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The reproduction number R and the growth rate r are critical epi-
demiological quantities. They are linked by generation intervals,
the time between infection and onward transmission. Because
generation intervals are difficult to observe, epidemiologists often
substitute serial intervals, the time between symptom onset in
successive links in a transmission chain. Recent studies suggest
that such substitution biases estimates of R based on r. Here we
explore how these intervals vary over the course of an epidemic,
and the implications for R estimation. Forward-looking serial
intervals, measuring time forward from symptom onset of an infec-
tor, correctly describe the renewal process of symptomatic cases
and therefore reliably link R with r. In contrast, backward-looking
intervals, which measure time backward, and intrinsic intervals,
which neglect population-level dynamics, give incorrect R esti-
mates. Forward-looking intervals are affected both by epidemic
dynamics and by censoring, changing in complex ways over the
course of an epidemic. We present a heuristic method for address-
ing biases that arise from neglecting changes in serial intervals.
We apply the method to early (21 January to February 8, 2020)
serial interval-based estimates of R for the COVID-19 outbreak
in China outside Hubei province; using improperly defined serial
intervals in this context biases estimates of initial R by up to a fac-
tor of 2.6. This study demonstrates the importance of early contact
tracing efforts and provides a framework for reassessing genera-
tion intervals, serial intervals, and R estimates for COVID-19.
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The reproduction number R is one of the most important
characteristics of an emerging epidemic, such as the cur-

rent pandemic of COVID-19 (1). The reproduction number is
defined as the average number of secondary infections caused by
a primary infection. The value in a fully susceptible population—
the “basic” reproduction number R0—allows us to predict the
extent to which an infection will spread in the population, and
the amount of intervention necessary to eliminate it in simple
cases (2). Since the reproduction number represents an aver-
age (2, 3), it fails to capture heterogeneity among individuals or
across space. The reproduction number also fails to provide any
information about the time scale of disease transmission.

Estimating the reproduction number R is often challenging.
Direct estimates based on observed infections will typically be
biased down when some infections cannot be observed. A com-
mon method of estimating R near the beginning of an epidemic
is based on the population-level exponential growth rate r , which
can often be estimated robustly from case reports (4, 5). The
growth rate r and the reproduction number R are linked by
the generation interval distribution (6), where the generation
interval is defined as the time between when an individual (infec-
tor) is infected and when that individual infects another person
(infectee) (7).

Since generation intervals measure time between infection
events, which can be difficult to observe in practice, genera-
tion intervals are often replaced with serial intervals. The serial
interval is defined as the time between when an infector and
an infectee develop symptoms (7). While generation and serial
intervals both measure the time scale of disease transmission,
they measure fundamentally different quantities. In particu-
lar, previous studies have noted that, in many contexts, serial
intervals are expected to have larger variances than generation
intervals but have the same mean in many contexts (7–10). Serial
intervals can, in some cases, even take negative values in the pres-
ence of presymptomatic transmission (11), whereas generation
intervals must be positive.

Although these distributions were clearly and distinctly
defined over a decade ago (7), the need for a better concep-
tual and theoretical framework for understanding their differ-
ences is becoming clearer as the COVID-19 pandemic unfolds.
Researchers continue to base inferences about COVID-19 on
both generation and serial intervals without clearly distinguishing
between them (e.g., refs. 11–15), and, in some cases, explic-
itly conflate the definitions of the two intervals (e.g., refs. 16
and 17). This confusion is apparent even in standard software
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for estimating R, such as EpiEstim, in which the serial interval
distribution is used to infer time-dependent R (18). These stud-
ies are examples of many—indeed, it is a common practice to use
the serial and generation intervals interchangeably.

One source of confusion arises from an apparent discrepancy
between the generation interval and serial interval viewpoints.
While the epidemic is growing exponentially, the spread of infec-
tion can be characterized as a renewal process based on previous
incidence of infection, the associated generation interval distri-
bution, and the average infectiousness of an infected individual.
It is well established that this renewal formulation allows us to
link the exponential growth rate of an epidemic r with its repro-
duction number R using the generation interval distribution (6).
However, the serial interval distribution also describes a renewal
process—in this case, the creation of a new symptomatic case
based on a symptomatic case in the previous generation. Since
both renewal processes, based on either generation or serial
interval distributions, describe the same underlying exponen-
tially growing system, both should provide the same correct link
between the reproduction number R and the epidemic growth
rate r .

