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Abstract We investigate a type of public goods games played in groups of individuals
who choose how much to contribute towards the production of a common good, at a
cost to themselves. In these games, the common good is produced based on the sum of
contributions from all group members, then equally distributed among them. In appli-
cations, the dependence of the commongoodon the total contribution is often nonlinear
(e.g., exhibiting synergy or diminishing returns). To date, most theoretical and exper-
imental studies have addressed scenarios in which the set of possible contributions is
discrete. However, in many real-world situations, contributions are continuous (e.g.,
individuals volunteering their time). The “n-player snowdrift games” that we analyze
involve continuously varying contributions.We establish under what conditions popu-
lations of contributing (or “cooperating”) individuals can evolve and persist. Previous
work on snowdrift games, using adaptive dynamics, has found that what we term an
“equally cooperative” strategy is locally convergently and evolutionarily stable. Using
static evolutionary game theory,wefind conditions underwhich this strategy is actually
globally evolutionarily stable. All these results refer to stability to invasion by a single
mutant. We broaden the scope of existing stability results by showing that the equally
cooperative strategy is locally stable to potentially large population perturbations, i.e.,
allowing for the possibility that mutants make up a non-negligible proportion of the
population (due, for example, to genetic drift, environmental variability or dispersal).
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1 Introduction

Public goods games (Hauert et al. 2002; Archetti and Scheuring 2012) arise in a wide
variety of biological and social contexts, ranging from microbial evolution (Cordero
et al. 2012; Rainey and Rainey 2003), tumor growth (Archetti 2013), the evolution of
virulence (Brown et al. 2002) and host manipulation by parasites (Brown 1999), to
cooperative nesting and brood care (Leighton 2014; Houston andDavies 1985; Savage
et al. 2015; Parker et al. 2002), the evolution of eusociality (Reeve and Hölldobler
2007), fisheries management (Kraak 2011) and family economics (Browning et al.
2014). These are games played among groups of individuals, who may choose to
cooperate and contribute towards the production or attainment of a common good
at a cost to themselves, or to defect and contribute nothing. The common good is
then distributed among all members of the group (regardless of whether or not they
contributed) (Kagel and Roth 1995). This situation is analogous to Hardin’s “Tragedy
of the Commons” (Hardin 1968), in which the cost of using a common resource
is distributed among group members, but the benefit is personal (e.g., intrabrood
competition for parental investment, Parker et al. 2002). In both cases, those who
act selfishly (by refraining from contribution or by overexploitation), do better than
group members who cooperate (either by contributing or by refraining from over-
exploiting the common resource). Because cooperative ventures are ubiquitous in
nature (Dugatkin 1997; Clutton-Brock 2009), much research has been devoted to
understanding how cooperation can evolve and persist (Motro 1991; Frank 2010;
Boyd and Richerson 2002; Fehr and Gächter 1999); see recent reviews by Gavrilets
(2015) and Gokhale and Traulsen (2014).

In experimental economics studies of human behaviour, public goods games are
typically set up with a linear relationship between the total cost incurred by group
members and the benefit they receive (Fehr and Gächter 2002; Kagel and Roth 1995;
Milinski et al. 2002). However, in many biological scenarios, the benefit is a nonlinear
function of the total cost (Hauert et al. 2006; Frank 2010; Archetti and Scheuring
2012; Brown 1999), as there may be a threshold (Souza et al. 2009; Bach et al. 2001), a
synergistic effect of contributions (Archetti et al. 2015; Archetti and Scheuring 2011;
Archetti 2014), diminishing returns (Motro 1991; Motro and Cohen 1989; Poulin
1994), or both synergy and diminishing returns (Archetti et al. 2015; Archetti and
Scheuring 2011; Archetti 2014; Brown 1999). Furthermore, in both theoretical and
experimental studies of public goods games, contribution levels are typically taken to
be discrete: contribution may be an “all or nothing” affair, whereby a group member
can either contribute a fixed, nonzero amount of a resource to the public good, or
contribute nothing (Motro 1991; Hauert et al. 2006; Archetti et al. 2015; Souza et al.
2009) (usually in studies of the n-player prisoner’s dilemma), or, more typically in
the economics literature, players are endowed with a number of tokens and decide
how many they wish to contribute (Fehr and Gächter 2002; Kagel and Roth 1995). In
many real situations, however, individuals can vary their degree of cooperation, often
continuously (McGill and Brown 2007; Pulliam et al. 1982; Cornforth et al. 2012;
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Killingback and Doebeli 2002; Doebeli et al. 2004; Fujita et al. 2014; Brown and
Vincent 2008). Further realism is often added to models by implementing population
structure, (Santos et al. 2008; Hauert 2006, 2008), but we will avoid this further
complication here.

The differences in evolutionary dynamics between 2- and n- player snowdrift games
have been studied in games with binary strategies (Liang et al. 2015; Souza et al.
2009). In public goods games with a continuum of possible contributions, played in
unstructured population, studies have investigated how the process by which individ-
ual contributions are aggregated affects the possibility of polymorphism (Ito et al.
2015; Sasaki and Okada 2015). Others have investigated how variability in group
size (Brännström et al. 2010) and population dynamics (Hauert et al. 2006) affect the
evolutionary outcomes.

Recently, interest in the influence of the functional form of the benefit of con-
tribution on evolutionary dynamics of the snowdrift and other public goods games
has increased. Most often, the effect of how the benefit depends on collective invest-
ment is investigated in the context of binary strategies (cooperate or defect) (Motro
1991; Liang et al. 2015; Archetti and Scheuring 2011), sometimes with the addition of
population structure (e.g.,Wu et al. 2009). However, Deng and Chu (2011) have inves-
tigated how evolutionary dynamics in continuous public goods games are influenced
by nonlinearities in how collective investment is translated to the public good, using
specific functional forms (linear, step function or sigmoid). While most other studies
investigate stability of a homogeneous population against mutations that are close to
the resident strategy, Deng and Chu were interested in stability against invasion by any
strategy (in line with the original definition of evolutionary stability byMaynard Smith
and Price 1973). They further considered invasion of populations by non-negligible
proportions of invaders, using numerical simulations. Chen et al. (2012) have used
simulations to study a similar game played on a spatial lattice using linear cost and
two types of sigmoid benefit functions. They found that contributions to the public
good are maximized at intermediate values of the steepness and threshold parameters
of the sigmoid functions they used.

In this paper, we analyze a class of nonlinear public goods games with contin-
uously varying contributions in unstructured populations and establish under what
conditions populations of contributing (or cooperating) individuals can evolve and
persist. Examples of public goods games to which our results apply include any in
which the dependence of the benefits on the total cost is decelerating or sigmoidal
(initially accelerating but eventually decelerating). Most of the specific public goods
games considered in the literature fall in this class. Identifying general conditions
for the evolution of cooperative strategies and their resistance to invasion is impor-
tant, because it sheds light on what features of particular biological systems might
be responsible for observed evolutionary outcomes. Moreover, since “all models are
wrong” (Box 1976) (in the sense that no model can take all aspects of reality into
account), general results on cooperation lend credibility to the broader application
of qualitative conclusions obtained from highly specialized models of particular bio-
logical systems. Lastly, general results such as those obtained here can be useful
in situations where exact analytical solution of a mathematical model is difficult or
impossible.
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In most previous studies on nonlinear public goods games with continuous con-
tributions (e.g., Doebeli et al. 2004; Killingback et al. 2010; Cornforth et al. 2012),
the framework of adaptive dynamics (Dieckmann and Law 1996; Geritz et al. 1998;
Metz et al. 1996; Hofbauer and Sigmund 1998) has typically been used to analyze
and determine evolutionary outcomes. The adaptive dynamics framework assumes an
infinite population of a particular phenotype (that is, contribution level) and inves-
tigates evolutionary stability by considering a single mutant of a different type and
determining whether it can invade the resident population. Because the population
of residents is infinite, the effect of the mutant on the average fitness of the resident
strategy is negligible.

