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Evolutionary game theory has classically been
developed under the implicit assumption of an
infinite population. Exact analytical results for finite
populations are rare, and those that exist apply to
situations in which strategy sets are discrete. We
rigorously analyse a standard model for the evolution
of cooperation (the multi-player continuous-strategy
snowdrift game) and show that in many situations
in which there is a cooperative evolutionarily stable
strategy (ESS) if the population is infinite, there
is no cooperative ESS if the population is finite
(no matter how large). In these cases, contributing
nothing is a globally convergently stable finite-popula-
tion ESS, implying that apparent evolution of
cooperation in such games is an artefact of the
infinite population approximation. The key issue
is that if the size of groups that play the game
exceeds a critical proportion of the population then
the infinite-population approximation predicts the
wrong evolutionary outcome (in addition, the critical
proportion itself depends on the population size). Our
results are robust to the underlying selection process.

1. Introduction
Many evolutionary games assume—for mathematical
convenience—that populations are infinitely large (e.g.
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[1–7]). This assumption is sometimes justified on the grounds that ‘[p]opulations which stay
numerically small quickly go extinct by chance fluctuations’ [8, §2.1]. Of course, all real
populations are finite, and important differences in evolutionary dynamics between finite and
infinite populations have been demonstrated [9–15].

In spite of the technical challenges of working with finite populations, some exact analytical
results have been obtained for games with discrete strategy sets [9,12,14–16], notably also
in structured populations [17–24]. However, most existing finite-population results rely on
approximate analytical methods and simulations [11,15,25–29]. For example, a diffusion
approximation is often employed for its analytical convenience [1,27,30]; such approximations
are useful, but have limitations (e.g. some real populations may be better-described using
non-diffusive processes [31]).

Almost all existing finite-population results involve discrete strategy sets, such as when
individuals must choose between making a fixed positive contribution to a public good, or
nothing at all (e.g. [9,12,14–16]). Yet, many traits are better described on a continuum (e.g.
allocation of time or effort to a communal task); consequently, evolutionary games involving
continuous strategy sets are widely applicable, and they have been extensively studied using
infinite-population models [32]. Moreover, to our knowledge, almost all existing results for
finite populations assume a particular selection process—almost always the Moran process, and
occasionally the Wright–Fisher process [33,34] (with few exceptions, e.g. [35,36]).

Here, we present mathematically rigorous results for finite-population evolutionary games
with continuous strategy sets. We consider a standard model for exploring the evolution
of cooperation—the continuous multi-player snowdrift game [3]—which has previously been
studied in infinite populations using exact analysis and simulations [3,7,37–39] and in finite
populations using approximations and simulations [11,29,40,41]. We focus on a subclass
of the snowdrift game, which we refer to as the natural snowdrift game (NSG) because
its definition excludes parameter regions that are not biologically sensible. For the NSG
in finite populations, we characterize all evolutionarily stable strategies (ESSs) and expose
the roles of group size and population size in determining the evolutionary stability of
cooperation.

An important outcome of our analysis is that we rigorously identify critical differences in the
predictions of evolutionary games in finite and infinite populations. The NSG always has at least
one ESS, the non-cooperative (defection) ESS, regardless of whether the population is finite or
infinite. When played in an infinite population, the NSG always has a second (cooperative) ESS
[42], but we find conditions under which there is no cooperative ESS when it is played in finite
populations. This qualitative difference in predictions for finite and infinite populations can occur
no matter how large the finite population is, and is universal in the sense that it is independent
of the selection process (a notion we clarify at the end of §2 and define rigorously in [43,44]). To
our knowledge, there are no other examples in the literature of qualitatively different dynamics in
finite and infinite populations that persist for arbitrarily large populations and are independent
of the selection process; other studies that demonstrate such differences (e.g. [45]) are restricted
to particular selection processes. Our results underline the need to model real populations as
explicitly finite in size.

The results we present are supported by formal mathematical theorems, which we state in §3
and prove in §5 and appendices A and B.

2. Terminology
The snowdrift game is an abstraction of the situation in which a group of individuals encounters
a snowdrift that blocks their path. We suppose that n players are drawn from a population of self-
interested individuals (n is the group size), and that each player chooses how much to contribute
to a public good—e.g. snow cleared off the path—from which all group members benefit. A focal
individual contributing x incurs a cost C(x) that depends only on its own contribution, whereas
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its benefit B(τ )≥ 0 depends on the total good τ contributed by the group as a whole. The focal
individual’s payoff—which is interpreted as a change in fitness—is then

W(x, τ )= B(τ )− C(x). (2.1)

If x is a continuous variable, as we assume here, the game is said to be continuous. Positive
contributions represent cooperative strategies, and individuals who contribute nothing are said
to defect. If the population is finite and contains N individuals, then for convenience we refer
to the ratio G=N/n as the number of groups; however, we do not assume that the population
is simultaneously subdivided into groups of n individuals (and in particular, G need not be an
integer).

To avoid mathematical complexities that are not relevant to the biological issues that concern
us, and to ensure that the fitness function in equation (2.1) is biologically sensible, we impose
a few natural conditions on the cost and benefit functions and refer to the natural snowdrift
game (NSG; see §5a). The NSG was introduced in [42], where it was shown that—when played in
infinite populations—the game always has a cooperative ESS. Cost, benefit and fitness functions
for an NSG example are shown in figure 1.

Traditionally, an evolutionarily stable strategy (ESS) is one such that, when adopted by the
entire population, a single mutant individual playing a different strategy cannot invade the
population [46]. Because the phenotypic changes caused by mutations are often small, local
ESSs are of particular interest: a population of individuals playing a local ESS is resistant to the
invasion of a single individual playing a slightly different strategy. A strategy is convergently
stable if a population playing a different strategy evolves toward it [47]; convergence can be
either global or local.

In infinite populations, the theory of adaptive dynamics [2,8,48] identifies a singular strategy
as one at which the selection gradient, ∂xW(x, x+ (n− 1)X)|x=X, vanishes [49, table 1]; for an NSG,
this reduces to

B′(nX)− 1= 0. (2.2)

A singular strategy for which the mutant fitness is concave near the singular strategy is a local
ESS.1 Local convergent stability of singular strategies is also defined via a condition on the local
fitness difference (see table 1 of [2]).

The definition of singular strategies can be extended to finite populations: the defining feature
of a singular strategy is that when it is played by a resident population, directional selection
(equation (A 4a)) vanishes2; for an NSG, this condition reduces to

N − n
N − 1

B′(nX)− 1= 0. (2.3)

The finite-population extension of the concept of evolutionary stability is more involved, because
it must account for the fact that selection can favour fixation of a mutant strategy, even if selection
opposes its invasion [9]. Thus, the standard definition of an evolutionary stable strategy in a finite
population (ESSN [9]) requires that selection oppose both invasion by, and fixation of, mutant
strategies. In addition, the presence of one or more mutants in a finite population has a non-
negligible effect on the fitness of residents (whereas finitely many mutants cannot affect the mean
fitness of residents in an infinite population).

Fixation probabilities depend on the selection process [43], i.e. the stochastic process by
which differences in fitnesses of individuals playing different strategies generate changes in
the frequencies of strategies in the population over time.3 As a result, the strategies that are

1We assume throughout this paper that the strategy space is one-dimensional.