In contexts where the serial and generation interval distribu-
tions differ, current theory has no explanation for how two dif-
ferent distributions could provide identical estimates of R from
r . In fact, recent theory suggests that using the serial interval
can underestimate the reproduction number (19, 20). However,
these studies rely on intrinsic distributions of incubation peri-
ods and generation intervals that neglect the population-level
dynamics of disease spread.

Here we show that, by correctly defining and calculating the
“forward” serial interval distribution (i.e., a distribution of serial
intervals from a cohort of infectors that developed symptoms
at the same time) that connects symptom onset dates, we can
resolve this discrepancy. These forward intervals are different
from the “intrinsic” serial intervals that previous studies have
relied on (7–10, 19). During an ongoing epidemic, all observed
epidemiological delays (e.g., incubation period) between pri-
mary (e.g., infection) and secondary (e.g., symptom onset) events
are subject to backward biases: When the incidence of pri-
mary events is increasing (or decreasing), we are more likely
to observe shorter (respectively, longer) intervals. In particular,
when we consider forward serial interval distributions, the incu-
bation periods of the infectors are subject to backward biases,
because we have to look backward in time from their symp-
tom onset to infection. Therefore, the realized incubation period
distributions of the infector and the infectee can differ dynam-
ically, even if the intrinsic analogs of the same distributions are
expected to be equivalent.

We develop a cohort-based framework for characterizing and
comparing realized serial intervals, as well as any other epi-
demiological delays, and show that the initial forward serial
interval distribution correctly estimates R from r . Conversely,
using inaccurately defined serial intervals or failing to account
for changes in the observed serial interval distributions over the
course of an epidemic can considerably bias estimates of R.
For example, in our analysis of the COVID-19 serial intervals
from China, outside Hubei province, we find that the original
R0 estimates based on aggregated serial interval data underesti-
mated R0 by a factor of 2.0 to 2.6. We further lay out several
principles to consider in using information about serial inter-
vals and other epidemiological time delays to correctly infer
the initial reproduction number during the early stages of an
outbreak.

Methods
Intrinsic, Forward, and Backward Delay Distributions. A time delay between
two epidemiological events can involve either one infected individual (e.g.,
incubation period: infection and symptom onset of an individual) or two—

an infector and an infectee (e.g., generation and serial intervals). We define
the delay as the time difference between the primary event and the sec-
ondary event. In some cases, the primary event always occurs before the
secondary event (e.g., the time from infection to onset of symptoms in a
single individual, or the generation interval between two individuals). In
other cases, the delay can sometimes be negative (e.g., the time from onset
of symptoms to onset of infectiousness in a single individual, or the serial
interval between two individuals).

At the individual level, we can define the time distribution between
a primary and a secondary event that we expect to observe for a single
infected individual by averaging across individual characteristics—we refer
to this distribution as the intrinsic distribution. For example, the intrin-
sic incubation period distribution describes the expected time distribution
from infection to symptom onset of an infected individual. Likewise, the
intrinsic generation interval distribution describes the expected time distri-
bution of infectious contacts made by an infected individual. However, the
intrinsic time distributions are not always equivalent to the corresponding
realized time distributions at the population level (i.e., the distribution of
time between actual primary and secondary events that occur during an
epidemic; Fig. 1). For example, an infectious contact results in infection
only if the contacted individual is susceptible (and has not already been
infected)—this is one mechanism that causes realized generation intervals
(time between actual infection events) to differ from the intrinsic genera-
tion intervals (time between infection and infectious contacts) (21). In this
example, the difference between intrinsic and realized time distributions
can be attributed to the fact that the fraction of susceptible individuals is
itself dynamic.

At the population level, we model realized time delays between a pri-
mary and a secondary event from a cohort perspective. A cohort consists of
all individuals whose (primary or secondary) event occurred at a given time.
For example, when we are measuring incubation periods, a primary cohort
consists of all individuals who became infected at time p, while a secondary
cohort consists of all individuals whose symptom onset occurred at time s.
Similarly, when we are measuring serial intervals, a primary cohort consists
of all infectors who became symptomatic at time p. Then, for a primary
cohort at time p, we can define the distribution of realized delays between
primary and secondary events. We refer to this distribution as the forward
delay distribution and denote it as fp(τ ).

Likewise, we define the backward delay distribution bs(τ ) for a secondary
cohort at time s: The backward delay distribution describes the time delays
between primary and secondary events given that the secondary event
occurred at time s. For example, the backward incubation period distribu-
tion at time s describes incubation periods for a cohort of individuals who
became symptomatic at time s. Likewise, the backward serial interval dis-
tribution at time s describes serial intervals for a cohort of infectees who
became symptomatic at time s.

