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Game theory of pre-emptive vaccination
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McMaster University, Hamilton, Ontario, Canada L8S 4K1

Smallpox was eradicated in the 1970s, but new outbreaks could be seeded by

bioterrorism or accidental release. Substantial vaccine-induced morbidity and

mortality make pre-emptive mass vaccination controversial, and if vaccination

is voluntary, then there is a conflict between self- and group interests. This

conflict can be framed as a tragedy of the commons, in which herd immunity

plays the role of the commons, and free-riding (i.e. not vaccinating pre-

emptively) is analogous to exploiting the commons. This game has been

analysed previously for a particular post-outbreak vaccination scenario.

We consider several post-outbreak vaccination scenarios and compare the

expected increase in mortality that results from voluntary versus imposed

vaccination. Below a threshold level of post-outbreak vaccination effort,

expected mortality is independent of the level of response effort. A lag between

an outbreak starting and a response being initiated increases the post-outbreak

vaccination effort necessary to reduce mortality. For some post-outbreak vacci-

nation scenarios, even modest response lags make it impractical to reduce

mortality by increasing post-outbreak vaccination effort. In such situations, if

decreasing the response lag is impossible, the only practical way to reduce mor-

tality is to make the vaccine safer (greater post-outbreak vaccination effort leads

only to fewer people vaccinating pre-emptively).
1. Introduction
The number of annual cases of smallpox in the early 1950s, just prior to the World

Health Organization’s global eradication programme, is estimated at 50 million [1].

The eradication campaign was successful [1], but samples of the variola virus are

still kept in at least two known laboratories in Russia and the USA [2]. In a worrying

incident in July 2014, previously forgotten vials containing samples of smallpox,

some of which were viable, were found in a laboratory at the National Institutes

of Health campus in Bethesda, MD, USA [3]. Thus, the threat of the reintroduction

of smallpox, whether inadvertently or in a bioterrorist attack, is still present.

Consequently, some countries—notably the USA—are interested in measures

to protect their populations from potential smallpox infection. Prophylactic vac-

cination for smallpox carries a high cost (relative to other vaccines in use

today), as the probability of death following vaccination—or ‘risk from being

vaccinated’—is rv ≃ 10�6 and serious side-effects occur with probability �1023

[1]. Of course, infection with smallpox carries a much greater risk, because the

case fatality proportion—the ‘risk from infection’—is ri ≃ 0.3 [1]. (See table 1

for a summary of parameter estimates.)

The substantial vaccine-induced morbidity and mortality associated with

smallpox vaccination make pre-emptive mass vaccination controversial. If vacci-

nation is voluntary, then there is a conflict between self- and group interests. This

conflict can be framed as a tragedy of the commons, in which herd immunity

plays the role of the commons, and free-riding (i.e. not vaccinating pre-emptively)

is analogous to exploiting the commons. A previous game-theoretical study by

Bauch et al. [4] examined this conflict of interest, and focused on the trade-off

between prophylactic vaccination and post-outbreak mass vaccination (which

has been shown to outperform contact-traced vaccination in a bioterrorism setting
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Table 1. Summary of the fundamental (i.e. not derived) numerical parameters in our analysis, together with estimated values. Note that in [4] the probability
of an outbreak was denoted r rather than a. Here, we use r for the relative risk, as in [5]. The proportion of the population infected initially by a bioterrorist
attack or accidental release, a, corresponds to infection of 5000 individuals in a population of 290 million (after [4]).

quantity interpretation value source

rv mortality risk from vaccination ( probability) 1026 [4]

ri mortality risk from infection ( probability) 0.3 [4]

R0 basic reproductive ratio 5 [6 – 8]

tser mean serial interval 22 days [9, p. 141]

1/s mean latent period (SEIRV) 15 days [1, p. 188] and [4]

fkmodell vaccination effort parameter (exact interpretation depends on model) see table 4

tlag response lag before initiation of post-outbreak vaccination 0 days, except in §7.5

a probability of attack or accidental release per lifetime 0.01 [4]

a proportion of susceptibles initially infected in an outbreak 5000/290 � 106 ≃ 1.72 � 1025 [4]

Table 2. Summary of derived parameters.

quantity interpretation value

r ¼ rv/ri relative risk (from being vaccinated compared with natural infection) 1026/0.3 ≃ 3.33 � 1026

1/g mean time infectious (SIRV) tser ¼ 22 days

1/g mean time infectious (SEIRV) tser 2 (1/s) ¼ 7 days

b transmission rate gR0

pp probability that an un-vaccinated individual will eventually be infected if the vaccine

coverage level in the population is p

derived from epidemic model in §5

cp probability of an individual un-vaccinated at the beginning of the epidemic

becoming vaccinated, given vaccine coverage level p

derived from epidemic model in §5
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[10]). In particular, they showed that if the decision regarding

pre-emptive vaccination is left to the individual, then the vac-

cine coverage achieved will be suboptimal from the group

perspective. Bauch et al. [4] assumed that, once a post-outbreak

vaccination campaign begins, individuals will be vaccinated at

a constant rate determined by existing infrastructure.

Various mechanisms might drive the rate of vaccination.

Vaccination at a constant rate might be achieved if vaccination

centres are flooded by individuals seeking the vaccine, and are

operating at peak capacity. However, public responsiveness to

such a campaign is hard to predict. If demand for the vaccine

does not exceed the maximal rate of distribution by public

health services, the post-outbreak dynamics might play out

differently, depending on the public’s reaction patterns. For

example, media reports on the number of new cases might

influence individuals to obtain the vaccine; in that case, it is

reasonable to model the vaccination rate as proportional to

smallpox incidence.

In this paper, we return to the problem posed by Bauch

et al. [4], but compare a variety of possible post-outbreak vac-

cination scenarios (described intuitively in §2 and in precise

mathematical terms in §5). Whereas the scenario considered

in [4] could only be analysed numerically, several of the vac-

cination scenarios that we consider here can be addressed

analytically to obtain exact results. To this end, in §3, we

make some adjustments to the game-theoretical framework

of Bauch & Earn [5], so that it can be applied to the scenarios

we investigate here.

Throughout this paper, we use smallpox as an illustra-

tive example. However, our analyses can be applied to any
vaccine-preventable infectious disease that could be used

for bioterrorism or released accidentally, and for which

the susceptible–infectious–removed (SIR) or susceptible–

exposed–infectious–removed (SEIR) models are applicable

(see §5). Our qualitative results appear to be robust to

which post-outbreak vaccination scenario is considered and

the specific parameter values (we prove this in some cases),

but the precise numerical values will vary.

We calculate the vaccination coverage obtained by volun-

tary pre-emptive vaccination and assess the costs of this policy

when compared with mandatory vaccination. The group-

optimal pre-emptive vaccine coverage is discussed in §4. We

discuss parameter estimates and the procedure used to compare

the various models fairly in §6. We compare the predictions of

the various models, and emphasize important considerations

for public health in §7. Notation and definitions are summarized

in tables 1–3.
2. Vaccination scenarios
In this section, we give a brief description of the various post-

outbreak vaccination scenarios considered in this paper.

Media coverage of a smallpox outbreak is likely to influ-

ence individual decisions concerning vaccination. Measures

of severity of the outbreak that are likely to appear in the

media include:

— death rates, as in ‘300 people died of smallpox today’,

— total number of people currently infected (prevalence), as

in ‘there are now 30 000 people sick with smallpox’, and



Table 3. Summary of other notation.

quantity interpretation

P probability that an individual chooses to vaccinate pre-emptively (this defines the individual’s strategy)

p pre-outbreak vaccine coverage ( proportion of the population vaccinated pre-emptively)

pg the group optimum, i.e. the proportion of the population vaccinated pre-emptively which minimizes mortality

pi the individual equilibrium, i.e. the level of pre-outbreak vaccine coverage which is the unique Nash equilibrium, as described in §3

C( p) the mortality cost, i.e. the proportion of the population that is expected to die, given pre-emptive vaccine coverage p

t�lag the critical lag, i.e. the response lag beyond which mortality is independent of vaccination effort (see §7.5.1)et�lag the effective critical lag, i.e. the response lag beyond which mortality is identical for all feasible values of vaccination effort (see §7.5.2)

Table 4. Summary of notable levels of the vaccination effort parameter,
f

kmodell
, for the different models. The first column contains ‘fair

comparison’ values for the vaccination effort parameters of the various
models, as calculated in §6.2. In our simulations, we allowed f

kmodell
to

range between 0 and values generally above the ‘fair comparison’ values
(except for finst, for which we used the entire possible range of [0, 1]).
The second column contains the minimal values of the vaccination effort
parameter (f

kmodell
) for which the individual equilibrium is to delay (that is,

f
kmodell

at the end of the mortality plateau; see §7.2.1).

model
‘fair comparison’
value

value at end of
mortality plateau

fprev 1582 per day 571 per day

fsusc 0.1 per day 0.08 per day

finc 5190 per day 1137 per day

finst — 0.82 per day

f
const

0.1 per day 0.015 per day

rsif.royalsocietypublishing.org
J.R.Soc.Interface

12:20141387

3

— new cases (incidence), as in ‘200 new cases of smallpox

were confirmed today’.

We consider separately how each of these types of infor-

mation could affect smallpox vaccine uptake; in each case,

we assume that the vaccination rate is proportional to the

relevant quantity (e.g. prevalence). Note that, in standard

epidemiological models [6], death rate is proportional to

prevalence, so the first and second cases above are

mathematically identical.

As a type of ‘null model’ for media-induced vaccination,

we also consider the situation in which

— Vaccination rate is simply proportional to the size of

the remaining susceptible population; this corresponds to a

constant per capita vaccination rate for susceptible individ-

uals (see the electronic supplementary material, appendix

B.1). This can be regarded as a ‘null model’ to compare

with models for the scenarios above in the following sense:

individuals’ proclivity to vaccinate is constant over time,

and does not depend on the state of the epidemic (i.e. on

prevalence or incidence, which are likely to be reported by

the media), whereas the vaccination rate falls as the

number of susceptibles decreases over time, meaning that

fewer individuals per unit time are inclined to vaccinate.

We also consider two scenarios in which vaccine uptake

is not influenced by the media, but is constrained by the

capabilities of public health authorities:
— If an outbreak occurs, immediately vaccinate a proportion

of the susceptible population. The proportion might

describe the efficacy of a post-outbreak campaign in con-

vincing those who have thus far avoided vaccination.

Individuals who remain un-vaccinated after this post-

outbreak campaign would be persons holding particularly

radical anti-vaccine opinions.

— Susceptible individuals are vaccinated at a constant rate

until there are no more susceptibles remaining.

Finally, for each of the above scenarios, we investigate the

effect of a lag between the start of an outbreak and the

initiation of the post-outbreak vaccination response (allowing

for public health authorities to organize a response to the out-

break). Bauch et al. [4] assumed such a response lag in their

model, which is otherwise identical to the final scenario

described above.

The epidemic models associated with each of the above

five scenarios are described in detail in §5.
3. Game-theoretical formulation
In this section, we adapt the game-theoretical framework of

Bauch & Earn [5] to our current problem. We assume that

all individuals have full knowledge and are rational (in the

game-theoretical sense; see [11]).

We denote the proportion of the population vaccinated

pre-emptively as p. Because a proportion rv of those vaccinated

will die, the pre-outbreak vaccine coverage (the proportion of

the population that is immune prior to the outbreak) is peff ¼

p(1 2 rv)/(1 2 prv) [4], which is slightly smaller than p. But,

because none of the mathematical analysis and conclusions

which follow are affected by this, and because the difference

between p and peff is negligible, we refer to p as the pre-out-

break vaccine coverage level for simplicity (as in [4]).

Let a [ [0, 1] be the probability of an outbreak (‘a’ for

‘bioterrorist attack probability’ or ‘accidental release prob-

ability’) per lifetime (or whatever time period is under

consideration). Consider two pure strategies: vaccinate and

delay. The former vaccinates pre-emptively, before the begin-

ning of an outbreak, and so receives (expected) pay-off 2 rv;

the latter delays vaccination until after an outbreak (at which

point she/he may still be vaccinated during the public health

post-outbreak vaccination campaign), and receives pay-off

� a[ripp þ cprv], (3:1)

where pp and cp are the probabilities of a delayer being infected,

or vaccinated, respectively, after an outbreak (the delayer
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infection and vaccination probabilities are discussed in more

detail in §5). A mixed strategy is specified by the probability P
that an individual will choose to vaccinate pre-emptively. We

also assume rv , ari because if it were not so, even if all delayers

were infected in an outbreak, the risk of dying in an outbreak

would be smaller than the risk of dying from the side-effects of

the vaccine, hence there would be no reason to vaccinate.

The pay-off to an individual playing a mixed strategy

(vaccinating with probability P) in a population in which

the coverage level is p is given by

E(P, p) ¼ �Prv � (1� P)a(ppri þ cprv): (3:2)

Equivalently, defining the relative risk of vaccination

compared with infection as

r ¼ rv

ri
, (3:3)

we have E(P, p) ¼ 2ri[rP þ (1 2 P)a(pp þ cpr)]. Because the

parameter ri simply scales the game pay-off by a constant,

it does not change the dynamics. We therefore use the

rescaled pay-off function

E(P, p) ¼ �[rPþ (1� P)a(pp þ cpr)]: (3:4)

Suppose that a proportion e of the population vaccinate with

probability P and 1 2 e vaccinate with probability Q. Following

Bauch & Earn [5], we assume 100% vaccine efficacy, which

implies coverage level p¼ eP þ (1 2 e)Q. (Note that in a homo-

geneous population where all individuals play the same strategy

P, i.e. e ¼ 1, the coverage is p ¼ P.) The pay-offs to individuals

playing P and Q in such a population are then

EP(P, Q, e) ¼ E(P, ePþ (1� e)Q) (3:5a)

or

EQ(P, Q, e) ¼ E(Q, ePþ (1� e)Q), (3:5b)

respectively, and the pay-off gain to an individual playing P rather

than that to Q in this population is

DE ¼ EP(P, Q, e)� EQ(P, Q, e)

¼ �[rPþ (1� P)a(pp þ cpr)]þ [rQþ (1�Q)a(pp þ cpr)]

¼ (pp þ rcp �
r
a

)a(P�Q), where p ¼ ePþ (1� e)Q:

(3:6)

A strategy P* is a Nash equilibrium (NE) if and only if (iff ),
in a population in which all individuals are playing P*, no

player employing a different strategy can achieve a higher

pay-off. Mathematically, this means that for any other strat-

egy Q [ [0, 1] if the proportion playing Q is small enough

(i.e. 1 2 e is sufficiently small), then the pay-off gain to

strategy P* is non-negative, i.e. DE(P*, Q, e) � 0. When

such an NE exists, we refer to this strategy as the individual
equilibrium and denote it by pi. This equilibrium is ‘individ-

ual’ in the sense that it is determined by individuals

attempting to maximize their pay-offs (unlike the group

optimum discussed in §4). Note, however, that this is a

population game [5,12], so the pay-off to individuals depends

on the frequencies of strategies in the entire population.

Additionally, consider a scenario whereby strategy P
invades a population playing strategy Q. If, in this scenario,

strategies P that are closer to the NE P* than the prevalent

strategy Q obtain a higher pay-off than the prevalent

strategy, then P* is called a convergently stable Nash equilibrium
(CSNE). Mathematically, this is equivalent to demanding that
if e � 1, then

P� , P , Q � 1) DE(P, Q, e) � 0

and

0 � Q , P , P� ) DE(P, Q, e) � 0:

In order to proceed with the analysis, it is necessary to

derive the probabilities pp and cp from an epidemiological

model, either numerically or analytically (see the electronic

supplementary material, appendix E). Proofs of existence

and uniqueness of a CSNE are given for several cases in

the electronic supplementary material, appendix G. These

proofs depend on pp being a decreasing function of p. We

have shown this to be true when post-outbreak vaccination

is instantaneous or proportional to incidence, and also

when vaccination is proportional to prevalence and afprev .

g(12a). Based on biological intuition corroborated with

simulations, we have assumed that pp decreases with p for

all the models considered here. This has also recently been

proved for other post-outbreak vaccination models not con-

sidered here (F Bai, F Brauer 2015, personal communication).
4. Group optimum
From the perspective of a public health official (i.e. group

interest), it is desirable to attain the vaccine coverage that

minimizes mortality. From this group perspective, a strategy

is specified by the proportion p of the population that is pre-

emptively vaccinated. The currency with which we compare

strategies is the mortality cost C( p), i.e. the proportion of

the population that is expected to die (either from smallpox

infection or from vaccination),

C(p) ¼ rpþ (1� p)a(pp þ cpr), p [ [0, 1], (4:1)

where we have ignored a factor of ri as in equation (3.4). The

minimum mortality cost yields the group optimum coverage

level, which we denote pg. The minimum of C( p) on [0, 1]

may be attained either at a local minimum in (0, 1) or at

one of the endpoints

C(0) ¼ a(p0 þ c0r) (4:2a)

and

C(1) ¼ r: (4:2b)

To completely specify the cost C( p), we need the probabilities

pp and cp, derived from the epidemiological model (see §5

and the electronic supplementary material, appendix E),

just as for the individual equilibrium. We have found an

exact analytical expression for pg in one subcase (see the elec-

tronic supplementary material, appendix H) and calculated it

numerically in the other cases.
5. Epidemiological models
In order to find the group optimum ( pg) and individual equi-

librium ( pi), two key quantities are calculated from the

epidemic models: the delayer infection probability pp (the prob-

ability of a delayer being infected after an outbreak) and the

delayer vaccination probability cp (the probability that a delayer

is eventually vaccinated, given an outbreak).