2See definition 4.3.5 and appendix 4.C of [50] for a more general exposition of evolutionarily singular strategies, from which
it follows that the derivative in equation (A 4a) must vanish.
3In [43], we rigorously define and study selection processes. These are Markov processes describing the evolution of
populations in which there are two types of individuals, there are no mutations, and at any time, the number of individuals
of the type that has a higher mean fitness is expected to increase. The Moran and Wright–Fisher processes are particular
examples of selection processes.
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Figure 1. Example cost, benefit and fitness functions for a natural snowdrift game (NSG, defined in §5a). (a) The cost function
is simply C(x)= x. (b) The benefit function B(τ ) is given in §5 equation (5.5); parameter values are L= 10, k= 1, m= 1.5,
τturn = 15. (c) Fitness is shown for three situations involving groups of n= 2 individuals. (i) Residents cooperate and contribute
the ESSN (light green, Xres = 9.63), (ii) Residents cooperate but contribute less than the ESSN (medium green, Xres = 5).
(iii) Residents defect, i.e. contribute nothing (dark green, Xres = 0). Resident strategies are indicated by dotted vertical lines
in the same colour as the associated fitness function. In the case of defecting residents, a focal individual’s fitness function does
not depend on the group size (n) and has a local maximum at the maximizing total good (τmax = 19.3, thin grey vertical line).
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evolutionarily stable in finite populations depend on the selection process. Variants of the Moran
and Wright–Fisher processes [33,51,52] are commonly assumed, but are idealizations that do not
exactly describe realistic populations (e.g. [31]). We are spared this complication in this paper
because, for the games we consider, every ESSN is a universal ESSN [44, §5], that is, all ESSNs
are evolutionarily stable irrespective of the selection process [43]. Consequently, we need not
specify the population-genetic processes underlying selection, and we obtain general results
about evolutionary stability. We use the term universal more generally to indicate that a property
or statement holds for any selection process.

3. Results

(a) ESSs in infinite populations
As we have previously shown [42], if an NSG (§5a) is played in an infinite population then there
are always two (and only two) ESSs:

defect: contribute nothing (x= 0), or
cooperate: make a positive contribution that is inversely proportional to

the group size n (x=X∗∞ > 0).

Both ESSs are global, and both are locally convergently stable (theorem 4.1 of [42]). At the
cooperative ESS, everyone contributes an equal share of the amount that maximizes individual
fitness given that everyone contributes equally. In terms of this maximizing total good τmax (see
§5a and figure 1), the cooperative ESS is

X∗∞ =
τmax

n
. (3.1)

(b) ESSs in finite populations
In a finite population, NSGs do not necessarily have a cooperative ESSN , and when they do it
is not necessarily possible to find an explicit formula for evolutionarily stable cooperation levels
in terms of the parameters of an NSG (nevertheless, cooperative ESSNs are always easy to find
numerically within the interval (3.3) identified in the following theorem).

Theorem 3.1 (Existence and universality of stable cooperation levels in the natural snowdrift
game). Consider a finite population (of N individuals) that is subject to selection resulting from groups of
n individuals playing an NSG (defined in §5a). A strategy X is singular if and only if

B′(nX)= 1+ n− 1
N − n

, (3.2)

and any such strategy X lies in the open interval( τmin

n
,
τmax

n

)
, (3.3)

(hence, from (3.1), X < X∗∞).
Necessary condition for ESSN: Any cooperative ESSN (X > 0) satisfies both equation (3.2) and

B′′(nX)≤ 0. (3.4)

Sufficient condition for universal ESSN: If X satisfies equation (3.2) and

B′′(nX) < 0, (3.5)

then X is a universal ESSN that is (universally) locally convergently stable.
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Figure 2. ESSs in the NSG (§5a), with the sigmoidal benefit function shown in figure 1. For several group sizes (n), the infinite
population ESS (X∗∞, equation (3.1)) is shown as a horizontal line, and the finite population ESSN (X

∗
N ) is shown with dots

as a function of population size N. The vertical line segments indicate the critical population size threshold (Nmin, (3.10)). A
cooperative ESSN exists if and only if N > Nmin.

ESSNs in large populations: If B′′(τmax) �= 0 and the group size n is either fixed, or satisfies

n(N)/N
N→∞−−−−→ 0, then for any sufficiently large population size N, there is a universal ESSN X=X∗N

satisfying equation (3.5). Moreover, X∗N→X∗∞ as N→∞.

While the evolutionarily stable cooperation levels in finite and infinite populations are never
exactly the same, theorem 3.1 shows that the difference is negligible in sufficiently large
populations if as the population size N→∞, groups become a vanishingly small proportion of
the population (cf. figure 2). However, if group size is not sufficiently small relative to the total
population size then evolutionary predictions from finite population models differ qualitatively
from the predictions for infinite ones: it may actually be impossible for cooperation to evolve at
all. This is formalized in the next theorem.

Theorem 3.2 (ESSNs of the natural snowdrift game). Consider a finite population (of N
individuals) that is subject to selection resulting from groups of n individuals playing an NSG (defined
in §5a with fitness W defined by equation (5.2)). Let m denote the maximal marginal fitness, i.e.

m≡max
τ≥0

(∂W
∂x

)
=max

τ≥0

(
B′(τ )− 1

)
. (3.6)

Then m > 0 and there is a critical maximal marginal fitness threshold,

mc = N − 1
N − n

− 1, (3.7)
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such that4

m > mc 
⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Generically, at least one cooperative local
ESSN (X=X∗N > 0) exists that is
universal and universally
locally convergently stable.
In addition, defection is (universally)
a locally convergently stable ESSN .

(3.8a)

m=mc 
⇒

⎧⎪⎨⎪⎩
Generically, no cooperative ESSN exists.
Defection is (universally) globally evolutionarily
stable and locally convergently stable.

(3.8b)

and m < mc 
⇒

⎧⎪⎨⎪⎩
No cooperative ESSN exists.
Defection is (universally) globally
evolutionarily and convergently stable.

(3.8c)

This theorem predicts qualitatively different evolutionary outcomes, depending on the maximal
marginal fitness (m): equation (3.7) gives the critical maximal marginal fitness above which a
cooperative ESSN exists, and below which defection is the only ESSN . Theorem 3.2 thus connects
the maximal marginal fitness—a property of the fitness function that relates investments in the
communal task to fitness benefits—with properties of the population of interacting agents: the
population size (N), the number of players in a group (n) and the number of groups (G=N/n).

Equation (3.7) expresses the critical maximal marginal fitness in terms of a given population
size and given group size. To clarify the roles of group size and number of groups in the evolution
of cooperation, it is useful to think instead of the maximal marginal fitness (m) as given (i.e. as a
fixed property of the strategic interaction) and one of n or G as also fixed. Then, in the inequality
m > mc (see (3.8a)), we can replace mc by the expression on the right-hand size of equation (3.7),
and solve for a critical number of groups (Gc) or critical group size (nc).

(f) ESS conditions in relation to the number of groups (G) with group size (n) fixed
Condition (3.8a) can be expressed equivalently as

G > Gc ≡ 1+ 1
m

(
1− 1

n

)
, (3.9)

i.e. the number of groups G must be greater than Gc, the minimum number of groups that are
needed to support stable cooperation if the group size is n. For any given number of players in
a group (n), if we multiply (3.9) by n we see that cooperation cannot evolve—i.e. no cooperative
ESSN exists—unless the population size is greater than a critical population size,5

N > Nmin ≡ n+ n− 1
m

. (3.10)

Figure 2 illustrates this result for the particular NSG specified by the benefit function shown in
figure 1. Put another way, for a given group size n, if the population size N is too small then there
is no cooperative ESSN , but if N is sufficiently large then there is a (universal) cooperative ESSN .
For any given population size N, there are group sizes n and benefit functions B(τ ) that yield
Nmin > N, so a qualitative difference between the evolutionary outcomes in finite and infinite
populations can occur for any population size N.

4In (3.8a), ‘generically’ means excluding the unlikely possibility of singular strategies also being inflection points of B(nX); in
(3.8b), it excludes the possibility of the marginal benefit B′(τ ) being constant in a neighbourhood of arg max B′(τ ).
5Condition (c) in the definition of the NSG (§5a) implies that m > 0, so Nmin is always well defined in (3.10).
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(g) ESS conditions in relation to group size (n) with the number groups (G) fixed
Rearranging condition (3.8a) again, we can write

n < nc ≡
{

1
1−m(G−1) if m < 1

(G−1) ,

∞ otherwise,
(3.11)

i.e. for cooperation to evolve, the group size n must be less than nc, the maximum size of groups
that support cooperation in a population divided into G groups6. Multiplying (3.11) by G and
rearranging, we obtain

N < Nmax ≡
{

G
1−m(G−1) if m < 1

(G−1) ,

∞ otherwise,
(3.12)

i.e. if the number of groups is fixed (and smaller than 1+ 1/m) then in order for a cooperative
ESSN to exist, the population size must be less than the threshold in (3.12), as illustrated in figure 3.