Here, we compare the predictions of adaptive dynamics with those of static evo-
lutionary game theory (Maynard Smith 1982; Hofbauer and Sigmund 1998; Nowak
2006) applied to a general class of nonlinear public goods games with continuous con-
tributions. Our analysis still considers the limit of an infinite population, but allows
mutants to comprise a finite proportion of the population; consequently, mutants can
affect the average fitness of the resident population (and of other mutants). Our new
analysis extends the predictions of adaptive dynamics on evolutionary and convergent
stability (Sect. 3) of a cooperative strategy to biologically plausible scenarios in which
genetic drift, migration, and/or environmental variability allow a mutant strategy to
make up a significant part of the population (even if it is not selected for when initially
rare). Our analysis also generalizes the results of Deng and Chu (2011) (who used
Darwinian dynamics, Brown and Vincent 2008).

In Sect. 2, we motivate and construct the class of nonlinear public goods games
that we analyze. Section 3 briefly reviews the two frameworks that we use to analyze
these games. We present our results in Sect. 4 and proofs in Sects. 5, 6 and 7. Finally,
in Sect. 8, we discuss our results and suggest directions for further developments.

2 Class of public goods games

Consider an infinite, well-mixed population of asexual agents. Assume that repro-
ductive fitness is determined by playing a nonlinear public goods game in randomly-
assembled groups of n > 1 agents. Let h ≥ 0 be the focal agent’s contribution to the
public good, and let H denote the mean contribution by the other n − 1 agents in the
focal agent’s group.

Denote the fitness cost and fitness benefit to the focal agent by c(h, H) and b(h, H),
respectively. The fitness of the focal agent is then

W (h, H) = b(h, H) − c(h, H), (1)

where b(h, H) and c(h, H) are non-negative functions of their arguments.
If the cost of contributing is independent of the other group members’ contribu-

tions, the focal agent’s contribution h can be measured in units of the fitness cost of
contribution to the public good. Thus, we henceforth assume (with some abuse of
notation)

c(h, H) = c(h) = h. (2)

The total good contributed by all members of the group is
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η(h, H) = h + (n − 1)H. (3)

We assume that the resulting benefit to the focal agent is a continuous function of
the total good (i.e., the sum of the individual fitness costs),

b (h, H) = f
(
η(h, H)

)
. (4)

Hence, the focal agent’s fitness (1) is

W (h, H) = f
(
η(h, H)

) − h, (5)

which is a continuous function of h and H . Equations (3) and (5) define a large class
of public goods games, namely, continuous n-player snowdrift (or hawk-dove) games
(Maynard Smith 1982; Doebeli et al. 2004), in which the public good is fitness (see
Appendix 3). A particular public goods game in this class is specified by choosing the
function f (η); see Fig. 1.

Biological intuition suggests that there may be a total contribution threshold,
ηmin > 0, below which the marginal benefit of contribution does not outweigh its
marginal cost. In that case, W (h, H) decreases for all h < ηmin − (n − 1)H . If we
define ηmin = 0 in the absence of a range of h over which W (h, H) decreases, then
no generality is lost by assuming the existence of a threshold ηmin ≥ 0. Below we will
see that in the situations we consider the focal agent’s fitness has a local minimum if
η = ηmin; we therefore refer to ηmin as the minimizing total good.

We restrict the class of gameswe consider slightly bymaking the biologically sensi-
ble assumption that for any level of mean contribution (H ) from the non-focal agents,
there is a level of focal agent’s contribution (h) beyond which its fitness decreases with
its contribution; simply put, the marginal cost of an increase in contribution eventually
outweighs its benefit. In Appendix 1, we show that this is equivalent to the existence
of ηmax > 0 such that f (η) − η decreases for η ≥ ηmax. Consequently, the focal
agent’s fitness W (h, H) decreases with its contribution h when η(h, H) > ηmax. In
the situations we consider the focal agent’s fitness has a local maximum if η = ηmax;
consequently, we refer to ηmax as the maximizing total good.

For convenience, we define

hmin(H) = ηmin − (n − 1)H, (6a)

hmax(H) = ηmax − (n − 1)H. (6b)

For a given mean contribution H by the non-focal agents, hmin and hmax are
the levels of contribution required by the focal agent so that the total good is
ηmin = η(hmin(H), H) and ηmax = η(hmax(H), H), respectively. Note that hmin and
hmax are always well-defined mathematically but they can be negative and hence not
biologically meaningful: if the non-focal group members contribute (n−1)H > ηmin
then hmin(H) < 0 and if (n − 1)H > ηmax then hmax(H) < 0.

If for any mean non-focal agents’ contribution H and focal agent’s contribution,
h, the marginal costs of contributing outweigh the marginal benefits, then W (h, H)
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Fig. 1 Sigmoidal benefit to the focal agent, and its corresponding fitness. Top panel sigmoidal benefit

f (η) = a
(
β + exp(κ − bη)

)−1 − a
(
β + exp(κ)

)−1, with a = 100, b = 0.2, β = 2, κ = 10, based on an
example from Cornforth et al. (2012) (ηmin and ηmax indicated by dashed lines). Bottom panel The focal
agent’s fitnessW (h, H) (corresponding to the benefit function f (η) above) as a function of its contribution
h, for fixed mean non-focal agents’ contribution H = 3 and group size n = 6 (hmin and hmax indicated by
dashed lines)

decreases with h regardless of H . Consequently, the unique evolutionarily stable strat-
egy is not to contribute (h = H = 0), and it is convergently stable (Sect. 3). In order
to avoid this trivial outcome, we assume further that

ηmin < ηmax. (7)

It then follows that fitness W (h, H) decreases with h if the total good η(h, H)

< ηmin, i.e., for 0 ≤ h < max{0, hmin(H)}. Equivalently, f (η) − η decreases for
0 ≤ η < ηmin. Note that the intervals [0,max{0, hmin(H)}) and [0, ηmin) are degen-
erate if the right endpoint is 0.

For simplicity, we assume that a focal agent’s fitness W (h, H) increases as a func-
tion of its contribution h if the total good η(h, H) is between ηmin and ηmax,
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ηmin < η(h, H) < ηmax, (8)

or, equivalently, if its contribution h lies in the interval

max{0, hmin(H)} < h < max{0, hmax(H)}. (9)

Because the fitness benefit f (η(h, H)) and fitness cost c(h) = h are both increasing
functions of h, assumingW (h, H) increases with hmeans that the benefit of contribut-
ing more increases faster than the cost over interval (9); equivalently, f (η) − η is an
increasing function of η for ηmin < η < ηmax.

We can now justify our terminology for ηmin and ηmax. Our assumptions,

A1 fitness is specified by Eqs. (3) and (5),
A2 f (η) is a continuous function defined for η ≥ 0,
A3 ηmax > 0 exists,
A4 if ηmin exists (which can be assumed without loss of generality) then

0 ≤ ηmin < ηmax,
A5 f (η) − η increases with η when ηmin < η < ηmax, and decreases otherwise,

ensure that for a fixed H ≤ ηmax/(n − 1), the focal agent’s fitness W (h, H) has a
local maximum when the total good η(h, H) = ηmax (i.e., h = hmax(H) ≥ 0) and a
local minimum when the total good η(h, H) = ηmin.

Thus, our assumptions describe an n-player snowdrift game with cost c(h) = h,
and continuous benefit f (η(h, H)), such that f (η) increases in η with slope greater
than 1 on a bounded interval, (ηmin, ηmax), and nowhere else.

3 Analysis frameworks

Two frameworks commonly used in analyzing models such as those in the class
described in Sect. 2 are static evolutionary game theory (Maynard Smith 1982; Nowak
2006; Hofbauer and Sigmund 1998) and adaptive dynamics (Dieckmann and Law
1996; Geritz et al. 1998; Metz et al. 1996; Hofbauer and Sigmund 1998). Below, we
recall some of the main concepts from these frameworks, as they apply to our analysis.
For a general treatment, see the references cited above.

3.1 Static evolutionary game theory

Definition 3.1 (Evolutionary stability) A contribution level Ĥ ≥ 0 is (globally) evo-
lutionarily stable (ES) iff a single agent that plays a different strategy cannot invade
the population (all strategies different from Ĥ are selected against) (Maynard Smith
and Price 1973).

As different levels of contributions constitute strategies in this game, we also use
the term evolutionarily stable strategy (ESS), when referring to a level of contribution
that is ES.

