduced in the United States in
1963 [51], so susceptible recruitment until 1963 can be taken
to be associated entirely with births. However, newborns
do not enter the well-mixed susceptible pool immediately,
for two reasons: (i) maternally acquired immunity can take
up to a year to wane [1, p. 50], (ii) before entering pre-
school, children typically have much lower contact rates
with other susceptibles. Hence, the impact of changes in
birth rate on transmission dynamics is delayed, approxi-
mately by the time between birth and entering the
well-mixed susceptible pool. We took this delay, tS, to be 2

years, but our conclusions are not sensitive to this parameter
(e.g. taking it to be 0 or 5 years makes little difference (dotted-
dashed and dotted curves in figure 3)). Note that tS should be
less than 5 because the mean age at infection was about 5
years [1, fig. 8.1, p. 156]. Thus, we take the susceptible recruit-
ment rate in 1960 to be the ratio of the number of births in
1958 (B(t0 2 tS) ¼ 167 660) to the estimated population of
New York City in 1960 (N0 ¼ 7 781 984), i.e. nðt0Þ ≃ 0:02
[52]. At other times t,

nðtÞ ¼ Bðt$ tSÞ
N0

ð1$ pðt$ tSÞÞ ; ð3:1Þ

where p(t) is the proportion of new recruits at time t who were
vaccinated before entering the well-mixed susceptible pool.
Note in equation (3.10) we use N0, not N(t): recruitment is nor-
malized relative to the population size at the ‘anchor time’ t0

[13]. After 1963, the susceptible recruitment rate is substantially
reduced by the introduction of vaccination (figure 3).

The birth and measles vaccination data that we insert in
equation (3.1) are discussed in the electronic supplementary
material, section ‘Vaccination level calculations’. The result-
ing annual susceptible recruitment rate is shown in figure
3a. There are three distinct periods during which the recruit-
ment rate was roughly constant: 1929–1946 with n & 0.015,
1950–1963 with n & 0.02 and 1966–1971 with n & 0.008.
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Therefore, from equation (2.4), we estimate the effective
reproduction number to be R0;eff & 12 for 1928–1946,
R0;eff & 17 for 1950–1963 and R0;eff & 7 for 1966–1971.

3.2. Asymptotic and perturbation analysis
Previous transition analyses of the New York City measles
incidence time series were based on the SE1I1R model with
mean latent and infectious periods tE ¼ 8 days and tI ¼ 5
days, respectively [13,15]. Given data from which the full
latent and infectious period distributions can be estimated
(rather than just their means), it would be sensible to fit
Erlang distributions to the actual stage duration distributions
and begin the transition analysis from the corresponding

SEmInR model. Forexample, Wearing & Rohani [9] used measles
case data from Gloucestershire, UK, for the period 1947–1951
[53] to estimate tE ¼ 8 days with the shape parameter m & 20
and tI ¼ 5 days with the shape parameter n & 20. Even in
situations in which only the means of the stage duration dis-
tributions can be estimated, an SEmInR model (with m . 1 and
n . 1) is likely to be a more accurate representation of reality
than an SE1I1R model. So, for example, Keeling & Grenfell [8]
considered an SEmInR model with m ¼ 8 and n ¼ 5, i.e. one
day on average in each latent and infectious substage, as a
reasonable improvement of the SE1I1R model.

Our primary question, however, is how the predictions of
transition analysis vary as a function of stage duration distri-
bution and whether the previous transition analyses based on
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the SE1I1R model have led us to correct or incorrect inferences.
We therefore consider the full range of Erlang distributions
for the latent and infectious periods and study the SEmInR
model with 1 ' m '1 and 1 ' n '1. Note that we chose
the mean latent and infectious periods to be fixed (1/s ¼ 8
days; 1/g ¼ 5 days). Because our general goal is to evaluate
the robustness of dynamical inferences to model structure, we
begin by analysing the simpler SInR model with 1 ' n '1.

3.2.1. Predictions of the SInR model

3.2.1.1. Asymptotic analysis
Figure 4 shows a sequence of SInR bifurcation diagrams for var-
ious values of the shape parameter (n ¼ 1, 3, 10, 1) together
with the corresponding distributions of the infectious period
(each with a mean of 13 days). Stable branches are shown as
heavy curves, whereas unstable branches are shown as light
curves (in the online version, stable branches of different
periods are shown in different colours). The case n ¼ 1 is iden-
tical to figure 2a. As n increases from 1 to 1, each of the
branches undergoes further bifurcations. Chaotic attractors
(superimposed in light grey) are evident for n ¼ 10 and
dominate for a substantial range of R0 for n ¼1.

The vertical dashed dark grey line at R0 ¼ 17 in figure 4
corresponds to the estimated basic reproduction number
for the year t0 ¼ 1960. The effective reproduction number is
also estimated to be 17 throughout the 13 year period t ¼
1950–1963, because the birth rate did not change appreciably
during this time and measles vaccine was not yet invented.
The other two vertical dashed grey lines at R0 ¼ 7 and
R0 ¼ 12 correspond, respectively, to the estimated effective
reproduction number during the periods t ¼ 1928–1946 and
t ¼ 1966–1971, as computed from equations (2.4) and (3.1).

The bifurcation tree of the standard SI1R model (n ¼ 1)
shows a biennial cycle for R0 ¼ 17; coexistence of annual and
triennial cycles for R0 ¼ 12; and coexistence of annual and
4- and 5-year cycles for R0 ¼ 7: Hence, the model correctly
predicts the biennial pattern observed from 1950 to 1963
in New York City, but appears at first sight to predict incor-
rectly that there are multiple coexisting non-annual cycles at
other times.

However, in the ranges of R0 for which multiple attrac-
tors coexist, and in particular for R0 ¼ 12 and R0 ¼ 7;
stochastic simulations spend almost all of their time in the
basin of the annual attractor [15]. Thus, the resonant period
of 1 year observed in New York City from 1928 to 1946
and from 1966 to 1971 is also consistent with the SI1R model.
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Because of the series of bifurcations that occur rapidly as
n is increased, the SInR model for any n . 1 exhibits more
complex dynamics than the SI1R model and is harder to
reconcile with the observed transitions in New York City
measles. More often than the SI1R model, the SInR model
with n . 1 has coexisting long-period stable cycles that are
not observed in practice. As with the SI1R model, stochastic
simulations can be expected to remain primarily in the vicin-
ity of the ‘primary’ attractor, but unlike the SI1R model, the
primary attractor of the SInR with n . 1 often predicts the
wrong resonant period for New York City measles. For
example, for n ¼ 10, the dominant attractor for R0 ¼ 17 has
a period of 4 years (not 2 years), and the dominant attractor
for R0 ¼ 12 has period two (not one). In the presence of
noise, the 4-year cycle may be difficult to distinguish from
a 2-year cycle, but the predicted 2-year cycle for R0 ¼ 12 is
nothing like the measles data it ought to explain.

3.2.1.2. Perturbation analysis
Just as perturbing an orbit away from a stable equilibrium can
induce transient, damped oscillations onto the equilibrium,
perturbing an orbit away from a periodic attractor can induce
transient, damped oscillations onto the stable cycle. Although
more cumbersome to calculate for a non-equilibrium attractor
[15], transient orbits in the vicinity of a periodic attractor
have a well-defined characteristic period of oscillation.

Figure 5 summarizes the transient dynamics of the SInR
models for n ¼ 1, 3 and 10. For each periodic attractor,
the non-resonant period, i.e. the period of damped oscil-
lations onto the attractor, is plotted on the y-axis as a
function of R0: The curves are labelled according to the
period of the corresponding attractors in figure 4. Light
grey lines are used in ranges of R0 where the corresponding
periodic orbits are unstable; in these regions, the model dis-
plays phase-locked transient dynamics at the indicated
period (i.e. the transient period is fixed and is the same as
the period of the stable attractor), which is a prerequisite
for a period-doubling bifurcation [37].

In the case of the SI1R model, the non-resonant periods
associated with all the non-annual attractors are too long to
be observable in the New York City measles time series. The
non-resonant period associated with the annual attractor does
agree well with the wavelet spectrum shown in figure 3. For
the SInR models with n . 1, the non-resonant periods associ-
ated with multi-year attractors are shorter and often should
be observable in principle. For example, for R0;eff ¼ 12 the
SI10R model (n ¼ 10) predicts a transient period of 4.5 years.
However, it is not observed in the incidence power spectra
(figure 3). The lack of any indication of non-resonant periods
associated with non-annual attractors in the wavelet spectrum
for measles in New York City appears to cast further doubt
on the usefulness of the SInR model for measles.
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3.2.1.3. Summary of SInR transition analysis
Overall, from the point of view of measles transition analysis,
the SI1R model is just as successful as the SE1I1R model
studied previously [13,15]. However, the SInR model with
n . 1 is far less successful; as n increases the dynamical struc-
ture of the model becomes more and more complex and the
predicted resonant and non-resonant periods stray further
and further from the observed spectral peaks in the
New York City measles time series.