Both forward and backward perspectives must yield identical measure-
ment (e.g., the length of the incubation period of a given individual is the
same whether measured forward from the time of infection or backward
from the time of symptom onset). Consequently, no matter how delays are
distributed, ifP and S represent the sizes of primary and secondary cohorts,
then we can express the total density of intervals τ between calendar times
p and s (i.e., τ = s− p) as follows:

W(p)P(p)fp(τ ) =S(s)bs(τ ), [1]

where W(p), the “weight” of the primary cohort, represents the average
number of forward intervals that an individual in cohortP(p) produces over
the course of their infection. When we measure within-individual delays,
we expect W(p)≤ 1 because only a subset of individuals who experience
the primary event (e.g., infection) will eventually experience the secondary
event (e.g., symptom onset). For between-individual delays, we expect
W(p) to change throughout an epidemic, because individuals infected ear-
lier in an epidemic will infect more individuals, on average, than those
infected later.

Substituting p = s− τ , it follows that

bs(τ ) =
W(s− τ )P(s− τ )fs−τ (τ )

S(s)
. [2]

If we are considering incubation periods, the left-hand side of this equation
is the probability density that an individual who became symptomatic at
time s had an incubation period of length τ . From the right-hand side, we
see that this probability density depends on the weight parameter W(s− τ )

2 of 12 | PNAS
https://doi.org/10.1073/pnas.2011548118

Park et al.
Forward-looking serial intervals correctly link epidemic growth to reproduction numbers

D
ow

nl
oa

de
d 

by
 g

ue
st

 o
n 

D
ec

em
be

r 
23

, 2
02

0 

https://doi.org/10.1073/pnas.2011548118


PO
PU

LA
TI

O
N

BI
O

LO
G

Y

A

B

C

Fig. 1. Illustration of intrinsic, forward, and backward serial intervals. (A) The intrinsic serial interval for a cohort of individuals infected at time p. In this
case, τi1 is drawn from the intrinsic incubation period distribution, τg is drawn from the intrinsic generation interval distribution, and τi2 is drawn from
the intrinsic incubation period distribution. (B) The forward serial interval for a cohort of infectors who became symptomatic at time p. In this case, τi1 is
drawn from the backward incubation period distribution, τg is drawn from the forward generation interval distribution, and τi2 is drawn from the forward
incubation period distribution. (C) The backward serial interval for a cohort of infectees who became symptomatic at time s. In this case, τi1 is drawn from
the forward incubation period distribution, τg is drawn from the backward generation interval distribution, and τi2 is drawn from the backward incubation
period distribution. Intrinsic intervals (black) reflect average of individual characteristics and are not dependent on population-level dynamics. Forward
intervals (green) can change due to epidemiological dynamics (e.g., contraction of generation intervals through susceptible depletion). Backward intervals
(blue) can change due to changes in cohort sizes even when forward intervals remain time invariant.

(in this case, the proportion of symptomatic infection), the time-varying
primary cohort size at the earlier time P(s− τ ) (in this case, the number
of individuals infected at time s− τ ), and the forward delay distribution
fs−τ (τ ) (in this case, the probability density that an incubation period that
starts at time s− τ ends at time s).

Several different mechanisms drive the changes in forward and backward
delay distributions over time. Typically, within-individual forward delay dis-
tributions are not directly affected by epidemic dynamics. Some realized
forward distributions, like incubation period distributions, are equivalent
to their intrinsic distributions and remain invariant at the time scale of an
outbreak. Other realized distributions, like the distribution of time from
symptom onset to testing, may change over the course of an epidemic
due to changes in public health policies or individual behavior. Between-
individual forward delay distributions, such as generation or serial interval
distributions, depend on epidemic dynamics. For example, forward gener-
ation intervals often become shorter as an epidemic progresses, due to
the dynamical process of susceptible depletion, as well as due to other
factors like behavioral change or interventions (22–24): If it is harder to
infect later in the course of infection, then proportionally more intervals will
be short.

Eq. 2 suggests that backward delay distributions change over time even
if their corresponding forward delay distribution does not change. Back-
ward delay distributions depend on changes in the primary cohort size
over time, due to conditionality of observations: Conditioning on indi-
viduals whose secondary events have occurred at the same time means
that we tend to observe shorter (or longer) interevent delays when
cohort size has been increasing (decreasing) through time. When inci-
dence is growing exponentially, we can calculate the amount of bias
exactly. Assuming that the forward delay distribution (fp(τ )≈ f0(τ )) and
the weight parameter (W(p)≈W(0)) remain constant during the expo-
nential growth phase, we can substitute P(t) =P(0) exp(rt) in Eq. 2
to obtain

b0(τ ) = [W(0)P(0)/S(0)]exp(−rτ )f0(τ ), [3]

where r is the exponential growth rate. Since b0 is a probability distribution,
[W(0)P(0)/S(0)]−1 =

∫∞
−∞ exp(−rτ ′)f0(τ ′) dτ ′ corresponds to the normal-

ization constant. Therefore, the backward delay distribution during the
exponential growth phase depends only on the exponential growth rate
r and the initial forward delay distribution f0.