Both pp and cp depend on the disease dynamics and

the post-outbreak vaccination scenario. In the following, we
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assume that, in the absence of post-outbreak vaccination, the

SIR model is adequate to represent the disease dynamics

[13, §4]. The models do not include vital dynamics (births

and deaths from all natural causes other than the disease),

because the mean serial interval (also called the disease

generation time, tser ¼ 22 days [9, p. 141]) is much smaller

than the mean lifetime (approx. 80 years in the USA [14]).

Note that, for diseases for which the outbreak time scale is

similar to the mean lifetime, vital dynamics can easily be

included in the analysis (e.g. as in [5], where much longer

term dynamics were considered).

Let S(t), I(t), R(t) and V(t) be the proportions of susceptible,

infected, removed (recovered or dead from smallpox infection)

and vaccinated individuals (immune or dead from vacci-

nation), respectively, at time t. Our basic framework is the

SIRV model, described by the differential equations

_S ¼ �bSI � _V , (5:1a)

_I ¼ bSI � gI , (5:1b)

_R ¼ gI (5:1c)

and _V � 0, (5:1d)

where _V must be non-negative as indicated and is defined dif-

ferently for each of the distinct scenarios of post-outbreak

vaccination described in §2.

We assume that no one has natural immunity or retains

immunity from vaccination decades earlier. This is an

approximation, because many living individuals were vacci-

nated before smallpox was declared eradicated in 1979 [1],

and many of those vaccinated individuals are probably still

immune (vaccine-derived immunity seems to wane quite

slowly and lifelong immunity is common [15]). However,

smallpox is considered to have been eliminated in the USA

as early as 1950, and while routine vaccination continued

in some states well after that [1], the proportion of US resi-

dents younger than 60 who have been vaccinated is likely

to be very small.

Thus, we assume that the coverage level prior to an

outbreak is p, the proportion pre-emptively vaccinated. Con-

sequently, prior to the outbreak, a proportion 1 2 p of the

population is susceptible. When a bioterrorist attack or acci-

dental release takes place (at time t ¼ 0), an initial attack
proportion a of the susceptible population is infected. Thus,

S(0) ¼ (1� p)(1� a), (5:2a)

I(0) ¼ (1� p)a, (5:2b)

R(0) ¼ 0 (5:2c)

and V(0) ¼ p: (5:2d)

After an outbreak, the epidemic is over when no one

remains infective (I ¼ 0). In the electronic supplementary

material, appendix C, we show rigorously that this is guaran-

teed to occur, either in finite time or in the limit as t! 1. In

either case, we use the subscript 1 to refer to the time at

which the epidemic ends. Thus, S1, I1, R1 and V1 refer to

the proportions of the population in the susceptible, infective,

removed and vaccinated compartments at the end of the epi-

demic. With this notation, the probabilities of infection and

vaccination for delayers are, respectively,

pp ¼
R1 � R(0)

S0 þ I0
¼ R1

1� p
(5:3a)
and cp ¼
V1 �V0

S0 þ I0
¼ V1 � p

1� p
¼ 1� 1�V1

1� p

¼ 1� S1 þ I1 þR1

1� p
¼ 1�pp �

S1

1� p
: (5:3b)

We emphasize that R is the proportion of the population that

has been infected (and consequently is either immune or has

died); hence, R(0) ¼ 0, because anyone who is immune at

time t ¼ 0 is immune from vaccination. Intuitively, there is

no endemic equilibrium in these models, because the combi-

nation of vaccination and natural spread of disease must

eventually cause susceptibles to be so rare that the disease

cannot spread (recall that these models neglect vital dynamics).

Lastly, note that pp is undefined at p ¼ 1 (i.e. if everyone

pre-emptively vaccinates), as there are no delayers for whom

to calculate the probability of being infected. We define p1 as

the limit of the delayer infection probability,

p1 ¼ lim
p!1�

pp, (5:4)

i.e. p1 is the limit of pp as pre-emptive vaccination approaches

full coverage. In the electronic supplementary material,

appendix D, we show that this limit is equal to the proportion

of susceptibles initially infected in an outbreak, i.e. p1 ¼ a for

all models considered.

In the following, we describe (and interpret mechanistically)

various models that we compare, and present some analytical

results. In all models, the vaccination rate depends on a vacci-

nation effort parameter, f
kmodell

, the exact interpretation of

which is model dependent.
5.1. Vaccination rate / disease prevalence
In this model, vaccination occurs at a rate proportional to dis-

ease prevalence (I ). A plausible scenario to which such a

model would apply is if people respond to media reports

on disease prevalence. As a result of increasing disease preva-

lence, the public might perceive the risk of being infected as

higher, and be moved to vaccinate. Consequently,

_V ¼ fprev sgn(S)I , (5:5)

where

sgn(x) ¼
�1 if x , 0,
0 if x ¼ 0,
1 if x . 0:

8<:
This model could also represent the case where vaccination rate

is proportional to death rate, i.e. people vaccinate in response to

media reports on new disease-induced deaths. Because the

death rate is proportional to the rate at which the removed com-

partment, R, grows, which is proportional to I, the vaccination

rate would also be proportional to I.
In the electronic supplementary material, appendix E.1.1,

we find the final size relations [16–18] for the model defined

by equation (5.5). These are given by

S1 ¼
0 if p , p0 or 1 � pm,
S1

1 if p0 � p � 1,

�
(5:6)

R1 ¼
1� p�

fprev

b
ln

b

fprev

S(0)þ 1

 !
if p , p0 or 1 � pm,

g

gþ fprev

(1� p� S1
1) if p0 � p � 1

8>>><>>>:
(5:7)
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and

V1 ¼
pþ

fprev

b
ln

b

fprev

S(0)þ 1

 !
if p , p0 or 1 � pm,

1

gþ fprev

(fprev(1� S1
1)þ gp) if p0 � p � 1,

8>>>><>>>>:
(5:8)

with

S1
1 ¼ �

1

b

 
fprev þ (gþ fprev)

�W0 �
bS(0)þ fprev

gþ fprev

e
�b(1�p)þfprev

gþfprev

 !!
, (5:9)

pm ¼ 1þ
afprev � g(1� a)

b(1� a)
(5:10)

and p0 ¼ 1þ
fprev

b(1� a)
þ
gþ fprev

b

�Wk �
fprev

(1� a)(gþ fprev)
e
� fprev

(1�a)(gþfprev)

 !
,

(5:11)

where k ¼ 0 if pm , 1 and k ¼21 if pm � 1. W0 is the principal

branch of Lambert’s W function [19,20], and W21 is its

other real branch (see the electronic supplementary material,

appendix A). pm is the unique maximum of the function S1
1.

S1
1 has two roots, one at p ¼ 1, and the other at p0, which

need not lie in the interval [0, 1] ( p0 is a formal root and

need not correspond to a meaningful probability). Note that

if pm . 1 then p0 . pm, and if pm , 1 then p0 , pm.

If pm . 1, then no delayers will remain susceptible at the end

of the epidemic (i.e. all delayers will be either vaccinated or

infected), regardless of the initial vaccine coverage level p. More-

over, if pm , 1, but p0 , 0, there are always some delayers who

remain susceptible at the end of the epidemic, regardless of the

initial coverage level p. If 0 , p0 , pm , 1, then for p [ [0, p0]

there will be no susceptibles left at the end of the epidemic,

and for p [ ( p0, 1) there will be some remaining susceptibles.

Thus, there is a wide range of parameter values for which

some susceptibles remain at the end of the epidemic; in such

cases, pp þ cp , 1. Numerical evidence and biological intuition

suggest thatpp is a decreasing function of p, and we assume that

this is the case from here on (this is proven for pm � 1 in the

electronic supplementary material, appendix E.1.3).

Finally, because the mean infectious period (7 days; see

table 2 and §6.1) is longer than the time required to complete

the vaccination programme (possibly as short as 3 days [21]),

it is interesting to take the limit g! 0 (corresponding to an

infinite infectious period) while keeping R0 ¼ b/g fixed.

In this limit, pm!1 so S1 ¼ 0 (equation (5.6)), which is

in accordance with the assumption—made in [4]—that

individuals are ultimately either removed or vaccinated.

We show in the electronic supplementary material, appen-

dix G.1, that there is always a unique CSNE, that is, a ‘best

strategy’ from the individual perspective. Moreover, an analyti-

cal expression for this individual equilibrium can be found if

either fprev � g(1� a)=a (5:12a)

or 0� p0 , pm � 1, p0 . r1 . pp0
and pp0

, r2: (5:12b)

In addition, we find an analytical formula for the group

optimum when fprev� g (1 2 a)/a (see the electronic

supplementary material, appendix H, for details).
5.2. Vaccination rate / incidence
A vaccination rate proportional to incidence again reflects

media-induced vaccination. However, in this model, the

public reacts to reports of new cases, rather than reports of

the total number of sick individuals. Thus,

_V ¼ fincSI : (5:13)

In the electronic supplementary material, appendix E.2, we

show that

S1¼�
g

b
W0 �

b(1�p)(1�a)

g
e�

bþfinca

g
(1�p)

� �
, (5:14)

V1 ¼ pþ finc

bþ finc

((1� p)(1� a)� S1) (5:15)

and R1 ¼ 1� p� finc(1� p)(1� a)þ bS1

bþ finc

: (5:16)

Again, because there are susceptible individuals left at

the end of the epidemic, pp = 1 2 cp. We show that @ppp ,

0 (in the electronic supplementary material, appendix E.2)

and find that there is a unique CSNE, pi, for which an exact

formula is derived in the electronic supplementary material,

appendix G.2.

5.3. Vaccination rate / proportion still susceptible
In this scenario, susceptible individuals vaccinate at a rate

_V ¼ fsuscS: (5:17)

This is a null model, in the sense that susceptible individuals

have a constant probability per unit time of being vaccinated,

fsusc, independent of the state of the outbreak, as shown in

the electronic supplementary material, appendix B.1.

We were able to obtain analytical final size relations for this

model (see the electronic supplementary material, appendix

E.3), but we found the formulae too cumbersome to be

useful. Thus, the remainder of our analysis of this model was

performed by integrating the differential equations numeri-

cally. In our numerical simulations, we always find that pp

decreases with p (in the electronic supplementary material,

appendix G.3, our proof of the existence of a CSNE depends

on this being true).

5.4. Instantaneous vaccination of a proportion finst of
the population

Some experts believe that the entire USA could be vaccina-

ted in 3 days [21], which is less than the latent period of

smallpox. Consequently, instantaneous vaccination of a pro-

portion finst of the population remaining susceptible after

the outbreak is also a realistic scenario to model. In this

case, once vaccination has occurred, the disease simply

spreads according to the standard SIR model,

_S ¼ �bSI, (5:18a)

_I ¼ (bS� g)I (5:18b)

and _R ¼ gI , (5:18c)

with initial conditions given by

S(0) ¼ (1� p)(1� a)(1� finst),

I(0) ¼ (1� p)a,

R(0) ¼ 0,

V(0) ¼ pþ finst(1� p)(1� a):
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Note that in this scenario we deviate from the convention we

use for all the other models, in which S(0) is the initial density

of susceptibles prior to the beginning of the post-outbreak vac-

cination response. Here, S(0) is the density of susceptibles after
the post-outbreak vaccination response has taken place.

For this scenario, we find (in the electronic supplementary

material, appendix E.4)

S1 ¼ �
g

b
W0 �

b

g
S(0)e�

b
g
(1�V(0))

� �
(5:19)

and

R1 ¼
g

b
ln

S(0)

S1

: (5:20)

We also show that pp is a decreasing function of p, cp is constant

and ppþ cp = 1 (see the electronic supplementary material,

appendix E.4). In addition, we have proved that, for this model,

there is always a unique CSNE, for which we derive an exact

formula in the electronic supplementary material, appendix G.4.

5.5. Constant rate vaccination
This is the model of Bauch et al. [4], in which vaccination occurs at

a constant rate f
const
: Note that in [4] vaccination begins after a

response lag tlag, which is the public health services’ response

time. This lag is taken to be tlag ¼ 0 except in §7.5.

For consistency with [4], we included an exposed (but not

infective) stage (E), in this model, making it an SEIRV model.

This contrasts all the other scenarios, which we have modelled

using a simpler SIRV formulation. Our choice of the SIRV frame-

work for the new scenarios is motivated by mathematical

tractability and by work subsequent to [4], indicating that

SEIR dynamics are captured by an appropriately parametrized

SIR model (see §6.1, but see §7.5.1 for an exception).

The model equations for the constant rate vaccination

scenario are

_S ¼ �bSI � _V, (5:21a)

_E ¼ bSI � sE, (5:21b)

_I ¼ sE� gI, (5:21c)

_R ¼ gI (5:21d)

and _V ¼ f
const

if tlag , t and S . 0,
0 if t � tlag or S � 0:

�
(5:21e)

We have not found a final size relation for this model.

Under the biologically plausible assumption that pp

decreases with p (verified by simulation), Bauch et al. [4]

have shown the existence of a unique CSNE for this model.
6. Parameter estimates, fair comparisons of
models and numerical procedures

Because one of the models we investigate includes an exposed

class, and the vaccination effort parameter f
kmodell

has a different

meaning in each scenario we examine, fair comparisons of

model results are not completely straightforward. In this section,

we consider how the various models can be compared.

6.1. SIR versus SEIR
It is well known that similar dynamics are obtained with the

standard SIR and SEIR models with identical basic reproduc-

tive number, R0, if the mean infectious period in the SIR
model is set equal to the sum of the mean latent and infec-

tious periods in the SEIR model [6, p. 668]. More generally,

models can be fairly compared if they have the same mean

serial interval [13, §4].

Estimates of the basic reproductive ratio R0 of smallpox

vary in the range 3 �R0 � 10 [6–8]. Following [4], we take

R0 ¼ 5. We take the mean serial interval to be tser ¼ 22

days, as in [9, p. 141] (but note that [4] used tser ¼ 14 days,

and [22] estimated tser ¼ 17.7 days).

In the constant rate vaccination model, we take the mean

latent period to be 1/s ¼ 15 days [9, p. 141] (based on summing

the incubation and prodrom periods, which typically last 12 and

3 days, respectively; see [1, p. 188]). In an SEIR model, the mean

serial interval is the sum of the mean latent and infectious

periods [13,23]; hence, 1=g ¼ 22� 15 ¼ 7days and b ¼ gR0 ¼

5/7 per day. In the SIRV models, we take 1/g ¼ tser, whereas

b is modified so that R0 ¼ 5 (i.e. b ¼ gR0 ¼ 5/22 per day).
6.2. Vaccination effort parameter f
kmodell

Public health policy changes will affect the vaccination effort

parameter f
kmodell

, where kmodell refers to any of ‘prev’, ‘inc’,

‘susc’, ‘inst’ or ‘const’. In order to compare the outcomes of

the various vaccination scenarios, for each vaccination

model, we find the fair comparison value of f
kmodell

, that is,

the value of f
kmodell

that yields a maximal vaccination rate

that is equal to the fixed rate in the constant rate vaccination

model of Bauch et al. [4], _V ¼ 0:1 per day (see description

under f
const

below). This allows us to identify, for each scen-

ario, ranges of f
kmodell

that can feasibly be attained in reality

(i.e. f
kmodell

between 0 and the fair comparison value). Our

aim is then to compare the different vaccination strategies

in terms of vaccine doses used and total expected mortality

(we will be interested in the values of these observables at

both the individual equilibrium and the group optimum).

The fair comparison values are summarized in table 4.

fprev. In the prevalence model, _V ¼ fprevI, the vaccination rate

is proportional to the prevalence, I, and the vaccination

effort parameterfprev is the rate of vaccination per infected
individual. In the electronic supplementary material,

appendix F.1, we calculate the maximal vaccination rate

as a function of the model parameters, a, b, g and fprev

and p. We find that the maximal vaccination rate for a

given initial coverage, p, decreases with the vaccination

effort, fprev. We also find that, when a, b and g are as

in tables 1 and 2, a maximal vaccination rate of 0.1 per

day is obtained when fprev� 1582 per day.

finc. In the incidence model, _V ¼ fincSI, the vaccination

effort parameter finc is the vaccination rate per infective
per susceptible. In the electronic supplementary material,

appendix F.2, we calculate the maximal vaccination rate,

as a function of the model parameters, a, b, g and finc.