Figure 6a summarizes our asymptotic analyses of the
full sequence of SInR measles models (n ¼ 1 to 1) with a two-
parameter ðR0;nÞ bifurcation diagram for the main branch
of the bifurcation tree in figure 4. The boundaries of the regions
in figure 6 correspond to the major bifurcation points high-
lighted with circles (for flips) and squares (for saddle–nodes)
in figure 4. As n! 1 (i.e. as the infectious period distribution
approaches a delta function), the main branch of the bifurcation
tree undergoes a period-doubling cascade in the grey region
(R0 " 12$ 15). Figure 6b also describes the ðR0;nÞ plane, but
shows contours of constant non-resonant periods associated
with the annual cycle on the main branch (this is the most
likely non-resonant period to be observable because it is the

shortest; figure 5). The hatched region is characterized by
phase-locked transient dynamics at a period of 2 years.

Note that because n is a discrete parameter it cannot be
used as a continuation parameter in XPPAUT, hence we
had to resort to separate continuation analyses for each n.
The sequence of main-branch bifurcation diagrams that we
constructed for the SInR measles model (using 24 values of
n from 1 to 1) is shown in the electronic supplementary
material, section ‘Main branch of the SInR model’.

3.2.2. Predictions of the SEmInR model
We now apply precisely the same analyses to the more realis-
tic SEmInR models. Figures 7–9 for the SEmInR models
correspond to figures 4–6 for the SInR models.

Because we are now modelling both the latent and infec-
tious stages directly, we can use accepted estimates for their
mean durations (mean latent period 1/s ¼ 8 days, mean
infectious period 1/g ¼ 5 days) [9]. In addition, we now
have two shape parameters (m for the latent stage and n for
the infectious stage). We examine several illustrative m,n
values studied previously in the literature: m ¼ 1, n ¼ 1
[1,13], m ¼ 8, n ¼ 5 [8] and m ¼ 20, n ¼ 20 [9].
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Figure 7. SEmInR bifurcation diagrams as a function of R0 for several values of the shape parameters of the latent and infectious period distributions. The mean
stage durations are chosen to correspond to measles (mean latent period 1/s ¼ 8 days, mean infectious period 1/g ¼ 5 days). The other fixed parameters are the
birth rate (n ¼ 0.02 per year) and the amplitude of (sinusoidal) seasonal forcing (a ¼ 0.08). Heavy curves show attractors while light curves indicate unstable
branches. In the online version, attractors of different periods are drawn in different colours. Circles represent period-doubling (flip) bifurcations while squares denote
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Figure 7 presents asymptotic analysis of the SEmInR
model. The bifurcation structure of the model changes as m
and n are increased, but the changes are less substantial
than figure 4 shows as n is increased in the SInR model.
Figure 8 presents the results of perturbation analysis of the
SEmInR model. Again, narrowing the stage duration distri-
butions alters the transient periods, but less than figure 5
shows for the SInR model.

The degree of dependence of SEmInR dynamics on stage
duration distributions is clearest from the two-parameter
bifurcation diagrams and transient-period contour plots
shown in figure 9, which should be compared with figure 6
for the SInR model. Regardless of the shapes of the stage
duration distributions, the predicted resonant and non-
resonant periods are very similar. Regardless of m and n,
for R0 ¼ 17; we predict a resonant period of 2 years and
an unobservably long non-resonant period (more than 7
years), for R0 ¼ 12 we predict a 1-year resonant period
and a 2–3 year non-resonant period, and for R0 ¼ 7 we
predict a 1-year resonant and 3–4 year non-resonant
period. Consequently, transition analysis based on any of
these SEmInR models is consistent with the New York
City measles time series and wavelet spectrum (figure 3) as
well as for the other measles time series considered
previously [13–15].

We are led to conclude that transition analysis is robust to
the shapes of the distributions of the latent and infectious
periods (provided we include both).

4. The role of the generation time distribution in
the dynamics of the SInR and SEmInR models

It is surprising that narrowing the infectious period distribution
in the SInR model (apparently making it more realistic) makes
the model worse as a predictor of dynamical transitions
(figure 6). Because the effect of narrowing the shapes of the
latent and infectious period distributions in the SEmInR is
much smaller (figure 9), it is tempting to infer that the inclusion
of a latent stage is essential for producing a robust model of the
population dynamics of an infection that really does have a sig-
nificant latent period. In fact, in this section, we identify the key
factor that changes the structure of the SInR bifurcation diagram
as n gets larger, and we argue ultimately that any SInR or SEmInR
model is as good as any other from the point of view of tran-
sition analysis (including the SI1R or SE1I1R models) provided
they are parametrized appropriately.

When using an SIR rather than SEIR model, we chose the
mean infectious period to be 13 days, the sum of the actual
mean latent (8 days) and mean infectious (5 days) periods.
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Figure 8. Transient dynamics of the measles SEmInR model for (m,n) ¼ (1,1), (8,5) and (20,20) as a function of R0. Each panel shows the transient periods
associated with the periodic attractors shown in figure 7. Transient period curves are labelled according to the periods of the attractors they reach asymptotically
(and in the online version are coloured according to the corresponding attractor in figure 7). Light grey lines indicate regions of R0 where the corresponding
periodic cycles exist but are unstable. Dashed vertical lines correspond to values of R0;eff ¼ 7, 12 and 17. As in figure 7, the right panels show the associated
latent and infectious period distributions. (Online version in colour.)
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Our motivation was that it is well known that the dynamics
of the unforced SI1R model is almost identical to that of the
unforced SE1I1R model if this association is made. In particu-
lar, the period of damped oscillations about the equilibrium
is then identical in the SI1R and SE1I1R models [1, p. 668].

It is instructive to note that the mean disease generation
time1 in the SE1I1R model is equal to the sum of the mean
latent and infectious periods. So, the association we have
made between the mean infectious period in the SI1R
model and the sum of the mean latent and infectious periods
in the SE1I1R model amounts to making sure both models have
the same mean generation time. But for more general SEmInR
models, the mean generation time is not equal to the sum of
the mean latent and infectious periods. Indeed, the mean
generation time in an SEmInR model is [55, eqn. 5.9]

Tgen ¼
1
s
þ nþ 1

2n

! "
1
g
: ð4:1Þ

From formula (4.1), we see that the mean generation time
does not depend on the shape of the latent period distri-
bution (only its mean 1/s), but decreases as the infectious
period distribution gets narrower (i.e. as n increases) if the

mean infectious period is kept fixed. If the mean generation
time is the key factor affecting the dynamics of the SEmInR
model then we can now easily see why figure 6 shows so
much more variation than figure 9: the mean generation
time Tgen decreases from 13 to 6.5 days as n increases from
1 to 1 in the SInR model (1/s ¼ 0, 1/g ¼ 13 days), whereas
Tgen decreases only from 13 days to 10.5 days as n increases
from 1 to 1 in the SEmInR model (1/s ¼ 8 days for any
value of m, 1/g ¼ 5 days).

Figure 10 shows another version of the two-parameter
(R0 versus n) bifurcation diagram for the SInR model.
Rather than fixing the mean infectious period as in figure 6,
for each n we set the mean generation time to be the same
as that in the SEmInR model with the same value of n. The
result in figure 10 is now negligibly different from each of
the panels of figure 9 (some details are also discussed in
the electronic supplementary material, section ‘Invariance
of the period-doubling bifurcation point’).

Finally, in figure 11, we show yet another version of the R0

versus n bifurcation diagram for the SInR model, this time
keeping the mean generation time fixed at 13 days for all
values of n (in contrast to figure 10, where the mean generation
time for each SInR model was chosen to be the same as in the
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SEmInR model with the same value of n). Figure 11 makes clear
that from the point of view of transition analysis—and to a large
extent more generally for understanding the dynamics of

SEmInR models—the key parameter that needs to be estimated
is the mean generation time, not the mean latent or mean infec-
tious period themselves and certainly not the shapes of these
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distributions. For a given mean generation time, it makes little
difference which SInR or SEmInR model we use, so we might
as well work with the simplest, the SI1R model.

5. Discussion
We set out to determine whether the results of previous ‘tran-
sition analyses’ of recurrent epidemic patterns of childhood
diseases [3,13,15] were robust to the assumed shapes of the
latent and infectious period distributions (which were taken
to be exponential in previous work). We focused on measles
and undertook a systematic analysis of the sequence of SInR
and SEmInR models for measles, and concluded that for a
given mean generation time, transition analyses based on
any SInR or SEmInR model will lead to the same predictions
for measles. Consequently, transition analyses of measles
dynamics can be safely conducted using the very simplest
SI1R model. It is important to emphasize, however, that the
mean generation time must be estimated correctly for this
to work; in particular, it is not true that the real mean gener-
ation time is the sum of the mean latent and infectious periods.