Since evolution by natural selection typically involves mutations that have a small
phenotypic effect, the following definition is also biologically relevant:
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Definition 3.2 (Local Evolutionary stability) A contribution level Ĥ ≥ 0 is locally
evolutionarily stable (locally ES) if a single agent playing amutant strategy h different
from, but sufficiently close to Ĥ cannot invade the population (h is selected against if
|Ĥ − h| is sufficiently small) (Taylor 1989; Hofbauer and Sigmund 1998).

Definition 3.3 (Local convergent stability) A contribution level Ĥ ≥ 0 is locally
convergently stable (locally CS) if, when the resident strategy H is close enough to
Ĥ , a mutant playing a strategy between H and Ĥ can invade the population (h is
selected for if H < h ≤ Ĥ or Ĥ ≤ h < H ) (Christiansen 1991).

3.2 Adaptive dynamics

Adaptive dynamics (Dieckmann andLaw1996;Geritz et al. 1998;Metz et al. 1996) can
also be used to gain insight into similar evolutionary problems. In particular, Doebeli
et al. (2004) use the adaptive dynamics framework to completely characterize the
evolutionary dynamics of the continuous snowdrift game with smooth payoffs. Since
the class of models defined in Sect. 2 is a large subclass of realistic snowdrift games,
it is interesting to compare the predictions of Doebeli et al. (2004) to our predictions
based on static evolutionary game theory. We therefore briefly outline concepts from
adaptive dynamics necessary for this comparison.

Following Geritz et al. (1998) and Doebeli et al. (2004), the growth rate of a rare
mutant strategy h in a resident population playing H is

sH (h) = W (h, H) − W (H, H), (10)

whereW (x, y) is the fitness of a mutant playing x in a population playing y. The local
fitness gradient is then

D(H) = ∂sH (h)

∂h

∣∣∣
∣
h=H

, (11)

and the adaptive dynamics of H are given by

Ḣ = D(H). (12)

An equilibrium of Eq. (12), that is, Ĥ satisfying D(Ĥ) = 0, is called a singular
strategy. A singular strategy that is an attractor of Eq. (12) is convergently stable in
the sense of Definition 3.3. A singular strategy H can also be locally evolutionarily
stable as in Definition 3.2. The mathematical conditions for these and other possible
characteristics of singular strategies are listed in Table 1, followingGeritz et al. (1998).

4 Results

Below, we summarize our results on the behaviour of the class of models outlined in
Sect. 2, using static evolutionary game theory and adaptive dynamics. These results
are proved in Sects. 5, 6 and 7.
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Table 1 Local properties of
singular strategies in adaptive
dynamics, as in (Geritz et al.
1998, Table 1)

Property Characterization

Local evolutionary stability
∂2sH (h)

∂h2

∣∣
∣
h=H

< 0

Convergence stability
∂2sH (h)

∂H2 − ∂2sH (h)

∂h2

∣∣∣
h=H

> 0

Singular strategy can spread in
populations playing similar strategy

∂2sH (h)

∂H2

∣∣
∣
h=H

> 0

Mutually-invasible strategies exist
near singular point

∂2sH (h)

∂H2 + ∂2sH (h)

∂h2

∣
∣∣
h=H

> 0

Theorem 4.1 (Evolutionary and convergent stability in static theory). Consider an
evolving, infinite, well-mixed population in which fitness is determined by the payoff
from a non-linear public goods game played in randomly chosen groups of n > 1
agents. Suppose that if the total public good contributed is η ≥ 0, the benefit to any
group member is f (η). Thus, if h is a focal agent’s contribution and H is the mean
non-focal agents’ contribution to the public good, the focal agent’s fitness is

W (h, H) = f
(
h + (n − 1)H

) − h, (13)

assuming the cost of the focal agent’s contribution is independent of the othermember’s
contributions and contribution is measured in units of its fitness cost. Suppose further
that the benefit function f has the following properties:

H1 f is continuous on η ≥ 0.
H2 There exist ηmin ≥ 0 and ηmax > ηmin such that f (η) − η increases for

ηmin < η < ηmax and decreases for η < ηmin and η > ηmax.

Then, writing H∗ = ηmax/n,

• If f (ηmax) ≥ ηmax then the unique ES contribution is H∗.
• If f (ηmax) < ηmax then

f
(
nH∗) − f

(
(n − 1)H∗) > H∗ �⇒ two ESSs: H = 0 and H = H∗,

≤ H∗ �⇒ unique ESS: H = 0.
(14)

Moreover, all existing ESSs are convergently stable.

Remark 4.2 As shown in the proof of Theorem 4.1, the focal agent’s optimal response
hopt(H) (see Sect. 5.1) is a piecewise-linear function of the mean contribution of the
non-focal agents (this can also be seen graphically in Fig. 3).

Note that if f (ηmax) ≥ ηmax then it is worthwhile for the focal agent to contribute
the maximizing total good, even if it must do so single-handedly (see Fig. 3, first and
second panels). The existence of a nonzero ES level of contribution is not surprising
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in this case. Condition (14) says that in the non-trivial situation that f (ηmax) < ηmax,
contributing H∗ (i.e., an equal share of the maximizing total good ηmax) is an ESS
iff , when all non-focal agents contribute H∗, the cost of contributing H∗ (rather than
defecting and contributing nothing) is smaller than the increase in the focal agent’s
benefit resulting from this contribution.1

The corresponding analysis based on adaptive dynamics yields:

Theorem 4.3 (Local evolutionary and convergent stability in adaptive dynamics) If
the hypotheses of Theorem 4.1 are satisfied and, in addition,

H3 f is twice-differentiable on η ≥ 0,

then the adaptive dynamics of H are given by

Ḣ = f ′(nH) − 1 (15)

and there are two singular points, H = ηmin/n and H∗ = ηmax/n. H = ηmin/n is a
repellor and H∗ is an attractor (i.e., convergently stable) and a local ESS.

Figure 2 gives the pairwise invasibility plot (Geritz et al. 1998; Metz et al. 1996)
corresponding to the particular choice of f used in Fig. 1 (see captions for details).

Theorems 4.1 and 4.3 rely on the assumption of an infinite population to assert
that when a mutant arises, the mean fitness of the resident strategy is unaffected by
mutant’s behaviour (Nowak and Sigmund 2004; Killingback et al. 2010; Metz et al.
1996). In other words, the average resident does not interact with a mutant. Similarly,
it is assumed that the average mutant does not interact with other mutants, so the mean
mutant fitness is unaffected by the presence of other mutants (if other mutants exist).

Because real populations are finite, the presence of an invader may well affect
the resident’s mean fitness, even if the population size is large. For example, in the
case of our public goods game, even if there is only one mutant, there are n − 1
residents in its group, whose fitness isW (H,

h+(n−2)H
n−1 ), rather thanW (H, H). Thus,

in a finite population of size N , even a single invader comprises a nonzero proportion
ε = 1/N > 0 of the population.

In Theorem 4.4 below, we relax the assumption that mutants do not affect the
resident (or mutant) fitnesses. We retain the assumption of an infinite population, but
when considering invasion scenarios, we allow individuals playing themutant strategy
to make up a finite proportion, ε, of the population. This new analysis is biologically
relevant for at least three reasons:

(i) A mutation might not be selected for when present in a single individual, but
spread nevertheless by genetic drift (Hartl andClark 2007).Once present in a non-
negligible proportion of the population, the mutation could be selected for. Thus,
we use phenotypic theory to address the question of whether an initially non-
adaptive mutation that drifts in to become present in a non-negligible proportion
of the population can then be selected for.