We show that the maximal vaccination rate,

max { _V : t � 0, p [ [0, 1]}, is an increasing function of

finc, and that in order to obtain a maximal vaccination

rate of 0.1 per day or lower, with a, b and g as in

tables 1 and 2, one needs finc � 5190 per day.

fsusc. With _V ¼ fsuscS, the vaccination effort parameterfsusc is

the vaccination rate per susceptible individual (alternatively,

fsusc can be interpreted as the probability per unit time of a

delayer being vaccinated; see the electronicsupplementary

material, appendix B.1). In this model, the vaccination
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rate _V is always decreasing, because S can only

decrease, so max { _V} ¼ fsuscS(0) ¼ fsusc(1� a)(1� p)

(cf. equation (5.2a)). Because the maximal vaccination

rate decreases with increasing initial coverage, p, the maxi-

mal vaccination rate is attained with no pre-emptive

vaccination ( p¼ 0). Because S(0)¼ 1 2 a, the maximal

vaccination rate is max { _V} ¼ (1� a)fsusc, and a

vaccination rate of 0.1 per day is attained for fsusc¼ 0.1/

(1 2 a) � 0.1 per day (because a� 1).

finst. For instantaneous vaccination, the vaccination effort

parameter finst is the proportion of susceptibles instan-

taneously vaccinated when an outbreak occurs. Thus,

finst [ [0, 1]. The vaccination rate is either 0 (if

finst ¼ 0) or effectively infinite (if 0 , finst � 1, because

vaccination occurs all at once). We thus consider the

entire range 0 � finst � 1, because there is no value of

finst that results in a vaccination rate of 0.1 per day.

f
const

. With _V ¼ f
const

, the vaccination rate is constant, so f
const

is simply the proportion of the total population that can

be vaccinated per unit time. Bauch et al. [4] estimated

f
const

for New York City to be

f
const
¼ (5000 vaccinators)� 200 people per day

vaccinator

� �
� 1

107 people
¼ 0:1

day
: (6:1)

A rate of f
const
¼ 0:1 per day means the entire

population can be vaccinated in 10 days.

6.3. Numerical procedures
When generating figures 1–4, calculations of the following quan-

tities were necessary: the mortality cost, C( p) (equation (4.1)), the

group optimum, pg (§4), and the individual equilibrium, pi (§3).

To find pg, C( p) was numerically minimized using the

optimize function in R [24]. pi was found by implementing

the procedures described in the electronic supplementary

material, appendix G, for the various models, using R’s uni-

root function.

The calculations of both pg and pi depend on pp and cp, the

probabilities of a delayer being infected or vaccinated, respect-

ively (equation (5.3)). For the models in which the vaccination

rate is proportional to prevalence or incidence, we used the

final size relations reported in §§5.1 and 5.2, respectively, to cal-

culate pp and cp. For the remaining models, pp and cp were

obtained by numerically integrating the differential equations

using the deSolve package [25] in R [24].

When generating figure 5, for all the models pp and cp

were calculated by numerical integration of the differential

equations.
7. Results and discussion
7.1. Group optimum versus individual equilibrium
Figure 1 shows the group optimum pg (red) and individual

equilibrium pi (black), as the vaccination effort parameter

f
kmodell

is varied, for the different models. As expected, the

group-optimal coverage is never smaller than the individual

equilibrium, and both decrease as f
kmodell

is increased. The

difference, pi 2 pg, tends to grow initially with f
kmodell

, but

eventually decreases to 0, because the coverage at both the
group optimum and individual equilibrium always drops

to 0 if the vaccination rate parameter f
kmodell

is increased suffi-

ciently. It is also evident that the difference between the

group-optimal coverage and the individual equilibrium

depends strongly on the vaccination model used. In general,

this difference is much smaller for the instantaneous and con-

stant rate vaccination models than it is for the other models in

which vaccination is affected by the state of the outbreak.

7.2. Mortality cost versus vaccination cost
Figure 2 shows the mortality cost (proportion of the population

that dies; figure 2a) and the vaccination cost (proportion of the

population that is vaccinated by the end of the outbreak;

figure 2b) as functions of the vaccination effort parameter,

f
kmodell

, for the various post-outbreak response scenarios.

7.2.1. Mortality plateau
The most striking feature of figure 2 is the plateau in mortality

cost at the individual equilibrium for low values of f
kmodell

: This

plateau can be explained using the Bishop–Cannings theorem

[12,26], which implies that if the individual equilibrium is a

mixed strategy then the pay-off for vaccinating and delaying

must be the same. For low values of f
kmodell

, the individual equi-

librium is mixed (0 , pi , 1), so the mortality cost associated

with vaccinating is the same as for delaying, which is therefore

the same as the overall mortality cost. Because the mortality

cost for vaccinating is equal to the risk from vaccination (rv, or

r in normalized units; cf. equation (3.3) and tables 1 and 2), the

overall mortality cost is constant at rv (or r in normalized units)

as long as the individual equilibrium is mixed. As f
kmodell

is

increased, the individual equilibrium pi is decreased (see §7.1).

When pi reaches 0, there is a pure strategy equilibrium (i.e.

always delay), so the Bishop–Cannings theorem no longer

applies; then, the overall mortality is the mortality of delayers,

which is 2a[ripp þ cprv] (see equation (3.1)) and this decreases

as f
kmodell

is increased (because the epidemic is extinguished

faster).

7.2.2. Public health strategy implications of the mortality plateau
There is an important implication of the plateau in mortality that

occurs for small f
kmodell

if vaccination is voluntary: in order to

achieve any reduction in overall mortality, the post-outbreak

vaccination response must be so strong that no individual

would choose to vaccinate pre-emptively ( pi ¼ 0, i.e. the equili-

brium is for everyone to delay). Only if the post-outbreak

vaccination response is already sufficiently efficient (f
kmodell

is

already sufficiently large; figure 1) can outbreak size (and

hence overall mortality) be reduced by further enhancing the

post-outbreak vaccination response (i.e. by increasing f
kmodell

).

Note that, for every model examined here, the right-hand

(high effort) edge of the mortality plateau in figure 1 occurs

for a value of vaccination effort f
kmodell

lower than the fair com-

parison value (table 4). Thus, at the fair comparison values of

f
kmodell

, the individual equilibrium is always to delay vacci-

nation, and mortality can be reduced by increasing

vaccination effort, f
kmodell

:

However, in §7.5, we show that any lag between the start of

an outbreak and the beginning of post-outbreak vaccination

extends the mortality plateau to higher vaccination efforts,

f
kmodell

, and a long enough lag makes reducing mortality by

increasing vaccination effort impossible. We discuss the

implications of this for public health strategies further in §7.5.
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7.2.3. Generality of the mortality plateau
It is important to note that the mortality plateau described

earlier is a general phenomenon that applies not only to the

post-outbreak vaccination scenarios examined here, but also

to any reasonable post-outbreak vaccination scenario. More

precisely, suppose public health agencies have some measure

of control over a vaccination effort parameter, f. Suppose

also that f ¼ 0 corresponds to no possibility of obtaining vac-

cine post-outbreak, and that the probabilities of a delayer

being infected or vaccinated after an outbreak (pp and cp,

respectively) are continuous functions of p and f (for 0 �
p , 1 and f � 0). As in §3, the costs for delaying and

vaccinating individuals are then a(ripp þ rvcp) and rv,

respectively. Now suppose the following additionally:
(1) If there is no possibility of being vaccinated post-outbreak

(f ¼ 0), and no one is vaccinated pre-emptively ( p ¼ 0),
then individuals are at greater risk than if they had been

vaccinated pre-emptively (i.e. a(ripp þ rvcp)jp ¼0,f ¼0 . rv).

(2) As the initial coverage approaches 100% (p! 1), the dis-

ease does not spread any further than the initial infected

cohort (pp! a). Note that, as shown in the electronic

supplementary material, appendix D, this assumption

holds for all of the models considered in this paper,

and the mathematical argument used to show this is

quite general.

(3) The risk that a delayer is infected in the initial infection

event and then dies is smaller than the risk of mortality

from the vaccine alone (ari , rv).

The vaccination game with this post-outbreak vaccination

scenario is a population game, and thus must have at least

one Nash equilibrium [27, theorem 2.1.1, p. 24].

So for, low enough vaccination effort f, if coverage p is

low, it is more costly to delay than to vaccinate (from the
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first assumption above). Conversely, if coverage p is high

enough, the third assumption above implies that delaying

is preferable to vaccinating pre-emptively. It follows that

any individual equilibrium that results from the vaccination

game is a mixed NE (0 , pi , 1). The preceding argument

presented in §7.2.1 (using the Bishop–Cannings theorem)

now implies the existence of a plateau in mortality.
7.2.4. Vaccination cost plateau
Figure 2b also show a plateau for sufficiently large vaccination

efforts (except for the constant rate vaccination model).

Unlike the mortality plateau, this vaccination cost plateau is

not rigorously a constant (it changes very slightly as a func-

tion of f
kmodell

), but it is certainly a plateau for all intents

and purposes. This plateau occurs because overall
vaccination rises with the vaccination effort, f
kmodell

, and

cannot exceed V1 ¼ 1, so vaccination costs must eventually

taper off.

7.2.5. Perceived versus real risks
The general public is likely to overestimate vaccine-induced

mortality [28–30], which would tend to decrease the pre-

outbreak vaccine coverage under voluntary vaccination. The

game-theoretical framework we employ assumes individuals

behave rationally and possess perfect information on which

to base their decisions, but it is possible to relax the assump-

tion of perfect information while maintaining that of

rationality. Thus, to account for misinformation regarding

the dangers of vaccination (possibly as a result of vaccine

scares), we can interpret ri and rv as the perceived risks of

infection and vaccination (rather than the actual risks) to pre-

dict the effective level of vaccine coverage prior to an
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outbreak (note that perceived risks are to be used to predict

the individual equilibrium, pi, but not when predicting the

group optimum pg, nor when predicting the mortality and

vaccination costs at either of these coverages). Consequently,

public health agencies can potentially reduce mortality by

attempting to influence the public’s estimate of r (the risk

of vaccination relative to infection). For example, risk percep-

tion might be influenced by a media campaign aiming to

increase the accuracy of the public’s perception of vaccine

safety and promote pre-emptive vaccination.

7.3. Comparison of relative costs
In figure 3a, we look at the relative mortality cost difference,

that is, in units of the cost of optimal mandatory vaccination.

Explicitly, we examine how (C( pi) 2 C( pg))/C( pg) varies with

f
kmodell

for each model. Similarly, we plot the relative differ-

ence in vaccination (V1( pi) 2 V1( pg))/V1( pg) (figure 3b),

which is the relative vaccine dose cost difference between

voluntary and mandatory vaccination.
7.3.1. Large variation in relative mortality cost
Observe that, in figure 3a, the relative mortality cost differ-

ence is always non-negative (as expected from the

definition of the group optimum as the pre-outbreak cover-

age for which expected mortality cost is minimal). There is

substantial variability among the models in the dependence

of the relative mortality cost differences on the vaccination

parameter f
kmodell

: In particular, if vaccination rate is pro-

portional to incidence or prevalence, variation in relative

mortality cost is an order of magnitude smaller than if vacci-

nation is instantaneous or at a constant rate. The vaccination

scenario that exhibits the largest variation in relative mor-

tality costs is instantaneous vaccination. In this scenario, a

voluntary vaccination policy could result in over 150%

more deaths than if vaccination were mandatory.

7.3.2. Modest variation in relative vaccine dose cost
There is also substantial variability in the pattern of variation

of relative vaccine dose cost as a function of f
kmodell

among the
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different models (figure 3b). However, for all the models,

variation in relative vaccine dose cost as a function of f
kmodell

is much less than the corresponding variation in relative mor-

tality cost. The maximum variation in relative vaccine dose

cost reaches approximately 16% for the models in which vac-

cination is proportional to prevalence or incidence. This

relatively large variation can be attributed to low pre-out-

break vaccination coverage (at the individual equilibrium)

causing high disease prevalence and incidence; consequently,

because vaccination rate is proportional to prevalence or

incidence, there is correspondingly high post-outbreak vacci-

nation, which overshoots that which would be required to

minimize group mortality. In these two situations, the vac-

cine dose cost at the individual equilibrium can be greater

than at the group optimum. In any case, the relatively small

difference in overall vaccine dose costs, both as a function

of vaccination effort (f
kmodell

) and among vaccination scenarios

(see figure 2b), suggests that vaccine dose cost should

probably not be a factor in public health policy decisions.
1387
7.4. Vaccine dose cost as a function of mortality cost
Figures 2 and 3 present mortality costs and vaccine dose costs

as functions of vaccination effort for the various models.

Because the meaning of the vaccination effort parameter

f
kmodell

differs among models, it is not straightforward to

make meaningful comparisons among the various models

(which is why we calculated ‘fair comparison’ values in §6).

In this section, we display results for the various models, fac-

toring out the vaccination effort parameter. For each model,

figure 4 shows the vaccine dose cost as a function of mortality

cost. In health economics terms, this can be considered a

cost-effectiveness analysis [31].

In figure 4, the squares indicate the point in the mortality-

cost–vaccination-cost plane where the vaccination effort

(f
kmodell

) is the lowest that we considered. Increasing vacci-

nation effort (while remaining at the individual equilibrium

or the group optimum) corresponds to moving away from

the square along the plotted curves.

The graphs in figure 4 allow us to answer practical questions

such as ‘If we want to ensure that no more than one in every 10

million citizens dies, how many vaccine doses are required in

each scenario?’ or ‘If we have a stockpile of vaccine doses suffi-

cient for 30% of the population, what percentage of the

population can be expected to die if there is an outbreak in

each scenario?’ Of course, by construction the graphs do not

indicate how much effort (f
kmodell

) is required to achieve the

desired results. We emphasize that—as shown in the previous

section—vaccine dose cost at the individual equilibrium or

group optimum hardly varies as a function of vaccination

effort (f
kmodell

), so the ‘practical’ questions are not necessarily

well posed (e.g. if we have sufficient vaccine doses for only

30% of the population, then neither the individual equilibrium

nor the group optimum can ever be achieved). This is true for all

the models with parameters appropriate for smallpox; for another

disease graphs like figure 4 could have genuine practical

value for public health policy analysis (e.g. setting R0 ¼ 1.25

and keeping all other model parameters as in tables 1 and 2

causes the vaccination cost to vary between 25% and 99.999%).

In figure 4, when the vaccination rate is proportional to

either prevalence or incidence, note that, as the vaccination

effort, f
kmodell

, increases, two phases of behaviour are appar-

ent for the costs at both pi and pg: first, vaccine dose cost
rises but no change in mortality cost is observed (this is

caused by the plateau in mortality described in §7.2.1).

Then, for all but the instantaneous vaccination model, vaccine

dose cost remains virtually constant (note the differences in

the scales of the vertical axes among the various panels),

but mortality costs decrease.

It is interesting to note that the dependence of vaccine costs

on mortality costs at the group optimum varies among the

models. For example, when vaccination is proportional to

remaining susceptibles, and for the constant rate vaccination

model, we see in figure 4 that at the group optimum, as mor-

tality cost is decreased, vaccine dose cost decreases at first,

but then increases. Thus, in these situations, one can lower

both the mortality and the vaccine dose cost at the same time

by increasing vaccination effort (in health economics terms,

the decision to use higher vaccination effort has negative mar-

ginal cost in vaccine doses per life saved). This contrasts the

models in which vaccination is instantaneous, or proportional

to incidence or prevalence, in which we observe that, as mor-

tality cost is decreased, the vaccine dose cost at the group

optimum remains constant and then increases sharply.

Finally, for the instantaneous vaccination model, there is a

range of vaccination efforts for which one can reduce mortality

without increasing vaccine dose costs at the group optimum. In

this parameter range, the increase in vaccine dose cost necess-

ary to decrease mortality at the individual equilibrium is small

at first, but grows larger as mortality is decreased.
7.5. Effect of vaccination response lag tlag
We have implicitly assumed that in any of the scenarios we

have considered the vaccination response will begin as soon

as an outbreak is seeded by a bioterrorist attack or accidental

release. In contrast, Bauch et al. [4] assumed a lag of two

weeks between the seeding of an outbreak and the initiation

of a vaccination response. In this section, we investigate the

effect of a response lag of tlag days between an outbreak

being seeded and the post-outbreak vaccination campaign

beginning (so far, we have assumed tlag ¼ 0 days; in [4],

tlag ¼ 14 days was assumed).

Intuitively, adding a lag between the beginning of an out-

break and the vaccination response allows the disease to

spread unhindered for some time, which increases the prob-

ability of delayers being infected, thus decreasing the pay-off

for delaying. As a result, the individual equilibrium pi

increases, which consequently extends the mortality plateau

(§7.2.1) to higher values of f
kmodell

:

7.5.1. The critical lag, t�lag
For a disease such as smallpox with R0 � 5, the expected final

size of an uncontrolled epidemic is greater than 99.9% of

the population. If no one is pre-emptively vaccinated, and the

response lag after an outbreak is seeded is sufficiently long,

almost everyone will have been infected before the response

begins, i.e. if tlag is sufficiently long then delayers will almost cer-

tainly be infected before they can be vaccinated. Consequently,

unless the probability of an outbreak (a) is negligible, delaying

will be riskier than vaccinating pre-emptively, so the individual

equilibrium will not be for everyone to delay: we will certainly

have pi . 0. It follows that for response lags longer than some

critical lag, t�lag, mortality cannot be reduced no matter how

much effort is applied in the post-outbreak vaccination response
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(i.e. the mortality plateau described in §7.2.1 continues for

arbitrarily large values of f
kmodell

).