The key graph that establishes that SInR dynamics are
nearly invariant for measles, if the mean generation time is
fixed, is figure 11 (where the mean generation time is set to
13 days). In future work, we will construct the equivalent
graph for a sequence of mean generation times that covers
the range of typical recurrent infectious diseases, in order
to determine whether transition analyses of other diseases

can also be safely conducted with the simple SI1R model.
There is also considerable scope for analytical develop-
ments that complement our numerical analysis and build
on previous analytical work associated with the role of the
generation time distribution [56–59].

Consistent with previous work [6,7,10], we found that if we
fix the mean infectious period (rather than the mean generation
time) then narrowing the infectious period distribution (which
reduces the mean generation time) leads to more complex
dynamics. Previous work has also investigated the stochastic
dynamics of SInR and SEmInR models and examined character-
istics such as the critical community size for disease persistence
[6,12]. In future work, we will re-examine inferences con-
cerning the stochastic dynamics of these models in light of
the now-evident importance of the mean generation time for
their deterministic dynamics.

We thank Jonathan Dushoff and the other members of the Mathematical
Biology Group at McMaster University for helpful comments and dis-
cussions. We were supported by the Natural Sciences and Engineering
Research Council of Canada (O.K. by an NSERC Postgraduate Scholar-
ship and D.J.D.E. by an NSERC Discovery grant). The data used in this
paper can be downloaded from the International Infectious Disease
Data Archive (http://iidda.mcmaster.ca).

Endnote
1The generation time is also called the generation interval, the serial
interval or the case-to-case interval. It is the time from initial infection
of a primary case to initial infection of a secondary case [54].
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1 Models

SI

1
R and SE

1
I

1
R

Assuming the population is large and homogeneously mixed, the (unforced) SI1R
model can be cast as a simple system of nonlinear ordinary differential equations
[1, 2]:

dS

dt
= ⌫ � �SI � µS , (S2a)

dI

dt
= �SI � �I � µI , (S2b)

dR

dt
= �I � µR . (S2c)

Here, S, I and R are the numbers of susceptible, infectious, and recovered (im-
mune) individuals in the population. µ, � and � are the rates of per capita death,
transmission and recovery, respectively. µ quantifies death from “natural causes”
(disease-induced mortality is assumed to be negligible). ⌫ denotes the number of
births per unit time, which is often time-dependent in practice [3]. If ⌫ = µN ,
where N = S + I + R is the total population size, then births balance deaths
and the population size remains constant. � is the rate at which contacts between
susceptible and infectious individuals cause new infections (per susceptible per
infected), so �SI is the number of new infections that occur per unit time (inci-
dence rate). Note that equations S2a and S2b do not depend on R. Therefore they
completely specify the system dynamics and equation S2c can be ignored.

For our purposes, the birth term (⌫) is particularly important because secular
changes in this term can induce dynamical transitions [4, 5, 6, 7]. We estimate ⌫
based on demographic data and do not assume that it scales with population size
(e.g., we do not assume ⌫ = µN ). Nevertheless, it is convenient to express ⌫ in
units that are similar to those of the per capita death rate µ. We therefore write
⌫ = ⌫N0, where N0 is the population size at a particular “anchor time” t0 (see
also section 2.2). ⌫ represents births per capita at time t0, but not at other times.

S2



We rewrite equation S2 as

dS

dt
= ⌫N0 � �SI � µS , (S3a)

dI

dt
= �SI � �I � µI , (S3b)

dR

dt
= �I � µR . (S3c)

In the special case in which births balance deaths (⌫ = µ), the basic reproduction
number, R0, for this model is well-known to be N0�/(� + µ) [1]. To see how the
expression for R0 changes if ⌫ 6= µ, consider the scaled variables

˜S =

µ

⌫
S , ˜I =

µ

⌫
I , ˜R =

µ

⌫
R . (S4)

In these variables, Equations S3 become

d ˜S

dt
= µN0 �

⌫�

µ
˜S ˜I � µ ˜S , (S5a)

d˜I

dt
=

⌫�

µ
SI � � ˜I � µ˜I , (S5b)

d ˜R

dt
= � ˜I � µ ˜R . (S5c)

These equations are exactly equivalent to the standard SI1R model with births
balancing deaths (both rates equal to µ), but with transmission rate ⌫�/µ rather
than �. Consequently, the threshold for disease spread is

RSI1R
0 =

⌫N0

µ

�

� + µ
. (S6)

We assume that ⌫ changes slowly enough that it can be regarded as constant for
the purposes of defining R0 at a given time.

The SI1R model can easily be extended to the SE1I1R model, which includes
a latent stage, by replacing equation S3b with the two equations:

dE

dt
= �SI � �E � µE , (S7a)

dI

dt
= �E � �I � µI . (S7b)
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The latent period is defined to be the time from initial infection to becoming infec-
tious. In equations S7a and S7b E represents the number of exposed individuals
(individuals in the latent stage). For the SE1I1R model, the basic reproduction
number is

RSE1I1R
0 =

⌫N0

µ

��

(� + µ)(� + µ)
. (S8)

In the standard SI1R and SE1I1R formulation (equations S3 and S7), the lengths
of the latent and infectious stages are exponentially distributed. To see this, sup-
pose that during the infectious stage the only process occurring was recovery from
infection. Then equation S3b would reduce to dI/dt = ��I , which implies that
the distribution of time spent in the infectious class (the infectious period) is ex-
ponential with mean 1/� (if I0 individuals are infectious at time 0 then I0e��t are
still infectious at time t). Similarly the latent period is exponentially distributed
with mean 1/�.

SI

n
R and SE

m
I

n
R

Arbitrarily distributed stage durations can be included into SIR and SEIR models
via integro-differential equations [8, 9, 10]. Unfortunately, the resulting dynam-
ical systems are mathematically and computationally difficult to study. To avoid
the complications involved with integro-differential equations, most research on
epidemic models with non-exponentially distributed stage durations has restricted
attention to a convenient class of realistic (but not arbitrary) distributions, namely
Gamma distributions with integer shape parameter (also known as Erlang distri-
butions) [11, 12, 13, 8]. The idea is to exploit the fact that the sum of a sequence
of independent exponentially distributed random variables is Gamma distributed
[14]. If we break up the infectious stage into a sequence of n substages, each
exponentially distributed with mean 1/(n�), then the full infectious period distri-
bution will be the Erlang distribution with shape parameter n and scale parameter
n�, Erlang(n, n�). The resulting SInR model can then be represented by a simple
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system of ODEs:

dS

dt
= ⌫N0 � �SI � µS , (S9a)

dI1
dt

= �SI � (n� + µ)I1 , (S9b)

dI2
dt

= n�I1 � (n� + µ)I2 , (S9c)

...
dIn
dt

= n�In�1 � (n� + µ)In , (S9d)

and the basic reproduction number is [15]

RSInR
0 =

⌫N0

µ

�

n� + µ

n�1X

j=0

✓
n�

n� + µ

◆j

. (S10)

Note that the number of individuals in the infectious stage (I) is the sum of all
individuals currently in each infectious substage,

I =

nX

j=1

Ij . (S11)

Division into n subclasses is purely a mathematical device and has no biological
meaning.

The two extreme cases of the SInR model occur for n = 1, in which case the
model reduces to the standard SI1R model (equation S3), and the limit as n ! 1,
which yields a fixed infectious period of ⌧ = 1/� (equation 1, see also figure 1),
(i.e., the infectious period has a Dirac delta distribution �(t � ⌧): all individuals
who become infectious at time t recover at exactly time t + ⌧ ). In this limit,
the system becomes a delay differential equation, which can be seen directly as
follows. Since the incidence rate at time t is �(t)S(t)I(t) and the probability that
an individual alive at time t survives to time t + ⌧ is e�µ⌧ [9], the recovery rate
at time t is �(t � ⌧)e�µ⌧S(t � ⌧)I(t � ⌧). Thus, in the limit n ! 1, the SInR
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model approaches the system

dS

dt
= ⌫N0 � �(t)S(t)I(t)� µS(t) , (S12a)

dI

dt
= �(t)S(t)I(t)� �(t� ⌧)e�µ⌧S(t� ⌧)I(t� ⌧)� µI(t) , (S12b)

dR

dt
= �(t� ⌧)e�µ⌧S(t� ⌧)I(t� ⌧)� µR(t) . (S12c)

We obtain the SEmInR model (with mean latent period ⌧E = 1/� and mean in-
fectious period ⌧I = 1/�) by subdividing the exposed class into m subclasses
[16, 17],

dS

dt
= ⌫N0 � �SI � µS , (S13a)

dE1

dt
= �SI � (m� + µ)E1 , (S13b)

dE2

dt
= m�E1 � (m� + µ)E2 , (S13c)

...
dEm

dt
= m�Em�1 � (m� + µ)Em , (S13d)

dI1
dt

= m�Em � (n� + µ)I1 , (S13e)

dI2
dt

= n�I1 � (n� + µ)I2 , (S13f)

