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1 | INTRODUCTION

Several papers1–3 have promoted formulas that claim to provide

bounds on the completeness of sampling of infectious disease cases,

based only on case reports. We believe these approaches are

fundamentally flawed, and that it is impossible to estimate under-

counting from incidence data without a specialized sampling design or

some kind of auxiliary information.

The authors use mark‐recapture formulas developed by Chao4 and

others5 to estimate bounds on true population sizes based on the

numbers of individuals observed multiple times. For example, the

proposed estimator for the lower bound on unobserved individuals

(hidden cases) is,
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where N tΔ ( ) is the number of new cases observed per reporting

period; extended formulas adjust for mortality and recovery. The upper

bound1,3 also involves N tΔ ( − 2) .
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2.1 | Conceptual argument

This approach misuses the mark‐recapture formulas. Cases identified at

time t − 1 are claimed to be representative of the number of cases

counted twice: why? The fact that the same individual could be counted

twice in the cumulative case report (for some sampling designs) is

irrelevant. How can comparing yesterday's count to today's provide

information about the completeness of sampling?

In principle, the number of unobserved (hidden) cases could be

estimated if cases can be reidentified, or even with unmarked/

unidentified cases given an appropriate sampling design.6 In practice

public health case reporting rarely uses such sampling designs. Case

reporting is usually exclusive (i.e., someone who has been identified

as a case will not be reported again later), or anonymized so that we

cannot identify which particular individuals are double‐counted

because they are infected, and sampled, in two different case‐

reporting instances. Mark‐recapture methods can provide valuable

public health information in specific scenarios such as contact‐

tracing studies, but “one needs at least two sources of information

with individual case reporting and a unique personal identifier for

each case”.7 This limitation is fundamental to mark‐recapture

methods; standard case‐reporting time series, which do not

identifiably resample the same individuals, provide no information

with which we could estimate the fraction of the population

observed.

2.2 | Mathematical argument

The simplest mathematical illustration of the problems with the

method occurs during the exponential‐growth phase of the epidemic

(when the authors have suggested that their method is most

appropriate). During this phase, the incidence (true number of new

infections: I t( ) ) grows at a rate λ per time step, that is, I t I λ( ) = t
0 .

Suppose a fraction a (the ascertainment ratio) of these cases is

reported (i.e., a is the ratio of reported cases to the true incidence; for

simplicity, we assume here that a is constant over time). An estimated

lower bound on the number of hidden cases, Ĥ can be converted to

an upper bound on the estimated ascertainment ratio, â . Using the

simpler, non‐bias‐corrected formula:
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The estimated upper bound of the ascertainment ratio â thus

depends only on the epidemic growth rate; it is independent of the

true ascertainment ratio. Furthermore, epidemics typically grow at

rates of a few percent per reporting period; an epidemic with more

than 20% growth per reporting period (λ > 1.2) would be cata-

strophic. Thus, the upper bound on the ascertainment ratio during

the exponential phase would typically range only from about

0.45–0.5.
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Applying a bias correction decreases the lower bound on the

number of hidden cases, thus increasing the upper bound on â . The

results also depend on the overall number of reported cases, so the

pattern is more complicated, but as we show below the estimated

upper and lower bounds are still largely independent of the true

ascertainment ratio.

2.3 | Simulation example

We ran simulations using a Richards curve for the cumulative

incidence of the epidemic8:

t
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se
Cumulative incidence ( ) =

(1 + )
,

sr t h s− ( − ) 1∕ (1)

where K is the final size of the epidemic, h is the time of

inflection, and r is the initial growth rate. The Richards curve is a

widely used phenomenological model for epidemic curves9,10

and, according to the authors, is the same method they used to

test their approach (pers. comm.). We computed expected

incidence by differencing the cumulative incidence,8 drew a

random negative binomial deviate with mean equal to the

expected incidence, and used a binomial sample with probability

equal to the ascertainment ratio a to get the number of observed

cases. Throughout, we used a shape parameter of s = 2 and a final

epidemic size of 105 for the Richards curve, and a negative

binomial dispersion parameter k = 5. We varied the reporting

period ( tΔ = {1, 7} ); initial incidence (I = {20, 40}0 ); epidemic

growth rate (r = 0.01 to 0.08 per day); and ascertainment ratio

(a from 0.05 to 0.6). (We solved the Richards equation

numerically to recover the h parameter given a value of the

initial incidence, which is the derivative of Equation (1) at time

zero.) These ranges encompass typical parameters of epidemic

outbreaks (SARS‐CoV‐1, COVID‐19, monkeypox, etc.), but we

F IGURE 1 Comparison of true ascertainment ratio (a) to estimated lower and upper bounds of ascertainment ratio (â ). Dashed line is the
one‐to‐one line (estimated = true).
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argue that the precise numerical values are not very important.

The key aspects of a simulation are the epidemic growth rate

(λ r t= exp( Δ ) ), which is the primary determinant of the ascertain-

ment ratio bounds computed according to Maruotti et al's

method, and the typical number of cases reported per period,

which determines the effects of the bias correction terms.

We ran each simulation for 100 days and used the R package

asymptor11 to compute bounds on the ascertainment ratio.

The authors indicated (pers. comm.) that they intended the

estimator to be used at the beginning of an epidemic. Therefore we

considered only sample points when the number of cases was

between 5 and 500 (exclusive) and the lower bound estimator for

hidden cases was greater than 1.