(h) Lack of ESSN for any population size
It is even possible that there is a cooperative ESS if the population is infinite, but no cooperative
ESSN for any finite population size N. This is easy to verify for an NSG as follows. As noted
above, an NSG always has an infinite-population cooperative ESS (3.1). An ESSN exists if and
only if (3.8a) (or (3.11) or (3.9)) is satisfied. Rearranging inequality (3.9) (or equation (3.7)), we can
write, equivalently,

m > mc ≡ 1− (G/N)
G− 1

, (3.13)

i.e. there is a cooperative ESSN if and only if the maximum marginal fitness m exceeds the
threshold mc (exactly the same threshold that appears in equation (3.7), but expressed here in
terms of G rather than n). Suppose now that the population is divided into a given number
of groups, G≥ 2. There must be at least two individuals in each group, so N≥ 2G and hence
G/N≤ 1/2. Consequently, for any possible population size N, we have

mc ≥ 1
2(G− 1)

. (3.14)

Therefore, there is a simple, sufficient condition that precludes evolutionary stability of
cooperation for an NSG played in any finite population: if the benefit function is such that

m <
1

2(G− 1)
(3.15)

then no cooperative ESSN exists, and defection is the only ESSN , no matter how large the
population size N. When the game defined by the same cost and benefit functions is played in
an infinite population, defection remains an ESS, but in addition, there is also a cooperative ESS
(regardless of the group size n).7 Given G, it is easy to satisfy (3.15) since the only other constraint
on m is that it must be positive; for example, equation (5.5) below can be used to construct a
benefit function satisfying (3.15).

Above, we have considered populations divided into a given number of groups. Alternatively,
we could consider groups of a given size (n), and ask whether it is possible for a public goods
game to have a cooperative ESS if the population is infinite but no cooperative ESSN for any finite
population size. As we show elsewhere, NSGs do not have this property, but there are snowdrift
games that do have it [44].

6Note that nc is always finite for a given population size, but when the number of groups G is fixed and larger than 1+ 1/m,
then there is an ESSN for any number of players n.
7Note, however, that the group size n→∞ as the number of groups G→∞, and while the cooperative equilibrium X∗∞ exists
in the infinite population limit for any finite number of groups G, it tends to 0 as G→∞.
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Figure 3. ESSs in the NSG (§5a), with the sigmoidal benefit function B(τ ) given in §5 equation (5.5); parameter values are
L= 1000, k= 1, m= 0.05, τturn = 7. For several numbers of groups (G), the infinite population ESS (X∗∞, equation (3.1)) is
shown as a black curve, and the finite population ESSN (X∗N ) is shownwith blue dots as a function of population size N. For each
number of groups, the minimum population size considered is N= G + 1. The red vertical line segments indicate the critical
population size threshold (Nmax, (3.12)), below which a cooperative ESSN exists (in contrast to the situation in which the group
size n is fixed and an ESSN exists only above a critical population size; cf. figure 2).

(i) Confirmation with both selection and mutation
Lastly, in figure 4 we complement our rigorous analyses with individual-based simulations of
finite populations in which individuals undergo both selection and mutation (see §5b for details).
Simulations such as these confirm that rigorous game-theoretical analyses—which are based on
selection acting with only two types in the population—correctly predict evolutionary outcomes
in realistic populations in which each individual can, in principle, be playing a different strategy.

4. Discussion
We have seen that the evolutionary dynamics of the class of natural snowdrift games (NSGs,
defined in §5a) are different when played in finite versus infinite populations. Since all real
populations are finite, it is important to understand how inferences based on infinite-population
analyses of the multi-player snowdrift game (e.g. [3,42,53]) might be affected. More generally,
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Figure 4. Individual-based simulations (details in §5b) of populations playing an NSG with cost and benefit functions as in
figure 1 and group size n= 15, for population sizes N= 225 (red), 165 (black) and 120 (grey). The values of the additional
parameters required to simulate using algorithm 1 (§5b)were nRep= 10, nGen= 104, xmax = 6,μx = 5.5,σx = 0.1, pmut =
0.005, σ = 0.1, l=−0.3, u= 0.3. The horizontal axis is the number of generations elapsed, and the vertical axis is the
strategy (contribution level) of each individual in the population. The strategies present in the population in each generation
are plotted on a vertical line intersecting the horizontal axis at the corresponding point. For N= 120, defecting is the unique,
globally convergently stable ESSN ; for N > 155, a cooperative ESSN X∗N (B 21) is predicted, and specifically X∗165 = 3.53 and
X∗225 = 3.54 (marked with a horizontal yellow line). The ESS for an infinite population playing this game is X∗∞ = 3.56. In
these simulations, the mutation rate is high enough—i.e. the probability pmut is large enough—that populations contain
more than two strategies at any given generation (in contrast to our rigorousmathematical analysis of dimorphic populations).
Nonetheless, for population sizesN > 155, for which a cooperative ESSN is predicted, we see evidence for its existence.With the
width (σ ) of the truncated Normal distribution ofmutation effect sizes used here (cf. algorithm 1, §5b), the simulationwith the
largest population size (N= 225) would eventually leave the vicinity of the cooperative ESSN and settle at the non-cooperative
ESSN . A narrower distribution of mutation step sizes (smaller σ ) would increase the probability that any population with size
N > 155 would remain in the basin of attraction of the cooperative ESSN for a longer period.

under what circumstances are infinite-population analyses of the evolution of cooperation likely
to lead to invalid inferences about real populations?

We have shown that there are situations in which cooperation in the snowdrift game can
evolve in an infinite population but not in any finite population (no matter how large). This
extreme possibility emphasizes that inferences drawn from infinite population analyses should
be regarded cautiously when applied to groups that are relatively large compared with the
population size. Other models may or may not have parameter regimes in which cooperation
can evolve only if the population is infinite, but it is important to be aware of the possibility
that the infinite-population approximation might predict incorrect evolutionary outcomes if the
number of individuals playing the game (the group size, n) is substantial relative to the total
population size (N). Exactly what ‘substantial’ means will depend on the game in question and
the population size8; we have specified this threshold precisely for NSGs in (3.11). Evolutionary
predictions derived from infinite population analyses can be incorrect for finite populations of
any size (figure 2 and theorem 3.2). The origin of such erroneous inferences is that finite groups
(no matter how large) are always negligible in size compared to an infinite underlying population,
but not compared to a finite underlying population. This highlights the fact that, when evaluating

8In fact, to underscore the dependence of ‘substantial’ on the game, note that it is possible to construct snowdrift games for
which ‘substantial’ can be any desired quantity. More precisely, for any given group and population sizes it is possible to
choose quadratic cost and benefit functions (as used in, e.g. [3]) such that the infinite population approximation yields the
wrong evolutionary outcome [44].
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whether an infinite-population approximation is appropriate, it is important to consider whether
and how the group size changes as the (finite) population size is increased.

Intuition for how different predictions arise in finite and infinite populations can be developed
by considering a thought experiment in which the population (of size N) is simultaneously divided
into G groups that play the game. If a single mutant invades the resident population, the
probability that a randomly chosen group contains the mutant is 1/G. If the population size were
then increased by adding more and more groups of the same size (G→∞, keeping n fixed),
then the effect of the mutant on the residents would be ‘infinitely diluted’ (the mutant would
have a negligible effect on residents’ fitnesses as N→∞). This example is illustrative of a more
general difference between well-mixed finite and infinite populations: it can be shown that in a
well-mixed population containing both mutants and residents, on average, mutants interact with
fewer mutants, and residents interact with more mutants in a finite population than in an infinite
one. This difference between the environments experienced by—and thus payoff functions of—
residents in finite and infinite populations gives rise to the difference in evolutionary outcomes. If,
instead, the population size were increased by adding individuals to the existing groups (without
increasing the number of groups) then the probability that a randomly selected group contains the
mutant would not change; however, in this version of the thought experiment, the limit N→∞
entails the size of each group also becoming infinitely large.