...
dIn
dt

= n�In�1 � (n� + µ)In . (S13g)

In the limit that m ! 1 and n ! 1 we obtain the delay differential equation
[16],
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dS

dt
= ⌫N0 � �(t)S(t)I(t)� µS(t) , (S14a)

dE

dt
= �(t)S(t)I(t)� �(t� ⌧E)e

�µ⌧ES(t� ⌧E)I(t� ⌧E)� µE(t) , (S14b)

dI

dt
= �(t� ⌧E)e

�µ⌧ES(t� ⌧E)I(t� ⌧E)� (S14c)

� �(t� ⌧I)e
�µ⌧IS(t� ⌧I)I(t� ⌧I)� µI(t) , (S14d)

dR

dt
= �(t� ⌧I)e

�µ⌧IS(t� ⌧I)I(t� ⌧I)� µR(t) . (S14e)

For the SEmInR model R0 can be computed by the following formula [15]:

RSEmInR
0 =

⌫N0

µ

✓
m�

m� + µ

◆m �

n� + µ

n�1X

j=0

✓
n�

n� + µ

◆j

. (S15)

Note that the basic reproduction number is the product of the mean transmission
rate and the mean duration of infectiousness. Altering the distribution of the in-
fectious period alters the probability that an infectious host will die before trans-
mitting. This death-delay interaction changes the mean duration of infectious-
ness, which results in the differences in the formulae for R0 above. For diseases
of short duration such as measles and smallpox, the mean host lifetime is much
longer than the duration of infectiousness. Consequently, µ ⌧ � and µ ⌧ �, so
R0 can always be written:

R0 ⇡
⌫N0

µ

�

�
. (S16)

Seasonal forcing

Exponentially distributed disease stage durations is one unrealistic assumption
used in standard SIR-type models. Another is treating the transmission rate � as
a constant. More realistic seasonally forced models are implemented by allowing
the transmission rate to vary periodically with a period of one year. The two most
commonly used seasonal patterns are sinusoidal forcing [16, 18, 19, 20],

�(t) = h�i(1 + ↵ cos (2⇡t)) , (S17)
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with mean h�i and amplitude ↵ (0  ↵  1) and term-time forcing [16, 17, 5, 7,
21, 22]

�(t) =

⇢
�H school days,
�L non-school days, (S18)

where �H > �L (the transmission rate is high when school is in session and low
otherwise). Earn et al. [5] found that the qualitative dynamics of the term-time
forced SE1I1R model are essentially equivalent to the dynamics of the sinusoidally
forced SE1I1R model but with lower seasonal amplitude, ↵. The same is true for
the SI1R model. Since our focus is on qualitative dynamics, we use sinusoidal
forcing for simplicity.
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2 Vaccination level calculations

Live measles virus vaccine was licensed in the US in 1963 [23]. A national cam-
paign to eliminate measles was launched by the Center for Disease Control (CDC)
in October of 1966 [24]. The campaign targeted infants at approximately age one
year and all remaining susceptible children before they entered school [25, 26].
We thus assume that the individuals targeted for vaccination were children aged
one year (infants), four years (pre-kindergarten), five years (kindergarten) and six
years (first year of elementary school) [27]. For example, the targeted population
in 1963 (column 4 of Table S1) is the total number of children born in 1962 (one
year old), 1959 (four years old), 1958 (five years old), and 1957 (six years old):

4, 167, 362 + 4, 295, 000 + 4, 255, 000 + 4, 308, 000 = 17, 025, 362 (S19)

Since data on the distribution of measles vaccine by city were not available, we
used the vaccination coverage calculated for the whole US (column 5 of Table S1)
to estimate the proportion vaccinated in New York City (figure 3).

For the years after 1963 we had to account for vaccination being implemented
already. Hence the size of the targeted population was still the total number of one,
four, five and six year olds, but now reduced by the number of children already
vaccinated. For example, the targeted population in the year 1964 (column 4 of
Table S1) is the total number of children born in 1963 (one year old), 1960 (four
years old), 1959 (five years old), 1958 (six years old) reduced by the number of
children already vaccinated in 1963, ⇡19% of five and six year olds:

4, 098, 020 + 4, 257, 850 + 4, 295, 000 + 4, 255, 000�
�(4, 295, 000 + 4, 255, 000) · 0.187955 = 15, 298, 855

(S20)

We then estimate the proportion vaccinated as the ratio of the distributed vaccine
doses to the size of the targeted population.

In 1971 the combined measles, mumps and rubella (MMR) vaccine was li-
censed [29]. Since it was a new vaccine that protected against three infectious
diseases, we assume that the targeted population in 1971 was again all children
aged one, four, five, and six years old even if they were previously vaccinated
with measles vaccine. Table S1 summarizes our calculations of the vaccination
level for the US. Note that we did not consider vaccine efficacy [30], migration of
the population, or other factors that could have influenced the proportion of those
vaccinated who were actually immunized. Despite the limitations of our methods,
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Year Births [28] Vaccine doses [24] Size of targeted Estimated
population proportion vaccinated

1957 4,308,000
1958 4,255,000
1959 4,295,000
1960 4,257,850
1961 4,268,326
1962 4,167,362
1963 4,098,020 3,200,000 17,025,362 0.187955
1964 4,027,490 3,800,000 15,298,855 0.248385
1965 3,760,358 6,000,000 14,724,270 0.407490
1966 3,606,274 7,900,000 12,196,284 0.647738
1967 3,520,959 6,400,000 9,657,979 0.662665
1968 3,501,564 5,300,000 8,695,492 0.609511
1969 3,600,206 4,900,000 7,999,115 0.612568
1970 3,731,386 4,500,000 7,833,993 0.574420
1971 3,555,970 8,300,000 14,618,977 0.567755
1972 3,258,411 8,200,000 10,138,244 0.808819

Table S1: Estimated measles vaccination coverage in the United States.

our estimates are in excellent agreement with the only two published annual vac-
cination rates we have found: 61.4% in 1969 and 57.2% in 1970, as reported by
the United States Immunization Survey [31].
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3 Invariance of the period doubling bifurcation point

From the point of view of understanding transitions in measles dynamics, the
most important bifurcation is the first period doubling (from annual to biennial
cycles) that occurs as R0 is increased above 1 (e.g., figure 9). In this appendix,
we examine the precise value of R0 at which this bifurcation occurs in a sequence
of SInR and SEmInR models. For a given mean generation time (Tgen) and a given
shape parameter of the infectious period distribution (n), we compare the value of
R0 at which this important bifurcation occurs for a range of shape parameters for
the latent period distribion (m) in SEmInR models. We find this value of R0 is
roughly invariant to m and to the existence of a latent period at all (i.e., we also
compare with the SInR model). All of the entries in Table S2 below corresponding
to points in figure 9 or figure 10.

In all the SEmInR models we consider here, the mean latent and infectious
periods were set to 5 and 8 days, respectively. In order to keep the mean gen-
eration time the same in all these SEmInR models and in the SInR model, we
used equation 11 to determine by exactly how much we needed to lengthen the
mean infectious period (1/�) of the SInR model. For example, for n = 2, we first
determined the mean generation time of the SEmI2R model as

T SEmI2R
gen = 8 (days) +

2 + 1

2 · 2 · 5 (days) = 11.75 (days) . (S21)

Then we computed the mean infectious period for the SI2R model (equation 11
with 1/� = 0), which yields a mean generation time of 11.75 days:

1

�SI2R
= 11.75 (days) · 4

3

⇡ 15.67 (days) . (S22)

Next we conducted a bifurcation analysis of the SInR model with the new values
of the infectious period (figure 10).

For each n, the values of R0 in Table S2 differ at most by 0.26 (SE64I1R
vs SI1R), which strongly supports the conclusion that the SInR model is a good
approximation of the SEmInR model if the mean generation time is chosen appro-
priately.
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R0 at first period doubling bifurcation
n SE1InR SE8InR SE20InR SE64InR SInR Tgen

1 15.6432 15.5490 15.5418 15.5386 15.7980 13.00
2 13.9431 13.8693 13.8639 13.8613 13.9870 11.75
3 13.3869 13.3186 13.3135 13.3112 13.3999 11.33
5 12.9453 12.8811 12.8764 12.8742 12.9349 11.00

10 12.6159 12.5548 12.5503 12.5482 12.5897 10.75
20 12.4520 12.3921 12.3877 12.3857 12.4180 10.63
50 12.3537 12.2947 12.2904 12.2889 12.3151 10.55

100 12.3211 12.2622 12.2601 12.2592 12.2809 10.53

Table S2: The value of R0 at the first period doubling point on the main branch of the
bifurcation diagram of SEmInR and SInR models. In each row of the table, the
shape parameter n and the mean generation time are fixed. The mean gener-
ation time (Tgen) can be expressed in terms of the mean latent and infectious
periods using equation 11. The same formula (equation 11) with 1/� = 0 gives
the mean generation time in the SInR model and allows us to choose a mean
infectious period (Tinf = 1/�) that will yield a given generation time.
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4 Main branch of the SI

n
R model with fixed mean

infectious period,

1

� = 13 days

The sequence of graphs below show the main branch of the bifurcation tree of
the SInR model (prevalence I vs R0) for a sequence of shape parameters (n =

1, 2, . . . , 20, 30, 50, 100, 1).
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Abstract

This guide provides a recipe for constructing bifurcation diagrams of
seasonally forced epidemic models using XPPAUT, with which the reader is
assumed to have basic familiarity. A preliminary version of this document
appeared in Olga Krylova’s McMaster University PhD thesis [1]. It extends
part of a set of unpublished notes written by Victoria Maystruk (2006) as
a supplement to her McMaster University Undergraduate Arts & Science
thesis [2].