The mean backward interval will be always shorter than the mean for-
ward interval as long as r> 0. Even for different epidemics of the same
disease, we expect to observe shorter backward intervals within a fast-
growing epidemic (high r), all else being equal. In general, the backward
delay distribution will differ from the forward delay distribution (unless
the disease is at equilibrium), even if we are measuring time delays that
are intrinsic to the life history of a disease (e.g., the incubation period).
These ideas apply to all epidemiological delay distributions and general-
ize the work by ref. 24, who compared forward and backward generation
interval distributions to describe realized generation intervals from the per-
spective of an infector and an infectee, respectively, as well as the work by
ref. 19, who showed that Eq. 3 holds for the backward generation interval
distribution.

Realized Serial Interval Distributions. The serial interval is defined as the
time between when an infector becomes symptomatic and when their
infectee becomes symptomatic (7). Previous studies have often expressed
serial intervals τs in the form (Fig. 1A)

τs = (τg + τi2)− τi1, [4]

where τi1 and τi2 represent incubation periods of an infector and an
infectee, respectively, and τg represents the generation interval between
the infector and the infectee. These studies concluded that the serial and
generation intervals have the same mean when τi1 and τi2 are drawn from
the same distributions (7, 8, 10, 19). However, distributions of realized incu-
bation periods, τi1 and τi2, will be identical only if we assume that they
are intrinsic to individuals (and not dependent on epidemic dynamics at
the population-level)—something that is generally true of forward but not
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backward incubation period distributions. We refer to the definition Eq. 4
as the intrinsic serial interval (Fig. 1A).

To correctly link the realized serial interval distribution to the renewal
process between infections based on symptom onset dates, we must use
the forward serial interval (i.e., use the perspective of a cohort of infectors
that share the same symptom onset time). Given that an infector became
symptomatic at time p, to calculate the forward serial interval, we first go
backward in time to when the infector was infected, and then forward in
time to when the infectee was infected, and then forward again to when
the infectee became symptomatic. In Fig. 1B, we see that τi1 is drawn from
the backward incubation period distribution of the cohort of infectors who
became symptomatic at time p, τg is drawn from the forward generation
interval distribution of the cohort of infectors who became infected at time
p− τi1, and τi2 is drawn from the forward incubation period distribution
of the cohort of infectees who became infected at time p− τi1 + τg. Like-
wise, we can define the backward serial interval distribution for a cohort
of infectees who became symptomatic at time s (Fig. 1C). This conceptual
framework demonstrates that the distributions of τi1, τg, and τi2 (and there-
fore the distributions of realized serial intervals) depend on the reference
cohort, which is defined by temporal direction (forward or backward) and a
particular reference time.

To calculate realized serial interval distributions, we begin by modeling
T (p, s): the total density of serial intervals that start (when infectors develop
symptoms) at time p and end (when infectees develop symptoms) at time s.
For simplicity, we assume that all infected individuals eventually develop
symptoms. Then, the density of serial intervals between times p and s, given
that the infectors became infected at time α1≤ p and the infectees became
infected at time α2≤ s, depends on the amount of infection that occurs
between times α1 and α2 as well as the density of forward incubation
periods between α1 and p (realized incubation periods of infectors) and
between α2 and s (realized incubation periods of infectees),

T (p, s|α1,α2) = Rc(α1)︸ ︷︷ ︸
case

reproduction
number

× i(α1)︸︷︷︸
incidence

of
infection

× hα1 (p−α1,α2−α1)︸ ︷︷ ︸
joint density of

forward incubation
periods p−α1 and forward

generation intervals α2−α1
(of infectors)

× `α2 (s−α2)︸ ︷︷ ︸
marginal density of
forward incubation

periods s−α2
(of infectees)

, [5]

where the case reproduction number Rc(α1) is defined as the average
number of secondary infections that an individual infected at time α1 will
generate over the course of their infection (25). We describe the forward
incubation periods and the forward generation intervals using a joint prob-
ability distribution because onset of symptoms and transmission potential
jointly depend on the life history of a disease; for example, if an infected
individual can only transmit the disease after symptom onset, the forward
generation interval will necessarily be longer than the forward incubation
period.