Adaptive dynamics, which has been extensively used in the study of evolutionary
dynamics (e.g. [3,53,54], as well as [55] and references therein), relies on an infinite-
population approximation [8]. Previous work has presented reasonable arguments to justify
this approximation (e.g. [48]) and reported general agreement between adaptive dynamics and
stochastic simulations of finite populations (see [56] for a review). In addition, specific agreement
has been noted [15] between the finite- and infinite-population evolutionary dynamics of the
multi-player snowdrift game with discrete strategies. These results appear to contrast with those
presented here, though [15] did observe that defectors prevail when the group size approaches the
population size (even in situations in which cooperators and defectors can coexist in an infinite
population). In other work, there has been a focus on situations in which the group size is much
smaller than the population size, which reduces the chance of discovering discrepancies between
finite and infinite population evolutionary predictions.

Our analysis of the class of natural snowdrift games is rigorous (theorems 3.1 and 3.2),
and our conditions for existence of a cooperative ESSN are universal (in the sense of being
entirely independent of the selection process [43]). These exact results for the finite-population
NSG, together with exact results for the infinite-population NSG [42], make it easy to identify
differences in predictions when the game is played in finite versus infinite populations. For the
NSG, we have found that the infinite-population approximation yields the wrong evolutionary
outcome for group sizes that are substantial relative to the population size. More broadly, our
results indicate that approximating large populations by infinite ones (as in the classical adaptive
dynamics framework [8]) has the potential to generate misleading conclusions. There is a general
need to reevaluate the theoretical justification for approximating large populations by infinite
ones, and to derive clear conditions for when such approximations are valid.

Finally, the recently introduced concept of the Social Efficiency Deficit (SED) [57,58] captures
the ‘opportunity cost’ that an evolving population experiences, in comparison to what players
could attain at the social optimum. Because evolutionary outcomes can differ between finite and
infinite populations, an interesting direction for future inquiry would be to compare the different
SEDs experienced in these two settings.

5. Methods

(a) The natural snowdrift game
This biologically motivated version of the continuous snowdrift game (§2) was introduced in [42].
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We consider a population of individuals that are identical except (possibly) with respect to the
strategy (contribution level) adopted when playing the snowdrift game. In particular, there is no
age, spatial, social or other structure in the population. Evolution affects only the contribution
levels of individuals, so at any time the population is completely characterized by the set of
strategies present in the population and the numbers of individuals (or population proportions)
playing each strategy. Fitnesses are determined entirely by payoffs from the continuous snowdrift
game played in groups of n individuals. We say that this population plays a natural snowdrift
game (NSG) if, in addition, the cost and benefit functions have the following properties (which
are satisfied by the example shown in figure 1):

(a) The cost to the focal individual of a contribution x is measured in units of its impact on
this individual’s fitness, that is,

C(x)= x. (5.1)

Thus, the focal individual’s fitness is

W(x, τ )= B
(
τ
)− x, (5.2)

where τ is the total contribution in the focal individual’s group.
(b) The benefit B(τ ) is a smooth function of the total contribution τ (more precisely, B′′(τ ) exists

for all τ ≥ 0).
(c) There exist total contribution levels τmin and τmax (0≤ τmin < τmax) such that B(τ )− τ

decreases for τ < τmin and τ > τmax and increases for τmin < τ < τmax. (See [42, 2] for the
biological motivation for this assumption, the key aspect of which is that the marginal
cost of an increase in contribution eventually outweighs its benefit.) Consequently, given
condition (a), if only one member of a group contributes anything then that individual’s
fitness [take x= τ in equation (5.2)] is locally minimized (maximized) if its contribution
is x= τmin (τmax).

(d) There is a net fitness cost to an individual who contributes τmax when all other group
members contribute nothing,

B(τmax) < C(τmax), (5.3)

but there is a net incremental fitness benefit for contributing τmax/n if other group
members contribute that amount,

B(τmax)− B
(

(n− 1)
τmax

n

)
> C
( τmax

n

)
. (5.4)

In an infinite population, condition (c) implies that τmax/n and 0 are the only local ESSs [42].
Adding condition (d) guarantees that they are both global ESSs (0 via (5.3) and τmax/n via (5.4);
see [42]).

(i) Benefit function used for numerical examples

For the purpose of making example graphs and running simulations, we have used sigmoidal
benefit functions. The biological motivation for this is that one would expect a nonlinear increase
in the ease of passing the barrier as more snow is cleared, but eventually there can be no further
benefit from additional work because all the snow has been cleared.

Specifically, for any integer k > 0 and real numbers m > 0, L > 0 and τturn ≥ 0, consider the
benefit function

B(τ )= L erf2k

(
(m+ 1)

Γ
(
1/(2k)

)
2kL

(τ − τturn)

)
, τ ≥ 0, (5.5)

where erf�(x) is the generalized error function [59] of order �,

erf�(x)= �

Γ(1/�)

∫ x

0
e−t� dt, (5.6)

and Γ(x) is the gamma function (equation (B 4a)). We analyse this flexible class of sigmoidal
benefit functions in appendix B, where we show that the parameters L and τturn are the horizontal
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asymptote and the inflection point, respectively, k controls the ‘width’ of the sigmoid9, and m+ 1
is the maximal marginal benefit (so that m is the maximal marginal fitness that results from this
functional form, justifying our notation).

Figure 1 shows the benefit function (5.5) for particular values of k, m, L and τturn, together
with the corresponding fitness function (5.2) that results if residents defect, or—in groups of two
individuals—if residents play the infinite population ESS (equation (3.1)). Based on equation (5.5),
in appendix B we derive explicit formulae for τmin, τmax, and X∗∞ and X∗N (in terms of m, L, τturn

and k).
The class of sigmoids based on generalized error functions is much more flexible than the more

common ‘logistic’ sigmoid used by Molina & Earn [42] and Cornforth et al. [53] (which is based
on shifting, and horizontally and vertically stretching, the hyperbolic tangent function, tanh(x)).
Whereas the maximum slope, horizontal asymptote and position of the inflection point uniquely
determine the ‘width’ of a logistic sigmoid, the generalized error function allows the width to be
set independently via the parameter k (see equation (B 14)).

(b) Individual-based simulations
The three individual-based simulations shown in figure 4 (for population sizes N= 120 (grey),
165 (black) and 225 (red)) were run using algorithm 1 (§5b), which we implemented in an R [60]
package. In the following description, we denote the normal distribution truncated to the interval
(l, u) by TruncNormal (μ, σ , l, u). It is assumed that values of the following parameters have been
set:

— Parameters (k, m, L and τturn) of the benefit function (5.5).
— Group size (n) and population size (N), such that G=N/n is an integer.
— Number of repetitions of the NSG between reproductive events (nRep).
— Maximum number of generations to evolve (nGen).
— Upper bound for contribution level (xmax).
— Mean (μx) and standard deviation (σx) of an underlying Normal(μx, σx) distribution

of strategies; the initial strategies (xi, i= 1, . . . , N) are to be sampled from
TruncNormal (μx, σx, 0, xmax).

— Mutation probability (pmut) per individual per generation.
— Standard deviation (σ ) of an underlying Normal (0, σ ) distribution of the strategy

changes caused by mutations, and upper and lower bounds on mutation sizes, (l, u);
when an individual playing strategy x mutates, its new strategy is sampled from
TruncNormal (x, σ , max{0, x− l}, min{xmax, x+ u}), so that the mutation is within the
interval [l, u] and the mutated strategy is in [0, xmax].

Data accessibility. Code used to produce the figures in this manuscript (in particular, the evolvr R package) is
attached as ESM. The latest version of the evolvr R package can be found from the GitHub repository: https://
github.com/davidearn/evolvr [61]. Version 0.0.3 is provided in electronic supplementary material [62].
Declaration of AI use. We have not used AI-assisted technologies in creating this article.
Authors’ contributions. C.M.: conceptualization, formal analysis, investigation, methodology, software, visualization,
writing—original draft, writing—review and editing; D.J.D.E.: conceptualization, formal analysis,
investigation, methodology, software, supervision, visualization, writing—original draft, writing—review
and editing.