We are continuing to improve this guide. Please e-mail David Earn
(earn@math.mcmaster.ca) if you notice any errors or have sugges-
tions for improvements. In your message, please indicate the date on the
version of the guide that you have been reading.
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1 Preliminaries
This guide was prepared on a Macintosh computer running:

• Mac OS X version 10.6.8
• XPPAUT version 6.11
• version 2.15.2 (2012-10-26) and knitr package version 1.1
• gcc version 4.2.1

The “command line” refers to the unix command line, accessible from the Termi-
nal application under Mac OS X.

2 The model
Consider a seasonally forced SIR model:

dS

dt
= µ� ⇥(t)S(t)I(t)� µS(t), (1a)

dI

dt
= ⇥(t)S(t)I(t)� ⇤I(t)� µI(t), (1b)

dR

dt
= ⇤I(t)� µR(t), (1c)

where S, I , and R are proportions of the population in each epidemiological state
and the seasonally forced transmission rate is

⇥(t) = ⌃⇥⌥(1 + � cos(2⇧t)) . (2)

We want to investigate how the dynamics of system (1) change with respect to
changes in the basic reproduction number, R0. Thus we write equation 1 in terms
of R0:

R0 =
⌃⇥⌥
⇤ + µ

, (3)

which implies that

⌃⇥⌥ = R0(⇤ + µ), (4a)

⇥(t) = R0(⇤ + µ)(1 + � cos(2⇧t)). (4b)

A bifurcation diagram is a summary of the asymptotic dynamics (attractors) of a
dynamical system as a function of a bifurcation parameter. It is helpful to start
analysis of a model with a brute force bifurcation diagram, which is constructed
strictly by simulations. This diagram will show stable branches of periodic orbits
and will identify regions of possible chaotic behavior.
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3 STEP 1: Brute force bifurcation diagram

3.1 XPPAUT input file bruteforceSIR R0.ode
In order to compute solutions of any model in XPPAUT we need to create a
filename.ode file that specifies the system of differential equations, initial
conditions, parameter values and any output that we want to save. The .ode file
can be created in any plain text editor (e.g., Emacs, vim or TextEdit).

Dynamical equations: Equations (1) are specified as follows.

## DIFFERENTIAL EQUATIONS:

beta=Rzero*(gamma+mu)*(1 + a*cos(2*pi*t))
s'=mu-beta*s*i-mu*s

i'=beta*s*i-(gamma+mu)*i

Using this much of .ode file we can explore solutions of the SIR model for vari-
ous initial conditions and parameter values interactively in the XPPAUT window
(see [3] for detailed explanations of working with XPPAUT).

Initial conditions and parameter values: To set these in advance so we can
run XPPAUT jobs in batch mode, we use init and par lines in the .ode file.

## INITIAL CONDITIONS:

init S=0.9, I=0.001

## PARAMETERS:

## mean lifetime 1/mu = 50 years

## mean infectious period 1/gamma = 13 days = 0.0356 years

## amplitude of seasonality alpha = 0.08

par mu=0.02, gamma=28.08, Rzero=17, a=0.08

Our goal is to plot the solution of the system for a given range of values of the
bifurcation parameter, R0, on the horizontal axis and a particular state variable
on the vertical axis, log10 I . We choose log10 I instead of I since the proportion
infectious becomes very small, and it is convenient to use a logarithmic scale
for a better visual representation of the results. In order to save the value of our
bifurcation parameter (R0) and the logarithms of the state variables, we must
specify auxilliary variables in our .ode file.
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Auxiliary variables: Additional quantities defined in terms of the state vari-
ables and/or parameters are saved by XPPAUT if specified as follows. We save
R0 because we want to plot a bifurcation diagram as a function of R0. XPPAUT
does not save parameter values by default, so we need to create auxiliary variables
for any parameters we need to track.

## AUXILIARY VARIABLES:

aux R0=Rzero

aux log10s=log10(s)
aux log10i=log10(i)

XPP setup: When using our .ode file for interactive exploration with XP-
PAUT, it is convenient to have some default plotting options set. This will have
no effect on the output XPPAUT generates when run in batch (“silent”) mode.

## PLOT OPTIONS:

## xp=variable on x axis, yp=variable on y axis

@ xp=R0, yp=log10i

## limits on plot

@ xlo=0, xhi=40, yhi=0, ylo=-25

## background colour for plot

@ back=white

Poincaré map. The seasonally forced SIR model exhibits periodic solutions, so
if we plot the complete solution for I(t) for each particular value of R0 we will
get straight vertical intervals corresponding to the range of the I(t) at a particular
R0. Such a diagram would be more confusing than useful. It is more convenient
to use the Poincaré stroboscopic map. Choosing the strobing interval to be one
year, the Poincaré map will return just one point for a period-one orbit, two points
for a period-two orbit and so on. This representation of the results is much more
intuitive since it allows us to show all periodic solutions of the model and their
periods. In XPPAUT, the Poincaré map can be set up in the following way:

## POINCARE MAP SET UP:

@ poimap=section,poivar=t,poipln=1
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The range of our bifurcation parameter (R0) is set as follows.

## range set up

@ range=1, rangeover=Rzero, rangestep=3000

@ rangelow=0, rangehigh=30, rangereset=no

Numerical integration settings. Since our aim to identify the attractors of the
dynamical system, we must ignore transient dynamics before convergence onto
an attractor. To this end, we choose the total integration time to be 650 years
and ignore the first 600 years, which is sufficient for solutions to converge to an
attractor.

## INTEGRATION OPTIONS:

## total time of integration

@ total=650,

## transient time

@ trans=600

## time step for integration

@ dt=0.001

Storage and data saving settings. The default maximum number of time points
to store is 5000, which is not sufficient for our purposes.

## STORAGE and DATA SAVING OPTIONS

## max number of time points to store (default 5000)

@ maxstor=2000000

## filename for output to be saved

@ output=bruteforceSIR_R0.dat

done

Running a job with XPPAUT. Our .ode file can be executed from the com-
mand line as a batch job using “silent mode” as follows:

xppaut bruteforceSIR_R0.ode -silent
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Alternatively, this can be done from within an script via

system("xppaut bruteforceSIR_R0.ode -silent")

Whether executed from the command line or from within , this will produce a
bruteforceSIR_R0.dat file with all the necessary data:

column 1 time
column 2 S
column 3 I
column 4 R0

column 5 log10 S
column 6 log10 I

Generating this file took 80 CPU minutes on a Macintosh computer with a 2.53
GHz Intel Core 2 Duo processor.

3.2 Plotting the brute force bifurcation diagram
We begin by reading the brute force data into a data frame (bfd).

bfd <- read.table("bruteforceSIR_R0.dat",
col.names=c("time","S","I","R0","log10S","log10I"))

To avoid spurious detection of long period cycles, we specify that maximum pe-
riod of interest to us.

maxper <- 7

Function to calculate the period of the attractor for each R0. We would like
to colour branches according to the period of the attractor. The following function
creates a data frame containing only the last point on each trajectory for each R0

value, and includes a period column. The arguments are
df the original data frame,
dop the digits of precision to be used for cycle detection,
R0lim an “R0 limit”, used to specify that the period is actually 1 for all R0 less

than this limit, even though a longer period is detected due to slow conver-
gence for low R0,
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max.period periods above this will be set to NA since they presumably result
from slow convergence.

last.point.with.period <- function(df, dop=5,

R0lim=4, max.period=maxper) {
## data frame with only the last pt on each soln:

df.last <- subset(df, time==max(time))
nR0 <- nrow(df.last) # number of R0 values

df.last$period <- rep(0,nR0) # add period column

for (i in 1:nR0) {
## data frame with all pts on soln with given R0:

R0i <- df.last[i,"R0"]

df.R0i <- subset(df,R0==R0i)
## compute period of this solution:

if (R0i < R0lim) {
period <- 1

} else {
period <- length(unique(round(df.R0i[,"log10I"],dop)))
if (period > max.period) period <- NA

}
df.last$period[i] <- period

}
return(df.last)

}

Function to plot period of attractor as a function of R0. Given a data frame
that contains a period column, we can easily plot the periods as a function of
R0.

plot.period.of.R0 <- function(df, R0lim=1, ...) {
with(df,{

period[which(R0 < R0lim)] <- 1

plot(R0,period,pch=".",col=period,cex=period,
xlab=expression(R[0]),
ylab="Period [yr]",

cex.axis=1.3, cex.lab=1.5, las=1,
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...)