(ii) A “bud” consisting of multiple mutants can invade a resident population in a
dispersal or migration event (e.g., Krupp and Taylor 2015; Gardner and West

1 Condition (14) compares the incremental benefit of contributing H∗ to its cost.
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Fig. 2 Pairwise invasibility plot for sigmoidal benefit f (η) with parameters as in Fig. 1: areas where a
single mutant contributing h (vertical axis) can invade an infinite population of agents contributing H
(horizontal axis) are shaded. The singular points H = ηmin/n and H = H∗ are marked. The predictions
of theorems 4.1 and 4.3 for this choice of benefit function are that H = 0 and H = H∗ are the only ESSs
and are convergently stable (because f (ηmax) < ηmax and f

(
nH∗) − f

(
(n − 1)H∗)

> H∗), and that
ηmin/n is a repellor. The vertical lines at H = H∗ and H = 0 are unshaded, implying that these are ESS
contributions (because no mutant can invade). Near H∗, resident strategies H �= H∗ can be invaded by
mutants playing strategies h that are closer to H∗, so H∗ is convergently stable, and similarly, so is H = 0.
ηmin/n is a repellor, since resident strategies H near ηmin/n can be invaded by mutants playing h that is
farther away from ηmin/n than H

2006; Kümmerli et al. 2009; Clutton-Brock 2002; Pfeiffer and Bonhoeffer 2003
and references therein), in which case the invading mutants may comprise a
non-negligible proportion of the population.

(iii) A mutant may under normal conditions be selected against when rare, but due to
an environmental disturbance (either anthropogenic or natural), conditions may
temporarily change to allow the mutant to spread (similarly to disturbances of
ecological communities, Buma and Wessman 2011; Dale et al. 2001). When
the environmental conditions return to normal, the proportion of mutants in the
population may have already become non-negligible. In such cases, the invasion
analysis must account for more than a single mutant.

For simplicity, we state Theorem 4.4 with the restriction that f (ηmax) < ηmax. As
noted above, the existence of a nonzeroESS level of contributionwhen f (ηmax)≥ηmax
is trivial. Theorem 4.4 then extends the results of Theorem 4.1 on evolutionary and
convergent stability to scenarios where the invading mutants comprise a proportion
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ε > 0 of the population. The result we obtain is weaker, however, in that H∗ is no
longer guaranteed to be globally ES; it is resistant to invasion by nearby strategies
only.

Theorem 4.4 (Local evolutionary and convergent stability in static theorywith a finite
proportion of mutants). Suppose the hypotheses of Theorem 4.1 are satisfied and write
H∗ = ηmax/n. If f (ηmax) < ηmax then:

R1 (Local ES) If h �= H∗ and a proportion ε of mutants playing h arises in a
population playing H∗ then, if h is sufficiently close to H∗, the mean fitness of
a mutant Wm(h) is smaller than the mean fitness of a resident Wr(h), for any
proportion ε > 0 (i.e., the mutants are selected against).

R2 (Local CS) If H is sufficiently close to H∗, h is between H and H∗, and a pro-
portion ε of mutants playing h arises in a population playing H, then the mean
fitness of a mutant Wm(h) is greater than the mean fitness of a resident Wr(h), for
any proportion ε > 0 (i.e., the mutants are selected for).

5 Proof of Theorem 4.1

Without loss of generality, we can assume that

f (0) = 0. (16)

To see this, note that the dynamics of the game are not changed by adding a
constant to the fitness function W (h, H). If f (0) �= 0 then we would analyze
f̃ (η) = f (η) − f (0) (so f̃ (0) = 0) and W̃ (h, H) = W (h, H) − f (0) =
f̃ (η(h, H)) − h.
The structure of our proof of Theorem 4.1 is as follows: In Sect. 5.1, we find

the optimal response for the focal agent as a function of the non-focal agents’ mean
contribution, H . Then, in Sect. 5.2, we use the focal agent’s optimal response to show
that the only possible ESSs are either not contributing (H = 0), or contributing an
equal share of the maximizing total good, H∗ = ηmax/n > 0. Lastly, in Sect. 5.3, we
show that these ESSs are also convergently stable.

5.1 Optimal response for focal agent

For a givenmean contribution from the non-focal agents, H , what must the focal agent
contribute in order to maximize its fitness? This is the focal agent’s optimal response
to H , which we denote hopt(H). The optimal response in the class of games we are
considering is given in Lemma 5.1 and plotted in Fig. 3.

Lemma 5.1 (Best response lemma) Under the conditions of Theorem 4.1

• if f (ηmax) > ηmax, then

hopt(H) = max
{
0, hmax(H)

} =
{
hmax(H) 0 ≤ H <

ηmax
n−1 ,

0 ηmax
n−1 ≤ H,

(17a)
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where hmax(H) is defined in Eq. (6b). Note that the interval [0, ηmax/ (n − 1)) is
never empty, because ηmax > 0.

• if f (ηmax) ≤ ηmax, then,

hopt(H) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 0 ≤ H < H0,

0 or hmax(H0) H = H0,

hmax(H) H0 < H <
ηmax
n−1 ,

0 ηmax
n−1 ≤ H,

(17b)

where H0 is the unique solution of

f
(
(n − 1)H

) − (n − 1)H = f (ηmax) − ηmax (18)

such that 0 ≤ H0 <
ηmin
n−1 .

In Eq. (17b), note that the first interval (0 ≤ H < H0) is empty if H0 = 0, and that
for H = H0, hopt(H) is 2-valued.

Proof Observe that depending on the mean non-focal agents’ contribution H ,
W (h, H) behaves in one of the following ways:

1. If the non-focal agents’ contribution is no less than the maximizing total good
((n − 1)H ≥ ηmax), then the focal agent’s fitness W (h, H) decreases with its
contribution, h. The optimal contribution for the focal agent is then hopt(H) = 0.

2. If the non-focal agents’ contribution is greater than or equal to the minimizing
total good and smaller than the maximizing total good (ηmin ≤ (n − 1)H <

ηmax), then the focal agent’s fitness W (h, H) increases for 0 ≤ h ≤ hmax(H)

and decreases for h > hmax(H), so the focal agent’s optimal contribution is
hopt(H) = ηmax − (n − 1)H .

3. If the non-focal agents’ contribution is lower than the minimizing total good
((n − 1)H < ηmin), fitness decreases for 0 ≤ h ≤ hmin(H), increases for
max{0, hmin(H)} < h ≤ hmax(H) and decreases again for h > hmax(H).
Thus, two levels of contribution locally maximize the focal agent’s fitness:
h = ηmax − (n − 1)H and h = 0, for which the focal agent’s fitness is
W (ηmax − (n − 1)H, H) = f (ηmax) − ηmax + (n − 1)H and W (0, H) =
f ((n − 1)H), respectively. These two local fitness maxima are the candidates for
the global fitness maximum, that is, the focal agent’s optimal response hopt(H).
Let

�W (H) = W (ηmax − (n − 1)H, H) − W (0, H)

= f (ηmax) − ηmax − [ f ((n − 1)H) − (n − 1)H ] (19)

be the difference between the focal agent’s two local fitness maxima. Note that
since f (η) − η decreases with η on [0, ηmin], �W (H) is an increasing function

of H on
[
0, ηmin

n−1

)
.

123



512 C. Molina, D. J. D. Earn

Because f (η) − η increases with η on [ηmin, ηmax], it follows that

�W

(
ηmin

n − 1

)
= f (ηmax) − ηmax − [ f (ηmin) − ηmin] > 0. (20)

Thus, since �W (H) is continuous, it follows that for large enough values of
H < ηmin/(n − 1), �W (H) > 0, implying that the focal agent maximizes fitness
by contributing hopt(H) = hmax(H) > 0.
At the other extreme end of the interval 0 ≤ H < ηmin/(n − 1), we have:

�W (0) = f (ηmax) − ηmax. (21)

There are three possible cases:
(i) If �W (0) > 0, then for all 0 ≤ H < ηmin/(n − 1), the focal agent’s optimal

response is hopt(H) = hmax(H) > 0.
The condition �W (0) > 0 has a simple biological interpretation: If �W (0)>
0, then the benefit to the focal agent when the total good is equal to the total
maximizing good (η = ηmax) is so large that—even if the non-focal group
members contribute nothing—the focal agent gains by single-handedly con-
tributing the total maximizing good (h = ηmax). It is then sensible that if
the non-focal agents have collectively contributed less than the minimizing
total good (n − 1)H < ηmin (or indeed, less than the maximizing total good,
ηmax), then the focal agent still does best by ensuring that the total maximiz-
ing good is attained (η = ηmax) (in fact, if the non-focal agents contribute
0 < (n − 1)H < ηmax, the focal agent’s fitness must be higher than when
H = 0, since it is now required to contribute less to obtain the same benefit).