The total density of serial intervals between times p and s can now be
obtained by integrating over all possible infection times for the infector
and the infectee,

T (p, s) =
∫ p

−∞

∫ s

α1

T (p, s|α1,α2) dα2 dα1. [6]

Then, the forward serial interval distribution fp(τ ) is given by the density of
intervals of length τ starting at time p, relative to the total number of serial
intervals starting at time p,

fp(τ ) =
T (p, p + τ )∫∞

−∞ T (p, p + τ ′) dτ ′
. [7]

Likewise, the backward serial interval distribution bs(τ ) is given by the den-
sity of intervals of length τ ending at s, relative to the total number of serial
intervals ending at s,

bs(τ ) =
T (s− τ , s)∫∞

−∞ T (s− τ ′, s) dτ ′
. [8]

The denominator of the forward serial interval distribution (Eq. 7) then
corresponds to the total number of infections generated by infected individ-
uals who themselves developed symptoms at time p. Dividing this quantity

by the number of individuals who developed symptoms at time p, j(p) =∫∞
−∞ T (p− τ ′, p) dτ ′, we obtain the serial reproduction number,

Rs(p) =

∫∞
−∞ T (p, p + τ ′) dτ ′

j(p)
, [9]

which we define as the average number of infections generated by an indi-
vidual who developed symptoms at time p. Combining the forward serial
interval distribution with the serial reproduction number completes the
renewal process between symptomatic cases,

j(t) =
∫ ∞
−∞
Rs(t− τ )j(t− τ )ft−τ (τ ) dτ. [10]

This framework allows us to understand changes in the realized serial
intervals for any epidemic model and properly link serial interval distribu-
tions with the renewal process. In addition, assuming that the reproduction
number as well as the forward serial interval distribution remain constant
during the exponential growth phase, we can substitute j(t)≈ j(0) exp(rt),
Rs(t)≈Rs(0), and ft−τ (τ )≈ f0(τ ) to obtain

1

Rs(0)
=

∫ ∞
−∞

exp(−rτ )f0(τ )dτ. [11]

Therefore, the initial forward serial interval distribution, f0(τ ), provides the
correct link between the exponential growth rate r and the initial serial
reproduction number Rs(0). We revisit this idea later in Linking r and R
and show that the initial forward serial interval distribution provides the
same r–R link as the intrinsic generation interval distribution.

Epidemic Model. We illustrate changes in forward and backward serial inter-
vals over the course of an epidemic by applying our framework to a specific
example of an epidemic model. We model disease spread with a renewal
equation model (10, 26–30). Ignoring births and deaths, changes in the pro-
portion of susceptible individuals S(t) and incidence of infection i(t) can be
described as

dS

dt
=−i(t)

i(t) =R(t)
∫ ∞

0
i(t− τ )g(τ ) dτ , [12]

where R(t) is the instantaneous reproduction number [i.e., the average
number of infections that an individual infected at time t will generate if
conditions at time t remain unchanged (25)], and g(τ ) is the intrinsic gener-
ation interval distribution [i.e., the forward generation interval distribution
of a primary case in a population where changes in R(t) are negligible
(24)]. This model assumes that g(τ ) remains constant through time—in other
words, that epidemic dynamics are driven by changes in transmission rate.
This assumption may not be well suited to individual-based intervention
such as case isolation (25); nonetheless, this form has been widely used in
the literature and has been successfully applied in modeling the current
COVID-19 pandemic (31).

Here, changes in reproduction number can be modeled as a product
of the basic reproduction number R0, proportion susceptible S(t), and a
time-dependent factor M(t) (for example, accounting for nonpharmaceuti-
cal interventions and behavioral changes): R(t) =R0S(t)M(t); ref. 32 used
a similar framework to evaluate the impact of nonpharmaceutical inter-
ventions on the spread of COVID-19 in 11 countries. Then, the forward
generation interval for a cohort of individuals that were infected at time
p follows (see ref. 14),

gp(τ ) =
g(τ )S(p + τ )M(p + τ )∫∞

0 g(τ ′)S(p + τ ′)M(p + τ ′) dτ ′
, [13]

which allows us to separate the joint probability distribution hp of the for-
ward incubation period and the forward generation interval distribution
as a product of the proportion of susceptible individuals S and the joint
probability distribution h of the forward incubation period and the intrinsic
generation intervals,
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hp(x, τ ) =
h(x, τ )S(p + τ )M(p + τ )∫∞

0

∫∞
0 h(x′, τ ′)S(p + τ ′)M(p + τ ′) dτ ′ dx′

. [14]

