
1 23

Journal of Mathematical
Biology
 
ISSN 0303-6812
Volume 62
Number 4
 
J. Math. Biol. (2011)
62:509-541
DOI 10.1007/s00285-010-0342-
z

Attractivity of coherent manifolds in
metapopulation models



1 23

Your article is protected by copyright and
all rights are held exclusively by Springer-
Verlag. This e-offprint is for personal use only
and shall not be self-archived in electronic
repositories. If you wish to self-archive your
work, please use the accepted author’s
version for posting to your own website or
your institution’s repository. You may further
deposit the accepted author’s version on a
funder’s repository at a funder’s request,
provided it is not made publicly available until
12 months after publication.



J. Math. Biol. (2011) 62:509–541
DOI 10.1007/s00285-010-0342-z Mathematical Biology

Attractivity of coherent manifolds in metapopulation
models

C. Connell McCluskey · David J. D. Earn

Received: 28 July 2009 / Revised: 24 March 2010 / Published online: 28 April 2010
© Springer-Verlag 2010

Abstract The likelihood that coupled dynamical systems will completely synchro-
nize, or become “coherent”, is often of great applied interest. Previous work has
established conditions for local stability of coherent solutions and global attractivity
of coherent manifolds in a variety of spatially explicit models. We consider models of
communities coupled by dispersal and explore intermediate regimes in which it can be
shown that states in phase space regions of positive measure are attracted to coherent
solutions. Our methods yield rigorous and practically useful coherence criteria that
facilitate useful analyses of ecological and epidemiological problems.

Keywords Synchrony · Synchronization · Local stability · Global stability ·
Differential equations · Invariant manifolds · Lozinskii measures
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1 Introduction

Many coupled nonlinear systems have a tendency to oscillate synchronously, a phe-
nomenon that was first noted by Christian Huygens in 1665. Synchronization has since
attracted considerable scientific and mathematical attention (Strogatz 2003; Winfree
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510 C. C. McCluskey, D. J. D. Earn

2001), especially since the discovery of synchrony in systems that exhibit deterministic
chaos (Pikovsky et al. 2001).

Dynamical systems of interest in ecology often have the structure of a metapop-
ulation, i.e., a collection of habitat “patches” within which individuals reproduce
and among which they disperse (Hanski and Gilpin 1997). The same structure often
occurs in epidemiological contexts, where cities might play the role of “patches” and
travel among cities produces connectivity akin to “dispersal” (Earn et al. 1998; Gren-
fell and Harwood 1997). In this paper, we investigate synchrony in metapopulation
models.

Intuitively, we think of oscillations of two or more systems as being synchronized
if their phases coincide repeatedly (e.g., highest points and lowest points always occur
simultaneously) even if the amplitudes of the oscillations are otherwise uncorrelated.
This relatively weak form of synchronization is often called phase synchronization
(Blasius et al. 1999). Most theoretical work has focussed on a much stronger form
of synchronization, often called complete synchronization or coherence, meaning that
the different “patches” in the coupled dynamical system have identical dynamics (i.e.,
at any given time, the state of the system in one patch is exactly the same as the state
in all other patches). Here, we focus on coherence.

Beyond its intrinsic interest, metapopulation synchrony has potentially impor-
tant practical applications. Asynchronous dynamics facilitate rescue effects, whereby
dispersal from patches with large populations prevents local extinctions in patches
with small populations (Brown and Kodric-Brown 1977). Synchrony inhibits such
processes, and could therefore strongly influence the vulnerability of a species to
global extinction. If the species of interest is an endangered animal then we might
wish to prevent or reduce the probability of synchrony, whereas if we are concerned
with a pathogen that causes an infectious disease then we might wish to promote
synchronous dynamics (Earn et al. 1998). In either case, it would be helpful to
have rigorous criteria for synchronization, expressed in terms of controllable
parameters.

Previous work has established rigorous criteria for local stability of coherent solu-
tions of dynamical systems in terms of transverse Lyapunov exponents (Buescu 1997;
Jansen and Lloyd 2000; Pikovsky et al. 2001; Silva and Giordani 2006). These
conditions determine whether asymptotic approach to any given coherent solution
is possible, but they do not provide any information about the size of basins of attrac-
tion; moreover, transverse Lyapunov exponents are asymptotic quantities that can
rarely be calculated analytically, which makes the conditions awkward to use in prac-
tice. At the other extreme, recent work has yielded conditions for global asymptotic
coherence, i.e., absolutely certain coherence, regardless of initial conditions (Earn
and Levin 2006; Earn et al. 2000). While expressible in terms of system parame-
ters, these conditions have the considerable limitation that they are merely sufficient
for global asymptotic coherence and they may be too strong to be useful in many
situations.

Our approach in this paper is intermediate. Our methods will not typically yield
the sort of sharp stability boundaries that can be obtained from the traditional local
theory (Buescu 1997). However, as in the global theory (Earn and Levin 2006), we
are able to show—without reference to particular coherent solutions—that regions of
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Attractivity of coherent manifolds in metapopulation models 511

Table 1 Frequently used notation

Notation Meaning

n, k Number of patches and species

xs
i Density of species s in patch i

xi = (x1
i , . . . , xk

i )T Vector of density of all species in patch i

ys = (xs
1, . . . , xs

n)T Vector of density of species s in all patches

Ms = [ms
i j ] Matrix of dispersal rates for species s

f Functional response for in-patch dynamics, Eq. 2.1

1 (1, . . . , 1)T

0 (0, . . . , 0)T

M̃ = [m̃i j ] = [mi j − mnj ] Modified dispersal matrix

JC, J̃C, JR, J̃R Complex and real Jordan forms of M and M̃

λ j Eigenvalue of M

Hs
j = xs

j − xs
n Density of species s in patch j relative to patch n

H j = (H1
j , . . . , Hk

j )T Densities in patch j relative to those in patch n

z = xn , H = (H T
1 , . . . , H T

n−1)T Coordinates using patch n as a reference

" = {(z, H) : H = 0} Coherent manifold

coh(A) Coherent image of a set A

D(z, H) Normal flow coefficient matrix

D̄(z) = limH→0 D(z, H) Normal flow coefficient matrix in the coherent limit

D̄sp D̄(z) with entries ordered by species rather than by patch

ρs Special case dispersal coefficient for species s

Ms = ρs M Special case dispersal matrix for species s

ϒ = diag(ρ1, . . . , ρk ) Matrix of dispersal coefficients

µ(M) Lozinskii measure of a matrix M

%, ϕ Flows associated with Eqs. 4.8 and 7.1

A, B(A) Attractor and its basin of attraction

Nε Neighbourhood of H = 0

Aδ Neighbourhood of A

phase space are attracted to the coherent manifold. In addition, the conditions will be
expressible in terms of system parameters.

We begin in Sect. 2 with a description of the class of models that we will investi-
gate. In Sect. 3, we give a formal definition of coherence and establish a number of
algebraic facts that facilitate analyses in subsequent sections. A change of variables
that greatly simplifies our work is presented in Sect. 4, and a fundamental quantity for
our analysis is discussed in Sect. 5. Section 6 reviews the notion of Lozinskii mea-
sure (which plays a key role in our results). Our main results are presented in Sect. 7
and proved in Sect. 8. We apply our results to a few specific metapopulation models
in Sect. 9 and discuss avenues for further developments in Sect. 10. Our notation is
summarized in Table 1.
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512 C. C. McCluskey, D. J. D. Earn

2 Constructing the model equations

Consider the interaction of k species that live in an environment that is fragmented into
n patches. Let xs

i be the density of species s on patch i and let xi = (x1
i , . . . ,x

k
i )

T .
Then the vector xi gives the densities of all species on patch i . Assume that the pop-
ulation dynamics within each patch are determined by the same density dependent
processes in continuous time. Thus, in the absence of dispersal,

dxi

dt
= f (xi ) (2.1)

for i = 1, . . . , n. Since xi describes population densities, the set of biologically mean-
ingful values is the non-negative orthant Rk

≥0. Thus, we assume that the non-negative
orthant is positively invariant under the reproduction function f . Furthermore, we
assume that f is C1 on Rk

≥0.
For each species, the rate of dispersal from patch j to patch i is assumed to be

proportional to the density of that species in patch j . Thus, for j $= i , the rate at which
individuals of species s originating in patch j arrive in patch i can be written as ms

i jx
s
j ,

where ms
i j ≥ 0. Also, the total flow of species s out of patch i can be written as ms

iix
s
i ,

where ms
ii ≤ 0. In the absence of in-patch dynamics

dxs
i

dt
=




∑

j $=i

ms
i jx

s
j



 + ms
iix

s
i

=
n∑

j=1

ms
i jx

s
j . (2.2)

Let ys = (xs
1, . . . ,x

s
n)T ; i.e., the vector ys gives the density of species s in each of

the n patches. Letting Ms = [ms
i j ]n×n , Eq. 2.2 gives

dys

dt
= Msys . (2.3)

Note that if a component of ys is zero (say xs
i = 0), then the derivative of that com-

ponent (Eq. 2.2) is greater than or equal to zero. Hence the non-negative orthant Rn
≥0

is positively invariant under Eq. 2.3.
The species-specific dispersal matrix Ms has non-positive diagonal entries (ms

ii ≤
0, reflecting outflow) and non-negative off-diagonal entries (ms

i j ≥ 0, reflecting
inflow). We assume that dispersal between patches is instantaneous, and that no
individuals are lost as they disperse, i.e., for each species, inflow balances outflow.
Consequently, the rate at which species s leaves a particular patch (say i) for other
patches (described by the diagonal term in column i of Ms) must equal the sum of
the rates at which the species arrives in other patches from patch i (given by the
off-diagonal terms in column i). Thus, summing over a column of Ms must yield
zero.
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Attractivity of coherent manifolds in metapopulation models 513

If instead, dispersal time were taken into account, then the terms in Eq. 2.3 that
correspond to off-diagonal entries of Ms would require a delay. If it is assumed that
there is loss during dispersal, then the sign pattern of Ms would remain the same,
but the column sums could be negative, indicating that not all individuals that leave a
patch, necessarily make it to another patch.