Both authors gave final approval for publication and agreed to be held accountable for the work performed
therein.
Conflict of interest declaration. We declare we have no competing interests.
Funding. D.J.D.E. was supported by the Natural Sciences and Engineering Research Council of Canada
(NSERC). C.M. was supported by the Ontario Trillium Foundation, the United States Defense Advanced

9More precisely, for a given maximal marginal fitness (m) and horizontal asymptote (L), k controls the distance between the
benefit function’s inflection point (τturn) and the total contribution at which the marginal benefit is half of its maximum.
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Algorithm 1. Individual-based simulation algorithm.

1: xi← TruncNormal(μx, σx, 0, xmax), i= 1, . . . , N  randomly sample initial strategies
2: iGen← 1  generation counter
3: while iGen < nGen and not all xi’s are identical do  evolve to nGen or fixation
4: Compute fitnesses:
5: Wi← 0, i= 1, . . . , N  initialize individual fitnesses
6: for iRep← 1 to nRep do  estimate fitness from nRep interactions
7: Permute (x1, . . . , xN)  randomly assign individuals into groups of size n
8: τj←

∑n
k=1 xk+(j−1)n , j= 1, . . . , G  total contribution in group j

9: Wi←Wi +W(xi, τ�i/n� ), i= 1, . . . , N  individual fitness via (5.2), (5.5)
10: end for
11: Wi←Wi −min{Wj : 1≤ j≤N} + 1  shift fitnesses so minimum is 1
12: Selection by Wright-Fisher process:
13: x̃← unique(x)  subset of unique strategies
14: nuniq← dimension(x̃)  number of unique strategies
15: W̃�←

∑
{i : xi=x̃�}Wi, �= 1, . . . , nuniq  total fitness of each unique strategy

16: p̃�← W̃�/
∑nuniq

�=1 W̃�, �= 1, . . . , nuniq  normalized total fitness
17: (N1, . . . , Nnuniq

)← Multinom(N; p̃1, . . . , p̃nuniq
)  how many x̃� in next generation

18: x← (x̃1, . . . , x̃1︸ ︷︷ ︸
N1 times

, x̃2, . . . , x̃2︸ ︷︷ ︸
N2 times

, . . . , x̃nuniq
, . . . , x̃nuniq︸ ︷︷ ︸

Nnuniq
times

)  new population

19: Mutation:
20: for i= 1 to N do
21: u←Uniform[0, 1]  random uniform deviate
22: if u < pmut then mutate with probability pmut

23: xi← TruncNormal(xi, σ , max{0, xi − l}, min{xmax, xi + u})  random shift
24: end if
25: end for
26: iGen← iGen+ 1
27: end while

Research Project Agency NGS2 program (grant no. D17AC00005), and the Army Research Office (grant no.
W911NF1810325).
Acknowledgements. We are grateful to Sigal Balshine, Ben Bolker, Michael Doebeli, Jonathan Dushoff, Gil
Henriques and Paul Higgs for valuable discussions and comments.

Appendix A. Proofs

(a) Analysis of the natural snowdrift game (NSG, §5a) in a finite population
Our main results are stated in theorems 3.1 and 3.2 (§3). Before developing the proofs in detail, it
is useful to note that:

— τmin > 0 (where τmin is defined in assumption (c) of the definition of the NSG, §5a).
To see this, suppose that τmin = 0. Then assumption (c) implies that B(τmax)− τmax ≥
B(0)− 0≥ 0, so B(τmax)≥ τmax, contradicting assumption (d).

— The benefit function B(τ ) is twice-differentiable [assumption (b) in the definition of the
NSG (§5a)].

— B′(τmin)= B′(τmax)= 1, B′(τ ) > 1 for τmin < τ < τmax, and B′(τ )≤ 1 otherwise [these
properties of B(τ ) follow from assumption (c)]. Consequently, m > 0 [cf. equation (3.6)]
and B′′(τmax)≤ 0.
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(i) The mean fitness difference between mutants and residents

Consider a population of N individuals, comprised of Mp mutants who play x and N −Mp

residents who play X, and denote the proportion of mutants in the population by ε =Mp/N.
Suppose that groups of n individuals are randomly sampled from this population without
replacement, which implies that the number of mutants in each such group is hypergeometrically
distributed with parameters N, Mp and n [50,63]; thus, the probability that the number of mutants
Mg in a randomly sampled group of n individuals is k is given by

Pr (Mg = k)=
(N−Mp

n−k

)(Mp

k

)(N
n
) . (A 1)

Suppose, moreover, that a focal individual is selected from the population by first sampling a
group of n individuals, and then selecting one of the members of this group. Lastly, suppose for
simplicity that individual fitnesses are given by the payoffs from a single round of the NSG played
in such randomly selected groups.10 We show elsewhere [50, eqn. 4.61, p. 137] that the expected
difference between the mutant and resident fitnesses is then

δWε(x, X)=X − x+
n∑

k=0

(N−Mp

n−k

)(Mp

k

)(N−1
n−1
) ( kN −Mpn

Mp(N −Mp)

)
B
(
kx+ (n− k)X

)
. (A 2)

Differentiating equation (A 2) yields

∂xδWε(x, X)=−1+
n∑

k=0

(N−Mp

n−k

)(Mp

k

)(N−1
n−1
) kN −Mpn

Mp(N −Mp)
kB′
(
kx+ (n− k)X

)

=−1+
n∑

k=0

(N−Mp

n−k

)(Mp−1
k−1

)(N−1
n−1
) · kN −Mpn

N −Mp
B′
(
kx+ (n− k)X

)
, (A 3)

and setting x=X, we find [50, pp. 137–138]

∂xδWε(x, X)|x=X =−1+ N − n
N − 1

B′(nX). (A 4a)

Similarly, differentiating equation (A 2) with respect to x and setting x=X yields

∂2
x δWε(x, X)|x=X = N − n

N − 1

(
N − 2n
N − 2

+ 2
(n− 1)
N − 2

Nε

)
B′′
(
nX
)
. (A 4b)

From these expressions, we see that

— ∂xδWε(x, X)|x=X is independent of ε, and
— ∂2

x δWε(x, X)|x=X is linear in ε.

We will exploit these facts below.

(ii) Evolutionary and convergent stability of defection

Lemma A.1 (Evolutionary stability of defection). If the NSG (§5a) is played in a finite population
then not contributing (X= 0) is a locally convergently stable ESSN for any selection process. Moreover, if
the population and group sizes are the same (N= n, so the entire population plays the game together) then
defecting is the unique ESSN and is globally evolutionarily and convergently stable.

10Equation (A 2) remains valid if individual fitnesses are obtained by averaging payoffs from an arbitrary (either fixed or
random) number of rounds of the NSG, as long as groups are selected independently in each round.
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Proof. B′(0) < 1 because B(τ )− τ decreases for 0≤ τ < τmin, so using equation (A 4a),

∂xδWε(x, 0)|x=0 = N − n
N − 1

B′
(
0
)− 1 < 0. (A 5)

Because ∂xδWε(x, X)|x=X is continuous in X, for X sufficiently small,

∂xδWε(x, X)|x=X < 0. (A 6)

From theorem 4.3.9 in [50], it follows that X= 0 (defection) is convergently stable, and selection
opposes invasion of mutants contributing a sufficiently small but positive amount, x > 0. To
establish that X= 0 is evolutionarily stable, observe that equation (A 5) implies that δWε(x, 0) < 0
for sufficiently small x, so such mutants are selected against, regardless of their proportion (ε) in
the population. Thus, corollary 5.4 of [43] implies that selection also opposes the fixation of such
mutants.