We further assume that the forward incubation period distribution does not
vary across cohorts over the course of an epidemic, as it represents the life
history of a disease; we denote it as `. Then, we have

`(x) =
∫ ∞

0
h(x, τ ) dτ ,

g(τ ) =
∫ ∞

0
h(x, τ ) dx. [15]

Finally, the case reproduction for this model is defined as follows:

Rc(t) =R0

∫ ∞
0

g(τ )S(t + τ )M(t + τ ) dτ. [16]

The forward and backward serial interval distributions are then calculated
by substituting these quantities into Eqs. 7 and 8. We use this framework
to illustrate how the realized epidemiological time distributions vary over
the course of an epidemic and depend on the perspective (i.e., forward vs.
backward).

For simplicity, we let M = 1 and assume that epidemic dynamics depend
only on susceptible depletion in our simulations. Since we are interested in
the initial epidemic growth phase (i.e., linking r to R), we expect R(t) to
remain roughly constant during this period. In addition, qualitative effects
of M that reducesR(t) monotonically over time will be similar to the impact
of susceptible depletion under this modeling framework. Therefore, general
conclusions we draw from our analysis are expected to be robust; however,
detailed shape of the epidemic curve and changes in generation and serial
intervals can still depend on the shape of M.

Linking r and R. During the initial phase of an epidemic, the proportion
susceptible remains approximately constant (S(t)≈ S(0)), and incidence of
infection grows exponentially: i(t)≈ i0 exp(rt). During this period, the intrin-
sic generation interval distribution provides the correct link between the
exponential growth rate r and the initial reproduction numberR=R0S(0)
based on the Euler–Lotka equation (6). Here, we focus on the estimates of
the basic reproduction number R0 (the value of R in a fully susceptible
population, S(t)≈ 1),

1

R0
=

∫ ∞
0

exp(−rτ )g(τ ) dτ. [17]

Analogous to the intrinsic generation interval distribution, forward serial
interval distributions describe the renewal process between symptomatic
cases. Therefore, we expect the forward serial interval distribution during
the exponential growth phase—which we refer to as the initial forward
serial interval distribution f0—to estimate the same value ofR0 for a given
r as the intrinsic generation interval distribution (note, however, that the
forward serial interval is not necessarily positive),

1

R0
=

∫ ∞
−∞

exp(−rτ )f0(τ )dτ. [18]

Here, the initial forward serial interval distribution is given by

f0(τ ) =
1

φ

∫ 0

−∞

∫ τ

α1

exp(rα1)h(−α1,α2−α1)`(τ −α2) dα2 dα1, [19]

where the normalization constant φ is determined by the requirement that∫∞
−∞ f0(τ ) dτ = 1. We provide a mathematical proof of this relationship

in SI Appendix, section S3. Since we do not make any assumptions about
the shape of the joint distribution h between incubation periods and the
generation intervals, Eq. 18 holds, in general, whether or not there is a
presymptomatic transmission period.

We further compare this with the estimate of R0 based on the intrinsic
serial interval distribution q(τ ),

1

Rintrinsic
=

∫ ∞
−∞

exp(−rτ )q(τ )dτ. [20]

The intrinsic serial interval distribution q(τ ) does not depend on epidemic
dynamics, and is given by

q(τ ) =
1

φq

∫ 0

−∞

∫ τ

α1

h(−α1,α2−α1)`(τ −α2) dα2 dα1, [21]

where the normalization constant φq is determined by the requirement that∫∞
−∞ q(τ ) dτ = 1. Rather than numerically integrating over closed forms

of g, f0, and q to estimate R0, we use simulation-based approaches for
simplicity (SI Appendix, section S4).

The initial forward serial interval distribution depends on the exponen-
tial growth rate r. For a fast-growing epidemic (high r), we expect the
backward incubation periods to be short (Eq. 3), meaning that presymp-
tomatic transmission is less likely to occur. Therefore, the initial forward
serial interval distribution will generally have a larger mean than the intrin-
sic generation and serial interval distributions. However, the exact shape
of the initial forward serial interval distribution depends on the shape
of the joint distribution. For example, the Susceptible–Exposed–Infected–
Recovered model, under the additional assumption that the incubation and
exposed periods are equivalent (i.e., that onset of symptoms and infec-
tiousness occur simultaneously), provides a special case. In this case, the
forward serial and generation intervals follow the same distributions dur-
ing the exponential growth phase because 1) infected individuals can only
transmit after symptom onset and 2) the time between symptom onset
and infection is independent of the incubation period of an infector (SI
Appendix, section S5). Everywhere else in this paper, however, we do not
assume that the incubation and exposed periods are equivalent. Instead,
we allow for presymptomatic transmission in the model in order to reflect
the transmission dynamics of COVID-19.