A more precise argument allows us to estimate t�lag:

Suppose the initial coverage is p ¼ 0 (no pre-emptive vacci-

nation). If the risk of becoming infected and dying is larger

than the risk from vaccinating, i.e. arip0 . rv (or, equivalently,

p0 . r/a), then delaying will not be the individual equilibrium.

For any vaccination scenario, the delayers’ probability of being

infected by the end of the outbreak (equation (5.3a)) is greater

than or equal to their probability of being infected before the

vaccination response begins (at time tlag),

p0 � I(tlag)þ R(tlag)
� ����

p¼0
: (7:1)

Therefore, if

I(tlag)þ R(tlag)
� ����

p¼0
.

r
a

, (7:2)

then p0 . r/a and delaying is guaranteed not to be the individ-

ual equilibrium. But for any post-outbreak vaccination scenario

that includes a response lag, when t , tlag the removed pro-

portion of the population, R(t), follows the standard SIR

model solution (with no vaccination). For the SIR model with
no vaccination ( p ¼ 0; a, a and R0 as in table 1), numerical

simulation shows that equation (7.2) is satisfied for tlag�15:1

days. Hence, if the public health response lag is 16 days or

longer, then it is guaranteed that (regardless of the vaccination

scenario or corresponding vaccination effort, f
kmodell

) delaying

will not be the individual equilibrium.

We emphasize that our estimate of 16 days as an upper

bound for t�lag depends on a number of factors, including:

— the probability of an outbreak (a);

— the proportion of susceptibles infected in the initial

outbreak (a); and

— the epidemiological model: the estimate is obtained using

the SIR model, but adding an exposed class (SEIR) with par-

ameters as in table 1 increases the critical lag. Repeating the

calculation for the SEIR model yielded the upper bound

t�lag � 26:3 days. The reason for this difference in critical

lags is that, when the outbreak is seeded, all individuals

initially infected begin their latent period simultaneously,

and take on average 15 days to become infectious.

Thus, t�lag , 16 days should be regarded as a rough esti-

mate at best. Nonetheless, the existence of a critical lag,
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beyond which it is impossible to reduce mortality by increas-

ing vaccination effort, is an important consideration for

public health agencies, in devising contingency plans for

post-outbreak vaccination against diseases.

Note, however, that, in the case of a bioterrorist attack, an

outbreak will probably not be discovered until individuals

show symptoms, i.e. until someone’s latent period has passed

(12 days at a minimum). Taking this delayed detection into

account, it follows that in order to avoid extending the mortality

plateau to all feasible values of vaccination effort, f
const

, the

response lag from discovery of the epidemic to the beginning

of the post-outbreak vaccination response must, in practice, be

substantially shorter than 26 days. This is in contrast to an acci-

dental release, where public health authorities might know of

the outbreak well before anyone has shown symptoms. In this

latter case, because it is more likely that the critical lag has not

been exceeded, it is especially important to begin the vaccination

response as early as possible in order to reduce mortality.

Lastly, it is important to note that the effect of a response

lag on the mortality plateau presupposes that both the vacci-

nation effort and the response lag are known to the public in

advance. This limits the applicability of this effect, because, in

the case of a bioterrorist attack, the response lag probably
depends on when an infective first shows symptoms (which

introduces a stochastic effect). Further analysis would be

needed to determine the effects of a stochastic response lag

on individual behaviour, and thus on mortality.
7.5.2. The effective critical lag, et�lag
We have seen that if the response lag is longer than the criti-

cal lag (tlag . t�lag), then no matter how large the vaccination

effort (f
kmodell

), it is impossible to reduce mortality. Of course,

in practice, the vaccination effort cannot be arbitrarily large

and will be constrained by public health resources. Given a

maximum feasible vaccination effort, it would be helpful to

know how long the response lag can be before the mortality

plateau extends to all feasible levels of vaccination effort.

To address this issue, we define the effective critical lag, ft�lag,

to be the minimal response lag, such that the individual equi-

librium is no longer to delay (i.e. pi . 0) given a maximum
feasible vaccination effort f

kmodell
. Thus, the critical lag t�lag is

the limit of ft�lag as the maximum feasible vaccination effort

becomes arbitrarily large.

In figure 5, we plot the effective critical lag, ft�lag, against

the vaccination effort, f
kmodell

, for the various models
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examined in this paper. For the models for which fair com-

parison values of f
kmodell

are well defined (see §6.2), we used

these as estimates for feasible vaccination efforts. However,

because the fair comparison level of vaccination effort is a

crude estimate for the range of feasible vaccination efforts,

in figure 5a, we plot the effective critical lag at values of

f
kmodell

ranging from 50% to 150% of the fair comparison levels

of vaccination efforts for the various models, in increments of

10% of the fair comparison level of f
kmodell

:

The instantaneous vaccination model was the only model

for which a fair comparison value of vaccination effort finst

could not be defined (see §6.2). For this model, we show

the effective critical lag ft�lag for finst ranging from 0.8 to 1 (if

finst , 0.8, then ft�lag , 1 day) in figure 5b.

We see in figure 5 that, for some vaccination scenarios,

minimizing the response lag tlag is essential: even a short lag

extends the mortality plateau to all feasible vaccination effort

levels, making it impossible to reduce mortality by increasing

effort after the lag. We also note that, for some scenarios, a

good estimate of the attainable vaccination effort is necessary,

because the critical effective lag is very sensitive to the

vaccination effort. These two facts further underline the impor-

tance of accurately modelling post-outbreak vaccination to

inform public health decisions relating to post-outbreak contin-

gency plans. When the response lag is longer than the effective

critical lag (tlag � ft�lag), the only plausible way for public health

officials to decrease mortality (while allowing individuals to

choose whether or not to vaccinate) is to reduce the relative

mortality risk (by decreasing the probability of dying from

vaccination, i.e. developing a safer vaccine).

7.5.3. The response lag should be minimized
Based on §§7.5.1 and 7.5.2, reducing the response lag

lowers expected mortality and makes it easier to decrease

mortality further:

— For vaccination efforts higher than the end of the mor-

tality plateau, everyone will choose to delay vaccination

(§7.2.1). From the discussion leading up to equation

(7.1), it follows that, even in the best-case scenario

where the epidemic is stopped immediately at t ¼ tlag,

mortality will be no less than

ri(I(tlag)þ R(tlag))j p¼0 , (7:3)

which increases with the response time tlag. Thus, increasing

the response lag increases the lowest attainable mortality

(even if vaccination effort can be increased without bound).

— Increasing the response lag increases the vaccination effort

at the end of the mortality plateau (i.e. the minimal vacci-

nation effort beyond which increasing vaccination effort

decreases mortality). Thus, longer response lags make it

harder to achieve a decrease in mortality.

However, note that if a response time lower than the effective

critical lag (tlag , ft�lag) cannot be achieved, neither increasing

the vaccination effort, f
kmodell

, nor decreasing the response

time, tlag, can decrease mortality.
8. Conclusion
We have analysed five distinct scenarios (§2) associated with a

potential smallpox outbreak triggered by a bioterrorist attack
or accidental release. The scenarios differ in the factors that

influence individuals’ perception of risk and how a post-out-

break vaccination response plays out. We examined these

scenarios both with and without an assumed lag between an

outbreak starting and a public health response being initiated.

Our work generalizes the analysis of Bauch et al. [4], who

investigated a single scenario with a response lag of 14 days.

As in [4], we considered separately group interest (opti-

mal strategies for minimizing overall mortality) and self-

interest (stable strategies for individual choices with respect

to pre-emptive vaccination). From each perspective, we

obtained the (imposed or expected) pre-emptive vaccination

coverage ( p) for each scenario (the group optimum pg in

the case of group interest and the individual equilibrium pi

in the case of self-interest; figure 1).

Our principal conclusions are the following.

(1) For a given level of post-outbreak vaccination effort, the

group optimum pre-emptive coverage is always greater

than the individual equilibrium ( pg . pi; figure 1) and the

expected total mortality is always less if public health auth-

orities impose the group optimum rather than letting

individuals make their own vaccination decisions (figure

2a). If no outbreak occurs, then some people will die

unnecessarily from pre-emptive vaccination. Given the dif-

ficulty of estimating the probability of an attack or accidental

release, it would be hard for governments to justify an

imposed pre-emptive vaccination policy for a disease like

smallpox for which the vaccine can cause death.

(2) The number of vaccine doses required at the group opti-

mum and individual equilibrium does not vary

substantially as a function of vaccination effort (e.g.

speed of vaccine distribution post-outbreak) for any of

the scenarios (figure 2b). Consequently, the economic

cost of vaccine production is not likely to play a significant

role in policy decisions.

(3) Total expected mortality as a function of vaccination effort

depends strongly on which scenario is considered (figure

2a). Some vaccination scenarios are affected by the public

reaction to media reports on the epidemic’s progress,

whereas some (the instantaneous and constant rate vacci-

nation scenarios) are under the direct control of public

health authorities. To assist public health authorities pre-

paring for potential outbreaks, further research is

needed to determine which factors have the greatest

influence on individuals’ perception of risk and which

post-outbreak vaccination strategies are most feasible.

(4) For any realistic vaccination scenario, there is a range of vac-

cination effort levels in which increasing vaccination effort

does not reduce overall mortality. In this mortality plateau,

increasing vaccination effort leads only to fewer people vac-

cinating pre-emptively, until the individual equilibrium

becomes to delay vaccination (at which point it is possible

to reduce mortality by increasing the vaccination effort).

Thus, under voluntary vaccination, in order for public

health authorities to expect to reduce mortality by increasing

vaccination effort post-outbreak, their planned post-

outbreak vaccination response must be so efficient that no

one would choose to vaccinate pre-emptively ( pi ¼ 0).

(5) Any lag between the beginning of an outbreak and the

post-outbreak vaccination response makes it harder for

higher vaccination effort levels to make a difference to

overall mortality, and a large enough lag will make it
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impossible to reduce mortality, regardless of the level of

vaccination effort. Given a maximum feasible vaccination

effort level, there is an effective critical lag, beyond which

it is impossible to reduce mortality by increasing vacci-

nation effort. The dependence on the post-outbreak

vaccination scenario, of both the effective critical lag at

feasible levels of vaccination effort and the effect of

changes in vaccination effort on the effective critical

lag, further highlights the importance of researching

realistic post-outbreak vaccination responses.

It is not possible to know with certainty how govern-

ments and health agencies will react, or how individuals
will behave, in the event of an outbreak. However, the

above-mentioned conclusions are based on our analysis of

five distinct post-outbreak scenarios (and some model fea-

tures that are much more generic), so it seems likely that

our conclusions would remain valid if further plausible

scenarios were considered.
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A Lambert W function1

The standard final size relation, which can be derived from the SIR model [1] and many2

other epidemic models [2], is3

Z = 1− e−R0Z . (S1)4

Here, Z is the final size (Z = 1− S∞) and R0 is the basic reproduction number. Z can be5

expressed explicitly as a function of R0 [2, 3],6

Z(R0) = 1 +
1

R0

W [−R0 e
−R0 ] , (S2)7

where the Lambert W function [4, 5] is the inverse function of8

f(W ) = W eW . (S3)9

Use of the Lambert W function is critical for our derivations of final size formulae for models10

we consider here. W (x) is real for x ≥ −1/e ' −0.368 and is two-valued for −1/e < x < 0.11

The upper “principal” branch, for which W (x) ≥ −1, is denoted W 0 and the lower branch12

is denoted W −1. See Figure S1.13

-0.2 0.0 0.2

-5

-4

-3

-2

-1

0

x

W
(x
)

W0

W−1

Figure S1: The Lambert W function, showing the principal branch W 0 and the secondary
branch W −1.
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B Interpretation of vaccination effort parameters14

The vaccination effort parameters are explained § 5. “Fair comparison” values for these15

parameters are derived in § 6.2 and listed in Table 3.16

B.1 φsusc17

In § 6.2, we commented that φsusc can be considered to be the probability per unit time of a18

delayer being vaccinated. To see this, note that the probability (pvacc) of a susceptible delayer19

being vaccinated in the time interval [t, t + ∆t] is the ratio of the number of susceptibles20

vaccinated in that time interval, V (t+ ∆t)− V (t), to the number of susceptibles present at21

the beginning of that time interval, S(t). Thus,22

pvacc =
V (t+ ∆t)− V (t)

S(t)
=
V (t+ ∆t)− V (t)

∆t

1

S(t)
∆t .23

Since lim∆t→0
V (t+∆t)−V (t)

∆t
= V̇ = φsuscS, for small ∆t, we have pvacc ≈ φsusc∆t. Thus, φsusc24

is the (constant) probability per unit time of a delayer being vaccinated.25

C Convergence to disease–free equilibrium26

In this appendix, we show that for all models considered, the epidemic must eventually die27

out (i.e., the system converges to a disease-free equilibrium).28

Consider the SIRV model given by the differential equations29

Ṡ = −βSI − V̇ , (S4a)30

İ = βSI − γI , (S4b)31

Ṙ = γI , (S4c)32

V̇ = f(t, S, I, R, V ) , (S4d)33
34

where f is continuously differentiable and satisfies f(t, S, I, R, V ) ≥ 0, f(t, 0, I, R, V ) = 035

whenever t ≥ 0, S ≥ 0, I ≥ 0,R ≥ 0, V ≥ 0. From the fundamental existence and uniqueness36

theorem [6], there is a unique solution to Equation (S4) for any non-negative initial conditions37

S(0) ≥ 0, I(0) ≥ 0, R(0) ≥ 0 and V (0) ≥ 0. Suppose also that S(0)+I(0)+R(0)+V (0) = 1.38

First, note that S(t) ≥ 0 for all t ≥ 0. To see this, suppose in order to derive a39

contradiction that S(T ) < 0 for some T > 0. Then, since S(t) is continuous, there must be40

some time 0 ≤ τ < T such that S(τ) = 0. But because Ṡ|S=0= 0 it follows that S(t) = 0 for41

all t ≥ τ , which contradicts S(T ) < 0.42

Similarly, it follows that I(t) ≥ 0. Consequently, R(t) is nondecreasing in t, and in43

particular, R(t) ≥ 0. Lastly, V̇ ≥ 0 so V (t) ≥ 0 as well.44

Now, d
dt

(
S(t) + I(t) +R(t) +V (t)

)
= 0 for all t, so S(0) + I(0) +R(0) +V (0) = 1 implies45

S(t) + I(t) + R(t) + V (t) = 1 for all t. Consequently, S(t), I(t), R(t) and V (t) each lie in46

the interval [0, 1] for all time.47
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In addition to being bounded, S(t), R(t) and V (t) are monotonic (their time derivatives48

are non-positive) and therefore have a limit as t→∞. It follows that I(t) also has such a limit49

(I = 1−S−V −R). To see that this limit is 0, suppose instead that I∞ = limt→∞ I(t) > 0.50

Then, limt→∞ Ṙ = γI∞. Thus, there exists a time t∗ such that Ṙ(t) > γI∞/2 for all t∗ < t.51

This implies that the proportion in the recovered class increases at least linearly , and must52

eventually hit R = 1 (no later than at time t∗ + 2/(γI∞)) and be greater than 1 thereafter.53

However, this contradicts the fact that the proportion of the population in any class cannot54

exceed 1. Thus I∞ = limt→∞ I(t) = 0.55

A similar argument can be applied to the constant rate SEIRV model by noting that56

1. If S(0) ≥ 0, E(0) ≥ 0, I(0) ≥ 0, R(0) ≥ 0 and V (0) ≥ 0, then S, E, I, R and V57

remain non-negative for all time.58

2. If S(0) + E(0) + I(0) +R(0) + V (0) = 1, then S + E + I +R + V = 1 for all time.59

3. S(t) → 0 in finite time in this model. To see this, suppose in order to derive a60

contradiction, that S(t) > 0 for all time t ≥ 0. Then, for all t > tlag, Ṡ = φconst ,61

and thus S(t) ≥ φconst(t − tlag). Consequently, S(t) > 1 for all t > tlag + 1/φconst ,62

contradicting the fact that S(t) ≤ 1 for all t.63

4. Since S(t)→ 0 in finite time in this model, it follows that after a finite time Ė = −σE,64

implying that limt→∞E = 0. Since R and V are monotonic and thus have a limit as65

t → ∞, it follows that limt→∞ I = limt→∞ 1− S − E − R − V exists as well, and one66

can continue as before.67

Lastly, a corollary of this convergence to the disease-free equilibrium is that S∞ = limt→∞ S(t)68

is well defined and69

S∞ <
γ

β
=

1

R0

. (S5)70

To see this, observe that since S is monotonic and bounded, it must converge to some71

finite limit within [0, 1], so S∞ is well defined. Next, note that I(0) = α(1 − p) > 0 and72

limt→∞ I(t) = I∞ = 0, so there is some time t∗ at which İ(t∗) < 0 and so S(t∗) < γ/β. But73