})
}

Function to plot brute force bifurcation diagram. We use the following
function to plot figure 2, which clearly shows the existence of periodic orbits of
periods one to seven. Having discovered that the longest cycle is seven years,
we filter out only the last seven time steps of data for each R0 value. This greatly
reduces the number of points plotted (and hence the pdf file size) without making
any difference to the appearance of the plot. The only required argument of the
function is the data frame containing the XPPAUT output.

bruteforceplot <- function(df, tsave=maxper, R0lim=1,

xlim=c(0,33), ...) {
df <- subset(df, time>max(time)-tsave)
dflp <- last.point.with.period(df)
df$period <- rep(0,nrow(df)) # add period col to df

for (i in 1:nrow(df)) {
R0i <- df[i,"R0"]

df$period[i] <- if (R0i > R0lim)

dflp[dflp$R0==R0i,"period"] else 1

}
with(df,{

par(mar=c(5,5,0,2)) # alter margins

xlab <- expression(paste(
"Basic Reproduction Number, ",R[0]))

ylab <- "Prevalence, I/N"

plot(R0, log10I, pch=".", yaxt="n", xaxs="i",

xlim=xlim, las=1, xlab=xlab, ylab=ylab,

cex.axis=1.3, cex.lab=1.5,

col=period, cex=period, ...)

## add y-axis annotation

y.ticks <- 0:-8

y.label <- paste("10", y.ticks, sep="ˆ")

axis(2, at=y.ticks, las=2, label=parse(text=y.label))
})
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}

Brute force bifurcation plots. Figure 1 displays the simple plot showing the
periods of the detected attractors. Note that near the period doubling bifurcation,
convergence to the attractor is slower (hence the two spurious detections of longer
period cycles near that bifurcation point). Figure 2 shows the more traditional
bifurcation diagram.

bfd.last <- last.point.with.period(bfd)
plot.period.of.R0(bfd.last)
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Figure 1: Periods of detected attractors for the sinusoidally forced SIR model (1) with
mean infectious period 1/⇥ = 13 days, mean lifetime 1/µ = 50 years and
amplitude of seasonality � = 0.08.

4 Save a set of initial conditions for use in AUTO
The following code reads the data from the previously generated brute force
bifurcation data file and saves a set of initial conditions that will be used to find
each periodic orbit in AUTO.
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bruteforceplot(bfd, ylim=c(-8,-2))
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Figure 2: Brute force bifurcation diagram for the sinusoidally forced SIR model (1) with
mean infectious period 1/⇥ = 13 days, mean lifetime 1/µ = 50 years and
amplitude of seasonality � = 0.08.

For each period that occurs, save a single point to be used as an initial con-
dition in AUTO. For each period, we save the final condition for the “middle”
R0 value associated with this period, to avoid bifurcation points and slowly con-
verging solutions at the “edges”. Note that if there are multiple branches with the
same period, only one branch will be saved.

## extract all periods that are not NA:

all.periods <- with(bfd.last, period[!is.na(period)])
(unique.periods <- unique(all.periods))

## [1] 1 7 6 5 4 3 2

nper <- length(unique.periods)
## Create data frame for list of initial conditions:

ic.set <- bfd.last[1,]

## For each period that occurs, save a final condition:

for (iper in 1:nper) {
## select the rows in the data frame with this period:
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df.iper <- subset(bfd.last,period==unique.periods[iper])
## choose the middle row to avoid bifurcation points:

ic.set[iper,] <- df.iper[round(mean(1:nrow(df.iper))),]
}
## replace original row names with ic number:

row.names(ic.set) <- 1:nrow(ic.set)
## Save these points to be used as initial conditions:

write.csv(ic.set, "icset.csv",

row.names=FALSE, quote=FALSE)

save(ic.set,file="icset.rda")

Table of initial conditions for use in AUTO. The structure of setIC.csv is

time S I R0 log10 S log10 I period

639 0.038555704 0.00067852496 27.059999 -1.4139113 -3.1684341 1
647 0.056224938 0.0016748 19.950001 -1.250071 -2.776037 2

...
...

...
...

...
...

...

The actual list of initial conditions that we have generated is:

print(subset(ic.set, select = c("R0", "period", "S", "I")))

## R0 period S I

## 1 9.58 1 0.10549 6.190e-04

## 2 5.10 7 0.23534 3.180e-05

## 3 5.64 6 0.17693 2.196e-07

## 4 6.62 5 0.17512 3.322e-05

## 5 8.18 4 0.13811 3.765e-05

## 6 11.83 3 0.07438 6.034e-05

## 7 21.05 2 0.05360 1.908e-03

5 STEP 2: AUTO bifurcation diagram
XPPAUT provides an interface to AUTO, which allows us to track bifurcation
curves for steady-state and periodic systems [4]. In particular, we can use AUTO
to follow stable and unstable branches of periodic orbits. Unfortunately, AUTO’s
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default settings only allow us to plot the maximum, minimum, mean or period
of the cycle. It is easier to visualize the bifurcation structure when plotting the
diagram as a Poincaré map, similar to the brute force diagram shown in figure 2.
This way, annual cycles will be displayed with a single solid line, biennial cycles
with a double line, triennial cycles with a triple line, etc. [5, 6]. Consequently, we
choose to use AUTO to study the discrete time system given by the Poincaré map
(one-year stoboscopic map), associated with our original continuous-time system.
We can analyze the discrete-time system, keeping in mind that a fixed point of a
Poincaré map corresponds to a periodic orbit of the original system. The problem
of stability of the periodic orbits of the original system is reduced to the problem
of stability of fixed points of maps. Stability is determined by the eigenvalues of
the map linearized about the fixed points.

5.1 Constructing the Poincaré map using a C-library
We construct our stroboscopic map by linking XPPAUT to a C function that nu-
merically integrates the original continuous-time system for a specified period
of time (one year in our case). The numerical integration can can be done by
any method we choose (e.g., Euler, Runge-Kutta or something more sophisti-
cated). Our C function uses initial conditions specified in our .ode file or in
the XPP window and returns the integrated values after one year as output. The
file SIRmap.c below is compiled with a C compiler and stored in a shared ob-
ject library, to which we link from our AutoSIR.ode file (§5.2) where all initial
values and parameters are specified.

/ * **
P o i n c a r e map o f t h e s e a s o n a l l y f o r c e d SIR model
t o be c a l l e d from XPPAUT f o r b i f u r c a t i o n a n a l y s i s .

Under MacOSX , c o m p i l e t h i s f u n c t i o n v i a :
gcc �d y n a m i c l i b �m32 �o SIRmap . so SIRmap . c
** * /

# i n c l u d e <math . h>

/ * ** Compile�t i m e d e f i n i t i o n s ** * /
# d e f i n e T i m e s t e p 0 .0005 / * i n u n i t s o f y e a r s * /
# d e f i n e TWO PI 6.2831853071795864769252867665590
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# d e f i n e Real double
# d e f i n e NDIM 2 / * d i m e n s i o n o f t h e dynamica l s y s t e m * /

/ * ****************************************** * /
/ * ** FUNCTIONS CALLED BY THE MAIN ROUTINE ** * /
/ * ****************************************** * /

/ * ** E u l e r i n t e g r a t o r ** * /
void E u l e r ( Rea l *x , Rea l *dx , Rea l dt , i n t ndim ) {

i n t i ;
f o r ( i =0 ; i<ndim ; i ++) {

x [ i ] = x [ i ] + dx [ i ]* d t ;
}

}

/ * ** S e a s o n a l l y f o r c e d t r a n s m i s s i o n r a t e ** * /
Real S e a s o n a l b e t a ( Rea l be ta0 , Rea l a lpha , Rea l t ime ) {

Real c 2 p t ; / * cos (2* p i * t ) * /

c 2 p t = cos ( TWO PI* t ime ) ;
re turn ( b e t a 0 *(1+ a l p h a * c 2 p t ) ) ;

}

/ * ********************** * /
/ * ** THE MAIN ROUTINE ** * /
/ * ********************** * /

/ * ** The f u n c t i o n SIRmap i s what XPPAUT c a l l s ** * /
SIRmap ( Rea l * in , Rea l * out , i n t nin ,

i n t nout , Rea l * var , Rea l * con )
/ *

i n = i n i t i a l and parame te r v a l u e s we g e t
from t h e ode f i l e ( s , i , R0 , alpha , gamma , mu )
o u t = what we are r e t u r n i n g ( sp , i p ) :
c a l c u l a t e d v a l u e s o f S and I a f t e r one year
n i n = d i m e n s i o n o f i n [ ]
nou t = d i m e n s i o n o f o u t [ ]
* /