We now complete the model by combining reproduction and dispersal. Denote the
components of f by

f (x) = ( f 1(x), . . . , f k(x))T . (2.4)

Then, combining the in-patch interactions between the species with the dispersal
between the patches, we get the full multi-species multi-patch dynamics

dxs
i

dt
= f s(xi ) +

n∑

j=1

ms
i jx

s
j for i = 1, . . . , n and s = 1, . . . , k. (2.5)

Thus the behaviour is described by an nk-dimensional system of ordinary differential
equations. The biologically relevant region is the non-negative orthant Rnk

≥0. Note that
the positive invariance of Rnk

≥0 under the dynamics described by Eq. 2.5 follows from
the invariance of Rk

≥0 and Rn
≥0 under Eqs. 2.1 and 2.3, respectively.

3 Coherence and related algebraic properties

One way to denote the state variable for system (2.5) is x = (x1, . . . ,xn), where each
xi ∈ Rk

≥0.

Definition 3.1 (Coherence) A point x is said to be coherent if x1 = · · · = xn . A
solution x(t) of (2.5) is coherent if x1(t) = · · · = xn(t) for all t ∈ R.

Not all systems of the form (2.5) admit coherent solutions. The purpose of this study
is to determine how dispersal over a network of patches affects the spatial structure of
populations. In particular, we are interested in conditions on the dispersal pattern that
will make coherence stable. A precondition for this is that coherence is possible. More
precisely, we assume that any coherent initial condition for Eq. 2.5 yields a coherent
solution.

Consider a coherent solution x(t). Since x1(t) = · · · = xn(t) for all t , it follows
that dx1

dt (t) = · · · = dxn
dt (t) for all t and, hence, we must have

dxs
i

dt − dxs
n

dt = 0 for
i = 1, . . . , n − 1 and for s = 1, . . . , k. Therefore, along any coherent solution,

0 =



 f s(xi ) +
n∑

j=1

ms
i jx

s
j



 −



 f s(xn) +
n∑

j=1

ms
njx

s
j



 .
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514 C. C. McCluskey, D. J. D. Earn

Since xi = xn , this becomes

0 =
n∑

j=1

ms
i jx

s
j −

n∑

j=1

ms
njx

s
j . (3.1)

Noting that, at a coherent point, ys = (xs
1, . . . ,x

s
n)T is a scalar multiple of 1 =

(1, . . . , 1)T , it follows that Eq. 3.1 can be rewritten as

0 = xs
1




n∑

j=1

ms
i j −

n∑

j=1

ms
nj



 . (3.2)

Since this is to hold for any coherent initial value, we may assume that xs
1 is non-zero

and, hence,

n∑

j=1

ms
i j =

n∑

j=1

ms
nj , i = 1, . . . , n − 1. (3.3)

This means that all row sums of Ms are equal, which is the motivation for the following
definition.

Definition 3.2 (CD-Matrix) A square matrix is a coherent dispersal matrix, or CD-
matrix, if the off-diagonal entries are non-negative and all row sums are equal.

As discussed in Sect. 2, for a continuous-time model with no loss and no delay
(i.e., each individual that leaves one patch arrives instantaneously in another patch),
the column sums of the dispersal matrix are zero. This implies that the row sums are
also zero. To see this, suppose that the row sum for each row is α. Then we have
Ms1 = α1. Thus, 1T Ms1 = nα. However, 1T Ms = 0T (where 0 = (0, . . . , 0)T ) so
we must have 1T Ms1 = 0. Thus, α = 0. Hence, we see that coherent solutions are
possible in a continuous-time, no-loss, no-delay model, if and only if the row sums of
Ms are zero for each s.

Definition 3.3 (CNCD-Matrix) A continuous-time, no-loss coherent dispersal matrix,
or CNCD-matrix, is a CD-matrix for which the row sums and column sums are zero.
The off-diagonal entries of such a matrix are non-negative and the diagonal entries
are non-positive.

Remark 1 For a continuous time model with loss, the column sums of the dispersal
matrix are non-positive but not necessarily equal, and the row sums are all negative
and equal. If travel time between patches is accounted for, then the system is modelled
by delay differential equations or integro-differential equations rather than ordinary
differential equations.

A discrete time model is represented by difference equations. If there is no loss, as
in the case studied in Earn and Levin (2006) and Earn et al. (2000), then the column
sums and row sums of the dispersal matrix are equal to one rather than zero. For a
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Attractivity of coherent manifolds in metapopulation models 515

discrete time model with loss, the column sums are non-negative but may be less than
one, though not necessarily equal, and the row sums are positive, less than one, and
equal.

For the remainder of this paper, we deal exclusively with continuous-time, no-loss
coherent dispersal matrices. The rest of the present section is a catalogue of useful
algebraic properties of CNCD-matrices.

Proposition 3.1 If M is a CNCD-matrix, then each eigenvalue of M has real part
less than or equal to zero. Furthermore, zero is an eigenvalue and M has no non-zero
eigenvalues that are purely imaginary.

Proof Due to the sign pattern of a CNCD-matrix M , and the fact that the row sums are
zero, the Gersgorin discs (Lancaster and Tismenetsky 1985, Sect. 10.6) all lie in the
closed left half-plane. Furthermore, the Gersgorin discs only intersect the imaginary
axis at the origin. Thus each eigenvalue of M has non-positive real part, and has real
part zero only if the eigenvalue is zero, i.e., M has no eigenvalues of the form βi with
β $= 0. Additionally since M1 = 0, zero is an eigenvalue of M . ()

Definition 3.4 (M̃) For an n × n CNCD-matrix M = [mi j ], the modified dispersal
matrix associated with M is the (n − 1) × (n − 1) matrix M̃ = [m̃i j ], where m̃i j =
mi j − mnj for i, j = 1, . . . , n − 1.

As will be shown in Sect. 4, employing M̃ allows us to simplify our analysis of sys-
tem (2.5). In preparation for that development, we now establish some useful algebraic
relationships between M and M̃ .

The next proposition is useful for characterizing when a CNCD-matrix describes
a system that is better considered as two or more distinct subsystems (among which
there is no dispersal). In such a case, the graph representing the dispersal pattern has
two or more components.

Proposition 3.2 If zero is an eigenvalue of M̃, then M is reducible and, by reordering
the basis, can be written in block diagonal form.

Proof Suppose zero is an eigenvalue of M̃ . Then there exists a non-zero vector ṽ =
(̃v1, . . . , ṽn−1)

T such that

0 =
n−1∑

j=1

m̃i j ṽ j for each i = 1, . . . , n − 1

=
n−1∑

j=1

(mi j − mnj )̃v j . (3.4)

Let v = (̃v1, . . . , ṽn−1, 0)T . Then Eq. 3.4 implies that for each i = 1, . . . , n − 1, the
dot product of the i th row of M with v is equal to the dot product of the nth row of M
with v. Call this product β. Then Mv = β1. Multiplying by 1T on the left, and using
the fact that the columns of M sum to zero we see that 0 = βn and so β = 0. Thus,
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516 C. C. McCluskey, D. J. D. Earn

Mv = 0. Clearly v is linearly independent of 1, and hence, 0 is a repeated eigenvalue
of M with eigenvectors v and 1.

Note that there exists γ > 0 such that M + γ I is a non-negative matrix with spec-
tral radius γ . This follows from Proposition 3.1 and the fact that the eigenvalues of
M + γ I are found by adding γ to the eigenvalues of M . Hence, by Theorem 8.4.4.d
of Horn and Johnson (1985), M + γ I is irreducible only if γ is a simple eigenvalue
of M + γ I . Since v and 1 are eigenvectors of M with eigenvalue 0, they are also both
eigenvectors of M +γ I with eigenvalue γ . Hence λ = γ has multiplicity greater than
or equal to two, and therefore M + γ I is reducible. Thus, M is reducible.

This means that the basis can be reordered so that M can be expressed in block
form as

M =
[

A B
0 C

]
.

It remains to be shown that the off-diagonal block B is a block of zeros. Note that
the column sums for the columns involving A are each zero and so the sum of these
column sums is zero. But, the sum of these column sums is the same as the sum of
all entries in A. Similarly each row sum involving A and B is zero, and so the sum
of these row sums is zero. This implies that the sum of all entries of A and of B is
zero. Since the sum of all entries of A is zero, the same must be true for the sum of all
entries of B. However, since B is an off-diagonal block, each entry is non-negative.
Thus, each entry of B is in fact zero. ()

In the Jordan canonical form of a matrix M , a real eigenvalue λ with corresponding
eigenvector v appears in a 1 × 1 Jordan block only if there is no generalized eigen-
vector u such that (M − λI )u = v. If M is a CNCD-matrix then, as we have seen,
λ = 0 is an eigenvalue of M with eigenvector 1. The next proposition implies that in
the Jordan form of M , λ = 0 appears as a 1 × 1 block.

Proposition 3.3 If M is a CNCD-matrix, then there is no vector u ∈ Rn such that
Mu = 1.