Ṡ ≤ 0 and so for any t∗ < t, we have S(t) < γ/β. Thus, Equation (S5) follows because of74

the monotonicity of S.75

D Calculation of π176

In § 5, we stated that as pre-emptive vaccination approaches full coverage (p → 1), the77

probability of a delayer being infected (πp) approaches the proportion of susceptibles initially78

infected in an outbreak (α). Recalling the definition of π1 in Equation (12), the claim is that79

for all the models considered80

π1 = lim
p→1−

πp = α . (S6)81

To verify Equation (S6), first consider the SIRV models defined in Equation (9). The82

proportion of individuals who are eventually removed (R∞) must be greater than the number83
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initially infected (Equation (10b)), so84

R∞ ≥ I(0) = α(1− p) . (S7)85

Thus from Equation (11a), we have πp ≥ α for any p ∈ [0, 1). It follows that π1 ≥ α if the86

limit exists.87

We now show that π1 ≤ α. The basic reproduction number is R0 = β/γ and the effective88

reproduction number when the outbreak begins is (Equation (10a))89

Reff(0) = R0S(0) = R0(1− p)(1− α) . (S8)90

Thus, if p > 1− 1/R0 then Reff(0) < 1, and91

lim
p→1−

Reff(0) = 0 . (S9)92

To prove that π1 ≤ α, we will show that93

πp ≤
α

1−Reff(0)
, for all p > 1− 1

R0

. (S10)94

Equations (9b) and (S4c) imply that Ṙ = γI = βSI − İ. Hence,95

R∞ =

∫ ∞
0

Ṙ dt =

∫ ∞
0

(
βSI − İ

)
dt .96

But S(t) decreases monotonically with t, and I∞ = 0 (Appendix C), so97

R∞ ≤ βS(0)

∫ ∞
0

I dt+ I(0) = Reff(0)

∫ ∞
0

γI dt+ I(0) = Reff(0)R∞ + α(1− p) . (S11)98

Thus,99 (
1−Reff(0)

)
R∞ ≤ α(1− p) , (S12)100

and consequently, for any p > 1− 1/R0,101

πp =
R∞

1− p ≤
α

1−Reff(0)
. (S13)102

In the limit p→ 1−, Equation (S9) implies π1 ≤ α, as required.103

To see that π1 = α for the constant rate vaccination (SEIRV) model (Equation (29)), we104

need only note that in this case,105

R∞ =

∫ ∞
0

γI dt =

∫ ∞
0

(βSI − İ − Ė) dt ≤ R0S(0)

∫ ∞
0

γI dt+ E(0) , (S14)106

where E(0) = α(1− p). Thus, Inequality (S11) holds for the SEIRV model as well, and the107

remainder of the proof that π1 = α is identical to the argument for SIRV models.108
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E Final size relations, πp and ψp109

E.1 Vaccination rate ∝ disease prevalence110

E.1.1 Final size relations111

A näıve model in which vaccination is proportional to prevalence is112

Ṡ = −βSI − φprevI (S15a)113

İ = βSI − γI (S15b)114

Ṙ = γI (S15c)115

V̇ = φprevI . (S15d)116
117

However, Equation (S15a) is not biologically sensible, since if S = 0 and I > 0 it follows that118

Ṡ < 0 and so S attains negative values. Thus, a more realistic model is obtained by replacing119

the vaccination rate φprevI with φprevf(S)I, where f is a nondecreasing and smooth “cutoff120

function” such that f(S) = 1 except for 0 ≤ S < δ, and f(0) = 0. Thus, Equation (S15a) is121

replaced by122

Ṡ = −βSI − φprevf(S)I . (S15a′)123

For convenience, we also choose f to be an odd function, i.e., f(−S) = −f(S) (however,124

since negative values of S are not biologically feasible and are unattainable by this model125

if S(0) ≥ 0, this has no effect on the dynamics of the model for biologically sensible initial126

conditions).127

As δ → 0, V̇ approaches φprev sgn(S)I and Equation (S15a′) approaches128

Ṡ = −βSI − φprev sgn(S)I ,129

where130

sgn(x) =


−1 if x < 0,

0 if x = 0,

1 if x > 0.

131

Thus, a more biologically sensible model where vaccination is proportional to prevalence is:132

Ṡ = −βSI − φprev sgn(S)I (S16a)133

İ = βSI − γI (S16b)134

Ṙ = γI (S16c)135

V̇ = φprev sgn(S)I . (S16d)136
137

In the interior of the biologically meaningful domain,138

∆ = {(S, I, R, V )|S ≥ 0 , I ≥ 0 , R ≥ 0 , V = 1− S + I +R} , (S17)139

the phase portrait for this model is similar to that of the original model and the dynamics140

change only as the hyper-plane S = 0 is reached. For this reason, we analyze the original141
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model (Equations (S15)) and make the necessary corrections to account for Equation (S16d)142

afterwards. We denote state-variable solutions to the original model (Equations (S15)) with143

a superscript 1, as in S1, etc.144

From Appendix C, we know that solutions of Equations (S15) converge to a disease-free145

equilibrium. Thus, we wish to obtain final size relations for this model. We proceed as146

follows:147

From148

dR1

dS1
= − γ

βS1 + φprev

, (S18)149

we have150

R1
∞ =

γ

β
ln
(βS(0) + φprev

βS1
∞ + φprev

)
, (S19)151

where a subscript ∞ indicates the value of that variable at the end of the epidemic (recall152

that S(0) also depends on p). S1
∞ is obtained by a similar trick.153

dI1

dS1
= − βS1 − γ

βS1 + φprev

= −1 +
φprev + γ

βS1 + φprev

(S20)154

I(t)− I(0) = S(0)− S1(t) +
φprev + γ

β
ln
(βS1(t) + φprev

βS(0) + φprev

)
. (S21)155

156

As t→∞, we have157

I∞ − I(0) = S(0)− S1
∞ +

φprev + γ

β
ln
( βS1

∞ + φprev

βS(0) + φprev

)
. (S22)158

Since I1
∞ = 0 and S(0) + I(0) = 1− V (0) = 1− p,159

S1
∞ = (1− p) +

φprev + γ

β
ln

(
βS1
∞ + φprev

βS(0) + φprev

)
= (1− p)− φprev + γ

γ
R1
∞ . (S23)160

Let161

w(x) = (1− p) +
φprev + γ

β
ln

(
βx+ φprev

β(1− p)(1− α) + φprev

)
. (S24)162

We seek solutions to S1
∞ = w(S1

∞) in the range S1
∞ ∈ [0, 1]. We note that no solutions163

of Equation (S15) cross the S-nullcline, S = −φprev/β, and so solutions to Equation (S23)164

are in the range [−φprev/β, 1].165

It is possible to use Equation (S23) to find which initial coverage causes solutions of Equa-166

tion (S15) to hit the S = 0 hyper-plane, as they will be those for which S1
∞ ≤ 0. As long as167

this does not occur, Equations (S19), (S22) and (S23) are valid also for the modified system168

(Equations (S16)).169

From Equation (S23), we have170

S1
∞ = − 1

β

(
φprev + (γ + φprev) W i

(
−βS(0) + φprev

γ + φprev

e
−β(1−p)+φprev

γ+φprev

))
,171
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where i = 0 or −1 specifies the branch of the Lambert W function. To determine which172

branch of W gives the correct final size, observe that S1
∞ < γ/β for any initial condition (in173

the biologically meaningful domain). This follows from the following argument: If S(0) ≤174

γ/β, since S is non-increasing and Ṡ < 0 at time t = 0 (since also I(0) > 0), we are done.175

If S(0) > γ/β, we note that I is increasing for any S such that S > γ/β. But we have176

seen that I∞ = 0. Thus, at some point in time, S < γ/β, and since S is non-increasing,177

we have S1
∞ < γ/β. From this we see that it is necessary to use the principal branch, W 0178

(rather than W −1, which satisfies W −1(x) ≤ −1 for all x in its domain of definition, that is179

(−1/e, 0)). Thus,180

S1
∞ = − 1

β

(
φprev + (γ + φprev) W 0

(
−βS(0) + φprev

γ + φprev

e
−β(1−p)+φprev

γ+φprev

))
. (S25)181

For convenience, we rewrite Equations (S19), (S22) and (S23) to give:182

ln

(
βS(0) + φprev

βS1
∞ + φprev

)
=

β

φprev + γ

(
1− p− S1

∞
)
, (S26)183

and184

R1
∞ =

γ

β
ln

(
βS(0) + φprev

βS1
∞ + φprev

)
=

γ

φprev + γ

(
1− p− S1

∞
)
. (S27)185

Thus,186

V 1
∞ = 1−R1

∞ − S1
∞187

= 1− γ

φprev + γ

(
1− p− S1

∞
)
− S1

∞188

=
φprev

γ + φprev

(1− S1
∞) +

γ

γ + φprev

p . (S28)189

190

To see when we can use S∞ = S1
∞, R∞ = R1

∞ and V∞ = V 1
∞, it is necessary to find191

when Equation (S25) yields a negative S1
∞. First, we evaluate how S∞ changes with p. To192

find ∂pS
1
∞, apply ∂p := ∂

∂p
to Equation (S23), to get (recall that S(0) = (1 − α)(1 − p), so193

∂pS(0) = −(1− α))194

∂pS
1
∞ =

γ + φprev

β

[
β(1− α)

βS(0) + φprev

+
β∂pS

1
∞

βS1
∞ + φprev

]
− 1 (S29)195 (

1− γ + φprev

βS1
∞ + φprev

)
∂pS

1
∞ =

(γ + φprev)(1− α)

βS(0) + φprev

− 1 (S30)196

∂pS
1
∞ =

(
(γ + φprev)(1− α)

βS(0) + φprev

− 1

)
/

(
1− γ + φprev

βS1
∞ + φprev

)
(S31)197

198

Since S1
∞ < γ/β, it follows that 1− (γ + φprev)/(βS1

∞ + φprev) < 0. Thus,199

sgn(∂pS
1
∞) = sgn [βS(0) + φprev − (γ + φprev)(1− α)] , (S32)200
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and since S(0) = (1− p)(1− α), we have:201

sgn ∂pS
1
∞ =


1 if pm > p

0 if pm = p,

−1 if pm < p ,

(S33)202

where the local maximum is attained at203

p = pm := 1 +
φprev − (γ + φprev)(1− α)

β(1− α)
= 1 +

αφprev − γ(1− α)

β(1− α)
. (S34)204

Observe that pm ∈ [0, 1] ⇐⇒ αφprev ≤ γ(1 − α) and αφprev ≥ (γ − β)(1 − α). However,205

the second condition, which is necessary to ensure pm ≥ 0, is trivially satisfied whenever206

β/γ = R0 ≥ 1. Thus, if R0 ≥ 1, then pm ∈ [0, 1] iff207

αφprev ≤ γ(1− α) . (S35)208

The maximum value of S1
∞ is thus:209

max
p∈[0,1]

S1
∞ = − 1

β

(
φprev + (γ + φprev) W 0

(
−βS(0) + φprev

γ + φprev

e
− φprev−γ(1−α)

(γ+φprev)(1−α)

))
. (S36)210

Now solving for S1
∞ = 0 using Equation (S25), we have211

p0(i) = 1 +
φprev

β(1− α)
+
γ + φprev

β
W i

(
− φprev

(1− α)(γ + φprev)
e
− φprev

(1−α)(γ+φprev)

)
(S37)212

for i = 0 or −1. Note that for φprev > 0, Equation (S37) gives two values for p0; we cannot213

simply cancel out the operation of W with xex, since in this case x = − φprev

(1−α)(φprev+γ)
< 0214

and W is not univalued for negative arguments. Instead, we have two possibilities for215

W

(
φprev

(α−1)(γ+φprev)
e

φprev
(α−1)(γ+φprev)

)
corresponding to the two branches, W 0 and W −1.216

If αφprev < (1 − α)γ, then W 0

(
− φprev

(1−α)(γ+φprev)
e
− φprev

(1−α)(γ+φprev)

)
= − φprev

(1−α)(γ+φprev)
, which217

gives p0(0) = 1. If αφprev ≥ (1 − α)γ then similarly p0(−1) = 1. This is in agreement with218

the fact that if p = 1, S(0) = 0, and so S1
∞ = 0.219

There are now three cases, which we express as two main cases, the second of which has220

two subcases:221

• if pm ≥ 1 (which happens iff αφprev ≥ (1 − α)γ ), then S1
∞ ≤ 0 ∀p ∈ [0, 1]. This222

follows since if pm ≥ 1 then p0(−1) = 1 ≤ pm ≤ p0(0). Thus because S1
∞ is increasing223

for p < pm, so for p ∈ [0, 1], S1
∞ ≤ S1

∞|p=1= 0. In this case, S∞ is not given by S1
∞, but224

is simply S∞ = 0.225

• If pm ∈ (0, 1) then S1
∞|pm> S1

∞|p=1= 0 and p0(−1) < pm.226
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– If 0 ≤ p0(−1) (and p0(−1) < pm < 1) then227

S∞ =

{
0 if p < p0(−1),

S1
∞ if p0(−1) ≤ p .

(S38)228

– If p0(−1) ≤ 0 then S1
∞ ≥ 0 ∀p ∈ [0, 1] and so S∞ = S1

∞ for any p ∈ [0, 1].229

In all but the very last sub-case, it is also necessary to adjust our formulae for the final230

sizes of the removed and vaccinated compartments, R∞ and V∞, for the values of p for which231

S∞ = 0. Qualitatively, this adjustment is necessary because, when δ → 0+, if a solution232

reaches S = 0 in finite time, S remains 0, while I decays exponentially to 0. However, the233

solutions of Equations (S15) are only identical to those of Equations (S16) so long as S > 0.234

Moreover, once S = 0, V remains constant and all the infectives move into the recovered235

compartment, which is not the case for solutions of Equations (S15).236

To find formulas for R∞ and V∞, fix p ∈ [0, 1) and let t0 be the first time at which no
susceptibles remain (S(t0) = S1(t0) = 0). Then Equations (S15) are valid for any t < t0. We
now have

R(t) =
γ

β
ln

(
βS(0) + φprev

βS(t) + φprev

)
I(t) = I(0) + S(0)− S(t) +

φprev + γ

β
ln

(
βS(t) + φprev

βS(0) + φprev

)
,

in a manner analogous to Equation (S19) and Equation (S22). These equations depend on
S = S(t) in a way that is continuous at S = 0, and so taking t→ t0 is equivalent to taking
S → 0:

R(t0) =
γ

β
ln

(
βS(0) + φprev

φprev

)
(S39)

I(t0) = I(0) + S(0) +
φprev + γ

β
ln

(
φprev

βS(0) + φprev

)
. (S40)

When S = 0, I decays exponentially to 0, until all the infectives present at t0 transition into237

the removed class, R. Thus, we have238

R∞ = R(t0) + I(t0) = 1− p− φprev

β
ln

(
β

φprev

S(0) + 1

)
. (S41)239

Next, we know that once S = 0, V does not change either, since there are no more240

susceptibles to be vaccinated. Thus,241

V∞ = V (t0) = 1−R(t0)− I(t0) = 1−R∞ = p+
φprev

β
ln

(
β

φprev

S(0) + 1

)
(S42)242
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Figure S2: The proportion of individuals remaining susceptible at the end of the epidemic,
S∞, as a function of the proportion of the population vaccinated preemptively, p, for the
model in which vaccination rate is proportional to prevalence. The line y(p) = (1−α)(1−p)
is overlaid in red. We take the proportion of susceptibles initially infected, α, to be the
estimated value in the left panel (α = 1.72× 10−5) and a much larger value for comparison
in the right panel (α = 0.1); the remaining model parameters are as in Table 1. See § E.1.2.