Now suppose groups constitute the entire population, i.e. N= n. Then, for any resident
strategy X > 0 and any number of mutants Mp ∈ {1, 2, . . . , N − 1}, mutants contributing less than
residents to the public good (0≤ x < X) have a higher payoff than residents; hence defection is the
unique ESSN and is globally convergently stable. Defection is also globally evolutionarily stable
because for any mutant strategy x > 0 and any number of mutants (Mp < N), residents obtain a
higher payoff than mutants (because they receive the same benefit without paying a cost). �

(iii) Proof of theorem 3.1

Inserting equation (A 4a) into the definition of an evolutionarily singular strategy (definition
4.3.5 of [50]) implies that cooperative singular strategies are characterized by equation (3.2). Any
solution of equation (3.2) must satisfy nX∗N ∈ (τmin, τmax), because the right-hand side of equation
(3.2) is greater than 1 and, as noted above, if τ �∈ (τmin, τmax) then B′(τ )≤ 1.

Necessary condition for ESSN : Suppose that X solves equation (3.2) but B′′(nX) > 0. Plugging
equation (3.2) into equation (A 4a) gives ∂xδWε(x, X)|x=X = 0. Rearranging equation (A 4b), we
have

∂2
x δWε(x, X)|x=X = N − n

N − 1

(
1+ 2

(n− 1)
N − 2

(Nε − 1)
)

B′′
(
nX
)
, (A 7)

so ∂2
x δWε(x, X)|x=X is increasing in ε and positive for any ε ≥ 1/N (i.e. any mixed population).

Thus, when mutants play x sufficiently close to X, ∂xδWε(x, X)|x=X is negative for x < X and
positive for x > X; hence, since δWε(X, X)= 0, we must have δWε(x, X) > 0 for any x that is near but
not equal to X (and this is true for any number of mutants Mp = 1, . . . , N − 1). Corollary 5.4 of [43]
then implies that selection favours the fixation of such mutants, so X is not an ESSN , regardless of
the selection process. Thus, if X∗N > 0 is an ESSN then it cannot be that B′′(nX) > 0, i.e. (3.4) holds.

Sufficient condition for universal ESSN : The sufficient condition for local universal
evolutionary and convergent stability follows immediately from theorem 4.D.1 of [50] and
equation (A 4).

ESSNs in large populations: Suppose that B′′(τmax) �= 0 and consider the equation

f (X, y)= B′(nX)− y= 0. (A 8)

Noting that f (τmax/n, 1)= 0 and that

∂Xf (X, y)|(X,y)=(τmax/n,1) = B′′(τmax) �= 0, (A 9)

from the implicit function theorem [64, Theorem 12.40], there exists a differentiable function X(y)
defined in a neighbourhood of y= 1, such that X(1)= τmax/n and

f
(
X(y), y

)= yB′
(
nX(y)

)− y= 0. (A 10)

Now suppose that the group size n is either fixed, or varies with population size but satisfies

n(N)
N

N→∞−−−−→ 0.
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If we define yN := 1+ (n− 1)/(N − n) then yN
N→∞−−−−→ 1, so for all sufficiently large population sizes

N, equation (A 10) can be solved implicitly for X∗N :=X(yN). Such X∗N then solve equation (3.2),

and X∗N
N→∞−−−−→X∗∞ because X(y) is continuous. Recalling that B′′(τmax)≤ 0 and B′′(τmax) �= 0 by

assumption, we have B′′(τmax) < 0, so for sufficiently large N, B′′(nX∗N) < 0. Theorem 4.D.1 of [50]
then implies that for sufficiently large N, X∗N is a universal local ESSN and is locally convergently
stable. �

(iv) Proof of theorem 3.2

First, note that X= 0 is always a locally convergently stable ESSN (lemma A.1). From corollary
4.3.8 of [50], selection opposes invasion of a cooperative resident strategy X > 0 by sufficiently
similar mutant strategies only if X is singular, which (using equation (A 4a)) occurs iff X satisfies

B′(nX)= 1+ n− 1
N − n

. (A 11)

Because B′(nX) > 1 only if τmin/n < X < τmax/n, if a cooperative ESSN exists then it must lie in this
interval.

Case m > mc. Because B′(τmax)= 1 and B′(nX) is a continuous function of X on the interval
[τmin/n, τmax/n], it follows from the intermediate value theorem [64] that equation
(3.2) has a solution in this interval. Let S be the set of singular strategies, i.e.
solutions of equation (3.2),

S =
{

X
∣∣∣∣B′(nX)= 1+ n− 1

N − n

}
. (A 12)

Note that from theorem 3.1, S ⊂ (τmin/n, τmax/n). Denote the largest solution of
equation (A 11) by X∗N , i.e.

X∗N =maxS (A 13)

(this maximum exists because the continuity of B′(nX) on a closed interval implies
supS ∈ S).
Generically,11 B′′(nX∗N) �= 0. We claim that B′′(nX∗N) < 0. To see this, suppose, in
order to derive a contradiction, that B′′(nX∗N) > 0. Then, B′(nX) increases in a
neighbourhood of X∗N , so there exists X̃ such that X∗N < X̃ < τmax/n and

B′(nX̃) > B′(nX∗N)= 1+ n− 1
N − n

. (A 14)

From the intermediate value theorem, there exists X ∈ S such that

X > X̃ > X∗N =maxS, (A 15)

a contradiction.
Thus B′′(nX∗N) < 0 and C′′(X)= 0, so theorems 4.D.1 and 4.3.9 of [50] imply that X∗N
is a local ESSN and is locally convergently stable.

Case m=mc. Suppose, in order to derive a contradiction, that X > 0 is a cooperative ESSN . From
theorem 3.1, X must solve equation (A 11) so, from the definition of mc in equation
(3.7),

B′(nX)= N − 1
N − n

=mc + 1. (A 16)

Suppose further that arg max B′(τ ) does not contain an interval (i.e. the marginal
benefit B′ is not maximal for an interval of total contributions τ ), which happens

11We need to avoid the situation in which singular strategy X∗N is also an inflection point of B(nx). This occurs when nX∗N is
both a critical point and an inflection point of B(x)− (N − 1)x/(N − n), which is generically not the case.

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

28
 F

eb
ru

ar
y 

20
24

 



18

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A480:20230305

..........................................................

generically. Then, any total contribution in arg max B′(τ ) is a local maximum of
B′(τ ). It follows that if x < X and x is sufficiently close to X, then

B′
(
x+ (n− 1)X

)
<

N − 1
N − n

, (A 17)

and therefore from equation (A 3),

∂xδWε(x, X)=−1+
n∑

k=0

(N−Mp

n−k

)(Mp−1
k−1

)(N−1
n−1
) · kN −Mpn

N −Mp
B′
(
kx+ (n− k)X

)

<−1+
⎛⎝ n∑

k=0

(N−Mp

n−k

)(Mp−1
k−1

)(N−1
n−1
) · kN −Mpn

N −Mp

⎞⎠ N − 1
N − n

, (A 18)

which, together with the identity [50, eqn (4.63), p. 138],

n∑
k=0

(N−K
n−k
)(K−1

k−1
)(N−1

n−1
) ( kN − Kn

N − K

)
= N − n

N − 1
, (A 19)

implies that ∂xδWε(x, X) < 0. Hence, similar to an argument in the proof of theorem
3.1, since δWε(X, X)= 0, we must have δWε(x, X) > 0 for any x < X sufficiently close
to X (and this is true for any number of mutants Mp = 1, . . . , N − 1). Consequently,
selection favours the invasion and replacement of X by any such x, so X is not
evolutionarily stable.
To see that defection is globally evolutionarily stable, substitute X= 0 in equation
(A 3) to get

∂xδWε(x, 0)=−1+
n∑

k=0

(N−Mp

n−k

)(Mp−1
k−1

)(N−1
n−1
) · kN −Mpn

N −Mp
B′
(
kx
)
. (A 20)

Noting that for all x > 0, B′(kx)≤mc + 1, we have

∂xδWε(x, 0)≤−1+
⎛⎝ n∑

k=0

(N−Mp

n−k

)(Mp−1
k−1

)(N−1
n−1
) · kN −Mpn

N −Mp

⎞⎠ (mc + 1)= 0, (A 21)

where we have used equations (3.7) and (A 19) in the last equality. Thus, δWε(x, 0)
is non-decreasing in x. Moreover, if x < τmin/n, then B′(kx) < 1 for all k= 0, . . . , n, so
similarly, equations (A 19) and (A 20) imply that ∂xδWε(x, 0) < 0. Because δWε(0, 0)=
0, it follows that δWε(x, 0) < 0 for all x > 0 (regardless of the proportion of mutants
in the population). Thus, from [43, corollary 5.4], when residents defect, selection
opposes invasion and fixation of any mutants.