Proof Suppose to the contrary that Mu = 1, where u = (u1, . . . , un). Then for
i = 1, . . . , n,

1 =
n∑

j=1

mi j u j

=
∑

j $=i

mi j (u j − ui ) (3.5)

since mii = −∑
j $=i mi j . Choose i such that ui ≥ u j for j $= i . Then the right-hand

side of (3.5) is non-positive and cannot equal the left-hand side. Thus, no such vector
u exists. ()
Remark 2 In fact, a similar argument shows that for any u ∈ Rn , at least one com-
ponent of Mu is less than or equal to zero, i.e., the positive orthant has no preimage
under multiplication by M .
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Attractivity of coherent manifolds in metapopulation models 517

Let JC be the complex Jordan form of M . Then there is a complex matrix P =
[v1| · · · |vn] such that JC = P−1 M P , where each column of P is a generalized eigen-
vector of M (Horn and Johnson 1985). By Proposition 3.3, λ = 0 appears as a 1 × 1
block in JC and hence the row and column of JC containing λ = 0 consist entirely of
zeros. Without loss of generality, we can choose vn = 1 so that λ = 0 appears in the
bottom right corner of JC.

For j = 1, . . . , n − 1, write v j = [v1
j , . . . , v

n
j ]T . Define ṽ j = [̃v1

j , . . . , ṽ
n−1
j ]T ∈

Rn−1 where ṽl
j = vl

j − vn
j for l, j = 1, . . . , n − 1, and let P̃ = [̃v1| · · · |̃vn−1] ∈

M(n−1)×(n−1).

Proposition 3.4 The complex Jordan form J̃C of M̃ is given by J̃C = P̃−1 M̃ P̃.
Furthermore, J̃C consists of the first (n − 1) rows and columns of JC.

Proof We first establish the fact that P̃ is invertible. Since P is invertible, the deter-
minant of P must be non-zero. Hence,

0 $= detP = det





v1
1 · · · v1

n−1 1
...

...
...

vn−1
1 · · · vn−1

n−1 1

vn
1 · · · vn

n−1 1




.

By subtracting vn
j times the nth column from the j th column, for j = 1, . . . , n − 1

we see that detP = det P̃ and so P̃ is also invertible.
Let λ1, . . . , λn be the eigenvalues of M corresponding to the generalized eigenvec-

tors v1, . . . , vn , respectively. Then

(
M − λ j I

)
v j =

{
0 if v j is an eigenvector of M
v j−1 if v j is a generalized eigenvector, but not an eigenvector.

Equivalently, Mv j = λ jv j + α jv j−1, where α j ∈ {0, 1}. Thus,

(Row i of M) · v j = λ jv
i
j + α jv

i
j−1. (3.6)

Since P−1 P is the identity and P = [v1| · · · |vn], we have P−1v j = e j , where
e j is the j th standard basis vector in Rn for j = 1, . . . , n. Thus, P−1 Mv j =
P−1 (

λ jv j + α jv j−1
)

= λ j e j +α j e j−1. Hence, the j th column of JC = P−1 M P is
given by λ j e j + α j e j−1

We now work towards finding M̃ ṽ j by first calculating ũi
j , the i th entry of M̃ ṽ j for

i, j = 1, . . . , n − 1.

ũi
j =

(
Row i of M̃

)
· ṽ j

=
n−1∑

l=1

(mil − mnl)(v
l
j − vn

j ).
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518 C. C. McCluskey, D. J. D. Earn

Noting that vl
j − vn

j is zero if l = n, it is clear that the above summation can be
extended to terminate at l = n, giving

ũi
j =

n∑

l=1

(mil − mnl)(v
l
j − vn

j )

=
n∑

l=1

(mil − mnl)v
l
j − vn

j

n∑

l=1

(mil − mnl)

= (Row i of M) · v j − (Row n of M) · v j

− vn
j ((i th row sum of M) − (nth row sum of M)) .

Recalling that the row sums of M are equal and then using Eq. 3.6, we obtain

ũi
j = (Row i of M) · v j − (Row n of M) · v j

=
(
λ jv

i
j + α jv

i
j−1

)
−

(
λ jv

n
j + α jv

n
j−1

)

= λ j ṽ
i
j + α j ṽ

i
j−1.

Thus,

M̃ ṽ j = λ j ṽ j + α j ṽ j−1.

Since P̃−1 P̃ = I , we have P̃−1ṽ j = ẽ j , where ẽ j is the j th standard basis vector in
Rn−1 for j = 1, . . . , n − 1. Thus, P̃−1 M̃ ṽ j = λ j ẽ j + α j ẽ j−1. This means that the
j th column of P̃−1 M̃ P̃ = J̃C is given by λ j ẽ j + α j ẽ j−1. Therefore, J̃C is the matrix
JC with the last column and row (all zeroes) omitted. ()

By working with real Jordan forms rather than complex Jordan forms (Horn and
Johnson 1985, Section 3.4), the following can be obtained.

Corollary 3.5 The real Jordan form J̃R of M̃ consists of the first (n − 1) rows and
columns of JR, the real Jordan form of M.

Note that if all eigenvalues of a matrix are real, then the real and complex Jordan
forms are the same.

Corollary 3.6 If the eigenvalues of M̃ are λ1, . . . , λn−1, then the eigenvalues of M
are λ1, . . . , λn−1, 0.

The following theorem follows from Propositions 3.1, 3.2 and Corollary 3.6.

Theorem 3.7 If a CNCD-matrix M is irreducible, then M̃ is non-singular and all of
the eigenvalues of M̃ have negative real part.
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Attractivity of coherent manifolds in metapopulation models 519

4 A useful change of coordinates

For j = 1, . . . , n, let Hj = x j −xn . Then Hj = (H1
j , . . . , Hk

j )
T , where Hs

j = xs
j −xs

n

for s = 1, . . . , k. Note that Hn = 0. A point x ∈ Rnk
≥0 can be expressed as (z, H),

where H = (H T
1 , . . . , H T

n−1)
T ∈ Rk(n−1), z = (z1, . . . , zk) ∈ Rk

≥0 and Hj +z ∈ Rk
≥0

for j = 1, . . . , n − 1. Here, z represents the population densities on patch n (zs = xs
n

for each s) and H represents the population densities on all other patches, relative to the
densities on patch n. A point is coherent if and only if it satisfies H1 = · · · = Hn−1 = 0.

Definition 4.1 The coherent manifold " is given by

" = {(z, H) : H = 0}. (4.1)

Definition 4.2 The coherent image coh(A) of a set A ⊆ Rk , is defined by coh(A) =
{(z, H) ∈ Rk × Rk(n−1) : z ∈ A, H = 0}.

The goal of this paper is to give conditions under which the coherent manifold has
some form of local stability under the flow associated with (2.5). In other words we
want to develop conditions which, when satisfied, imply that solutions starting near
" tend to a subset of ". In order to do this, we will rewrite system (2.5) in terms of z
and H .

Since z = xn , we have

dzs

dt
= f s(xn) +

n∑

j=1

ms
njx

s
j

= f s(z) +
n∑

j=1

ms
nj

(
zs + Hs

j

)

= f s(z) +
n−1∑

j=1

ms
nj Hs

j , (4.2)

since
∑n

j=1 ms
nj z

s = zs ∑n
j=1 ms

nj = 0 and Hs
n = 0. We now work towards finding

a convenient expression for the time-derivative of H .

dHs
i

dt
= d(xs

i − zs)

dt

=



 f s(xi ) +
n∑

j=1

ms
i jx

s
j



 − dzs

dt

=



 f s(z + Hi ) +
n∑

j=1

ms
i j

(
zs + Hs

j

)


 −



 f s(z) +
n∑

j=1

ms
nj Hs

j



 . (4.3)
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Again,
∑n

j=1 ms
i j z

s = 0, so

dHs
i

dt
=



 f s(z + Hi ) +
n∑

j=1

ms
i j Hs

j



 −



 f s(z) +
n∑

j=1

ms
nj Hs

j





=
(

f s(z + Hi ) − f s(z)
)
+

n−1∑

j=1

(
ms

i j − ms
nj

)
Hs

j . (4.4)

Note that if each component of Hi is non-zero, then

f s(z + Hi ) − f s(z)

= f s(z1 + H1
i , . . . , zk + Hk

i ) − f s(z1, . . . , zk)

= f s(z1 + H1
i , . . . , zk + Hk

i ) − f s(z1 + H1
i , . . . , zk−1 + Hk−1

i , zk)

+ f s(z1 + H1
i , . . . , zk−1 + Hk−1

i , zk) − · · · − f s(z1 + H1
i , z2, . . . , zk)

+ f s(z1 + H1
i , z2, . . . , zk) − f s(z1, . . . , zk)

= f s(z1 + H1
i , . . . , zk + Hk

i ) − f s(z1 + H1
i , . . . , zk−1 + Hk−1

i , zk)

Hk
i

Hk
i

+ · · · + f s(z1 + H1
i , z2, . . . , zk) − f s(z1, . . . , zk)

H1
i

H1
i

= Qsk(z, Hi )Hk
i + · · · + Qs1(z, Hi )H1

i , (4.5)

where for r = 1, . . . , k, Qsr (z, Hi ) is the difference quotient defined by the above
equation. Filling (4.5) into (4.4) gives

dHs
i

dt
=

k∑

r=1

Qsr (z, Hi )Hr
i +

n−1∑

j=1

(
ms

i j − ms
nj

)
Hs

j

=
k∑

r=1

Qsr (z, Hi )Hr
i +

n−1∑

j=1

m̃s
i j Hs

j . (4.6)

Since the components of H are given by the various Hs
i , we see that it is possible to

write

dH
dt

= D(z, H)H, (4.7)

where D(z, H) is a matrix of size k(n − 1) × k(n − 1), which we shall refer to
as the normal flow coefficient matrix.1 For one species on n patches (dropping the

1 In the case that Hr
i is zero, the difference quotients Qsr, s = 1, . . . , k are replaced in D(z, H) by the

partial derivatives which are their limits as Hr
i goes to zero.
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superscripts related to the species, since they must all be one), we get the (n−1)×(n−1)

matrix

D(z, H) = diag (Q(z, H1), . . . , Q(z, Hn−1)) + M̃ .