13



{
/ * d e f i n e s t a r t i n g v a l u e s i n l o g base 10 * /
Real s= i n [ 0 ] , i = i n [ 1 ] ;
Rea l x [NDIM] , dx [NDIM ] ; / * f o r E u l e r i n t e g r a t o r * /
/ * c o n v e r t i n g back t o t h e o r i g i n a l v a l u e s ,

n o t i n l o g * /
s=pow ( 1 0 , s ) ;
i =pow ( 1 0 , i ) ;
/ * d e f i n e parame te r v a l u e s * /
Real R0= i n [ 2 ] , a l p h a = i n [ 3 ] , gamma= i n [ 4 ] , mu= i n [ 5 ] ;
Rea l ds , d i ;
Rea l be ta0 , n o n l i n t e r m ;
Rea l t ime ; / * i n u n i t s o f y e a r s * /
long i s t e p , n s t e p s ;

/ * number o f s t e p s i n a year * /
n s t e p s = ( i n t ) ( 1 / T i m e s t e p + 0 . 5 ) ;

/ * i n t e g r a t i n g f o r one year * /
f o r ( i s t e p =0; i s t e p < n s t e p s ; i s t e p ++) {

t ime =( Rea l ) ( i s t e p )* T i m e s t e p ;

/ * compute t h e v e c t o r f i e l d * /
b e t a 0 = R0 *( gamma+mu ) ; / * mean t r a n s m i s s i o n r a t e * /
n o n l i n t e r m = S e a s o n a l b e t a ( be ta0 , a lpha , t ime ) * s * i ;

ds = mu � n o n l i n t e r m � mu* s ;
d i = n o n l i n t e r m � (mu + gamma )* i ;

/ * i n t e g r a t e u s i n g e u l e r ' s method * /
x [ 0 ] = s ; x [ 1 ] = i ; dx [ 0 ] = ds ; dx [ 1 ] = d i ;
E u l e r ( x , dx , T ime s tep , NDIM ) ;
s = x [ 0 ] ; i = x [ 1 ] ;

}
s = log10 ( s ) ;
i = log10 ( i ) ;
o u t [ 0 ] = s ; / * Outpu t i n l o g 1 0 * /
o u t [ 1 ] = i ;
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}

5.2 Creating file AutoSIR.ode
This file links our C-library function SIRmap to XPPAUT so that we can conduct
bifurcation and continuation analysis of the seasonally forced SIR model inter-
actively from the AUTO window in XPPAUT. The equations are defined in the
.ode file using the approach discussed in §9.8 of Ermentrout’s book [3, p.250].

## SPECIFY EQUATIONS (cf. Ermentrout 2002, p.250)

s' = sp

i' = ip

sp = 0

ip = 0

Setting up the interaction with the C-library. In our .ode file, the command
that links to our C function SIRmap in SIRmap.c has the form:

export {in} {out}

where {in} indicates initial values and parameters to be passed to the external
function and {out} defines returning values.

## LINK TO THE C-LIBRARY

## We pass the values {s0, i0, R0, alpha, gamma, mu}
## and ask the C-library function to return {sp, ip}.
## The order of export must agree with the order of

## the in[] and out[] arrays in the C function.

export {s, i, R0, alpha, gamma, mu} {sp, ip}
## Specify the name of the shared object library, and

## the name of the function within it that we need.

@ dll_lib=SIRmap.so dll_fun=SIRmap
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Define set of initial conditions for each periodic orbit. XPPAUT allows us to
pre-define a set of initial conditions and parameter values in an .ode file. We do
this here for initial conditions saved from the brute force bifurcation diagram. The
general format of the command in the .ode file is

set name {parameter values, initial data, options}

These sets can be invoked while running XPPAUT interactively with the

File⇥Get par set

command. For example, this set yields a period 1 (annual) cycle:

set p1 {init s=-1.41, init i=-3.17, R0=27.06, nout=1}

Note here that nout refers to the number of iterations of the map between outputs
[3, p.25], i.e., this is the period of the periodic orbit in question. In discrete time,
XPPAUT is designed to analyze equilibria only, so by setting nout to an integer
larger than 1, we “trick” XPPAUT into analyzing a periodic orbit of period greater
than 1.

## SET INITIAL CONDITIONS for one point on each

## periodic orbit of interest.

## For historical reasons, s and i below actually

## refer to log10(s) and log10(i).

set p1 {init s=-1.41, init i=-3.17, R0=27.06, nout=1}
set p2 {init s=-1.25, init i=-2.78, R0=19.95, nout=2}
set p3 {init s=-1.16, init i=-4.39, R0=12.58, nout=3}
set p4 {init s=-0.91, init i=-4.82, R0= 9.53, nout=4}
set p5 {init s=-0.74, init i=-5.14, R0= 5.75, nout=5}
set p6 {init s=-0.71, init i=-2.27, R0= 5.53, nout=6}
set p7 {init s=-0.70, init i=-2.14, R0= 5.19, nout=7}

Set default parameter values. The order in which parameters are listed in the
par line below determines the “main” versus “secondary” parameters for AUTO.
The “main” parameter will be used for one-dimensional bifurcation diagrams. The
secondary parameter listed will be used as well for two-dimensional bifurcation
diagrams. For convenience, we save the value of R0 in an auxiliary variable
(which will be written by XPPAUT to the output file).
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## PARAMETER VALUES

## R0 = basic reproduction number

## alpha = amplitude of seasonal forcing

## gamma = recovery rate; 1/gamma = mean infectious period

## mu = birth and death rates; 1/mu = mean lifetime

par R0=30, alpha=0.08, gamma=28.076923, mu=0.02

aux Rzero=R0

XPP setup. We need to specify that we will be iterating a discrete map as op-
posed to an ODE. We also set XPP graphical parameters in case we use the .ode
file for exploration of solutions using XPP.

## XPP SETUP

## this is a discrete map not an ODE

@ meth=discrete

## total=20 means 20 iterations of the map in total

@ total=20, yp=i

## line type = dots

@ lt=0

## plotting options

@ xlo=-1, xhi=21, ylo=-9, yhi=-1

AUTO setup. It is convenient to set all necessary AUTO plotting options in the
ODE file.

## AUTO PLOT SETTINGS

## set range for R0, our control parameter:

@ parmin=1.1, parmax=32

## set range of vertical axis variable and which

## variable it is (note that i refers to log10(i)).

@ autoymin=-9,autoymax=-1,autovar=i

## set horizontal axis plot range:

@ autoxmin=0, autoxmax=32

We also set parameters that control AUTO’s continuation algorithm.
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## set step size for continuation of the control parameter:

## (ds=standard step size, others are max and min step size)

## (the sign of ds controls the direction of continuation)

@ ds=0.003, dsmin=0.0000003, dsmax=0.1

## set a few other technical aspects of the continuation:

## Nmax = maximum number of steps to take along a branch

## before stopping

## Npr = number of steps before labelling a point

## (which can help with continuing from points

## without having to start from scratch)

## eps... = various tolerances

@ Nmax=20000, Npr=2000, epsl=1e-6, epsu=1e-6, sepss=1e-4

done

5.3 Following periodic orbits
We have everything ready to compute the bifurcation diagram in AUTO.

• Run XPPAUT
xppaut AutoSIR.ode

• Find period one orbit
– Choose the first set of initial values called p1

(F)ile⇥(G)et par set

– Integrate the system to reach an equilibrium
(I)nitialconds⇥(G)o

We should get 20 points in a straight horizontal line, indicating that the
system is at equilibrium. To assure that the system indeed converged to
an equilibrium, check data values by clicking the Data button on the
top panel of the XPP window. Data values of S and I are still different
after the third decimal place, which shows that we have not converged
to the fixed point yet. Hence we need to integrate the system a few
more times by pressing (I)nitialconds⇥(L)ast until we get
repeating values for S and I . After repeating I L two more times we
find an equilibrium.

• Load AUTO
(F)ile⇥(A)uto

• Continue the branch in both directions
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– Hit Run to follow the period one branch in a positive direction (R0

increases).
– Change the sign of parameter Ds in the Numerics menu of AUTO to

continue computations in the opposite direction (R0 decreases). Select
the initial point with Grab and press Run again.
Numerics⇥Ds:-0.003

Grab⇥<Return>⇥Run

We have computed the period one orbit.
• Save data

File⇥All info⇥name file branch1allinfo.dat
• Clear memory for the new branch

File⇥Reset diagram⇥hit OK and erase data
• Compute period two branch

– Integrate the system to reach an equilibrium
F⇥G⇥choose set p2⇥I⇥G⇥I⇥L⇥I⇥L. . .