To summarize our results so far,243

S∞ =

{
0 if p < p0 or 1 ≤ pm,

S1
∞ if p0 ≤ p ≤ 1 ,

(S43a)244

R∞ =

1− p− φprev

β
ln
(

β
φprev

S(0) + 1
)

if p < p0 or 1 ≤ pm,
γ

γ+φprev
(1− p− S1

∞) if p0 ≤ p ≤ 1 ,
(S43b)245

V∞ =

p+ φprev

β
ln
(

β
φprev

S(0) + 1
)

if p < p0 or 1 ≤ pm,

1
γ+φprev

(φprev(1− S1
∞) + γp) if p0 ≤ p ≤ 1 ,

(S43c)246

247

where S1
∞ is given by Equation (S25).248

E.1.2 Qualitative behaviour of S1
∞ for high vaccine coverage249

Qualitatively, observe that for high values of p, S1
∞ ≈ (1 − α)(1 − p) (see Figure S2). This250

is because when p > pd := 1 − γ
β(1−α)

then S(0) < γ/β, in which case I decays to 0251

monotonically (the subscript “d” denotes decay of I). Now in this case, S decreases at least252
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as fast as it does in the vaccination-less SIR model, and so I decreases at least as fast as in253

the vaccination-less case too. Because S is monotonically decreasing, I decays faster than254

I(0)e(βS(0)−γ)t. Because I decays at least exponentially, S hardly changes over the course of255

the epidemic, and so we see an approximately linear decay in S1
∞ ≈ S(0) = (1 − α)(1 − p)256

to 0 as we increase p. This last phenomenon is related to the herd immunity effect in the257

standard SIR model: when the entire population is susceptible, in the absence of post-258

outbreak vaccination (φprev = 0), the critical vaccine coverage which stops the epidemic259

from taking off is p = 1− 1
Reff

= 1− γ
β(1−α)

. But note, moreover, that the maximal value of260

S1
∞ is not attained at pd. Rather, we see that261

pm − pd =
α(φprev + γ)

β(1− α)
> 0 . (S44)262

This is because even when p > pd and I immediately decays to 0 (starting at t = 0), there263

are still some susceptibles converted into vaccinated individuals, due to I > 0. This number264

of susceptibles lost to vaccination decreases as p is increased, since this decreases I(0) as265

well. Thus, for p > pd, initially S∞ increases with p. Only when p > pm does the decrease266

in S∞ due to more susceptibles being vaccinated pre-emptively take over.267

E.1.3 πp decreases and ψp increases with p when pm ≥ 1268

Consider the first case above: if pm ≥ 1 (see Equation (S43)), then S∞ = 0 and we have269

V∞ = p+
φprev

β
ln

(
β

φprev

S(0) + 1

)
270

ψp =
φprev

β(1− p) ln

(
β

φprev

S(0) + 1

)
.271

272

Note that since S∞ = 0, πp = 1− ψp. Letting x = β
φprev

S(0) = β(1−α)
φprev

(1− p),273

ψ(x) = ψp(x) = (1− α)
ln (x+ 1)

x
,274

so275

∂pψp = −β(1− α)

φprev

∂ψ(x)

∂x
= −β(1− α)

φprev

x− (1 + x) ln(1 + x)

x2(x+ 1)
276

= −β(1− α)

φprev

β
φprev

S(0)− ( β
φprev

S(0) + 1) ln( β
φprev

S(0) + 1)(
β

φprev
S(0)

)2

( β
φprev

S(0) + 1)
277

= −φprev(1− α)

β

βS(0)− (βS(0) + φprev) ln( β
φprev

S(0) + 1)

(S(0))2 (βS(0) + φprev)
. (S45)278

279

Since x < (x+1) ln(1+x) ∀x > −1, it follows that for p ∈ [0, 1), ∂pψp > 0 and consequently,280

∂pπp < 0.281
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E.1.4 Behaviour of p0(−1) as φprev → 0+
282

Using Equation (S37), one can show that limφprev→0+ p0(−1) = −∞. This follows because283

limφprev→0− W −1 (x) = −∞. But because p0(−1)→ 1 as φprev → γ(1−α
α

, it follows that there284

is some value of φprev for which p0(−1) = 0. This φprev can be found from Equation (S37),285

but the formula is not needed here.286

However, we also note that φprev <
γ(1−α
α

(along with R0 > 1) implies pm ∈ (0, 1), so for287

small φprev, we have pm ∈ (0, 1) and p0(−1) < 0 (in fact, as φprev → 0+, pm → 1 − 1/R0).288

Thus, for φprev → 0+ (small enough such that p0(−1) < 0), S1
∞ > 0 for p ∈ [0, 1).289

E.2 Vaccination rate ∝ incidence290

The model equations are291

Ṡ = −βSI − φincSI (S46a)292

İ = βSI − γI (S46b)293

Ṙ = γI (S46c)294

V̇ = φincSI . (S46d)295
296

Finding the final sizes for this model is somewhat similar to when vaccination is propor-297

tional to prevalence:298

dI

dS
= − βSI − γI

(β + φinc)SI
=

γ

β + φinc

1

S
− β

β + φinc

(S47)299

I(t)− I(0) =
γ

β + φinc

ln

(
S(t)

S(0)

)
− β

β + φinc

(S(t)− S(0)) (S48)300

−(1− p)α =
γ

β + φinc

ln

(
S∞

(1− p)(1− α)

)
− β

β + φinc

(S∞ − (1− p)(1− α)) (S49)301

S∞ =
γ

β
ln
( S∞

(1− p)(1− α)

)
+
(

1 +
φinc

β
α
)

(1− p) , (S50)302

303

where Equation (S49) is obtained by taking t→∞ in Equation (S48). The solution of Equa-304

tion (S50) is given explicitly by305

S∞ = −γ
β

W 0

(
−β(1− p)(1− α)

γ
e−

β+φincα

γ
(1−p)

)
, (S51)306

where we take the principle branch of the Lambert function, W 0, because solutions are in the307

range S∞ ∈ [0, γ/β] (see Equation (S5) in Appendix C). Note also that S∞ > 0 iff S(0) > 0308

(that is, p < 1 and α < 1). Thus, S = 0 is not attainable in scenarios of interest here.309

14



To find V∞, we proceed similarly:310

V̇ = − φinc

β + φinc

Ṡ (S52)311

V∞ − V (0) = − φinc

β + φinc

(S∞ − S(0)) (S53)312

V∞ − p =
φinc

β + φinc

((1− p)(1− α)− S∞) . (S54)313

314

At the end of the epidemic, 1 = R∞ + S∞ + V∞, hence,315

R∞ = 1− p+
φinc

β + φinc

(S∞ − (1− p)(1− α))− S∞316

= 1− p− φinc(1− p)(1− α) + βS∞
β + φinc

. (S55)317

318

Thus,319

πp =
R∞

1− p = 1− φinc

β + φinc

(1− α)− βS∞
(β + φinc)(1− p)

(S56a)320

ψp =
V∞ − p
1− p =

φinc

β + φinc

(
(1− α)− S∞

1− p

)
. (S56b)321

322

Note that whenever S(0) > 0, there are susceptible individuals left at the end of the epidemic,323

and so πp 6= 1− ψp.324

Using ∂p

(
S∞
1−p

)
= (1−p)∂pS∞+S∞

(1−p)2 we have325

∂pS∞ =
γ

β

(
∂pS∞
S∞

+
1

1− p

)
−
(

1 +
φinc

β
α

)
326

βS∞ − γ
βS∞

∂pS∞ =
γ

β(1− p) − 1− φinc

β
α327

∂pS∞ =
γ

1− p
S∞

βS∞ − γ
− (φincα + β)

S∞
βS∞ − γ

328

=
γ − (φincα + β)(1− p)

(1− p)
S∞

βS∞ − γ
329

(1− p)∂pS∞ + S∞ =
(βS∞ − (1− p)(β + φincα))S∞

βS∞ − γ
330

∂p

(
S∞

1− p

)
=

(βS∞ − (1− p)(β + φincα))S∞
βS∞ − γ

1

(1− p)2
. (S57)331

332

From Equation (S50)333

βS∞ − (1− p)(β + φincα) = γ ln
( S∞
S(0)

)
< 0 (S58)334
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because S∞ < S(0) (unless S(0) or I(0) is 0, in which case an outbreak cannot take place).335

Thus ∂p

(
S∞
1−p

)
> 0 and so336

∂pπp < 0 (S59)337

∂pψp < 0 . (S60)338
339

Note also that S∞ attains a local maximum (in p) at340

pm = 1− γ/(φincα + β) . (S61)341

pm < 0 for γ > φincα+ β, in which case S∞ decreases with p on the interval [0, 1]. This can342

only happen when γ > β, that is when R0 < 1, implying that for any disease which can343

spread in the population (with no vaccination), pre-emptive vaccination initially raises, then344

lowers the proportion of susceptibles remaining at the end of the epidemic. The maximum345

level of remaining susceptibles is346

S∞|p=pm= −γ
β

W 0

(
− β(1− α)

(φincα + β)e

)
. (S62)347

However, R∞ is more informative, since susceptibles can be depleted by either infection or348

vaccination, and so fewer remaining susceptibles does not necessarily imply a larger epidemic,349

nor does it imply that more individuals were vaccinated. However,350

∂pR∞ = ∂p ((1− p)πp) = −πp + (1− p)∂pπp < 0 , (S63)351
352

which shows that increasing pre-emptive vaccine coverage decreases the size of the epidemic,353

as expected.354

E.3 Vaccination rate ∝ proportion still susceptible355

The model equations are356

Ṡ = −βSI − φsuscS (S64a)357

İ = βSI − γI (S64b)358

Ṙ = γI (S64c)359

V̇ = φsuscS . (S64d)360
361

In this case, a similar strategy to the one we employed for the case where vaccination is362

proportional to prevalence doesn’t quite work. Calculating S∞(I(0)) is not enough, since we363

do not know how the remainder of the population is partitioned between the removed and364

vaccinated classes at the end of the epidemic. The following calculations are also helpful but365

insufficient:366

İ

I
= βS − γ =

β

φsusc

V̇ − γ (S65)367

Ṡ

S
= −βI − φsusc = −β

γ
Ṙ− φsusc , (S66)368

369
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so370

ln
( I(t)

I(0)

)
=

β

φsusc

(V (t)− V (0))− γt (S67)371

ln
(S(t)

S(0)

)
= −β

γ
(R(t)−R(0))− φsusct . (S68)372

373

However, it is not possible to extract V∞ and R∞ from here because phase-portrait arguments374

show that I and S tend to 0 as t→∞ (this is also implied by Equations (S67) and (S68)),375

thus both sides of these equations diverge as t→∞.376

Nonetheless, a similar method to the one employed in Appendix E.2 yields a relation377

between S(t) and I(t) from which, using the previous relations, a relation between R(t) and378

V (t) can be obtained. These will not diverge as t→∞ (they are bounded), so any divergent379

components must cancel out.380

dS

dI
= −(βI + φsusc)S

(βS − γ)I
(S69)381

(βS − γ)

S
dS = −(βI + φsusc)

I
dI (S70)382

(β − γ

S
)dS = −(β +

φsusc

I
)dI (S71)383

β(S(t)− S(0))− γ ln
(S(t)

S(0)

)
= −β(I(t)− I(0))− φsusc ln

( I(t)

I(0)

)
(S72)384

385

from which we get:386

S(t) = −γ
β

W

(
−β
γ
e
β
γ

(I(t)−I(0)−S(0))(
I(t)

I(0)
)
φsusc
γ S(0)

)
. (S73)387

By taking the limit t → ∞ in Equation (S73), we see that S∞ = 0, and conseqently,388

ψp = 1− πp.389

We now determine under which conditions each of the two branches of the Lambert W390

function is used in Equation (S73). First, note that391

S(I) = −γ
β

W (z(p))392

z(I) = −β
γ
e
β
γ

(I(t)−I(0)−S(0))

(
I(t)

I(0)

)φsusc
γ

S(0)393

z(I(0)) = −β
γ
S(0)e−

β
γ
S(0) .394

395

For I = I(0), we expect to get W (−β
γ
S(0)) = −β

γ
S(0) so that S(I = I(0)) = S(t = 0).396

We know that S(0) > γ
β

which implies that for t = 0, we must use W 1. Because S(t)397

monotonically decreases to 0 as t→ 0, we know that the branch W 1 is used until the peak398
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prevalence is attained (at which time S = γ/β), and then the principal branch W 0 is used.399

Now,400

dR

dI
=

γI

βSI − γI401

=
γ

βS − γ402

=
−1

W
(
−β
γ
e
β
γ

(I−I(0)−S(0))( I
I(0)

)
φsusc
γ S(0)

)
+ 1

. (S74)403

404

This can be integrated, to give405

R∞ = R(0) +

∫ I∞

I(0)

γ

βS − γ dI (S75)406

= R(0) +

∫ I∞

I(0)

−1

W i

(
−β
γ
e
β
γ

(I−I(0)−S(0))( I
I(0)

)
φsusc
γ S(0)

)
+ 1

dI407

=

∫ I(0)

0

1

W i

(
−β
γ
e
β
γ

(I−I(0)−S(0))( I
I(0)

)
φsusc
γ S(0)

)
+ 1

dI , (S76)408

409

where the appropriate branch of W i is determined as above, as the integration varible I is410

varied. Note, however, that the integral in Equation (S75) is improper, because the integral411

diverges at the peak prevalence (when S = γ/β).412

E.4 Instantaneous vaccination of a proportion φinst of the popula-413

tion414

In this case, the disease progresses according to the standard SIR model,415

Ṡ = −βSI , (S77a)416

İ = (βS − γ)I , (S77b)417

Ṙ = γI , (S77c)418
419

with initial conditions given by420

S(0) = (1− p)(1− α)(1− φinst)421

I(0) = (1− p)α422

R(0) = 0423

V (0) = p+ φinst(1− p)(1− α) .424
425

Note that for this model, S(0) is the density of susceptibles after the post-outbreak vaccina-426

tion response has taken place.427
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Equation (S77a) implies that428

− γ

β

d

dt
ln (S) = Ṙ , (S78)429

thus S∞ satisfies the equation430

γ

β
ln

(
S(0)

S∞

)
= R∞ = 1− V (0)− S∞ , (S79)431

or432

S∞ = −γ
β

W 0

(
−β
γ
S(0)e−

β
γ

(1−V (0))

)
. (S80)433

We use the principle branch of the Lambert function in order to obtain solutions satisfying434

S∞ ≤ S(0). Since −β
γ
S(0)e−

β
γ

(1−V (0)) > −β
γ
S(0)e−

β
γ
S(0), and W 1 is monotonically decreas-435

ing, − γ
β

W 1

(
−β
γ
S(0)e−

β
γ

(1−V (0))
)
> S(0), which does not correspond to biologically feasible436

solutions. In addition, we have R∞ = γ
β

ln S(0)
S∞

.437

Since there is no vaccination except during the initial (immediate) response to the out-438

break, V∞ = V (0) = p+ φinst(1− p)(1− α), and so439

ψp =
V∞ − p
1− p = φinst(1− α) (S81a)440

πp = 1− ψp −
S∞

1− p . (S81b)441

442

Using Equation (S79), we also have443

πp = − γ

β(1− p) ln

(
1− πp − φinst(1− α)

(1− α)(1− φinst)

)
(S82)444

It follows from Equation (S81b) that πp is a decreasing function of p: from Equation (S79)445

we have446

γ

β

(
− 1

1− p −
∂pS∞
S∞

)
= −1 + φinst(1− α)− ∂pS∞ (S83)447

and so448

∂pS∞ =

(
−1 + φinst(1− α) +

γ

β

1

1− p

)(
βS∞

βS∞ − γ

)
. (S84)449

This gives450

(1− p)∂pS∞ + S∞ =
βS∞

βS∞ − γ
((1− p) (−1 + φinst(1− α)) + S∞)451

=
βS∞

γ − βS∞
(1− V∞ − S∞) , (S85)452

453
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which is positive so long as R∞ > 0 (this happens when S(0) > S∞, which is true whenever454

S(0) and I(0) are not 0). It now follows that ∂pπp = − (1−p)∂pS∞+S∞
(1−p)2 < 0. Note that the455

probability of a delayer being vaccinated post-outbreak (ψp) is constant.456

Lastly, note that457

(1− p)∂pS∞ =

(
1− V∞ −

γ

β

)(
βS∞

γ − βS∞

)
, (S86)458

which implies that S∞ increases with p iff (1 − p)(1 − φinst(1 − α))β > γ, or equivalently,459

I(0) + S(0) = 1 − V∞ > γ
β
. Compare this to the more stringent condition S(0) > γ

β
which460

ensures that the epidemic takes off (I ′(0) > 0).461

F Maximal vaccination rate for fair comparison of mod-462

els463

In this section, we find the fair comparison values of the vaccination efforts φinc and φprev464

(see § 6.2). These are defined as the levels of vaccination effort φinc and φprev that result in465

maximal vaccination rates equal to 0.1/day (that is, comparable to [7]).466

F.1 Maximal Vaccination rate when V̇ = φprevI467

We begin by finding what the maximal vaccination is when V̇ = φprevI. Because the vac-468

cination rate, V̇ , is maximal when prevalence, I, is maximal, we aim to find the maximal469

prevalence. Now observe that since İ = (βS − γ) I, incidence is maximal when S = γ/β.470

Thus, the peak prevalence is found by substituting S = γ/β, into Equation (S21) to obtain471

Ipeak = 1− p− γ/β +
γ + φprev

β
ln
( γ + φprev

βS(0) + φprev

)
(S87)472

(recall that I(0) + S(0) = 1 − p). We now wish to find at which value of p the maximal473

vaccination rate (over time) is largest. Observe that474

∂

∂p
Ipeak = −1 +

(γ + φprev)(1− α)