For k species on n patches, D(z, H) has the block form

D(z, H) =





Q1 0 · · · 0

0
. . .

...
...

. . . 0
0 · · · 0 Qn−1




+




M̃11 · · · M̃1(n−1)
...

...

M̃(n−1)1 · · · M̃(n−1)(n−1)



 ,

where

Qi =




Q11(z, Hi ) · · · Q1k(z, Hi )

...
...

Qk1(z, Hi ) · · · Qkk(z, Hi )





and

M̃i j = diag
(

m̃1
i j , . . . , m̃k

i j

)
.

Combining Eqs. 4.2 and 4.7 we are able to rewrite Eq. 2.5 in the new variables,
getting

dzs

dt
= f s(z) +

n−1∑

j=1

ms
nj Hs

j , for s = 1, . . . , k

dH
dt

= D(z, H)H.

(4.8)

5 The normal flow coefficient matrix in the coherent limit: D̄

In the limit as Hi goes to zero,

lim
Hi →0

Qsr (z, Hi ) = ∂ f s

∂zr (z). (5.1)
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Thus, for H near 0, we get D(z, H) to be approximately D̄(z), where

D̄(z) = lim
H→0

D(z, H) =





∂ f
∂z (z) 0 · · · 0

0
. . .

...
...

. . . 0
0 · · · 0 ∂ f

∂z (z)





+




M̃11 · · · M̃1(n−1)
...

...

M̃(n−1)1 · · · M̃(n−1)(n−1)



 (5.2)

and ∂ f
∂z is the k × k Jacobian matrix.

At this point, it is useful to consider a reordering of the basis. The basis ordering that
is used for Eq. 5.2 involves grouping the variables by patch, and then ordering them
within each group by species. Thus, H = (H1

1 , . . . , Hk
1 , . . . , H1

n−1, . . . , Hk
n−1)

T .
If, instead, the variables are grouped first by species, and then ordered by patch,
i.e., H = (H1

1 , . . . , H1
n−1, . . . , Hk

1 , . . . , Hk
n−1)

T , then the right-hand side of (5.2)
becomes

D̄sp =





∂ f 1

∂z1 (z)I · · · ∂ f 1

∂zk (z)I
...

...
∂ f k

∂z1 (z)I · · · ∂ f k

∂zk (z)I



 +





M̃1 0 · · · 0

0
. . .

...
...

. . . 0
0 · · · 0 M̃k




, (5.3)

where I is the (n − 1) × (n − 1) identity matrix and M̃s is given by Definition 3.4.
We note that for D̄, the Jacobian terms are nicely grouped, but the dispersal terms are
not, whereas in D̄sp, the dispersal terms are nicely grouped, but the Jacobian terms are
not.

An important special case. We now consider the case where all species have the same
dispersal pattern, but potentially different dispersal rates; this framework was used in
Jansen and Lloyd (2000). Let ρ = (ρ1, . . . , ρk) ∈ Rk

≥0 and suppose

Ms = ρs M, s = 1, . . . , k, (5.4)

where M = [mi j ] is a CNCD-matrix with eigenvalues λ1, . . . , λn−1, 0. Define the
matrix of dispersal coefficients

ϒ = diag(ρ1, . . . , ρk).

Let J be the complex Jordan form of M with J = P−1 M P . Without loss of gener-
ality, we may assume that a Jordan block containing the eigenvalue 0 is in the (n, n)
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position. Let M̃ be the modified dispersal matrix associated with M . Then by Propo-
sition 3.4, J̃ , the Jordan form of M̃ , consists of the first n − 1 rows and columns of J .
Let P̃ be a matrix such that J̃ = P̃−1 M̃ P̃ . Then M̃s = ρs M̃ and P̃−1 M̃s P̃ = ρs J̃
for s = 1, . . . , k.

Let P be the block diagonal matrix consisting of k copies of P̃ on the diagonal.
Then

P−1 D̄spP =




P̃−1 0

. . .

0 P̃−1









∂ f 1

∂z1 (z)I · · · ∂ f 1

∂zk (z)I
...

...
∂ f k

∂z1 (z)I · · · ∂ f k

∂zk (z)I








P̃ 0

. . .

0 P̃





+




P̃−1 0

. . .

0 P̃−1








ρ1 M̃ 0

. . .

0 ρk M̃








P̃ 0

. . .

0 P̃





=





∂ f 1

∂z1 (z)I · · · ∂ f 1

∂zk (z)I
...

...
∂ f k

∂z1 (z)I · · · ∂ f k

∂zk (z)I



 +




ρ1 J̃ 0

. . .

0 ρk J̃



 . (5.5)

By reverting to the original basis order, it is clear that P−1 D̄spP, and therefore D̄sp,
is similar to the k(n − 1) × k(n − 1) matrix

D̄J = diag
(

∂ f
∂z

, . . . ,
∂ f
∂z

)
+ J, (5.6)

where J is the block matrix where each block is of size k × k, and the i j block is given
by the i j entry of matrix J̃ times the matrix ϒ . The matrix D̄J is similar to D̄, but with
a change of basis that puts the dispersal terms into a canonical form.

If J̃ is a diagonal matrix (i.e., the original dispersal matrix M is diagonalizable),
then D̄J is given by





∂ f
∂z (z) + λ1ϒ 0

. . .

0 ∂ f
∂z (z) + λn−1ϒ



 . (5.7)

If J̃ is upper-triangular, but not diagonal (i.e., some eigenvalues require generalized
eigenvectors), then D̄J has similar structure to (5.7), but with some zero-blocks above
the main diagonal replaced by ϒ (corresponding to off-diagonal one’s in J̃ ).
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Table 2 The Lozinskii measures associated with the l1, l2 and l∞ norms, where w = (w1, . . . , wn)T ,
M = [mi j ] ∈ Mn×n and λ is the largest eigenvalue of 1

2 (MT + M)

Norm ‖w‖ µ(M)

l1
∑n

j=1 |w j | max j

{
-(m j j ) + ∑

i $= j |mi j |
}

l2
√∑n

j=1 w2
j λ

l∞ max j |w j | maxi

{
-(mii ) + ∑

j $=i |mi j |
}

A similar table can be found in Coppel (1965, p. 41)

6 Lozinskii measures

Let ‖ · ‖ be a norm on RN . Associated with ‖ · ‖ is a function µ : MN×N → R, called
the Lozinskii measure, defined by

µ(M) = inf
{

c : D+‖w‖ ≤ c‖w‖ for all solutions to
dw

dt
= Mw

}
,

where D+ is the right-hand derivative: D+‖w(t)‖ = lim suph→0+ 1
h (‖w(t + h)‖−

‖w(t)‖). The Lozinskii measures for some common norms are given in Table 2.
The Lozinskii measure µ(M) gives an upper bound on the exponential growth of the

magnitude of solutions to the linear differential equation which has coefficient matrix
M . In particular, if µ(M) < 0 then solutions are decaying in magnitude exponentially.
If M is a constant matrix, then Lozinskii measures are unnecessary, as the largest real
part of an eigenvalue of M gives a sharp bound on the exponential behaviour. How-
ever, if M is non-constant, then it is no longer sufficient to consider the eigenvalues
of M (see Markus and Yamabe 1960, p. 310 or Hale 1969, p. 121). For this reason,
we consider Lozinskii measures here.

Consider the differential equation

dw

dt
= M(t) w.

Then D+‖w(t)‖ ≤ µ (M(t)) ‖w(t)‖, and so

‖w(t)‖ ≤ ‖w(t0)‖ exp




t∫

t0

µ(M(s)) ds



 .

Suppose µ(M(t)) ≤ −δ < 0 for all t > t0. Then

‖w(t)‖ ≤ ‖w(t0)‖ exp
(
− δ(t − t0)

)
. (6.1)

As t approaches infinity, the norm of w(t), and therefore w(t) itself, approaches zero.
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The first three points in the following theorem can be found in (Coppel, 1965,
p. 41). The final statement is due to Pao (1973).

Proposition 6.1 A Lozinskii measure µ satisfies the following properties.

(1) If λ is an eigenvalue of A, then -(λ) ≤ µ(A).
(2) µ(αA) = αµ(A) for α ≥ 0.
(3) µ(A1 + A2) ≤ µ(A1) + µ(A2).

Furthermore, inf µ(A) = max -(λ), where the infimum is taken over all Lozinskii
measures µ and the maximum is taken over all eigenvalues λ of A.

Proposition 6.2 Let µ and µP be the Lozinskii measures associated with the norms
‖ ·‖ and ‖ ·‖P , respectively, where P is an invertible n×n matrix and ‖w‖P = ‖Pw‖.
Then µP (M) = µ(P M P−1).

Proof Suppose dw
dt = Mw. Let u = Pw. Then du

dt = P M P−1u. Thus,

D+‖w‖P = D+‖Pw‖ = D+‖u‖ ≤ µ(P M P−1)‖u‖ = µ(P M P−1)‖w‖P .

Furthermore, the inequality is sharp, and so the result follows from the definition of
the Lozinskii measure. ()

A consequence of the previous result is that it is sufficient to show, for example, that
there exists a Lozinskii measure µ such that µ(D̄sp) is negative, in order to achieve
the same result for D̄ since the two matrices are similar.

Remark 3 The Lozinskii measure µ1, associated with the l1 norm, is calculated for a
particular matrix as follows. For each column, add the real part of the diagonal entry
to the sum of the moduli of the off-diagonal entries in the same column. Taking the
maximum over all columns gives the Lozinskii measure. The Lozinskii measure µ∞,
associated with the l∞ norm, is calculated similarly, but by using the rows rather than
the columns. Formulas to this effect are given in Table 2.