(ii) If �W (0) < 0, then because �W (H) is continuous, increasing, and

�W
(

ηmin
n−1

)
> 0, it follows that there is a unique solution to

�W (H0) = 0, 0 < H0 <
ηmin

n − 1
. (22)

Moreover, �W (H) < 0 for H < H0 and �W (H) > 0 for H > H0.
Thus, the optimal response for the focal agent is hopt(H) = 0 if H < H0, and
hopt(H) = hmax(H) > 0 if H0 < H <

ηmin
n−1 . If H = H0, the focal agent can

maximize its fitness by contributing either h = 0 or h = ηmax−(n−1)H0 > 0
(because W (0, H0) = W (ηmax − (n − 1)H0, H0)).
H0 is themean non-focal agents’ contribution forwhich the focal agent obtains
the same fitness either by contributing nothing (h = 0), or by completing the
difference between the maximizing total good and the collective contribution
of the non-focal agents (so that η = ηmax).

(iii) If�W (0) = 0, then�W (H) > 0 for all H > 0, and hopt(H) = hmax(H) > 0
for 0 < H < ηmin. For H = 0, the focal agent can maximize its fitness by
contributing either h = 0 or h = ηmax > 0 (again, W (0, 0) = W (ηmax, 0)).
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5.2 Evolutionarily stable contribution levels

To interpret Definition 3.1 for evolutionary stability mathematically, suppose that the
entire population consists of agents playing H . The focal agent’s fitness is given by
Eq. (5) where h can be an alternative strategy h �= H . The fitness of the n−1 non-focal
individuals in the focal agent’s group is

W

(
H,

h + (n − 2)H

n − 1

)
= f

(
η(h, H)

) − H. (23)

Thus, the focal agent’s fitness is larger than that of the non-focal individuals in its
group iff h < H . However, since the population is infinitely large, an infinite number
of non-focal individuals are in homogeneous groups in which everyone contributes H ,
so their fitness is W (H, H). Thus, the mean fitness of a non-focal individual remains
W (H, H). Then, H = H∗ is an ESS iff when all non-focal agents play H∗, if the
focal agent plays an alternative strategy h �= H∗, its fitness is lower than the resident
strategy H∗, or: W (h, H∗) < W (H∗, H∗) for all h �= H∗.

Thus, H∗ ≥ 0 is an ESS if and only if it is the unique optimal response to itself.
Explicitly, H∗ must satisfy

hopt(H
∗) = H∗, (24)

and hopt(H∗) must be univalued. To see that a point at which hopt(H) is multi-valued
cannot be an ESS, suppose that hopt(H∗) takes the two values H∗ and H ′; then if the
non-focal agents play H∗, the focal agent can play H ′ without decreasing its fitness.
Geometrically, solutions of Eq. (24) are intersections (in the H–h plane) of the curve
h = hopt(H) with the line h = H .

Note that while solutions of Eq. (24) at which hopt is not univalued are not ESSs,
they are still technically Nash Equilibria (Fudenberg and Tirole 1991).

We separate the discussion into the following cases:

1. f (ηmax) > ηmax:
In this case, hopt(H) is given by Eq. (17a) (see Fig. 3, top panel). Solving Eq. (24)
yields a unique ESS,

H∗ = ηmax

n
. (25)

Note that when f (ηmax) > ηmax, it is beneficial for the focal agent to ensure the
maximizing total good is attained even if it must do so single-handedly (so there
is no “tragedy of the commons” in this scenario). Thus, it is biologically sensible
that at the ESS all group members contribute equally towards the maximizing total
good.

2. f (ηmax) = ηmax:

In this case, hopt(H) is given by Eq. (17b) with H0 = 0, that is,

hopt(H) =

⎧
⎪⎨

⎪⎩

0 or ηmax H = 0,

hmax(H) 0 < H <
ηmax
n−1 ,

0 H ≥ ηmax
n−1 .

(26)
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H∗ ηmax
n−1

ηmax h = H
h = hopt(H)

f ηmax > ηmax

H∗ ηmax
n−1

ηmax

f ηmax = ηmax

ηmax
n

hmax(H0)

H0 ηmax
n−1

H0 ≥ ηmax/n

Non-focal agents’ mean contribution H

Fo
ca
l
ag
en
t’
s
co
nt
ri
bu

ti
on

,h

H∗

ηmax − (n − 1)H0

H0 ηmax
n−1

H0 < ηmax/n

Fig. 3 ESSs (red dots) are solutions of H = hopt(H) [Eq. (24)] at which hopt(H) is univalued. H =
hopt(H) implies h = H is a best response to itself, and hopt(H) being univalued ensures that no other
invading strategy matches the residents’ fitness. The four panels (top to bottom), depict the intersections
of h = H (dashed black line) and h = hopt(H) (solid black line) in the h-H plane in the four possible
cases: f (ηmax) > ηmax, f (ηmax) = ηmax, H0 ≥ ηmax/n, and H0 < ηmax/n. For values of H (the mean
non-focal agents’ help) where the focal agent’s best response hopt(H) is two-valued, its values are indicated
by black dots

Thus, H = 0 is not an ESS, because if the non-focal agents contribute H = 0,
the focal agent’s fitness if it contributes h = ηmax > 0 is identical to its fitness if
it does not contribute (h = 0).
If H ≥ ηmax

n−1 , then hopt(H) = 0 < H and so H cannot be an ESS. Lastly, if
0 < H <

ηmax
n−1 then solving Eq. (24) again yields a unique ESS given by Eq. (25)

(see Fig. 3, second panel).
The biological interpretation of the ESS H∗ = ηmax/n is similar to the previous
case ( f (ηmax) > ηmax). The only change is that now, H = 0 (no contribution) is
a Nash Equilibrium (whereas it was not when f (ηmax) > ηmax), because when
the non-focal agents do not contribute, the focal agent’s fitness can be maximized
either by contributing ηmax or not contributing. By contrast, H∗ = ηmax/n is still
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ES, because when all group members contribute H∗, then the focal agent’s fitness
will decrease if it contributes h �= H∗.

3. f (ηmax) < ηmax: In this case, hopt is given by Eq. (17b), so H = 0 is ES.

For 0 < H < H0 and H ≥ ηmax
n−1 , hopt(H) = 0 < H , so Eq. (24) is not satisfied,

and H cannot be ES. Likewise, H = H0 cannot be an ESS, since hopt(H0) is not
univalued.
However, depending on the relationship between ηmax, n and H0, there may or
may not be another ESS in the range H0 < H <

ηmax
n−1 :

(a) H0 ≥ ηmax/n:

When H0 ≥ ηmax/n, there is no additional (nonzero) ESS in the range
H0 < H <

ηmax
n−1 , because

hopt(H) < ηmax − (n − 1)H0 <
ηmax

n
< H, (27)

(recall that hopt(H) decreases linearly with H in this range; see Fig. 3, third
panel). Thus, for this sub-case, H∗ = 0 is the unique ESS.
The condition H0 ≥ ηmax/n is equivalent to �W (ηmax/n) ≤ 0, or

W
(ηmax

n
,
ηmax

n

)
= f (ηmax) − ηmax

n

≤ f

(
n − 1

n
ηmax

)
= W

(
0,

ηmax

n

)
. (28)

Condition (28) simply states that if all agents contribute equally towards achiev-
ing the maximizing total good, the focal agent does no worse by withdrawing
its contribution (i.e., switching to h = 0).

(b) H0 < ηmax/n :
To see that in this case, there is a second (nonzero) ES level of contribution
H , we seek a solution of Eq. (24) in the range H0 < H <

ηmax
n−1 . In this range,

hopt(H)=ηmax−(n−1)H , so H∗ =ηmax/n solves Eq. (24) (H0<H∗ =ηmax/n
by our assumption for this sub-case, and H∗ = ηmax/n < ηmax/(n − 1)

trivially, so H∗ ∈
(
H0,

ηmax
n−1

)
as required).