βS(0) + φprev

, (S88)475

∂2

∂p2
Ipeak =

β(γ + φprev)(1− α)2

(βS(0) + φprev)2
> 0 , (S89)476

477

which implies that the peak prevalence (and thus the maximal vaccination rate) has a minium478

in p when479

pcrit =
(β − γ)(1− α) + φprevα

β(1− α)
> 0 (S90)480

(β > γ because R0 > 1).481

There are now two possibilities:482
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• If pcrit ≥ 1 (which happens iff φprevα ≤ γ(1 − α)) then the maximal vaccination rate483

is attained when p = 0.484

• If pcrit < 1 (which happens iff φprevα > γ(1− α)) then, the maximal vaccination rate485

must be attained either when p = 0 or when p = 1.486

Noting that487

Ipeak|p=0 = 1− γ/β +
γ + φprev

β
ln
( γ + φprev

β(1− α) + φprev

)
488

Ipeak|p=1 = −γ/β +
γ + φprev

β
ln
(γ + φprev

φprev

)
, (S91)489

490

it follows that491

V̇max = −φprev
γ

β
+ φprev max

{
1 +

γ + φprev

β
ln
( γ + φprev

β(1− α) + φprev

)
,492

γ + φprev

β
ln
(γ + φprev

φprev

)}
. (S92)493

494

We also note that495

∂

∂φprev

Ipeak =
1

β
ln
( γ + φprev

βS(0) + φprev

)
+

1

β

(
1− γ + φprev

βS(0) + φprev

)
. (S93)496

Because 1− x + ln(x) < 0 for any 0 < x 6= 1, it follows that the peak prevalence Ipeak, and497

thus the peak vaccination rate, decreases with increasing vaccination effort, φprev (for any498

initial coverage, p). Also, as φprev →∞, we have499

Ipeak|p=0 → α ,500

Ipeak|p=1 → 0 .501
502

Setting V̇max = 0.1/day in Equation (S92) we can numerically solve for φprev, with α, β,503

γ, as in Tables 1 and 2 to obtain φprev ≈ 1582/day.504

F.2 Maximal Vaccination rate when V̇ = φincSI505

First, we will derrive a formula for the maximal vaccination rate as it depends on the model506

parameters, α, β, γ, φinc. We then use this formula to calculate the appropriate range for507

φinc, given the estimates of the other parameters cited in Tables 1 and 2.508

Differentiating Equation (S46d), we have509

V̈ = φinc

(
ṠI + Sİ

)
= φincSI

(
βS − γ − (β + φinc)I

)
.510

Thus, critical points of V̇ (excluding those for which V̇ = 0) occur when βS−γ = (β+φinc)I.511

Using Equation (S48) and simplifying, this is equivalent to512

2βS = γ lnS + φinc(1− p)α + β(1− p) + γ
(

1− ln
(
(1− p)(1− α)

))
,513
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which has two formal solutions,514

Ŝk = − γ

2β
W k

(
−2

β

γ
(1− p)(1− α)e−

β+φincα

γ
(1−p)−1

)
,515

with k = 0 or −1.516

However, it is impossible for Ŝ0 to be attained by S(t), for all t ≥ 0. To see this, suppose,517

in order to derive a contradiction, that there is some time t̂0 ≥ 0 such that S(t̂0) = Ŝ0. Note518

that −1 ≤ W 0 < 0 on the interval [−1/e, 0), so 0 < Ŝ0 < γ/β. Because Ŝ0 < γ/β, we have519

İ(t̂0) < 0. Since Ṡ < 0 (for all time t), it follows that V̈ < 0 when t = t̂0, in contradiction520

to the fact that by definition of Ŝ0, V̈ (t̂0) = 0. Thus, S(t) > Ŝ0 is proven1. It follows that if521

there is a biologically relevant value of S at which V̈ changes signs, it must be522

Ŝ−1 = − γ

2β
W −1

(
−2

β

γe
(1− p)(1− α)e−

β+φincα

γ
(1−p)

)
. (S94)523

Note that Ŝ−1 >
γ
2β

because W −1(x) < −1 ∀x ∈ [−1/e, 0] (but it is also possible that524

Ŝ−1 > S(0) = (1− p)(1− α), which would make this critical point biologically unfeasible).525

Because S decreases with time, we see that V̈ can change signs at most once for all t ≥ 0.526

Observe that since 0 < S∞ < γ/β, and V̇ decreases when S ∈ (0, γ/β], it follows that V̇527

eventually (i.e., for large enough t) decreases with time. Hence, if V̈ (0) ≤ 0, then t = 0 is a528

maximum of V̇ for t ≥ 0, and if V̈ (0) > 0 then V̇ attains its maximum when S(t) = Ŝ−1. The529

sign of V̈ (0) is identical to the sign of βS(0)−γ− (β+φinc)I(0), so the maximal vaccination530

rate is attained at t = 0 if (1− p)
(
(1− 2α)β − αφinc

)
≤ γ, and when S(t) = Ŝ−1 otherwise.531

Thus,532

ν(p) = max
t≥0

V̇ =

{
φinc(1− p)2(1− α)α if (1− p)((1− 2α)β − αφinc) ≤ γ ,
φinc

φinc+β
(βŜ−1 − γ)Ŝ−1 if (1− p)((1− 2α)β − αφinc) > γ ,

(S95)533

(where, for the second case, we used the fact that I = βŜ−1−γ
φinc+β

when S = Ŝ−1).534

To maximize ν over all p ∈ [0, 1) (with α, β, γ and φinc fixed), we consider the following535

3 cases:536

• First, if 0 < γ < (1− 2α)β − αφinc, then (1−p)((1−2α)β−αφinc) ≤ γ is equivalent to537

p̂ = 1− γ
(1−2α)β−αφinc

≤ p, and p̂ ∈ (0, 1). Hence, for p ∈ [p̂, 1), ν(p) = φinc(1− p)2(1− α)α538

is a decreasing function of p, and so maxp∈[p̂,1) ν(p) = φinc

(
γ

(1−2α)β−αφinc

)2

(1−α)α, and539

is attained when p = p̂.540

When 0 ≤ p < p̂, we note that because (βx − γ)x is parabolic with a minimum at541

x = γ/2β, and Ŝ−1 ≥ γ
2β

, it follows that542

ν(p) =
φinc

φinc + β
(βŜ−1 − γ)Ŝ−1 (S96)543

1Consequently, S∞ ≥ Ŝ0, which is equivalent to a statement about the Lambert W function: W 0(2x/e) ≥
2W 0(x), for −1/e < x < 0.
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is increasing in Ŝ−1, so maxp∈[0,p̂] ν(p) is attained on this interval when Ŝ−1 is maxi-544

mized. Because − γ
2β

W −1(x) is monotonically increasing, it follows that maxp∈[0,p̂] ν(p)545

is maximal when546

−2
β

γe
(1− p)(1− α)e−

β+φincα

γ
(1−p)

547

is maximal. Consequently, we need to maximize −axe−x (with a > 0), with x(p) =548

β+φincα
γ

(1−p), over the interval 0 ≤ p ≤ p̂. This corresponds to maximizing−axe−x over549

[β+φincα
γ

, β+φincα
(1−2α)β−αφinc

] ⊂ [1,∞). Observe that −axe−x has a unique global minimum550

at x = 1, and in particular, it is increasing when x ≥ 1. This implies that in the551

relevant range of x, Ŝ−1 increases with x, and thus decreases in p. It follows that Ŝ−1552

is maximal when p = 0, and its value is553

Ŝ−1|p=0= − γ

2β
W −1

(
−2

β

γe
(1− α)e−

β+φincα

γ

)
. (S97)554

Thus, maxp∈[0,1) ν(p) = ν(0), and is attained when p = 0 (note also that ν(p) is555

continuous at p = p̂).556

• When 0 < (1− 2α)β − αφinc ≤ γ, (1 − p)((1 − 2α)β − αφinc) ≤ γ is equivalent to557

p̂ = 1− γ
(1−2α)β−αφinc

≤ p, which is satisfied for all p ∈ [0, 1), since p̂ ≤ 0. Thus, ν(p) is558

a decreasing function of p for all p ∈ [0, 1), and thus maxp∈[0,1) ν(p) = φinc(1 − α)α is559

attained at p = 0.560

• When αφinc ≥ (1− 2α)β, then (1− p)((1− 2α)β−αφinc) ≤ γ is always satisfied (since561

the left hand side is never positive, and γ > 0). Thus, ν(p) = φinc(1 − p)2(1 − α)α,562

which decreases with p, so maxp∈[0,1) ν(p) = φinc(1− α)α, and is attained at p = 0.563

Rearranging the conclusions of the preceeding discussion, we see that564

max
p∈[0,1),t≥0

V̇ =

{
φinc

φinc+β
(βŜ−1 − γ)Ŝ−1|p=0 if 0 ≤ αφinc < (1− 2α)β − γ ,

αφinc(1− α) if (1− 2α)β − γ ≤ φincα .
(S98)565

566

When 0 ≤ αφinc < (1 − 2α)β − γ, then maxp∈[0,1),t≥0 V̇ = φinc

φinc+β
(βŜ−1 − γ)Ŝ−1|p=0,567

which increases as S−1|p=0 increases, as stated earlier. Since −W −1(x) increases with x,568

and −2 β
γe

(1 − α)e−
β+φincα

γ is an increasing function of φinc, we conclude that in this range,569

maxp∈[0,1),t≥0 V̇ increases with φinc. When (1− 2α)β − γ ≤ φincα, maxp∈[0,1) ν(p) manifestly570

increases linearly with φinc. In all, maxp∈[0,1),t≥0 V̇ is a monotonically increasing function of571

φinc.572

Note that at the point separating the two regimes, φinc = (1−2α)β−γ
α

= 16570.71/day,573

maxp∈[0,1),t≥0 V̇ =
(
(1− 2α)β − γ

)
(1− α) = 0.29/day (with parameters as in Table 1).574

Finally, to obtain a value of φinc that yields a maximal vaccination rate of Φ = 0.1/day575

(as was estimated in [7]), we solve576

φinc

φinc + β
(βŜ−1 − γ)Ŝ−1|p=0= Φ , (S99)577
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which gives Ŝ−1|p=0=
γ±
√
γ2+4βΦ(1+β/φinc)

2β
. We take the solution corresponding to the positive578

sign (the other one gives negative Ŝ−1, which is biologically absurd). Thus,579

W −1

(
−2

β

γe
(1− α)e−

β+φincα

γ

)
= −1−

√
1 + 4

β

γ2
Φ(1 + β/φinc) , (S100)580

which is equivalent to581

2β(1− α)

γ
(
1 +

√
1 + 4 β

γ2 Φ(1 + β/φinc)
) = exp

(β + φincα

γ
−
√

1 + 4
β

γ2
Φ(1 + β/φinc)

)
,582

which we solve numerically for φinc, with parameters as in Tables 1 and 2, to get φinc ≈583

5190/day.584

G The individual equilibrium585

In this section, we show that for each of the five models defined in § 5, the game defined586

in § 3 always has a unique convergently stable Nash equilibrium (defined in § 3 and abbre-587

viated CSNE). The proofs given here are constructive, i.e., they also provide a method for588

numerically finding the individual equilbrium (pi).589

G.1 Vaccination rate ∝ disease prevalence590

In this scenario we have 3 cases to examine:591

1. pm ≥ 1 (⇐⇒ αφprev ≥ γ(1− α))592

2. pm ≤ 1 and p0 ≤ 0593

3. pm ≤ 1 and p0 ∈ (0, 1)594

Recall that in the first case, we have proven (in Appendix E.1) that πp decreases with p. As595

stated in § 5.1, we assume that πp decreases with p for the other two cases as well.596

G.1.1 pm ≥ 1597

In this case, we have a unique convergently stable Nash equilibrium (CSNE). To see this,598

note that ψp + πp = 1 and ∂pπp < 0. Thus,599

∆E = [πp + (1− πp)r − r/a]a(P −Q)600

= [πpa(1− r)− r(1− a)](P −Q)601

= a(1− r)
[
πp −

r(1− a)

a(1− r)

]
(P −Q) . (S101)602

603

24



It is convenient to define604

ρ1 =
r(1− a)

a(1− r) =
r

1− r

/
a

1− a , (S102)605

which we can interpret as an odds ratio, namely the odds of a bad outcome from vaccination606

(compared with infection) relative to the odds of an outbreak occuring. The odds ratio is607

well-defined and strictly positive (ρ1 > 0) because 0 < r < 1 and 0 < a < 1. Since πp608

decreases monotonically with p, there are three cases:609

• If π0 ≤ ρ1 then πp < ρ1 ∀p > 0. It follows that ∀ε ∈ [0, 1) ∆E > 0 ∀Q 6= P ⇐⇒610

P = 0. Hence pi = 0 is the unique Nash equilibrium. Let 0 ≤ P < Q and fix ε ∈ [0, 1).611

It follows that p > 0, and so πp − ρ1 < 0. Thus ∆E > 0 and pi is convergently stable.612

• If α = π1 ≥ ρ1, then πp > ρ1 ∀p < 1. It follows that ∀ε ∈ [0, 1) ∆E > 0 ∀Q 6=613

P ⇐⇒ P = 1. Hence pi = 1 is the unique Nash equilibrium. The condition translates614

to r(1− a) < αa(1− r), or rv < ariα + arv(1− α). Recall that if an outbreak occurs,615

at the end of the epidemic individuals have either been vaccinated or have contracted616

the disease. Thus the right hand side is the risk to a vaccinator, and the left hand side617

is the minimal possible risk to a delayer (assuming no-one is infected after the initial618

outbreak; if there are secondary infections, then because rv < ri, the delayer’s risk can619

only be increased). Let 1 ≥ P > Q and fix ε ∈ [0, 1). It follows that p < 1, and so620

πp − ρ1 > 0. Thus ∆E > 0 and pi is convergently stable.621

• If π0 > ρ1 > π1 = α then there is a unique p̃ ∈ (0, 1) such that πp − ρ1 > 0 if p < p̃,622

πp̃ = ρ1 and πp − ρ1 < 0 if p > p̃. Now since for any ε ∈ [0, 1), Q < P =⇒ p < P623

and Q > P =⇒ p > P , we have ∀ε ∈ [0, 1) ∆E > 0 ∀Q 6= P ⇐⇒ P = p̃624

(for other P take Q between P and p̃). Thus, the unique Nash equilibrium pi is the625

unique solution to πpi
= ρ1. Fix ε ∈ [0, 1). If Q < P ≤ pi, Q ≤ p < P ≤ pi. Thus626

πp − ρ1 > 0 =⇒ ∆E > 0. Similarly, If Q > P ≥ pi, Q ≥ p > P ≥ pi. Thus627

πp − ρ1 < 0 =⇒ ∆E > 0. Hence pi is convergently stable.628

Now, to find p̃: recall that 1− πp = φprev

β(1−p) ln
(

β
φprev

(1− α)(1− p) + 1
)

and thus629

p̃ = 1 + φprev

(1− ρ1) + (1− α) W
(
−1−ρ1

1−α e
− 1−ρ1

1−α

)
(1− α)β(1− ρ1)

. (S103)630

Again, W is applied to a negative argument, and it is necessary to determine which631

branch of W to use. The principal branch gives p̃ = 1, and πp → α as p → 1, and632

ρ1 > α by assumption, and so by elimination we must use W −1. Interestingly, p̃633

depends linearly on φprev. Recall that W −1 ≤ −1, and so ∂p̃
∂φprev

< 0.634

Thus, in all three cases there exists a unique CNSE.635
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G.1.2 pm ≤ 1 and p0 ≤ 0636

In the 2nd case, recall that ψp = φprev

γ
πp, and let637

ρ2 =
r

a(1 + rφprev/γ)
, (S104)638

to obtain639

∆E = [πp +
φprev

γ
πpr − r/a]a(P −Q)640

= [πpa(1 +
φprev

γ
r)− r](P −Q)641

= a(1 +
φprev

γ
r)[πp −

γr

a(rφprev + γ)
](P −Q)642

= a(1 +
φprev

γ
r)[πp − ρ2](P −Q) . (S105)643

644

Now recall that πp decreases with p. So, an identical argument to the one in Ap-645

pendix G.1.1 also applies here:646

• If π0 ≤ ρ2 then πp < ρ2 ∀p > 0. Thus, ∀ε ∈ [0, 1) ∆E > 0 ∀Q 6= P ⇐⇒ P = 0.647

Hence pi = 0 is the unique Nash equilibrium. Let 0 ≤ Q < P < 1 and fix ε ∈ [0, 1). It648

follows that p > 0, and so πp − ρ2 < 0. Thus ∆E > 0 and pi is convergently stable.649

• If α = π1 ≥ ρ2 ≥ 0, then πp > ρ2 ∀p < 1. It follows that ∀ε ∈ [0, 1) ∆E > 0 ∀Q 6=650

P ⇐⇒ P = 1. Hence pi = 1 is the unique Nash equilibrium. Let 1 ≥ P > Q and651

fix ε ∈ [0, 1). It follows that p < 1, and so πp − ρ2 > 0. Thus ∆E > 0 and pi is652

convergently stable.653

• If π0 > ρ2 > π1 = α then there is a unique p̃ ∈ (0, 1) such that πp − ρ2 > 0 if p < p̃,654

πp̃ = ρ2 and πp − ρ2 < 0 if p > p̃. Now since for any ε ∈ [0, 1), Q < P =⇒ p < P655

and Q > P =⇒ p > P , we have ∀ε ∈ [0, 1) ∆E > 0 ∀Q 6= P ⇐⇒ P = p̃.656

Thus, the unique Nash equilibrium pi is the unique solution to πpi
= ρ2. Fix ε ∈ [0, 1).657

If Q < P ≤ pi, Q ≤ p < P ≤ pi. Thus πp − ρ2 > 0 =⇒ ∆E > 0. Similarly,658

If Q > P ≥ pi, Q ≥ p > P ≥ pi. Thus πp − ρ2 < 0 =⇒ ∆E > 0. Hence pi is659

convergently stable.660
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To find p̃, recall that R1
∞ = (1− p)πp. Furthermore, from Equation (S27), we have661

R1
∞ =

γ

β
ln

(
βS(0) + φprev

βS1
∞ + φprev

)
662

S1
∞ = 1− p− φprev + γ

γ
R1
∞663

⇓664

R1
∞ =

γ

β
ln

(
βS(0) + φprev

β(1− p− φprev+γ

γ
R1
∞) + φprev

)
665

⇓666

(1− p)πp =
γ

β
ln

 βS(0) + φprev

β(1− p)
(

1− φprev+γ

γ
πp

)
+ φprev

 .667

668

Substituting p = p̃, and using πp̃ = ρ2 = γr
a(rφprev+γ)

, we obtain after minor rearrange-669

ment670

β(1− p̃)r
a(rφprev + γ)

= ln

(
a(β(1− p̃)(1− α) + φprev)(rφprev + γ)

β(1− p̃)(γ(a− r)− (1− a)rφprev) + φpreva(rφprev + γ)

)
.