7 The main results

The dynamics for a single isolated patch are given by

dz
dt

= f (z), (7.1)

where z = (z1, . . . , zk) gives the population densities in the patch. Let ϕ be the flow
associated with (7.1) and let % be the flow associated with Eq. 4.8.

Definition 7.1 (Attractor) Given a differential equation, a compact set A is called an
attractor if A is invariant under the flow associated with the differential equation and
there is an open set O containing A such that the omega limit set of any trajectory that
intersects O, is a subset of A. The union B(A) of all trajectories that tend to A is an
open set which is called the basin of attraction. We note that B(A) is invariant under
the flow.
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Definition 7.2 (Coherent attractor) An attractor for Eq. 4.8 that is contained in the
coherent manifold is called a coherent attractor.

We note that if a set is a coherent attractor for (4.8), then it is an attractor for the
dynamics within the invariant manifold, and therefore is the coherent image of an
attractor for the one-patch system (7.1).

We now introduce notation that will be useful for referring to solutions that are
close to a given set in the coherent manifold ". Given a norm ‖ · ‖ on Rk(n−1) and
ε > 0, let

Nε = {H ∈ Rk(n−1) : ‖H‖ ≤ ε}. (7.2)

Also, given δ > 0 and a set A ∈ Rk , we define the set Aδ by

Aδ = {z ∈ Rk : d(z,A) ≤ δ}. (7.3)

The following definition makes precise the kind of stability that we will be
investigating.

Definition 7.3 (CLAC) Suppose Eq. 7.1 has a compact attractor A. We say A is com-
pactly, locally asymptotically coherent, or CLAC, under Eq. 4.8, if for each compact set
C ⊂ B(A) there exists ε > 0 such that (z(0), H(0)) ∈ C × Nε implies ‖H(t)‖ → 0
and d(z(t),A) → 0 as t → ∞, where (z(t), H(t)) is a solution to Eq. 4.8.

Theorem 7.1 Suppose A is an attractor for Eq. 7.1. The coherent image of A is an
attractor for (4.8) if and only if A is CLAC.

Proof It follows immediately from the definitions that if A is CLAC, then coh(A) is
an attractor.

Suppose that coh(A) is an attractor for (4.8). Then the coherent image coh(B(A))

is the intersection of B(coh(A)) with the coherent manifold ". Let O be an open
neighbourhood of coh(A) which lies in B(coh(A)).

Let C ⊆ B(A) be a compact set. Then coh(C) is a compact subset of B(coh(A)).
Thus, there exists t1 such that %t1 maps coh(C) into O. Since O is open and coh(C) is
compact, there is an open neighbourhood O0 of coh(C) such that %t1 maps O0 into O,
and therefore into B(coh(A)). Thus, O0 is itself in the basin of attraction of coh(A).

Choose ε > 0 such that coh(C) × Nε ⊆ O0. Then coh(C) × Nε ⊆ B(coh(A)) and
it follows that A is CLAC. ()
Remark 4 The fact that coh(A) is an attractor if and only if A is CLAC, gives impor-
tant information about B(coh(A)). First, coh(B(A)) ⊆ " is a subset of B(coh(A)).
Furthermore, the coherent image of each interior point of B(A) is an interior point of
B(coh(A)). Thus, B(coh(A)) contains a neighbourhood of coh(B(A)). On the other
hand, no information about the “thickness” of B(coh(A)) is given.

Remark 5 In the special case that the one-patch attractor is a single equilibrium point
z̄, the condition that it be CLAC implies limt→∞(z(t), H(t)) = (z̄, 0) (for appropriate
initial conditions).
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Definition 7.4 (Asymptotically Stable Behaviour) Given δ, ε > 0, we say that H
behaves asymptotically stably in Aδ × Nε if there exists L , ν > 0 such that (z(τ ),

H(τ )) ∈ Aδ × Nε for all τ ∈ [s, t] implies ‖H(t)‖ ≤ ‖H(s)‖Le−ν(t−s).

We have defined asymptotically stable behaviour to mean that there is a decaying
exponential Le−νt such that whenever a solution lies in the set Aδ ×Nε for an interval
of time, the magnitude of the H component of the solution decays at least as quickly
as the exponential. The next lemma shows that if the growth of the H component is
bounded by an exponential eαt on some interval [0, T ], and contracts from t = 0 to
t = T , then we have asymptotically stable behaviour as long as the solution remains
in Aδ × Nε .

Lemma 7.2 If there exist T > 0, α ∈ R and q ∈ (0, 1), such that (z(τ ), H(τ )) ∈
Aδ × Nε for all τ ∈ [0, T ] implies ‖H(τ )‖ ≤ ‖H(0)‖eατ and ‖H(T )‖ ≤ q‖H(0)‖,
then H behaves asymptotically stably in Aδ × Nε .

Proof Suppose (z(τ ), H(τ )) ∈ Aδ × Nε for all τ ∈ [0, t]. Write t = σ + kT where
0 ≤ σ < T and k is a non-negative integer. Then

‖H(t)‖ ≤ qk‖H(σ )‖ ≤ qkeασ ‖H(0)‖.

Choose ν > 0 such that q = e−T ν . Then

‖H(t)‖ ≤ e−kT ν+ασ ‖H(0)‖
= e−(σ+kT )νe(ν+α)σ ‖H(0)‖
≤ e−tν L‖H(0)‖

where L = e(ν+α)T . This shows that the condition for asymptotically stable behaviour
is satisfied for the case where s = 0. Since the flow is autonomous, the result holds
for all s, completing the proof. ()

The condition that H behave asymptotically stably is geometric in nature, but, in
practice, must be checked through algebraic means. Thus, we introduce the following
proposition which shows how this can be done by using Lozinskii measures.

Proposition 7.3 Let‖·‖be a norm on Rk(n−1) with Lozinskii measureµ. Ifµ
(
D̄(z)

)
<

0 for all z ∈ A, then there exist ε, δ > 0 such that H behaves asymptotically stably
in Aδ × Nε .

Proof Suppose µ(D̄(z)) is negative on A. Since A is compact, there exists ν > 0 such
that µ(D̄(z)) ≤ −2ν for all z ∈ A. Also, there exist ε, δ > 0 such that µ(D(z, H)) ≤
−ν for all (z, H) ∈ Aδ × Nε . Since dH

dt = D(z, H)H , the result then follows from
Eq. 6.1. ()

Theorem 7.4 Suppose that A is an attractor for Eq. 7.1 and that there exist δ, ε > 0
such that H behaves asymptotically stably in Aδ × Nε . Then coh(A) is a coherent
attractor for Eq. 4.8.
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The proof of Theorem 7.4 is deferred to Sect. 8. Combining Proposition 7.3 with
Theorem 7.4 gives the following result.

Theorem 7.5 Suppose that A is an attractor for Eq. 7.1. If there exists a Lozinskii
measure µ such that µ

(
D̄(z)

)
< 0 for all z ∈ A, then coh(A) is a coherent attractor

for Eq. 4.8.

Remark 6 It follows, in particular, that if µ
(
D̄(z)

)
< 0 for all z ∈ Rk

≥0 then all attrac-
tors for Eq. 7.1 yield coherent attractors for Eq. 4.8. This observation provides a way
to prove that the entire coherent manifold is attracting, even if we know nothing about
the structure or dynamical nature of the attractors within it. Also, if an attractor A for
Eq. 7.1 is known to lie in a given subset of Rk , and µ(D̄) is negative on this subset,
then coh(A) is a coherent attractor for Eq. 4.8. This approach is used in Example 9.4
for which there is a strange attractor.

In order to provide insight, we first state and prove a special case of Theorem 7.5.
Recalling from Proposition 6.1 that if σ is the largest real part of an eigenvalue of a
constant matrix M , then given any ε > 0, there exists a Lozinskii measure µ such that
µ(M) < σ + ε, we get the following result, which avoids the language of Lozinskii
measures.

Corollary 7.6 Suppose that Eq. 7.1 has a locally asymptotically stable equilibrium
z̄. If all eigenvalues of D̄(z̄) have negative real part, then {z̄} is CLAC, and hence
coh({z̄}) is a coherent attractor.

Proof The full system is given by Eq. 4.8, which has the point Z̄ = (z̄, 0) as an
equilibrium. The Jacobian matrix for this system at Z̄ is

J =
[

∂ f
∂z (z̄) M∗

0 D̄(z̄)

]

, (7.4)

where M∗ is a k ×k(n −1) matrix. The eigenvalues of J are the eigenvalues of ∂ f
∂z (z̄),

which have negative real part since z̄ is locally asymptotically stable for Eq. 7.1, and
the eigenvalues of D̄(z̄), which have real part less than zero by assumption. Hence, Z̄
is locally asymptotically stable for (4.8).

Thus, there is an open neighbourhood O1 of Z̄ such that %t (O1) → Z̄ . Let C be a
compact subset of B({z̄}). Then ϕt (C) → z̄. Thus %t (C, 0) → Z̄ . By continuity, there
is an open neighbourhood O2 of (C, 0) such that %t (O2) ⊆ O1 for large enough t .
Then, since O1 is attracted to Z̄ we see that %t (O2) → Z̄ .

By picking ε > 0 so that C × Nε ⊆ O2, we see that {z̄} is CLAC. Then, by
Theorem 7.1, coh({z̄}) is a coherent attractor. ()

The next result deals with the case where the dispersal matrices are of the type
described in Eq. 5.4 and used in Jansen and Lloyd (2000). In this case, we can weaken
the main hypothesis of the theorem, allowing a different Lozinskii measure to be
associated with each of the n − 1 eigenvalues of M̃ .
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Proposition 7.7 Suppose that Eq. 7.1 has an attractor A and that the dispersal matri-
ces satisfy (5.4). For each i = 1, . . . , n − 1, let ‖ · ‖i be a norm on Rk with Lozinskii
measure µi . If µi

(
∂ f
∂z (z) + λiϒ

)
< 0 for all z ∈ A, for each i = 1, . . . , n − 1, then

coh(A) is a coherent attractor.