Thus, there are in this case two ESS contribution levels: H = 0 and H = ηmax
n

(see Fig. 3, bottom panel).
To understand why there is an additional (non-zero) ES level of contribution
when H0 < ηmax/n, note that by definition, H0 <

ηmin
n−1 [see Eq. (22)], so there

are two possibilities:
(i) If ηmax/n < ηmin/(n − 1) then H0 < ηmax/n iff �W

( ηmax
n

)
> 0, or

equivalently,

f (ηmax) − f

(
n − 1

n
ηmax

)
>

ηmax

n
, (29)

which is the converse of condition (28).
The biological intuition for this case is that if ηmax/n < ηmin/(n − 1),
then when all non-focal agents contribute H∗ = ηmax/n, their total con-
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tribution is less than the minimizing total good ((n − 1)H∗ < ηmin).
Consequently, W (h, H∗) decreases for 0 ≤ h ≤ ηmin − (n − 1)H∗, then
increases for ηmin − (n − 1)H∗ < h < ηmax − (n − 1)H∗ and decreases
again for h ≥ ηmax − (n − 1)H∗. Thus, the two candidates for the best
response for the focal agent are h = 0 and h = ηmax − (n − 1)H∗ = H∗,
and H∗ is an ESS iff W (H∗, H∗) > W (0, H∗) (that is, �W (H∗) > 0).
Note that condition (29) stipulates that the mean slope of f on the interval[ n−1

n ηmax, ηmax
]
is larger than 1.

(ii) If ηmin/(n − 1) ≤ ηmax/n, then H0 < ηmax/n is satisfied (because
H0 < ηmin/n). This is because if ηmin/(n − 1) ≤ ηmax/n, then when
H = H∗ = ηmax/n, the total non-focal agents’ contribution exceeds the
minimizing total good ((n − 1)H > ηmin), so W (h, H∗) is unimodal and
has a unique global maximum (i.e., in the range h ≥ 0) at

h = ηmax − (n − 1)H∗ = ηmax

n
= H∗. (30)

While the condition ηmin/(n−1) ≤ ηmax/n seems weaker than condition
(29), note that W (0, H∗) < W (H∗, H∗), so condition (29) must hold in
this case as well.

We conclude that if f (ηmax) < ηmax, then H = 0 is an ESS, and additionally,
H∗ = ηmax/n is an ESS iff condition (29) holds.
Also, note that for a fixed benefit function, f (η), for sufficiently large group
size n, ηmin/(n − 1) ≤ ηmax/n must hold. Thus, all else being equal, larger
groups are more likely to have a nonzero ESS contribution.

5.3 Convergent stability of the ESSs

Section 5.2 showed that unless both f (ηmax) < ηmax and
f (ηmax) ≤ f ( n−1

n ηmax) + ηmax/n, the contribution level H∗ = ηmax/n is ES. We
now show that when H∗ = ηmax/n is an ESS, it is also convergently stable, that is:

Suppose that all members of the population contribute H , and that a mutant playing
h �= H enters the population.Recalling thatwe assumean infinite population, themean
resident fitness is unaffected by the mutant, and is simply W (H, H). Thus, we wish
to show that if H is sufficiently close to H∗, then for any invading strategy h that is
between H and H∗, W (h, H) > W (H, H).

Suppose that the resident strategy is H = H∗ − μ, where μ > 0, and that the
mutant strategy satisfies H∗ − μ = H < h < H∗. If μ < (ηmax − ηmin) /n then
ηmin < nH < h + (n − 1)Hηmax, so

W (h, H) − W (H, H) = [ f (h + (n − 1) H) − h] − [ f (nH)) − H ]

= [ f (h + (n − 1) H) − (h + (n − 1)H)]

− [ f (nH)) − nH ] > 0 (31)

because f (η) − η is increasing on [ηmin, ηmax].
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Now suppose that the resident strategy is H = H∗ + μ, where μ > 0. Because
ηmax < h + (n − 1)H < nH and f (η) − η decreases for η > ηmax, we have

W (h, H) − W (H, H) = [ f (h + (n − 1) H) − (h + (n − 1)H)]

− [ f (nH)) − nH ] > 0, (32)

for any μ > 0.
It follows that if all members of the group use a strategy H sufficiently near the

non-zero equilibrium, H∗, then the fitness of a mutant strategy between H and H∗ is
larger than the mean resident fitness, so H∗ is convergently stable.

We also saw in Sect. 5.2, that if f (ηmax) < ηmax then H = 0 is ES. To see that it
is also convergently stable, note that if 0 < H < ηmin/n, then η(h, H) ≤ η(H, H)

< ηmin for all for 0 < h ≤ H . Since f (η) − η decreases with η for η < ηmin, and
η(h, H) increaseswith h, it follows thatW (h, H) = f (η(h, H))−η(h, H)+(n−1)H
decreases with h, which implies H = 0 is convergently stable.

6 Proof of Theorem 4.3

Following Geritz et al. (1998) and Doebeli et al. (2004), the growth rate of a rare
mutant strategy h in a resident population playing H is

sH (h) = W (h, H) − W (H, H) = f (h + (n − 1)H) − f (nH) + H − h. (33)

The local fitness gradient is then

D(H) = ∂sH (h)

∂h

∣
∣∣
h=H

= f ′(nH) − 1, (34)

and the adaptive dynamics of H are given by

Ḣ = D(H) = f ′(nH) − 1. (35)

Singular strategies satisfy f ′(nH) = 1. Since by our assumptions, f (η)−η increases
when ηmin < η < ηmax and decreases otherwise, the two singular strategies are H =
ηmin/n and H = ηmax/n = H∗. Because d

dH D(H) = n f ′′(nH) and f ′′(ηmin) > 0,
it follows that H = ηmin/n is a repellor.

As for the singular strategy H = H∗, using Table 1 (adapted from Geritz et al.
1998) and letting

a = ∂2sH (h)

∂2H

∣∣∣
h=H=H∗ = (n − 1)2 f ′′(nH∗) − n2 f ′′(nH∗)

= (1 − 2n) f ′′(ηmax) > 0, (36)

b = ∂2sH (h)

∂2h

∣∣∣
h=H=H∗ = f ′′(nH∗) = f ′′(ηmax) < 0, (37)
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(since f ′′(ηmax) < 0 and n ≥ 1) we see that H∗ is a convergently stable local-
ESS (because b < 0 and a > b). Though these are the only properties necessary
for theorem 4.3, for completeness, we also note that since a > 0, H∗ can invade a
homogeneous population playing a sufficiently similar strategy H �= H∗. Lastly, if
n > 1, then mutually-invasible strategies exist near H∗ since a + b > 0 (however,
dimorphic populations will tend to disappear as the population converges towards the
ESS H∗, see Geritz et al. 1998, p. 42).

7 Proof of Theorem 4.4

7.1 Local ES

Proof of R1 (Local ES) Consider an infinite population playing H∗ invaded by a pro-
portion ε > 0 of mutants playing h �= H∗. We wish to compare the mean fitnesses of
a resident playing H∗ and a mutant playing h.

To obtain the mean mutant fitness, first note that the payoff to a mutant in a group
with a total of k mutants is

Wm,k(h) = W

(
h,

(k − 1)h + (n − k)H∗

n − 1

)
. (38)

We now calculate the proportion of mutants that are in a group containing k mutants.
Choose an agent at random from the population by first choosing a group at random
and then choosing an agent at random from within that group. Let I be an indicator
for whether the chosen agent is a mutant (I = 1 if the chosen agent is a mutant, and
I = 0 otherwise). LetM be the number of mutants in the chosen group.We use Bayes’
Theorem (Ross 2010) to find P(M = k|I = 1), that is, the probability that a chosen
mutant is in a group containing k mutants:

P(M = k|I = 1) = P(M = k)P(I = 1|M = k)

P(I = 1)
. (39)

Because the population is assumed infinite, the probability that a randomly chosen
group contains k mutants is binomially distributed with parameters n and ε,

P(M = k) =
(
n

k

)
εk(1 − ε)n−k . (40)

The probability of drawing a mutant at random from a group containing k mutants
is P(I = 1|M = k) = k/n. The probability that an individual chosen at random from
the whole population is a mutant is P(I = 1) = ε. Thus,

P(M = k|I = 1) =
(n
k

)
εk(1 − ε)n−kk/n

ε

=
(
n − 1

k − 1

)
εk−1(1 − ε)n−k . (41)

123



Evolutionary stability in continuous nonlinear public goods games 519

that is, the remaining number of mutants in the group is distributed binomially with
parameters n − 1 and ε.