Model Parameterization. We have shown that the dynamics of the serial
interval distribution depend on the joint distribution between incubation
periods and generation intervals. Here, we use a bivariate lognormal distri-
bution to model the joint probability distribution h of intrinsic incubation
periods and intrinsic generation intervals (in the renewal equation model,
Eq. 12), while allowing for the possibility that they might be correlated.
Given that the viral load of SARS-CoV-2 peaks around the time of symptom
onset (11), we generally expect the generation intervals to be positively
correlated with the incubation period; that is, individuals who develop
symptoms later are more likely to transmit later. Marginal distributions of
incubation periods and generation intervals are parameterized based on
parameter estimates for COVID-19 (Table 1). For simplicity, we consider four
values for the correlation coefficients (on the log scale) of the bivariate log-
normal distribution: ρ= 0, 0.25, 0.5, 0.75. This parameterization allows for
generation intervals to be shorter than the incubation period, allowing for
presymptomatic transmission.

Results
We use parameter estimates for COVID-19 to characterize
the degree to which the realized serial interval distribution
can change over the course of an epidemic and to evaluate
how different definitions of the serial interval distribution can
affect the Euler–Lotka estimates of R0. We further address how

Table 1. Parameter values used for simulations

Parameter Values Source

Mean intrinsic incubation period 5.5 d (33)
SD intrinsic incubation period 2.4 d (33)
Mean intrinsic generation interval 5.0 d (34)
SD intrinsic generation interval 1.9 d (34)

The intrinsic incubation period distribution is parameterized using a log-
normal distribution with log mean µI = 1.62 and log standard deviation
σI = 0.42. The intrinsic generation interval distribution is parameterized
using a log-normal distribution with log mean µG = 1.54 and log stan-
dard deviation σG = 0.37. Log mean and log standard deviations represent
the mean and standard deviations of the underlying normal distributions,
which are later exponentiated. The joint probability distribution is mod-
eled using a bivariate log-normal distribution with correlations (on the log
scale) ρ= {0, 0.25, 0.5, 0.75}. The intrinsic incubation period and genera-
tion interval distributions are chosen to match characteristics of COVID-19
to illustrate realistic magnitudes of time-varying/perspective effects in the
current pandemic.
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the observed serial intervals, measured through contact trac-
ing, are affected by right censoring during an ongoing epidemic
and provide a heuristic method for addressing biases that can
arise from using serial interval data to estimate R0. Finally, we
analyze serial interval data from the COVID-19 epidemic in
China, outside Hubei province, based on 468 transmission events
reported between January 21 and February 8, 2020, under our
framework.

Realized Serial Interval Distributions during the Exponential Growth
Phase. Fig. 2 shows Euler–Lotka estimates of R0 based on dif-
ferent definitions of the serial interval. When the initial forward
serial interval distribution f0(τ) is used, estimates (from Eq.
18) exactly match the (correct) generation interval-based esti-
mates (Eq. 17) for all values of the correlation ρ between the
intrinsic incubation period and the intrinsic generation interval
(Fig. 2A). When the intrinsic distributions are used, however,
estimates based on the serial interval (Eq. 20) underestimate R0:
As r increases, Rintrinsic saturates and eventually decreases due
to the increasing inferred importance of negative serial intervals
(Fig. 2B). While the initial forward serial intervals during the
exponential growth phase can also be negative, their effects are
appropriately balanced, because faster epidemic growth leads to

longer serial intervals (and a corresponding lower proportion of
negative intervals).

Comparing the shapes of the initial forward serial interval
distribution (Eq. 19) and the intrinsic generation interval dis-
tribution allows us to better understand how different forward
distributions lead to identical estimates of R0. In general, dis-
tributions with higher means and less variability lead to higher
R0 for a given r (6, 35, 36). When incidence is growing expo-
nentially, forward serial intervals have higher means (Fig. 2C)
and squared coefficients of variation (Fig. 2D) than the intrin-
sic generation interval distribution. The effects of higher means
(which increase R0) exactly cancel those of higher variability
(which decrease R0). On the other hand, intrinsic serial intervals
(Eq. 21) have the same mean (equal to the mean initial forward
serial at r =0 in Fig. 2C) as the intrinsic generation intervals but
are more variable (also see squared coefficient of variation of
the initial forward serial interval distribution at r =0 in Fig. 2D);
therefore, we underestimate R0 when we use the intrinsic serial
interval distribution.