Proof Recall that D̄J has block upper triangular form with the diagonal blocks given
by ∂ f

∂z (z)+λ jϒ , j = 1, . . . , n−1. Since µn−1

(
∂ f
∂z (z) + λn−1ϒ

)
< 0, the k variables

associated with the (n −1)st diagonal block go to zero. Thus, any dependence that the
other variables have on these k variables can be ignored. By continuing in sequence
from n − 1 to 1, each k-dimensional subsystem can be shown to go to zero. ()

The next result combines Corollary 7.6 and Proposition 7.7, and deals with a situ-
ation that commonly arises.

Corollary 7.8 Suppose that under the dynamics described by Eq. 7.1, z̄ is a locally
asymptotically stable equilibrium, and that the dispersal matrices satisfy (5.4). If for
each i = 1, . . . , n − 1, all eigenvalues of ∂ f

∂z (z̄) + λiϒ have negative real part, then
coh({z̄}) is a coherent attractor.

Theorem 7.9 Suppose that an attractor A for Eq. 7.1 consists entirely of hyperbolic
equilibria and connecting orbits. If the eigenvalues of D̄ all have negative real part
at each equilibrium in A, then coh(A) is a coherent attractor for Eq. 4.8.

Proof Recall that the definition of an attractor requires that A be compact. Since all
equilibria in A are hyperbolic, there are a finite number of such equilibria; if there
were an infinite number, then there would be an accumulation point which would be
a non-hyperbolic equilibrium.

Denote the equilibria by z̄i for i = 1, . . . , p. Since the eigenvalues of D̄(zi ) all have
negative real part for each i , Proposition 6.1 implies there exist Lozinskii measures
µi , i = 1, . . . , p such that µi

(
D̄(z̄i )

)
< 0 for each i . Since D depends continuously

on (z, H) and a Lozinskii measure depends continuously on its matrix argument,
it follows that there exist ν, ε > 0 such that µi (D(z, H)) ≤ −ν < 0 whenever
(z, H) ∈ {z̄i }ε × Nε . We may assume that ε is sufficiently small that Aε contains no
equilibria except those in the attractor A.

Let E = ∪n
i=1 Ei , where Ei = int ({z̄i }ε), and let C Q = A\E . Then C Q is the

compact set consisting of the attractor A with an open neighbourhood of each equi-
librium deleted. (We may assume that ε is small enough that C Q is non-empty.) Note
that C Q is a compact set composed entirely of segments of saddle connectors whose
limit points are a positive distance away from C Q . Thus, there exists T1 > 0 such
that z ∈ C Q implies ϕT1(z) /∈ C Q . Of particular importance is the fact that z ∈ C Q

implies ϕT1(z) ∈ E , where E is open.
Let µ0 be an arbitrary Lozinskii measure and let ‖ · ‖i be the norm associated with

µi for i = 0, . . . , p. We define

β1 = max
i=1,...,p

max
H $=0

‖H‖0

‖H‖i
and β2 = max

i=1,...,p
max
H $=0

‖H‖i

‖H‖0
.
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Let

α0 = max
z∈A

µ0
(
D̄(z)

)
and α = 1 + max {α0, 0} .

Fix q ∈ (0, 1). We now choose δ ∈ (0, ε) sufficiently small that three conditions are
satisfied. First, we require that (z, H) ∈ Aδ ×Nδ implies µ0 (D(z, H)) ≤ α. Second,
we require that solutions intersecting (Aδ \ E) × Nδ enter E × Nε within time 2T1.
Third, noting that solutions intersect A ∩ E for unbounded duration, we require that
solutions intersecting (Aδ ∩ E) × Nδ do so for at least duration T ∗, where

T ∗ = 1
ν

(
2αT1 + ln

β1β2

q

)
.

We now consider a solution which remains in Aδ ×Nδ for t ∈ [0, 2T1 + T ∗]. Without
loss of generality, we may assume the solution intersects (Aδ ∩ Ei )×Nδ for the final
duration T ∗ of the interval. Then for any τ ∈ [0, 2T1 + T ∗], we have ‖H(τ )‖0 ≤
eατ‖H(0)‖0. Also,

‖H(2T1 + T ∗)‖0 ≤ β1‖H(2T1 + T ∗)‖i

≤ β1e−νT ∗‖H(2T1)‖i

≤ β1β2e−νT ∗‖H(2T1)‖0

≤ β1β2e2αT1−νT ∗‖H(0)‖0

= q‖H(0)‖0.

Thus, letting T = 2T1+T ∗, we see that Lemma 7.2 implies H behaves asymptotically
stably in Aδ × Nδ , and so Theorem 7.4 implies coh(A) is a coherent attractor. ()

The significance of the following theorem is that it states that dispersal is always
stabilizing if it occurs at a fast enough rate. On the other hand, Example 9.3 shows
that dispersal can be destabilizing at intermediate levels.

Theorem 7.10 Suppose that A is an attractor for Eq. 7.1. If M1, . . . , Mk are each
irreducible, then there exists ρ̄ > 0 such that for any ρ > ρ̄, replacing each Ms in
Eq. 4.8 with ρMs, yields a system for which coh(A) is a coherent attractor.

Proof We show that a Lozinskii measure µ exists for which µ(D̄sp) < 0. It then fol-
lows from Proposition 6.2, that there is a Lozinskii measure µP such that µP (D̄) < 0.
Then, the result follows from Theorem 7.5.

Since each Ms is irreducible, Theorem 3.7 implies that all of the eigenvalues of
each M̃s have negative real part and, hence, the same is true for the matrix

Msp =





M̃1 0 · · · 0

0
. . .

...
...

. . . 0
0 · · · 0 M̃k




.
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Thus, by Proposition 6.1, there is a Lozinskii measure µ such that µ(Msp) < 0.
Let α = −µ(Msp) > 0. For any positive ρ, replacing each Ms with ρMs gives
µ(Msp) = −ρα < 0. Let

Fsp =





∂ f 1

∂z1 (z)I · · · ∂ f 1

∂zk (z)I
...

...
∂ f k

∂z1 (z)I · · · ∂ f k

∂zk (z)I



 .

Then D̄sp = Fsp + Msp, and so, by Proposition 6.1,

µ(D̄sp) ≤ µ(Fsp) + µ(Msp)

= µ(Fsp) − ρα.

Clearly, ρ can be chosen sufficiently large such that the final expression is negative.
Furthermore, it is sufficient to choose, ρ > ρ̄, where ρ̄ = µ(Fsp)/α. ()

8 Proof of Theorem 7.4

Proof Let A ⊆ Rk be a compact attractor for Eq. 7.1. Then given any open set O
containing A, and any compact set C ⊆ B(A), there exists τ > 0 such that ϕt (C) ⊆ O
for all t ≥ τ .

Suppose there exist δ, ε > 0 such that H behaves asymptotically stably in Aδ ×Nε .
Then there exist L , ν > 0 such that (z(τ ), H(τ )) ∈ Aδ × Nε for all τ ∈ [s, t]
implies ‖H(t)‖ ≤ ‖H(s)‖Le−ν(t−s). We may assume that δ is sufficiently small that
Aδ ⊆ B(A).

Let O0 ⊆ Aδ be open. Let O = ∪t≥0ϕt (O0). Then O is open and positively
invariant. We may assume that O0 was chosen so that O ⊆ Aδ .

Let O1 be an open set such that Aδ ⊆ O1 and cl (O1) ⊆ B(A), and let C =
∪t≥0ϕt (cl (O1)). Then C is a positively invariant compact subset of B(A). Further-
more, Aδ is contained in the interior of C. Note that there exists t1 such that ϕt (C) ⊆ O
for all t ≥ t1, which also implies ϕt (Aδ) ⊆ O for all t ≥ t1.

We note that O ⊂ Aδ ⊂ C ⊂ B(A) ⊆ Rk .
Fix ε1 ∈ (0, ε] such that %t (Aδ × Nε1) ⊆ C × Nε for all t ∈ [0, t2] and such that

%t (Aδ × Nε1) ⊆ O × Nε for all t ∈ [t1, t2], where t2 > t1 is yet to be determined.
Of course, the choice of t2 will affect the choice of ε1.

Let q = max{µ(D(z, H)) : (z, H) ∈ C×Nε1}. Suppose (z(0), H(0)) ∈ Aδ ×Nε1 .
Recalling that O × Nε ⊆ Aδ × Nε it follows that H behaves asymptotically stably
for t ≥ t1. Thus,

‖H(t2)‖ ≤ ‖H(t1)‖ Le−ν(t2−t1)

≤ ‖H(0)‖ Leqt1 e−ν(t2−t1)

≤ ε1eβ̄ ,
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where β̄ = ln(L) + (q + ν)t1 − νt2. Now, choose t2 large enough so that β̄ < 0 and
let β = eβ̄ . Then β ∈ (0, 1) and ‖H(t2)‖ ≤ ε1β.

We have now shown that %t2(Aδ × Nε1) ⊆ O × Nε1β , which is in turn a subset of
Aδ × Nε1 . Similarly, %2t2(Aδ × Nε1) ⊆ O × Nε1β2 and, in fact for p = 1, 2, . . ., we
have %pt2(Aδ ×Nε1) ⊆ O×Nε1β p ; that is, z(pt2) ∈ O ⊆ Aδ and ‖H(pt2)‖ ≤ ε1β

p.
Thus, the omega limit set intersects coh(O). By continuity of %t and the fact that
coh(O) is positively invariant under %, it follows that the omega limit set is com-
pletely contained in coh(O).