It follows that the mean payoff for a mutant is:

Wm(h) =
n∑

k=1

P(M = k|I = 1)Wm,k(h)

=
n∑

k=1

(
n − 1

k − 1

)
εk−1(1 − ε)n−kWm,k(h)

=
n−1∑

k=0

(
n − 1

k

)
εk(1 − ε)n−1−kWm,k+1(h)

Similarly, the probability that a randomly chosen resident’s group contains k
mutants is

P(M = k|I = 0) =
(
n − 1

k

)
εk(1 − ε)n−1−k, (42)

and the payoff to a resident in a group containing k mutants is (Eq. (5))

Wr,k = W

(
H∗, kh + (n − 1 − k)H∗

n − 1

)
= f

(
kh + (n − k)H∗) − H∗. (43)

So, the mean payoff to an agent playing the resident strategy H∗ is

Wr(h) =
n−1∑

k=0

P(M = k|I = 0)Wr,k(h)

=
n−1∑

k=0

(
n − 1

k

)
εk(1 − ε)n−1−kWr,k(h).

The difference between the mean fitnesses of the mutant and resident strategies is
then

δW (h) = Wm(h) − Wr(h)

=
n−1∑

k=0

(
n − 1

k

)
εk(1 − ε)n−1−k

[
Wm,k+1(h) − Wr,k(h)

]
. (44)

Denoting the total contribution in a group containing k mutants and n− k residents
by

ηk = kh + (n − k)H∗, (45)
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and noting that ηk+1 − ηk = h − H∗, we have

Wm,k+1(h) − Wr,k(h) = [
f (ηk+1) − h

] − [
f (ηk) − H∗]

= [
f (ηk+1) − ηk+1

] − [
f (ηk) − ηk+1

]
. (46)

If ηmin
n < h < H∗ then, for all 0 ≤ k ≤ n − 1,

ηmin < nh = ηn ≤ ηk+1 < ηk ≤ η0 = nH∗ = ηmax, (47)

so because f (η) − η is increasing for ηmin < η < ηmax,

Wm,k+1(h) − Wr,k(h) = [
f (ηk+1) − ηk+1

] − [
f (ηk) − ηk+1

]
< 0, (48)

that is, each term in the sum (44) above is negative, implying δW (h) < 0.
Similarly, if h > H∗ then, for all 0 ≤ k ≤ n − 1,

ηmax = nH∗ < ηk < ηk+1, (49)

and since f (η) − η is decreasing for η > ηmax, inequality (48) holds again, implying
δW (h) < 0.

Thus, a mutant strategy sufficiently close to the equilibrium H∗ cannot invade,
regardless of its initial proportion in the population, ε. 	


7.2 Local CS

Proof of R2 (Local CS) Similar to the derivation of Eq. (44) in Sect. 7.1, the mean
fitness difference between a mutant contributing h and a resident contributing H is

δW (h) =
n−1∑

k=0

(
n − 1

k

)
εk(1 − ε)n−1−k

[
W

(
h,

kh + (n − 1 − k)H

n − 1

)

− W

(
H,

kh + (n − 1 − k)H

n − 1

) ]

=
n−1∑

k=0

(
n − 1

k

)
εk(1 − ε)n−1−k

{[
f
(
(k + 1)h + (n − 1 − k)H

) − h
]

− [
f
(
kh + (n − k)H

) − H
]}

=
n−1∑

k=0

(
n − 1

k

)
εk(1 − ε)n−1−k

×
{[

f
(
(k + 1)h + (n − 1 − k)H

) − (
(k + 1)h + (n − 1 − k)H

)]

− [
f
(
kh + (n − k)H

) − (
kh + (n − k)H

)]
}
. (50)
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If ηmin/n < H < h < H∗, then ηmin < kh + (n − k)H < ηmax for all 0 ≤ k ≤ n,
and because f (η)−η is increasing on [ηmin, ηmax], each term in the sum in the last line
of equation (50) is positive, so δW (h) > 0. Conversely, if H∗ < h < H , then because
ηmax < kh+ (n− k)H for all 0 ≤ k ≤ n and f (η)−η decreases for η > ηmax, again,
δW (h) > 0. Thus, the ESS H∗ is convergently stable. 	


8 Discussion

We have analyzed the general class of public goods games described in Sect. 2 con-
tinuous n-player snowdrift games, Doebeli et al. 2004 using the two frameworks
summarized in Sect. 3 [static evolutionary game theory (Maynard Smith 1982; Hof-
bauer and Sigmund 1998; Nowak 2006) and adaptive dynamics (Dieckmann and Law
1996; Geritz et al. 1998; Metz et al. 1996; Hofbauer and Sigmund 1998)]. Our results
are expressed in three theorems stated in Sect. 4 and proved in Sects. 5, 6 and 7.

With the standard static theory, we identified two candidate evolutionarily stable
strategies (ESSs): either contributing nothing (H = 0, “defection”) or contributing
an equal share of the maximizing total good (H = H∗ = ηmax/n, “cooperation”).
Defection is an ESS unless the benefit of contributing to the public good is so large
that it is worth doing so even if no-one else contributes. Cooperation is an ESS unless
the cost of contributing the maximizing total good single-handedly outweighs its
benefit and the incremental cost of contributing an equal share also exceeds its ben-
efit (condition (14)). When they exist, each ESS is resistant to invasion by a mutant
that contributes any other amount (globally evolutionary stable) and is selected for
in populations of individuals contributing nearly the ESS level (locally convergently
stable).

Our conclusions do not depend on the form of the benefit function f (h) beyond the
biologically sensible hypotheses H1 and H2, and are hence applicable to a wide range
of biological, social and economic problems. Moreover, the conditions we find under
which cooperation is inherently evolutionarily stable are independent of any external
mechanism such as population structure (Reeve and Hölldobler 2007; Barker et al.
2012; Krupp and Taylor 2015), kin selection (Cornforth et al. 2012; Krupp et al. 2008;
Krupp and Taylor 2015; Clutton-Brock 2002), reciprocity (Killingback and Doebeli
2002; Nowak and Sigmund 1998; Trivers 1971) or partner selection (McNamara et al.
2008).

With the adaptive dynamics framework, we found only one possible ESS, which
is to “cooperate” by contributing an equal share of the maximizing total good, as
in the static theory. Unlike the static theory, the standard formulation of adaptive
dynamics requires a smooth fitness function (hypothesis H3) and the typical definition
of evolutionary stability in the adaptive dynamics literature is local (e.g., Geritz et al.
1998), so the conditions for stability can beweaker, which iswhat our analysis revealed
for the public goods games that we considered: cooperation is locally evolutionary
and convergently stable no matter what. Note also that the notion of global ES is more
relevant than the local ES in cases when the deviation of mutant strategies from the
resident one are not small, e.g., in the case of flexible decision-making (rather than
genetically predetermined behaviour) (Ito et al. 2015).

123



522 C. Molina, D. J. D. Earn

The reason that our adaptive dynamics analysis did not detect contributing nothing
(“defection”) as an ESS is an artifact of the analysis method’s focus on evolutionarily
singular points (see Appendix 2). Numerical simulations based on adaptive dynamics
(e.g., those presented in Doebeli et al. 2004 and Killingback et al. 2010) are not subject
to this constraint.

Compared with the static theory, the adaptive dynamics framework has the advan-
tage of being able to describe evolutionary dynamics, even far from ESSs. However,
studying the dynamics is possible only if a particular fitness function is adopted.
In this paper, we focused on a general setting, without restricting attention to a
particular benefit function f (η), so that the inferences we make are as broad as
possible.

With the adaptive dynamics framework, it is possible to describe and investigate
the evolution of a dimorphic population (as opposed to a single mutant in an oth-
erwise uniform resident population) but, again, only if a specific fitness function is
chosen. Our third theorem (Theorem 4.4), based on static theory, successfully con-
siders manifestly dimorphic populations in order to broaden the scope of the stability
results to include potential effects of invasion by a significant proportion of mutants
(which is applicable to a number of biological situations). We find that cooperation
is locally evolutionarily and convergently stable in a much stronger sense than typ-
ically considered: when it is stable to invasion by a single mutant, H∗ is actually
selected for no matter how large a proportion of the population is playing the mutant
strategy (if the mutants play a strategy that is sufficiently similar to the residents’
strategy).