Integration results in two horizontal dotted lines indicating that we hit
a period two cycle. Check the Data window to verify that the values
of S and I oscillate between two constant values.

– Define the period of the orbit. To continue branches of periodic points
of the Poincaré map we have to indicate how many times the map
should be iterated before returning the value of the map. This can
be done using parameter n(O)utput from the n(U)merics menu.
For example, setting n(O)utput to two allows us to see all of the
branches up to period two. Note that the previous value of n(O)utput
was one, which allowed us to plot only period one orbits.
n(U)merics⇥n(O)utput⇥type 2⇥<Return>

– Run AUTO
F⇥A⇥Run

We want to have separate data files for each periodic orbit, so that we
can plot them later in different colours. Therefore, when computing
period 2 orbit, we have to hit the ABORT button very quickly to avoid
plotting period one points.

– Save data
File⇥All info⇥name file branch2allinfo.dat

• Compute period three branch
– Integrate the system to reach an equilibrium

F⇥G⇥choose set p3⇥I⇥G⇥I⇥L⇥I⇥L. . .
Three horizontal dotted lines are plotted in the XPP window indicating
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that we hit a period three cycle. In the Data window, values of S and
I oscillate between three constant values.

– Define the period of the orbit
n(U)merics⇥n(O)utput⇥type 3⇥<Return>

– Run AUTO
F⇥A⇥Run

You will see that AUTO computed only one of the three branches of
the period three orbit. Since the branches of the period three orbit are
disconnected (we see that from the brute force diagram), AUTO can
detect only a branch based on the initial conditions. Hence to com-
pute the other two branches we must start running AUTO from points
on these branches. This can be achieved by using Data recorded in
the main XPP window from our integrations. Back in the main XPP
window, click the Data button. That window contains three distinct
values of S and I . To set one of them as the initial point, make that
line the first line in the XPP Data window and press Get. While this
operation will assign appropriate values to S and I , the value of the bi-
furcation parameter R0 will not be changed accordingly and that must
be done manually. Click on the Param button in the XPP top menu to
change the value of R0 to the one saved under the column Rzero in
the Data window. Do not forget to click ok in the Parameter win-
dow, which is necessary to set parameter values to the original value.

– Save data
File⇥All info⇥name file branch3allinfo.dat

• Repeat procedure to compute periodic cycles of period four, five, six and
seven.

1. in the XPP window: F⇥G⇥choose set p#⇥I⇥G⇥I⇥L⇥I⇥L. . .
2. in the XPP window: U⇥O⇥specify n_out #⇥<Return>⇥<ESC>

3. in the AUTO window: R⇥hit ABORT
4. in the XPP window:

(a) open the Data window⇥ scroll down so that the second line is
the first line of the window⇥press Get

(b) copy the value of Rzero from the Data window
(c) open the Param window⇥set the value of R0 as in (b)⇥ hit Ok

5. in the AUTO window: Run⇥No to destroy diagram ⇥ ABORT to stop
integration

6. repeat steps 4-5 for each branch of the orbit
7. in AUTO: F⇥A⇥save file branch#allinfo.dat⇥Ok
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8. in AUTO: F⇥R⇥YES

5.4 Plotting the AUTO bifurcation diagram
Each AUTO output file (branchPallinfo.dat, where P is is the period)
contains the 13 columns named below. A few comments:
ptype The point type is an integer between 1 and 4. For our purposes it is always

either 1 (stable fixed point) or 2 (unstable fixed point), but in other applica-
tions it could be 3 (stable periodic orbit) or 4 (unstable periodic orbit).

branch The branch number indicates the distinct component of the branch on
which the given state lies. For example, a three-cycle will have three branches
and the branch number will be 1, 2 or 3.

period The period is always listed as 0 for a discrete map. It is non-zero (and
meaningful) for periodic orbits of continuous-time systems.

See Ermentrout’s book [3, §9.2.1, p.222].

auto.colnames <- c(
"ptype", # point type (1=stable, 2=unstable)

"branch", # branch number

"R0", # first active parameter

"alpha", # second active parameter

"period", # (not meaningful for discrete maps)

"shi", # max S coordinate value

"ihi", # max I coordinate value

"slo", # min S coordinate value

"ilo", # min I coordinate value

"ev1.re", # real part of first eigenvalue

"ev1.im", # imaginary part of first eigenvalue

"ev2.re", # real part of second eigenvalue

"ev2.im" # imaginary part of second eigenvalue

)

We read all the data from the AUTO output files into a list of data frames. We sort
the unique.periods vector so the index iper is also the period (this will be
true in general only if all periods occur from 1 to the number of periods).
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period.set <-

sort(unique.periods[unique.periods <= maxper])

auto.data <- lapply(period.set,
function(iper)

read.table(
paste("AUTO/branch",iper,"allinfo.dat", sep=""),

col.names=auto.colnames))

We now plot each branch of the AUTO bifurcation diagram.

autoplot <- function(auto.data, period.set,

xlim=c(0,33), ylim=c(-8,-2), ... ) {
## create empty plot with no y-axis annotation

plot(x=0, type="n", xaxs="i", yaxt="n",

xlim=xlim, ylim=ylim, cex.axis=1.3, cex.lab=1.5,

xlab=expression(
paste("Basic Reproduction Number, ", R[0])),

ylab="Prevalence I/N", ...)

## add y-axis annotation

y.ticks <- 0:-8

y.label <- paste("10", y.ticks, sep="ˆ")

axis(2, at=y.ticks, las=2, label=parse(text=y.label))
## plot the branch associated with each period

for (iper in period.set) {
with(auto.data[[iper]],{

stable.pts <- which(ptype==1)
unstable.pts <- which(ptype==2)
points(R0[unstable.pts],ihi[unstable.pts],

col=iper,pch=".")

points(R0[stable.pts],ihi[stable.pts],
col=iper,pch=19, cex=0.4)

## add black dot inside yellow (col=7) points:

if (iper==7)

points(R0[stable.pts],ihi[stable.pts],pch=".")
})

}
abline(v=17, col="red", lty="dashed")

}
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autoplot( auto.data, period.set )
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Figure 3: AUTO bifurcation diagram for the sinusoidally forced SIR model (1) with mean
infectious period 1/⇥ = 13 days, mean lifetime 1/µ = 50 years and amplitude
of seasonality � = 0.08. R0 = 17, appropriate for measles, is highlighted by a
dashed vertical line. Compare figure 2.

Run time for this knitr document. The start and end times, respectively,
were:

## [1] "2013-04-14 21:29:35 EDT"

## [1] "2013-04-14 21:32:27 EDT"

23



References
1 Krylova O. Predicting epidemiological transitions in infectious disease dynam-

ics: Smallpox in historic London (1664-1930) [PhD]. McMaster University,
Canada; 2011.

2 Maystruk V. XPPAUT to Produce Bifurcation Diagram as Demonstrated with
Seasonally Forced SIR and SEIR Models; 2006.

3 Ermentrout B. Simulating, analyzing, and animating dynamical systems: a
guide to XPPAUT for researchers and students. Software, Environments, and
Tools. Philadelphia: Society for Industrial and Applied Mathematics; 2002.

4 Doedel E. AUTO: software for continuation and bifurcation problems in ordi-
nary differential equations; 2007. Available from: http://indy.cs.concordia.ca/
auto.

5 Kuznetsov YA. Elements of applied bifurcation theory. vol. 112 of Applied
Mathematical Sciences. 3rd ed. New York: Springer-Verlag; 2004.

6 Wiggins S. Introduction to applied nonlinear dynamical systems and chaos.
vol. 2 of Texts in applied mathematics. 2nd ed. New York: Springer-Verlag;
2003.

24

http://indy.cs.concordia.ca/auto
http://indy.cs.concordia.ca/auto

	Effects of the infectious period distribution on predicted transitions in childhood disease dynamics
	Introduction
	The shapes of real distributions of disease stage durations
	The Erlang-distributed epidemic models
	Dynamics of epidemic models with Erlang-distributed stage durations

	Predicting epidemiological transitions
	Theoretical motivation for transition analysis
	The method of transition analysis

	Transition analysis using SInR and SEmInR models
	Description of the data
	Reported incidence and inferred frequency structure
	Estimated susceptible recruitment

	Asymptotic and perturbation analysis
	Predictions of the SInR model
	Asymptotic analysis
	Perturbation analysis
	Summary of SInR transition analysis

	Predictions of the SEmInR model


	The role of the generation time distribution in the dynamics of the SInR and SEmInR models
	Discussion
	We thank Jonathan Dushoff and the other members of the Mathematical Biology Group at McMaster University for helpful comments and discussions. We were supported by the Natural Sciences and Engineering Research Council of Canada (O.K. by an NSERC Postgraduate Scholarship and D.J.D.E. by an NSERC Discovery grant). The data used in this paper can be downloaded from the International Infectious Disease Data Archive (http://iidda.mcmaster.ca).
	References