(S106)

671

672

However, we have not succeeded in obtaining an analytical solution for the individual673

equilibrium from this equation.674

Thus, in all three cases there exists a unique CSNE.675

G.1.3 pm ≤ 1 and p0 ∈ (0, 1)676

Since πp decreases with p, the argument above shows that there is a unique CSNE in each677

of the the two intervals [0, p0] and [p0, 1], denoted PI,1 and PI,2, respectively. These are678

the only candidates for Nash equilibria in the interval [0, 1]: Adding the two sub-intervals679

together amounts to adding more strategies to the game. Thus, a strategy which was a680

Nash equilibrium in one of the sub-intervals may not be a Nash equilibrium for the larger681

strategy set (because players now have a larger strategy set to choose from). However, a682

strategy which is a Nash equilibrium for [0, 1] must be a Nash equilibrium in any sub-interval683

of [0, 1] which contains it. The situation for convergent stability is a bit more subtle, and is684

considered below.685

Note that when p 6= p0,686

sgn(∆E) = sgn
(
(πp − ρ(p))(P −Q)

)
(S107)687

where688

ρ(p) =

{
ρ1 if p < p0,

ρ2 if p ≥ p0 .
(S108)689
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Note also that690

πp0 = ρ1 ⇐⇒ r =
γa

φprev(1− a) + γ
⇐⇒ πp0 = ρ2 . (S109)691

692

This may seem slightly perplexing at first, but recall that πp0 = γ
φprev+γ

. Thus, if it so693

happens that πp0 = ρ1 or πp0 = ρ2, r and a must be related so that in fact ρ1 = ρ2.694

We must now check a number of cases:695

1. π0 ≤ ρ1 and πp0 < ρ2: In this case, πp < ρ(p) ∀p ∈ (0, 1], and PI,1 = 0 and PI,2 = p0.696

But if P = p0 and Q ∈ [0, p0), ∆E < 0 and so P = p0 cannot be a Nash equilibrium.697

However, if P = 0, then ∀ε ∈ [0, 1) ∆E > 0 ∀Q 6= P , and so P = 0 is a Nash698

equilibrium. This is trivial for Q ≤ p0. For p0 < Q, we have πp − ρ(p) < 0 and699

P − Q < 0, so ∆E > 0 as required. For convergent stability, we only need to check700

that if 0 < P < p0 < Q ≤ 1, then for any ε ∈ [0, 1) we have ∆E > 0. In this case,701

p ∈ [P,Q], and P −Q < 0. Furthermore, πp − ρ1 < 0 for any p ≤ p0, and πp − ρ2 < 0702

for any p ≥ p0. But since πp0 − ρ2 < 0, πp0 − ρ1 = 0 is impossible and from continuity,703

πp − ρ1 < 0. Thus, ∆E(P,Q, ε) > 0 as required for convergent stability.704

2. π0 ≤ ρ1 and πp0 > ρ2 > π1 = α: In this case, PI,1 = 0 and PI,2 ∈ (p0, 1). Since705

PI,1 = 0 is a CSNE in [0, p0], we know that for any ε ∈ [0, 1) and 0 < P < Q ≤ p0,706

∆E > 0. In particular, for ε = 0, and 0 < P < Q = p0 we get [πp0 + ψp0r − r/a] =707

∆E
(P−Q)

< 0. But, from PI,2 ∈ (p0, 1) we can similarly get (for ε = 0, p0 = Q < P < PI,2)708

[πp0 + ψp0r − r/a]a = ∆E
(P−Q)

> 0, a contradiction.709

3. π0 ≤ ρ1 and α = π1 ≥ ρ2 > 0: Here, PI,1 = 0 and PI,2 = 1. Since PI,1 = 0 is a CSNE710

in [0, p0], ∀ε ∈ [0, 1) and 0 ≤ P < Q ≤ p0, ∆E > 0. In particular, for ε = 0, and711

0 < P < Q = p0 we get [πp0 + ψp0r − r/a] = ∆E
(P−Q)

< 0. Similarly, since PI,2 = 1 is a712

CSNE in [p0, 1], ∀ε ∈ [0, 1) and p0 ≤ Q < P ≤ 1, ∆E > 0. In particular, for ε = 0,713

and p0 = Q < P ≤ 1 we get [πp0 + ψp0r − r/a] = ∆E
(P−Q)

> 0, which is a contradiction.714

4. ρ2 ≥ πp0 ≥ ρ1: In this case, simple algebra gives ρ1 = ρ2 = πp0 and PI,1 = p0 and715

PI,2 = p0. Thus, it follows that p0 is the unique CSNE in the interval [0, 1].716

5. πp0 > ρ1 and α = π1 ≥ ρ2: In a manner analogous to the first case, here, pi = 1 is the717

unique CSNE.718

6. πp0 > ρ1 and πp0 > ρ2 > π1 = α : , PI,1 = p0 and PI,2 ∈ (p0, 1). PI,1 = p0 cannot719

be a Nash equilibrium since for p0 < Q < PI,2, and any ε ∈ [0, 1), ∆E < 0 since PI,2720

is the unique CSNE in [p0, 1]. To show that PI,2 is a Nash equilibrium, fix ε ∈ [0, 1)721

and P = PI,2 and let Q < PI,2. Note that πp > ρ1 ∀p ∈ [0, p0] and that because πp722

is decreasing and πPI,2 = ρ2 , πp > ρ2 ∀p < PI,2. Thus πp > ρ(p) ∀p < PI,2 and so in723

particular, ∆E > 0 and PI,2 is the unique Nash equilibrium. To see that PI,2 is also724

convergently stable, we must only show that for any P and Q, 0 ≥ Q < p0 < P < PI,2725

and ε ∈ [0, 1), we have ∆E > 0. But under these conditions, p < PI,2 and so again726

πp > ρ(p), which implies ∆E > 0, as required.727
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7. π0 > ρ1 > πp0 and πp0 < ρ2: Now, PI,1 ∈ (0, p0) and PI,2 = p0. Similar to the above728

case, this implies that PI,1 is the unique CSNE (given by Equation (S103)).729

8. π0 > ρ1 > πp0 and α = π1 ≥ ρ2: Simple algebra shows that this case is impossible:730

ρ1 > πp0 =
γ

γ + φprev

731

r(1− a)(γ + φprev) > a(1− r)γ732

r((1− a)φprev + γ) > aγ733
734

but735

ρ2 ≤ π1 < πp0 =
γ

γ + φprev

736

r(γ + φprev) < a(φprevr + γ)737

r((1− a)φprev + γ) < aγ .738
739

9. π0 > ρ1 > πp0 and πp0 > ρ2 > π1: The reasoning applied to show that the case above740

is impossible also rules this case out.741

We conclude that in all cases there is a unique CSNE, which we denote by pi.742

G.2 Vaccination rate ∝ incidence743

Since ∂pψp < 0 and ∂pπp < 0, ∂p (πp + rψp) < 0. Thus, an identical argument to the one744

given in Appendix G.3 allows us to show that there is always a CSNE for this model. In745

particular, there are three possibilities:746

• If π0 + rψ0 ≤ r/a then pi = 0 is a unique CSNE.747

• If α = π1 + rψ1 ≥ r/a, then pi = 1 is a unique CSNE.748

• If π0 + rψ0 > r/a > π1 + rψ1 = α then there is a unique CSNE, pi ∈ (0, 1) such that749

πpi
+ rψpi

= r/a. To simplify this last condition, we use Equations (S56) to obtain750

0 = πpi
+ ψpi

r − r

a
=
a (β + r(1− α)φinc)− r(β + φinc)

a(β + φinc)
− β + rφinc

β + φinc

S∞
1− pi

751

752

which is equivalent to753

S∞
1− pi

=
a (β + αφinc + r(1− α)φinc)− r(β + φinc)

a(β + rφinc)
. (S110)754

Plugging Equation (S110) into Equation (S50) and rearranging gives the individual755

equilibrium,756

pi = 1 +
aγ(β + rφinc)

r(β + φinc)(β + aαφinc)
757

× ln

(
a (β + αφinc + r(1− α)φinc)− r(β + φinc)

a(1− α)(β + rφinc)

)
. (S111)758

759
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G.3 Vaccination rate ∝ proportion still susceptible760

Recall that for this model, ψp = 1−πp (see Appendix E.3) and that we assume πp decreases761

with p (as stated in § 5.2). Thus, ∂p (πp + rψp) = ∂p ((1− r)πp) < 0, and we can infer that:762

• If π0 + rψ0 ≤ r/a then πp + rψp < r/a ∀p > 0. Hence pi = 0 is the unique Nash763

equilibrium. From reasoning similar to that given in Appendix G.1.1, pi is convergently764

stable.765

• If α = π1 + rψ1 ≥ r/a, then πp + rψp > r/a ∀p < 1. It follows that pi = 1 is the766

unique Nash equilibrum and that it is convergently stable. The condition is equivalent767

to aαri ≥ rv, which is quite intuitive: aαri is a lower bound on the cost for a delayer768

(attained when there are no new cases after the initial outbreak). If even this lower769

bound is higher than the cost of vaccinating, then clearly everyone should vaccinate.770

• If π0 + rψ0 > r/a > π1 + rψ1 = α then there is a unique CSNE, pi ∈ (0, 1) such that771

πpi
+ rψpi

= r/a.772

Thus, there is always a CSNE for this model.773

G.4 Instantaneous vaccination of a proportion φinst of the popu-774

lation775

In this case, ψp = φinst(1− α) and πp = 1− ψp − S∞
1−p . Thus,776

∆E = [πp + φinst(1− α)r − r/a]a(P −Q) . (S112)777

Letting ρ = r/a − rφinst(1 − α), since πp decreases monotonically with p, we can use an778

argument similar to those used for the models considered above to show that:779

• if π0 ≤ ρ the pi = 0 is the unique CSNE.780

• if π1 ≥ ρ then πp > ρ for any p ∈ [0, 1) and so pi = 1 is the unique CSNE. Rearranging781

the condition π1 ≥ ρ gives aα + raφinst(1 − α) ≥ r. This admits a simple biological782

interpretation: aα+raφinst(1−α) is the relative risk of delaying when the epidemic does783

not successfully spread (that is, one can only be infected during the initial outbreak).784

Thus, if the risks of delaying are greater than vaccinating even if the disease does not785

spread beyond the cohort initially infected in the outbreak, then it is worthwhile for786

individuals to vaccinate pre-emptively.787

• if π0 > ρ > 0 then there is a unique CSNE, pi ∈ (0, 1) such that πpi
= ρ. In order to788

find pi explicitly, we use Equation (S82) and substitute πpi
= r/a− rφinst(1− α):789

r/a− rφinst(1− α) = − γ

β(1− pi)
ln

(
1− r/a− (1− r)φinst(1− α)

(1− α)(1− φinst)

)
,790

and consequently,791

pi = 1 +
aγ

rβ(1− aφinst(1− α))
ln

(
a (1− (1− r)φinst(1− α))− r

a(1− α)(1− φinst)

)
. (S113)792
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G.5 constant rate vaccination793

As in [7], we assume πp is a decreasing function of p. The analysis (performed originally794

in [7]) is then identical to Appendix G.1.1, implying the existence of a unique CSNE, which795

we denote by pi. Using the definition of ρ1 given in Equation (S102), we have796

• if π1 ≥ ρ1 then pi = 1.797

• if π1 < ρ1 < π0 then pi is the unique solution of πpi
= ρ1798

• if ρ1 ≥ π0 then pi = 0.799

H The group optimum800

We have obtained an analytical formula for the group optimum (defined in § 4), for one801

sub-case of one of our models. The calculation is given below.802

H.1 Vaccination rate ∝ disease prevalence803

We consider the case when pm ≥ 1. Recall that if pm ≥ 1, then S∞ = 0, ψp = φprev

β(1−p) ln
(

β
φprev

S(0) + 1
)

,804

and πp = 1− ψp (see Appendix E.1). Thus,805

C(p) = rp+ (1− p)a(1− (1− r)ψp)806

= rp+ (1− p)a
(

1− (1− r) φprev

β(1− p) ln

(
β

φprev

S(0) + 1

))
807

= rp+ a

(
(1− p)− (1− r)φprev

β
ln

(
β

φprev

S(0) + 1

))
808

C(0) = a(1− (1− r)φprev

β
ln

(
β

φprev

(1− α) + 1

)
809

C(1) = r810

C ′(p) = r + a

(
−1− (1− r)φprev

β

(
− β

φprev

(1− α)

)
1

β
φprev

S(0) + 1

)
811

= r + a

(
φprev(1− α)(1− r)
βS(0) + φprev

− 1

)
(S114)812

813

Note that C ′(p) increases with p since S(0) decreases with p and critical points of C(p) are814

minima. Thus, if there is a critical point within [0, 1], then it is the global minimum; other-815

wise, the global minimum is at C(0). To find critical points, set C ′(p) = 0 or equivalently,816

r

a
= 1− φprev(1− α)(1− r)

βS(0) + φprev

(S115)817

which can only happen if r < a (since α < 1 and r < 1), that is, the relative risk (of818

vaccination versus infection) is less than the probability of an outbreak. If r ≥ a then819
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C ′(p) ≥ 0 throughout [0, 1] and the minimal group cost C(p) is attained at pg = 0. This is820

easily explained: If rv ≥ ari then the mortality risks from vaccination are no less than those821

of dying in an outbreak. In this case, vaccinating is not worthwhile for either the individual822

or the group. We now solve Equation (S115) for the initial coverage p at the critical point823

of the group cost, C(p), assuming r < a:824

βS(0) =
φprev(1− α)a(1− r)

a− r − φprev825

1− p =
φprev

β(1− α)

(
(1− α)a(1− r)

a− r − 1

)
826

p = 1− φprev

β(1− α)

(
(1− a)r − (1− r)αa

a− r

)
(S116)827

828

The critical point is attained at p ≥ 1 if and only if (1 − a)r ≤ (1 − r)αa, which is829

equivalent to830

rv ≤ a(riα + rv(1− α)) , (S117)831

and in this case the group optimum is vaccinating the entire population (pg = 1). Biologi-832

cally, Equation (S117) means that more people are expected to die if, in case of an outbreak,833

all individuals not infected initially are vaccinated (discounted by the outbreak probability,834

a), than the number of people expected to die if the entire population is vaccinated pre-835

emptively. To see this, note the probability of death due to vaccinating is rv (the left hand836

side of Equation (S117)). To interpret the right hand side of Equation (S117), consider an837

individual who is not vaccinated pre-emptively. If there is an outbreak (represented by the838

factor a), the first term in brackets (riα) represents the probability of being in the initially in-839

fected cohort (α), and then dying due to the disease. The second term (rv(1−α)), represents840

the probability of not being in the initially infected cohort, and dying due to the vaccine side841

effects. Note that because in this scenario S∞ = 0, no delayers remain susceptible (they are842

either infected or vaccinated). Thus, any individual who is not pre-emptively vaccinated,843

and who is not in the initially infected cohort (1 − α) has either a probability rv of dying844

due to vaccine side effects, or a probability ri of dying due to the disease. But since rv < ri,845

the term rv(1 − α) is a lower bound on the probability of death for an individual who is846

susceptible immediately after the outbreak is seeded (that is, not pre-emptively vaccinated,847

or in the cohort initially infected at the beginning of the outbreak).848

Note that not vaccinating anyone pre-emptively is the group optimum (pg ≤ 0) iff849

β(1− α)(a− r) ≤ φprev ((1− a)r − (1− r)αa) , (S118)850

(but this condition is difficult to interpret biologically).851

Lastly, if φprev ≤ β (a−r)(1−α)
r(1−a(1−α))−aα and (1 − a)r > (1 − r)αa, then pg ∈ [0, 1) and is given852

by Equation (S116). It is thus interesting to note that pg depends piece-wise linearly on853

φprev.854
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