Case m < mc. In this case, equation (3.2) has no solution, and no cooperative ESSN exists.
To see that defection (X= 0) is globally evolutionarily and convergently stable,
observe first that m < mc implies

B′(τ ) < 1+ n− 1
N − n

= N − 1
N − n

, for all τ ≥ 0. (A 22)

Then, using equations (A 3), (A 22) and equation (4.63) on p.138 of [50], it follows
that

∂xδWε(x, X) <−1+
⎛⎝ n∑

k=0

(N−Mp

n−k

)(Mp−1
k−1

)(N−1
n−1
) · kN −Mpn

N −Mp

⎞⎠ N − 1
N − n

=−1+
(N − n

N − 1

)(N − 1
N − n

)
= 0,

so δWε(x, X) decreases with x≥ 0 for any X≥ 0. Thus, from [43, corollary 5.4],
defection (X= 0) is a globally evolutionarily and convergently stable strategy. �
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Appendix B. Analysis of the benefit function used for numerical examples
In this appendix, we define the class of sigmoidal benefit functions that we have used to illustrate
our results, and derive a variety of analytical formulae that we have found useful when working
with these functions.

(a) Sigmoids using generalized error functions
For any integer k > 0 and real m > 0, L > 0 and τturn ≥ 0, consider the benefit function

B(τ )= L erf2k

(
(m+ 1)

Γ
(
1/(2k)

)
2kL

(τ − τturn)

)
, τ ≥ 0, (B 1)

where erf�(x) is the generalized error function of order �,

erf�(x)= �

Γ(1/�)

∫ x

0
e−t� dt. (B 2)

This class of functions generalizes the error function, erf, which is recovered for �= 2 or,
equivalently, k= 1; see §(b) below.

Expressing generalized error functions using gamma functions: It is sometimes convenient
to express erf� in terms of gamma functions. For x > 0, the transformation z= t� (t= z1/� and
dt= z1/(�−1)dz/�) gives

erf�(x)= 1
Γ(1/�)

∫ x�

0
z(1/�)−1 e−zdz= 1

Γ(1/�)

(
Γ

(
1
�

)
− Γ

(
1
�

, x�

))
, (B 3)

where

Γ(s)=
∫ ∞

0
ts−1 e−tdt (B 4a)

and

Γ(s, x)=
∫ ∞

x
ts−1 e−tdt, (B 4b)

are the gamma,12 and upper incomplete gamma functions, respectively. Note that we are only
interested in generalized error functions of even order (�= 2k), which are odd functions of x.

Parameter meanings: Because equation (B 3) implies

lim
x→∞ erf�(x)= 1, (B 5)

it follows that

lim
x→∞B(x)= L. (B 6)

We show below that the inflection point of B (equation (B 1)) is τturn, and that the maximal
marginal fitness given the benefit function B is m.

From the integral definition of the generalized error function (equation (B 2))

derf�(x)
dx

= �

Γ(1/�)
e−x�

(B 7a)

and
d2erf�(x)

dx2 =− �

Γ(1/�)
�x�−1 e−x�

, (B 7b)

12For any positive integer k, Γ(k)= (k− 1)!.
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so

B′(τ )=
√

πL
Γ
(
2k
)
Γ
(
1/(2k)

) (m+ 1)
Γ
(
1/(2k)

)
2kL

(2k)!√
π

× exp

⎛⎝−[(m+ 1)
Γ
(
1/(2k)

)
2kL

(τ − τturn)

]2k
⎞⎠

= (m+ 1) exp

⎛⎝−[(m+ 1)
Γ
(
1/(2k)

)
2kL

(τ − τturn)

]2k
⎞⎠ , (B 8a)

B′′(τ )=−2k

[
(m+ 1)

Γ
(
1/(2k)

)
2kL

]2k

(τ − τturn)2k−1

× (m+ 1) exp

⎛⎝−[(m+ 1)
Γ
(
1/(2k)

)
2kL

(τ − τturn)

]2k
⎞⎠

=−2k

[
(m+ 1)

Γ
(
1/(2k)

)
2kL

]2k

(τ − τturn)2k−1B′(τ ). (B 8b)

Consequently, τturn is the unique solution of B′′(τ )= 0, and is thus the only inflection point. B′(τ )
is always positive, and hence B(τ ) is monotonically increasing. However, B′′(τ ) > 0 for τ < τturn

and B′′(τ ) < 0 for τ > τturn, and hence

max
τ≥0

B′(τ )= B′(τturn)=m+ 1, (B 9)

so from equation (3.6), the maximal marginal fitness is

max
τ≥0

(∂W
∂x

)
=max

τ≥0
B′(τ )− 1=m. (B 10)

The minimizing and maximizing total goods: Since B′(τ ) is monotonic on each of the
intervals, (−∞, τturn) and (τturn,∞) and B′(τ ) is even, for any b ∈ B′(R≥0)= (0, m+ 1], we can
find two real values of τ for which B′(τ )= b (although one of these values may be negative
and therefore biologically irrelevant, because total contributions to the public good cannot be
negative). To find these values of total contribution τ , we set B′(τ )= b in equation (B 8a), and get

log
m+ 1

b
=
[

(m+ 1)
Γ
(
1/(2k)

)
2kL

(τ − τturn)

]2k

(B 11)

and

τ = τturn ± 2kL
(m+ 1)Γ

(
1/(2k)

) 2k

√
log

m+ 1
b

. (B 12)

To find τmax and τmin, we substitute b= B′(τ )= 1 in equation (B 12) and, noting that B′′(τ ) changes
sign from positive to negative at τturn, we have

τmin = τturn − 2kL
(m+ 1)Γ

(
1/(2k)

) 2k
√

log(m+ 1) (B 13a)

and

τmax = τturn + 2kL
(m+ 1)Γ

(
1/(2k)

) 2k
√

log(m+ 1), (B 13b)

and the distance between the location of the fitness minimum and maximum is

	τ = τmax − τmin = 4kL
(m+ 1)Γ

(
1/(2k)

) 2k
√

log(m+ 1). (B 14)
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The infinite-population cooperative ESS: Equation (3.1) then gives

X∗∞ =
τmax

n
= 1

n

(
τturn + 2kL

(m+ 1)Γ
(
1/(2k)

) 2k
√

log(m+ 1)

)
. (B 15)

Using B′(τmax)= 1 and equation (B 13b) in equation (B 8b), we have

B′′(τmax)= B′′(nX∗∞)=−2k

[
(m+ 1)Γ

(
1/(2k)

)
2kL

]2k

(τmax − τturn)2k−1

=−2k

[
(m+ 1)Γ

(
1/(2k)

)
2kL

]2k (
2kL

(m+ 1)Γ
(
1/(2k)

))2k−1

× (log(m+ 1))(2k−1)/2k

=−Γ

(
1
2k

)
m+ 1

L
(log(m+ 1))1−(1/2k). (B 16)

Using equation (B 1) and the fact that erf2k is odd,

B(τmax)− B(τmin)= 2L erf2k

(
2k
√

log(m+ 1)
)

. (B 17)

Singular and evolutionarily stable cooperative strategies in finite populations: In a finite
population of size N, a singular strategy X∗N of the NSG is a solution of equation (3.2), that is,

B′(nX∗N)= 1+ n− 1
N − n

= N − 1
N − n

, (B 18)

so equation (B 12) implies that at the ESS, the total contribution must be one of

τ = τturn ± 2kL
(m+ 1)Γ

(
1/(2k)

) 2k

√
log
(

(m+ 1)
N − n
N − 1

)
. (B 19)

There are therefore two singular strategies,

X∗N± =
1
n

(
τturn ± 2kL

(m+ 1)Γ
(
1/(2k)