Recalling that O ⊆ B(A), we may conclude that the omega limit set is contained
in coh(A). This completes the proof. ()

9 Examples

We consider four examples that illustrate how to use the results of this paper to estab-
lish local asymptotic coherence in particular systems. In the first example, we consider
a spatially distributed version of a classical predator–prey model that has a globally
asymptotically stable equilibrium (in the absence of spatial structure). We then con-
sider a spatially extended version of an epidemic model that has a more complex
attractor in the non-spatial case. Then, we use the ideas of this paper to explore dis-
persal-induced instabilities (i.e., instability of coherence) in a class of two-species
metapopulations, demonstrating that, at low levels, dispersal can be a destabilizing
influence. Finally, we demonstrate that dispersal can cause solutions to limit to a
coherent version of a strange attractor, by considering coupled Lorenz equations. We
emphasize that in all these examples (even the last, which involves a chaotic attractor
with Lyapunov exponents that can only be estimated numerically), we obtain rigorous
analytical stability conditions expressed in terms of the spatial coupling parameters
of the models.

Example 9.1 (A Predator–Prey Model with a Stable Equilibrium) Writing P for prey
population density and L for predator population density, we consider the predator–
prey interaction specified by the following equations.

dP
dt

= P(r − a P − bL)

dL
dt

= L(−s + cP)

(9.1)

If a = 0 then this is the standard Lotka–Volterra model. With a > 0, as we assume, the
model includes density dependent death in the prey population. We assume, moreover,
that rc − as > 0; this condition guarantees (Hofbauer and Sigmund 1998) that there
is a unique positive equilibrium z̄ = ( s

c , rc−as
bc ), which is globally attracting for all

initial conditions (P(0), L(0)) ∈ B({z̄}) = R2
>0.

We now consider n patches where the in-patch dynamics are given by Eq. 9.1 and the
dispersal matrices for the predator and the prey are given by ρP M and ρL M , respec-
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tively, where M is an n×n CNCD-matrix with real eigenvalues. The number of species
is k = 2 and the population density vector in each patch is xi = (x1

i ,x
2
i ) = (Pi , Li )

for i = 1, . . . , n.
By Corollary 7.8, the equilibrium Z̄ = (z̄, 0) (i.e., x1 = · · · = xn = z̄) is attracting

in the n-patch system if all eigenvalues of

Di = ∂ f
∂z

(z̄) + λi

[
ρP 0
0 ρL

]

have negative real part, for each i = 1, . . . , n − 1. Calculating ∂ f
∂z and evaluating at

z̄, we find

Di =
[

− as
c − bs

c
rc−as

bc 0

]

+ λi

[
ρP 0

0 ρL

]

.

Since λi ≤ 0 and ρP , ρL ≥ 0, it follows that the sign pattern of Di is one of

[
− −
+ 0

]

or
[− −
+ −

]
.

In either case, the eigenvalues of Di necessarily have negative real part. Thus, coh({z̄})
is a coherent attractor for the n-patch system. Since B({z̄}) is all of R2

>0, this means
that the part of the coherent manifold, for which all population densities are positive,
is locally attracting and all sufficiently nearly coherent initial states tend to the equilib-
rium: given any z ∈ R2

>0, if the population densities xi on all patches start sufficiently
close to z, then each xi tends to z̄.

Example 9.2 (An Epidemic Model with a Non-trivial Attractor) The simplest, stan-
dard model of infectious disease transmission (known as the SI R model) divides the
host population into three compartments: susceptible (S), infectious (I ) and recovered
(R), with recovery entailing a temporary immunity (Anderson and May 1991; Kermack
and McKendrick 1927). In typical situations, this model has a globally asymptotically
stable “endemic” equilibrium, which is approached by damped oscillations. If vac-
cination with a perfectly efficacious vaccine is included in the model, then there is
still a globally asymptotically stable equilibrium (an endemic equilibrium for modest
levels of vaccination and a disease-free equilibrium at sufficiently high vaccination
levels).

Vaccination with an imperfect vaccine can lead to more complex dynamics. An
SI RV model for this situation was investigated in Arino et al. (2003). The host pop-
ulation is now divided into four classes based on disease status, the fourth class being
vaccinated (V ).
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By considering the proportion of the population that is in each group, one is able to
write the model as a three-dimensional system,

dS
dt

= (1 − α)d − d S − βSI − φS + θ(1 − S − I − R) + νR

dI
dt

= βSI + σβ(1 − S − I − R)I − (d + γ )I

dR
dt

= γ I − (d + ν)R

(9.2)

The fraction V of vaccinated individuals is given by V = 1 − S − I − R. Since the
model deals with the proportion of individuals in each group, the biologically relevant
set is

2 = {(S, I, R) ∈ R3
≥0 : S + I + R ≤ 1} (9.3)

which is positively invariant under the flow specified by equations (9.2). For any
parameter value, the point z0 = (S0, 0, 0) ∈ 2, with S0 = θ+d(1−α)

d+θ+φ , is the disease-
free equilibrium. For certain parameter values there are one or two endemic equilibria
in the interior of 2.

In Arino et al. (2003), it is shown, under certain parameter restrictions (which
includes θ ≤ ν), that each solution of (9.2) tends to an equilibrium. Subject to those
conditions (and ignoring a subset of measure zero in the parameter space for which
equilibria are non-hyperbolic), there are three cases depending on the number of equi-
libria. In two cases, the attractor A consists of a single equilibrium. In the third case,
A consists of two stable equilibria, one saddle point and two connecting orbits. In
distinguishing these cases, a useful parameter is Rvac = β

d+γ
d+θ+σφ−dα(1−σ )

d+θ+φ , which
represents the number of secondary infections caused by a single newly-infected indi-
vidual in an otherwise disease-free population.
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We now consider the SI RV model on n patches. Suppose that the dispersal pat-
tern has the form specified by Eq. 5.4, i.e., there is an n × n CNCD-matrix M , and
the dispersal for the susceptible, infective and recovered groups is given by ρS M ,
ρI M and ρR M , respectively. Let ϒ = diag(ρS, ρI , ρR) and let λ1, . . . , λn−1, 0 be the
eigenvalues of M .

We now assume that the eigenvalues of M are real (as would be the case if M is
symmetric, for example) and, without loss of generality, λ1 ≥ · · · ≥ λn−1. Then,
as seen in Eq. 5.7, D̄ is similar to a block upper-triangular real matrix where the
diagonal blocks are of the form D̄ j = ∂ f

∂x + λ jϒ . Thus, Theorem 7.9 implies coh(A)

is a coherent attractor if, at each equilibrium in A, D̄ j is a stable matrix for each
j = 1, . . . , n − 1.

We proceed by investigating the stability of D̄ j at the disease-free and endemic
equilibria, and then consider the various cases for A. At z0, we have

D̄ j = ∂ f
∂x

(z0) + λ jϒ

=




−(d + φ + θ) + λ jρS −

(
β θ+d(1−α

d+θ+φ + θ
)

ν − θ

0 (d + γ )(Rvac − 1) + λ jρI 0
0 γ −(d + ν) + λ jρR



 .

Due to the location of zeros in the matrix, the eigenvalues are given by the diag-
onal entries. Recalling that λ j ≤ 0 and ρS, ρI , ρR,≥ 0, it follows that if ∂ f

∂x (z0)

is stable then D̄ j is too. In particular, if Rvac < 1, then D̄ j (z0) is stable for j =
1, . . . , n − 1.

At an endemic equilibrium z∗ = (S∗, I ∗, R∗), we have

D̄ j = ∂ f
∂x

(z∗) + λ jϒ

=




−(d + β I ∗ + φ + θ) + λ jρS −(βS∗ + θ) ν − θ

(1 − σ )β I ∗ −σβ I ∗ + λ jρI −σβ I ∗

0 γ −(d + ν) + λ jρR





and the second compound matrix (Muldowney 1990) is

D̄[2]
j =





(− (d + (1 + σ )β I ∗ + φ + θ)

+λ j (ρS + ρI )

)
−σβ I ∗ θ − ν

γ

(−(2d + β I ∗ + φ + θ + ν)

+λ j (ρS + ρI )

)
−(βS∗ + θ)

0 (1 − σ )β I ∗
(−(σβ I ∗ + d + ν)

+λ j (ρS + ρI )

)




.

In McCluskey and van den Driessche (2004), it is shown that a 3 × 3 real matrix is
stable if and only if the trace, determinant and determinant of the second compound
are all negative. Considering the λ j to be fixed, these three quantities can be shown to
be decreasing functions of ρS , ρI and ρR . In particular, if D̄ j is stable when ϒ is zero,

then is stable for all ϒ . For ϒ = 0, we have trace
(
D̄ j

)
< 0 and det

(
D̄[2]

j

)
< 0. Thus,
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D̄ j is stable if and only if det
(
D̄ j

)
is negative. If det

(
D̄ j

)
is negative for ϒ = 0, then

it is negative (and D̄ j is stable) for all ϒ .
Now, considering ϒ to be fixed, det

(
D̄ j

)
can be shown to be an increasing function

of λ j . Thus, if D̄1 is stable, then D̄ j is stable for all j . Hence, D̄(z∗) is stable if and
only if ϒ is chosen so that det

(
D̄1(z∗)

)
is negative.

In summary, D̄(z0) is stable for Rvac < 1 and for an endemic equilibrium z∗,
D̄(z∗) is stable if ϒ is chosen so that det

(
D̄1(z∗)

)
is negative.

Case 1 If Rvac is below a certain threshold Rcri tical ≤ 1, then the only equilibrium
of (9.2) is the globally asymptotically stable disease-free equilibrium z0. In this case
the attractor is A = {z0}. Since Rvac < 1, Theorem 7.9 implies coh(A) is a coherent
attractor.