Throughout this paper,we have retained the standard assumption that the underlying
population is infinite. An infinite population size is often justified in the adaptive
dynamics literature on the grounds that small populations are unlikely to persist due to
demographic stochasticity (Metz et al. 1996, §2.1). Of course, evolutionary stability
predictions might differ in finite populations (Nowak 2006), a possibility that we will
explore in further work.

Other possible complications that are not accounted for in our present analyses
are the effects of a structured (i.e., not well-mixed) population (Hauert and Doe-
beli 2004; Boyd and Richerson 2002), relatedness among some or all agents in
the population (Krupp et al. 2008; Cornforth et al. 2012), assymetry or variabil-
ity among individuals, due to differences in age, sex, resources, abilities or costs
(Frank 2010; Lotem et al. 1999; Houston and Davies 1985; McNamara et al. 1999),
as well as inter- and intra-group competition affecting the division of resources
(Reeve and Hölldobler 2007; Barker et al. 2012). Furthermore, in the class of
games we have studied, individual agents choose their level of contribution inde-
pendently and without knowledge of other agents’ contributions. However, it is
possible that agents choose their contributions in sequence, or negotiate their lev-
els of contributions (Wright and Cuthill 1990; Markman et al. 1995; McNamara et al.
1999).
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Appendix 1: Motivation for assumption A3 (existence of ηmax)

In this appendix, we motivate assumption A3 by showing that if the focal agent’s
fitness is defined by Eq. (5) and f is continuous, the following two statements are
equivalent:

S1 For any fixed non-focal agent’s mean contribution H there exists h†(H) ≥ 0
such that the focal agent’s fitness W (h, H) decreases with its contribution h for
all h > h†(H).

S2 There exists ηmax ≥ 0 such that f (η) − η decreases with η for all η > ηmax.

To gain some intuition, we first suppose f is a differentiable function of η (in Appen-
dix 1.1), and then give the general proof (in Appendix 1.2)

Appendix 1.1: Proof for differentiable f

Suppose that f is differentiable. Then, by the chain rule and Eq. (3), S1 implies that

∂W

∂h
=

(
f ′(η)

∂η

∂h

)∣∣
∣∣
η=η(h,H)

− 1 = f ′(η)
∣
∣
η=η(h,H)

− 1

= d

dη

(
f (η) − η

)∣∣∣∣
η=η(h,H)

. (51)

Consequently, ifW (h, H) decreases with h for h > h†(H) then f (η)−η decreases
with η for all η > η(h†(H), H). Letting

ηmax = min
H≥0

η(h†(H), H), (52)

f (η) − η decreases for η > ηmax. Thus, S1 implies S2.
Conversely, if there exists ηmax ≥ 0 such that f (η) − η decreases for η > ηmax,

then letting h†(H) = ηmax − (n − 1)H , we see that η(h, H) > ηmax iff h > h†(H).
It then follows from Eq. (51) that W (h, H) decreases with h for h > h†(H), so S2
implies S1.
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Appendix 1.2: Proof for general f

Suppose S1 holds. Noting that

h > h†(H) ⇐⇒ h + (n − 1)H > h†(H) + (n − 1)H

⇐⇒ η(h, H) > η†(H), (53)

where
η†(H) = η

(
h†(H), H

)
, (54)

and rewriting Eq. (5) as

W (h, H) = f
(
h + (n − 1) H

) − h

= f
(
η (h, H)

) − [
η
(
h, H

) − (n − 1)H
]

= f (η) − η + (n − 1)H, (55)

we see that S1 is equivalent to the assumption that for fixed H there exists η†(H) ≥ 0
such that f (η) − η decreases for η > η†(H). We define ηmax to be the minimal such
(non-negative) total good. Because η can vary independently of H , it follows that
f (η) − η decreases for all η > ηmax, so S1 implies S2.
Conversely, if S2 is true, then Eqs. (53) and (55) imply thatW (h, H) decreases for

all h > h†(H) = ηmax − (n − 1)H . Thus, S2 implies S1.

Appendix 2: Boundary ESSs need not be singular strategies

In adaptive dynamics, evolutionarily singular points are singled out as candidate ESSs
(e.g., Geritz et al. 1998; Doebeli et al. 2004). These are points at which there is no
directional selection, since the fitness gradient D(H) vanishes.

However, when the evolving variable H is restricted to an interval (in our case
H ≥ 0), it is not necessary for the fitness gradient to vanish at an endpoint of this
interval in order for it to be ES: as we have seen in Theorem 4.1, for the class of models
defined in Sect. 2, the endpoint H = 0 is globally evolutionarily stable whenever
f (ηmax) < ηmax, but the fitness gradient is negative in a right-hand neighbourhood
of the endpoint H = 0 (including at H = 0). In fact, it is D(H) being negative near
H = 0 that ensures that H = 0 is both locally convergently and evolutionarily stable.

The source of this issue is that the restriction to the biologically meaningful interval
H ≥ 0 is not built into the dynamical model Eq. (12), in that solutions of Eq. (12) do
not necessarily remain in this interval (because the fitness gradient at the left endpoint
H = 0 points outside the interval, into H < 0).

Note also that this cannot be easily fixed by artificially setting D(0) = 0, because
doing so will insert a discontinuity into the fitness gradient, and adaptive dynamics
assumes that the fitness gradient is at least continuous, in order to ensure the existence
of solutions of Eq. (12) (see Hirsch et al. 2013) and in order to perform the local
analysis leading to Table 1.
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We conclude that when using adaptive dynamics to model a trait that is restricted to
an interval (for biological reasons), points on the boundary of this interval may be ES,
despite not being singular points. More care is thus required to examine the dynamics
of such models near boundary points.

Appendix 3: The assumption that contribution is measured in units
of fitness cost, c(h) = h

In this appendix, we comment on the biological interpretation of our assumption that
the contribution of the focal agent is measured in units of the fitness cost it incurs,
c (h, H) = h (Eq. (2)).

Suppose, as before, that the population is engaged in an n-player public goods
game, and let h1, . . . , hn be the contributions of all the members of the focal agent’s
group, including the focal agent (for example, if the index of the focal agent is i = 1,
then h = h1).

Thus, substituting

η(h, H) =
n∑

i=1

hi (56)

in Eq. (4), we have

b (h, H) = f
(
η(h, H)

) = f

(
n∑

i=1

hi

)

. (57)

However, we relax our assumption in Eq. (2) and instead only assume that

c(h, H) = c(h), (58)

so that the fitness cost incurred by the focal agent is independent of the contributions
of the other members in its group.

The focal agent’s fitness is then

W (h, H) = f

(
n∑

i=1

hi

)

− c(h). (59)

For 1 ≤ i ≤ n, let Ci = c(hi ), and C = c(h) be the costs incurred by the n
members of the focal agent’s group, and the focal agent (respectively). Suppose that
the cost function is one-to-one, so that there exists a left-inverse function k(·) satisfying
k
(
c(h)

) = h and k
(
c(hi )

) = hi for all 1 ≤ i ≤ n. Then, Eq. (59) becomes

W (h, H) = f

(
n∑

i=1

k(Ci )

)

− C. (60)
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The benefit to the focal agent, f
(∑n

i=1 k(Ci )
)
is then generally not a function of the

sum of the group members’ fitness costs,
∑n

i=1 Ci .
By assuming that contributions to the public good are expressed in units of fitness

cost (i.e., c(h) = h, as in Eq. (2)), we implicitly assumed that fitness itself is the
public good. Expressed in more biological terms, we are assuming that reproductive
costs are effectively transferable: each individual in a group obtains a fitness benefit
f (η) regardless of how the associated costs (which sum to η) are distributed among
the group members; for example, the fitness benefit is the same if the focal agent
contributes the entire cost (h = η), or if the cost is distributed equally among group
members (hi = η/n for each i).
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