For each simulation run (80 in total), we computed the mean and

confidence intervals for the estimated lower and upper bounds of â

over time (Figure 1). The bounds on â rarely overlap the true value,

and are largely independent of the true values of a. The only noticeable

signal arises from the bias‐correction terms: simulations with lower

overall case numbers (low r , low a t, Δ = 1) have larger lower bounds

and smaller upper bounds. The relationship between â and the

growth rate r is barely visible as increasing values of the upper bound

with r for the cases with tΔ = 1 and low true ascertainment ratio;

otherwise, this pattern is swamped by the effects of noise and bias

correction. In simulations without noise and with the simpler, non‐

bias‐corrected expression for the lower bound (not shown), the

lower‐bound estimates of â are completely independent of a, as

expected from the mathematical argument given above.

We conclude that the authors' formulas appear to work well because

they lead to plausible bounds on the ascertainment ratio (≈0.2–0.5) for

realistic values of the epidemic growth rate, but that they are in fact

nearly unrelated to the true ascertainment ratio and should not be applied

to estimate ascertainment ratios from disease outbreak incidence data.

AUTHOR CONTRIBUTIONS

All authors contributed to the conceptual development of the paper.

Michael Li and Benjamin M. Bolker wrote computer code for simulations

and figures. Benjamin M. Bolker wrote the first draft of the paper. All

authors commented and edited to produce the final version.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

DATA AVAILABILITY STATEMENT

No data are used in the paper; all code for simulations is available at

https://doi.org/10.5281/zenodo.7473422.

Michael Li1,2

Jonathan Dushoff3

David J. D. Earn2

Benjamin M. Bolker2,3

1Public Health Risk Science Division, National Microbiology Laboratory,

Public Health Agency of Canada, Guelph, Ontario, Canada
2Department of Mathematics & Statistics,

McMaster University, Hamilton, Ontario, Canada
3Department of Biology,

McMaster University, Hamilton, Ontario, Canada

Correspondence

Michael Li, Public Health Risk Science Division, National

Microbiology Laboratory, Public Health Agency of Canada, Guelph,

ON, N1H 7M7, Canada.

Email: michael.wz.li@phac-aspc.gc.ca

REFERENCES

1. Böhning D, Rocchetti I, Maruotti A, Holling H. Estimating the
undetected infections in the Covid‐19 outbreak by harnessing

capture‐recapture methods. Int J Infect Dis. 2020;97:197‐201.
2. Maruotti A, Böhning D, Rocchetti I, Ciccozzi M. Estimating the

undetected infections in the Monkeypox outbreak. J Med Virol.
2022;95(1):1‐4. doi:10.1002/jmv.28099

3. Rocchetti I, Böhning D, Holling H, Maruotti A. Estimating the size of

undetected cases of the COVID‐19 outbreak in Europe: an upper
bound estimator. Epidemiologic Methods. 2020;9(1):20200024.

4. Chao A. Estimating population size for sparse data in capture‐
recapture experiments. Biometrics. 1989;45:427.

5. Alfò M, Böhning D, Rocchetti I. Upper bound estimators of the

population size based on ordinal models for capture‐recapture
experiments. Biometrics. 2021;77:237‐248.

6. Royle JA, Dorazio RM. Hierarchical Modeling and Inference in Ecology:

The Analysis of Data from Populations, Metapopulations and Commu-

nities. Academic Press; 2008.

7. Desenclos J‐C, Hubert B. Limitations to the universal use of capture‐
recapture methods. Int J Epidemiol. 1994;23:1322‐1323.

8. Ma J, Dushoff J, Bolker BM, Earn DJD. Estimating initial epidemic
growth rates. Bullet Math Biol. 2014;76:245‐260.

9. Chowell G, Hincapie‐Palacio, D, Ospina J, et al. Using phenomeno-
logical models to characterize transmissibility and forecast
patterns and final burden of Zika epidemics. PLoS Curr. 2016;8:
ecurrents.outbreaks.f14b2217c902f453d9320a43a35b9583.

10. Mingione M, Ciccozzi M, Falcone M, Maruotti A. Short‐term forecasts

of Monkeypox cases in multiple countries: keep calm and don't panic.
J Med Virol. 2022;95(1):e28159. doi:10.1002/jmv.28159

11. Gruson H. Asymptor: Estimate the Lower and Upper Bound of

Asymptomatic Cases in an Epidemic Using the Capture/Recapture

Methods. R package version 1.1.0. 2020. https://CRAN.R-project.org/

package=asymptor

LETTER TO THE EDITOR | 3 of 3

https://doi.org/10.5281/zenodo.7473422
mailto:michael.wz.li@phac-aspc.gc.ca
https://doi.org/10.1002/jmv.28099
https://doi.org/10.1002/jmv.28159
https://CRAN.R-project.org/package=asymptor
https://CRAN.R-project.org/package=asymptor

	Evaluating undercounts in epidemics: Response to Maruotti et al. (2022)
	1 INTRODUCTION
	2 CRITIQUE
	2.1 Conceptual argument
	2.2 Mathematical argument
	2.3 Simulation example

	AUTHOR CONTRIBUTIONS
	CONFLICT OF INTEREST
	DATA AVAILABILITY STATEMENT
	REFERENCES