Case 2 If Rvac > 1, then 2 contains a single endemic equilibrium z∗, which is glob-
ally asymptotically stable in the interior of 2. In this case the attractor is A = {z∗}.
Since z∗ is also locally asymptotically stable, D̄1 is stable for ϒ = 0 and, therefore,
for all ϒ . Thus, Theorem 7.9 implies coh(A) is a coherent attractor.

Case 3 If Rcri tical < Rvac < 1, then there are three distinct equilibria: the dis-
ease-free equilibrium z0 and two endemic equilibria, z∗ and z∗, where the value
of I at z∗ is less than the value at z∗. The equilibria z0 and z∗ are locally asymp-
totically stable, while z∗ is a saddle. The attractor A, in this case, consists of the
three equilibria and the unstable manifold of z∗, which consists of two trajecto-
ries that leave z∗ and tend to z0 and z∗. The basin of attraction of A contains all
of 2. (A demonstration that A is globally attracting in 2 is rather lengthy. The
proof, which is the main result of Arino et al. (2003), uses compound matrix meth-
ods (Li and Muldowney 1996) and is valid only under certain parameter restric-
tions.)

From the discussion above, it follows that D̄ is stable at z0 and at z∗ for all ϒ . Addi-
tionally, D̄ is stable at z∗ if and only if ϒ is chosen so that det

(
D̄1(z∗)

)
is negative.

Hence, by Theorem 7.9, coh(A) is a coherent attractor if and only if det
(
D̄1(z∗)

)
is

negative for the given matrix of ϒ .
It is worth noting that in the situation where there are two patches and no coupling,

one may consider initial conditions for the two patches that are near z∗, but each initial
condition is on a different branch of the unstable manifold. The solutions would then
diverge exponentially, meaning that solutions to the 2-patch system move away from
the coherent manifold, ". However, in the presence of coupling, if det

(
D̄1(z∗)

)
is

negative, then solutions approach coh(A) ⊆ ".

Example 9.3 (A Finite Dimensional Turing Instability) Consider a two-species system
on two patches where the in-patch dynamics are given by

dx

dt
= x(a + bx − cy)

dy

dt
= y(d + ex − f y)
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with a, b, c, d, e, f > 0 (this model is not a generalization of Example 9.1 because
the sign pattern is different). Here, x is an activator and y is an inhibitor. We assume
further that

b <
ce
f

, d <
a f
c

and ab f + bd f < ae f + bcd, (9.4)

which will be true if b and d are chosen to be sufficiently small. Under these conditions,
there are three non-negative equilibria:

(x0, y0)=(0, 0), (x1, y1)=
(

0,
d
f

)
and (x̄, ȳ) =

(
a f − dc
ce − b f

,
ae − bd
ce − b f

)
.

The equilibria (x0, y0) and (x1, y1) are unstable. At (x̄, ȳ) the Jacobian matrix is

J =
[

bx̄ −cx̄
eȳ − f ȳ

]
.

Under the restrictions (9.4), the eigenvalues of this matrix have negative real part and
so (x̄, ȳ) is locally asymptotically stable. Thus A = {(x̄, ȳ)} is an attractor for the
one-patch system.

We now suppose that species x and y disperse between the two patches with dis-
persal matrices ρβM and ρM , respectively, where ρ and β are positive and

M =
[−1 1

1 −1

]
.

Then M has eigenvalues 0 and λ = −2 and the matrix ϒ is given by

ϒ = ρ

[
β 0
0 1

]
.

By Corollary 7.8, coh(A) is a coherent attractor if the eigenvalues of J + λϒ have
negative real part, which happens if and only if the trace is negative and the deter-
minant is positive. By Theorem 7.10, this happens for sufficiently large values of ρ.
It also happens in a neighbourhood of ρ = 0, since J is stable and ϒ is zero when
ρ = 0.

The trace of J +λϒ is negative for all ρ > 0, however, the determinant may change
sign. If

β < β− = x̄

ȳ

2ce − b f −
√

4(ce − b f )2 + 4(ce − b f )b f
f 2 ,

then det(J + λϒ) is negative for a range of intermediate values of ρ. This happens if

ρ ∈ (ρ−, ρ+),
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where

ρ± = bx̄ − β f ȳ ±
√

(bx̄ − β f ȳ)2 − 4βx̄ȳ(ce − b f )

4β

are positive if β < β−.
The eigenvalues of the Jacobian for the four-dimensional two-patch system at the

coherent image of (x̄, ȳ) are given by the eigenvalues of J and of J + λϒ . Thus,
when det(J + λϒ) is negative, the real part of an eigenvalue is positive and we have
instability. Therefore, for β < β− and ρ ∈ (ρ−, ρ+), the set coh({(x̄, ȳ)}) is not a
coherent attractor, whereas it is for other parameter values.

This is an instability that is brought about by the dispersal and is therefore analo-
gous to the classical diffusion driven Turing instability (Turing 1952; Murray 1982;
Huang and Diekmann 2003).

Example 9.4 (Coupled Lorenz Attractors) We now consider an example where the
in-patch dynamics are given by the Lorenz equations (Lorentz 1963). We note that the
Lorenz system is not an ecological model and the variables do not represent popula-
tion levels. However, we use the system here to illustrate our approach in a context
for which the one-patch attractor is as complicated as possible.

The one-patch equations are:

dx

dt
= σ (y − x)

dy

dt
= x(r − z) − y

dz
dt

= xy − βz

It is well-known that for parameter values r = 28, σ = 10, β = 8
3 , the system has a

strange attractor A which is a subset of the box B = [−25, 25]× [−30, 30]× [0, 50].
Next, we consider n identical patches and couple “species” x, y and z using irre-

ducible CNCD-matrices Mx, My and Mz , respectively. By Theorem 7.10, there exists
a threshold value ρ̄ such that for any ρ > ρ̄, multiplying each of the CNCD-matrices
by ρ makes coh(A) a coherent attractor.

Suppose n = 6 and that the six patches are positioned in a ring with symmetric
nearest neighbour coupling. In this case, the CNCD-matrices are scalar multiples of

M =





−2 1 0 0 0 1
1 −2 1 0 0 0
0 1 −2 1 0 0
0 0 1 −2 1 0
0 0 0 1 −2 1
1 0 0 0 1 −2




. (9.5)

We take Mx = ρxM , My = ρy M and Mz = ρz M , where ρx, ρy, ρz ≥ 0. The matrix
M is diagonalizable and has eigenvalues λ1 = −4, λ2 = λ3 = −3, λ4 = λ5 = −1
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and λ6 = 0. As in Eq. 5.7, D̄ is similar to





∂ f
∂z + λ1ϒ 0

. . .

0 ∂ f
∂z + λn−1ϒ





where

∂ f
∂z

+ λiϒ =




λiρx − σ σ 0

r − z λiρy − 1 −x
y x λiρz − β



 .

Using the Lozinskii measure µ1 associated with the l1 norm (see Table 2 or Remark 3),
we obtain

µ1

(
∂ f
∂z

+ λiϒ

)

= max
{
λiρx − 10 + |28 − z| + |y|, λiρy + 9 + |x|, λiρz − 8

3
+ |x|

}
.

In the set B, this expression is maximized at (x, y, z) = (25, 30, 0). By also maximiz-
ing over i = 1, . . . , 5, we obtain

µ1
(
D̄ (A)

)
≤ max

{
−ρx + 48, −ρy + 34, −ρz + 67

3

}
.

Thus, any choice of coupling strengths satisfying ρx > 48, ρy > 34 and ρz > 67
3 , will

ensure that µ1(D̄) is negative on A and therefore guarantee that coh(A) is a coherent
attractor.

10 Discussion

We have developed an approach for rigorous stability analysis of coherent solutions of
metapopulation models that are cast as ordinary differential equations. Our approach
is intermediate to existing results, in several respects.

Traditional local stability theory for coherent attractors (Pikovsky et al. 2001) uses
transverse Lyapunov exponents, which cannot typically be calculated in terms of sys-
tem parameters. Existing global coherence results (Earn and Levin 2006; Earn et al.
2000) can be expressed in terms of system parameters but have limited scope because
the hypotheses of the theorems are quite strong.

The approach we have taken in this paper will generally yield conditions express-
ible in terms of the parameters of the reproduction function and the entries of the
dispersal matrix, without requiring the very strong hypotheses of the global theory.
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Our results are not global, but they are also not strictly local as they guarantee asymp-
totic coherence, not merely in the neighbourhood of a given coherent attractor, but in
a neighbourhood of a much larger set that is often the full coherent manifold.

A special case of our main theorem has been developed by Chen et al. (2003). These
authors employ Gersgorin disks in a manner that is equivalent to using the Lozinskii
measure associated with the l1 norm. Because our results are formulated in terms of
arbitrary Lozinskii measures, we now have much greater flexibility and can prove that
systems are asymptotically coherent under weaker hypotheses.

An alternative approach intermediate to traditional local and global analyses of
coherence would be to explore the theory of normally hyperbolic invariant mani-
folds (Hirsch et al. 1977; Wiggins 1994). This avenue could potentially lead to sharp
stability criteria that apply to full coherent manifolds, though—like traditional local
theory—would not likely yield conditions expressible in terms of system parameters.

We illustrated the application of our results to systems with a complex attractor using
an epidemiological model (Example 9.2) and coupled Lorenz attractors (Example 9.4).
The dispersal-induced coupling structure that we have assumed is sometimes used in
multi-city epidemiological modelling (Arino and van den Driessche 2003; Sattenspiel
and Herring 2003), but is not typical in general for epidemiological metapopulation
modelling. Traditional local coherence theory for more standard epidemiological cou-
pling has been developed recently (Lloyd and Jansen 2004). The present approach
employing Lozinskii measures will be applied to standard epidemiological coupling,
and other coupling structures, in future work.
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