) 2k

√
log
(

(m+ 1)
N − n
N − 1

))
. (B 20)

Similarly to τmin and τmax, B′′(nX∗N+) > 0 and B′′(nX∗N−) < 0, so from theorem 3.1, the unique ESSN

is

X∗N =
1
n

(
τturn + 2kL

(m+ 1)Γ
(
1/(2k)

) 2k

√
log
(

(m+ 1)
N − n
N − 1

))
. (B 21)

The curvature of the benefit function at the ESSN : Similar to equation (B 16), we have

B′′(nX∗N)=−2k

[
(m+ 1)Γ

(
1/(2k)

)
2kL

]2k

(nX∗N − τturn)2k−1 N − 1
N − n

(B 22)

=−2k

[
(m+ 1)Γ

(
1/(2k)

)
2kL

]2k (
2kL

(m+ 1)Γ
(
1/(2k)

))2k−1

×
(

log
(

(m+ 1)
N − n
N − 1

))(2k−1)/2k
N − 1
N − n

=−(m+ 1)
N − 1
N − n

Γ
(
1/(2k)

)
L

×
(

log
(

(m+ 1)
N − n
N − 1

))(2k−1)/2k

. (B 23)
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Condition for the fitness difference having a minimum when a single mutant defects and
residents play the ESS: To guarantee that when a single mutant invades a population playing
the ESS, the fitness difference has both a minimum and a maximum (as a function of the mutant
strategy), we need the mutant contribution that minimizes fitness to be positive; equivalently, the
total contribution of the non-focal individuals—all of whom are residents—must be less than the
minimizing total good τmin. Thus,

τmin − n− 1
n

τmax > 0. (B 24)

Using equations (B 13b) and (B 14), this is equivalent to τmax > n	τ , or

n <
τmax

	τ
= τturn

(4kL/(m+ 1)Γ
(
1/(2k)

)
) 2k
√

log(m+ 1)
+ 1

2

= τturn
m+ 1

4kL
Γ
(
1/(2k)

)
2k
√

log(m+ 1)
+ 1

2
. (B 25)

Rewriting this condition in terms of the horizontal asymptote L,

L <
τturn(m+ 1)
2k(2n− 1)

Γ
(
1/(2k)

)
2k
√

log(m+ 1)
. (B 26)

The payoff extrema difference: We now calculate the payoff extrema difference (PED), 	Ψ ,
that is, the difference between a mutant’s local minimum and maximum fitnesses when residents
contribute the infinite-population ESS.

	Ψ =
[
B(τmax)− τmax

n

]
−
[

B(τmin)−
(

τmin − n− 1
n

τmax

)]
= B(τmax)− B(τmin)− (τmax − τmin)

= B(τmax)− B(τmin)−	τ , (B 27)

so using equations (B 14) and (B 17), we have

	Ψ = 2L erf2k

(
2k
√

log(m+ 1)
)
− 4kL

(m+ 1)Γ
(
1/(2k)

) 2k
√

log(m+ 1). (B 28)

The mean fitness slope: To choose parameter values that generate a fitness difference with a
distinct peak at the ESS (when residents play the ESS), we would like to find the mean fitness
slope between the extrema, i.e. the ratio of the PED, 	Ψ , and the distance between the fitness
extrema as a function of our parameters. To that end, using equation (B 24), the distance between
the fitness extrema is

τmax

n
−
(

τmin − n− 1
n

τmax

)
= τmax − τmin =	τ . (B 29)

Equations (B 14) and (B 28) then yield

	Ψ

	τ
= 2L erf2k

(
2k
√

log(m+ 1)
)

(4kL/(m+ 1)Γ
(
1/(2k)

)
) 2k
√

log(m+ 1)
− 1

= (m+ 1)
Γ(1/(2k))

2k
erf2k

(
2k
√

log(m+ 1)
)

2k
√

log(m+ 1)
− 1, (B 30)

which depends only on the maximal marginal fitness, m (and the order of the generalized error
function, 2k). Note also that using equation (B 2) and L’Hôpital’s rule [64],

lim
x→0

erf�(x)
x
= lim

x→0

�

Γ(1/�)
e−x� = �

Γ(1/�)
, (B 31)

so

lim
m→0

	Ψ

	τ
= 0. (B 32)
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In addition, equation (B 3) implies that for any x > 0,

lim
�→∞

erf�(x)= 1, (B 33)

(because Γ(x)→∞ as x→ 0, and Γ(1/�, x�) is bounded), and

lim
x→0

xΓ(x)= lim
x→0

Γ(x+ 1)= 1, (B 34)

so we have
lim

k→∞
	Ψ

	τ
=m. (B 35)

The ratio of ESSs in infinite and finite populations: Using equations (B 14), (B 15) and (B 21),

X∗∞
X∗N
= τturn + (2kL/(m+ 1)Γ

(
1/(2k)

)
) 2k
√

log(m+ 1)

τturn + 2kL
(m+1)Γ

(
1/(2k)

) 2k

√
log
(

(m+ 1) N−n
N−1

)
= 2τturn +	τ

2τturn +	τ 2k
√

(log((m+ 1)((N − n)/(N − 1)))/log(m+ 1))

= 2τturn +	τ

2τturn +	τ 2k
√

1+ (log((N − n)/(N − 1))/log(m+ 1))
. (B 36)

Rewriting the population size as N= nG,

X∗∞
X∗N
= 2τturn +	τ

2τturn +	τ 2k
√

1+ log((G− 1)/(G− (1/n)))/log(m+ 1)
. (B 37)

We see that the ratio X∗∞/X∗N→ 1 as G→∞ with n fixed. However, X∗∞/X∗N approaches a (finite)
value greater than 1 as n→∞with G fixed (assuming X∗N exist for all N; see (3.12)).

(b) Sigmoid using standard error-function
In the special case k= 1 (i.e. �= 2), since Γ(1/2)=√π , equation (B 1) reduces to

B(τ )= L erf
(

(m+ 1)
√

π

2L
(τ − τturn)

)
, τ ≥ 0. (B 38)

Then, setting k= 1 in equation (B 13) gives the maximizing and minimizing total goods,

τmin = τturn − 2L
m+ 1

√
log(m+ 1)

π
, (B 39a)

and

τmax = τturn + 2L
m+ 1

√
log(m+ 1)

π
, (B 39b)

and the distance between the location of the fitness minimum and maximum is

	τ = τmax − τmin = 4
L

m+ 1

√
log(m+ 1)

π
. (B 40)

Equation (B 15) then gives

X∗∞ =
1
n

(
τturn + 2L

m+ 1

√
log(m+ 1)

π

)
, (B 41)

and equation (B 16) becomes

B′′(τmax)=−m+ 1
L

√
π log(m+ 1). (B 42)

From equation (B 17),

B(τmax)− B(τmin)= 2L erf
(√

log(m+ 1)
)

. (B 43)

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

28
 F

eb
ru

ar
y 

20
24

 



24

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A480:20230305

..........................................................

Equation (B 21) gives the unique ESSN :

X∗N =
1
n

(
τturn + 2L

m+ 1

√
log((m+ 1)((N − n)/(N − 1)))

π

)
, (B 44)

and equation (B 22) becomes

B′′(nX∗N)=−m+ 1
L

√
π log

(
(m+ 1)

N − n
N − 1

)
. (B 45)

Condition (B 25), which guarantees that when a single mutant invades a population playing the
ESS, the fitness difference has both a minimum and a maximum (as a function of the mutant
strategy), reduces to

n <
τmax

	τ
= τturn

4
m+ 1

L

√
π

log(m+ 1)
+ 1

2
, (B 46)

the PED, 	Ψ (equation (B 28)) becomes

	Ψ = 2L erf
(√

log(m+ 1)
)
− 4

L
m+ 1

√
log(m+ 1)

π
, (B 47)

and the mean fitness slope (equation (B 30)) between the extrema reduces to

	Ψ

	τ
= m+ 1

2

√
π

log(m+ 1)
erf
(√

log(m+ 1)
)
− 1. (B 48)
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