Realized Serial Interval Distributions during an Ongoing Epidemic.
The initial forward serial interval distribution captures the expo-
nential growth phase of an epidemic. We now explore how

A B

C D

Fig. 2. Estimates of the reproduction number from the exponential growth rate based on serial and generation interval distributions. (A) The ini-
tial forward serial interval distributions give the correct link between the exponential growth rate r and the reproduction number R0, for any
correlation ρ between intrinsic incubation period and intrinsic generation interval of the underlying bivariate log-normal distribution. (B) The intrin-
sic serial interval distributions give an incorrect link between r and R0. (C) The mean initial forward serial interval during the exponential growth
phase increases with r. (D) The squared coefficient of variation of the initial forward serial intervals during the exponential growth phase decreases
with r.
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forward and backward serial intervals can vary over the course
of an epidemic, using deterministic and stochastic simulations
based on the renewal equations (SI Appendix, sections S1 and
S2) using parameters in Table 1; we further assume R0 =2.5,
to reflect the transmission dynamics of COVID-19 in China
(37). While the forward serial interval distribution is our primary
focus, understanding the differences between the forward and
the backward distributions is important because the observed
intervals during an ongoing epidemic are often the backward
ones: We typically identify infected individuals and ask when and
by whom they were infected. Similarly, when we are estimating
the incubation period of an individual, we typically observe their
symptom onset date and try to estimate when they were infected
(e.g., ref. 38).

Fig. 3 shows the epidemiological dynamics (Fig. 3A) together
with the mean forward (Fig. 3 B–D) and the mean back-
ward (Fig. 3 E–G) delay distributions of a deterministic model
based on the renewal equation (Eq. 12) and of the correspond-
ing stochastic realizations based on individual-based simula-
tions. The mean forward incubation period remains constant
throughout an epidemic, by assumption (Fig. 3B). The mean
forward generation interval decreases slightly when incidence is
high, which is when the susceptible population declines rapidly
(Fig. 3C) (22, 24). In contrast, the mean forward serial interval
decreases over time (Fig. 3D).

The forward serial interval distributions depend on distribu-
tions of three intervals (Fig. 1B): 1) the backward incubation
period, 2) the forward generation interval, and 3) the forward

A

B

E

C D

F G

Fig. 3. Epidemiological dynamics and changes in mean forward and backward delay distributions. (A) Daily incidence over time. (B–D) Changes in the mean
forward incubation period, generation interval, and serial interval. (E–G) Changes in the mean backward incubation period, generation interval, and serial
interval. Black (A) and colored (B–G) lines represent the results of a deterministic simulation. Gray lines (A) represent the results of 10 stochastic simulations.
Colored points (B–G) represent the average of 10 stochastic simulations. Dashed lines represent the mean initial forward delay. Forward and backward delays
are colored according to Fig. 1. In order to remove possible transient dynamics (e.g., left censoring of time delays and initial stochasticity due to low number
of infections), we set t = 0 to the first time point when daily incidence is greater than 100. Intrinsic incubation periods and intrinsic generation intervals
are assumed to be independent of each other, for simplicity. See SI Appendix, Fig. S1 for simulations with correlated incubation periods and generation
intervals. See Table 1 for parameter values.
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incubation period. In these simulations, both forward incubation
period (Fig. 3B) and generation interval (Fig. 3C) distributions
remain roughly constant; therefore, changes in the forward serial
interval distributions (Fig. 3D) are predominantly driven by
changes in the backward incubation period distribution, whose
mean increases over time as the growth rate of disease incidence
slows and then reverses. In general, relative contributions of the
three distributions depend on their shapes, correlations between
intrinsic incubation periods and generation intervals, and overall
epidemiological dynamics.

We see similar qualitative patterns in all three backward delays
(Fig. 3 E–G and Eq. 2), because they are predominantly driven
by the rate of change in incidence, which, in turn, affects rela-
tive cohort sizes. When incidence is increasing, individuals are
more likely to have been infected recently, and therefore we are
more likely to observe shorter intervals (Eq. 3). Similarly, when
incidence decreases, we are more likely to observe longer inter-
vals. Neglecting these changes will bias the inference of intrinsic
distributions from observed distributions.

Observed Serial Interval Distributions. Now, we turn to practical
issues of estimating the reproduction number from the observed
serial interval data during on ongoing epidemic. In order to have

an unbiased estimate of the basic reproduction number, we need
to estimate the initial forward serial interval distribution—that is,
serial intervals based on cohorts of infectors who share the same
symptom onset time, at the early stage of the epidemic. However,
researchers typically use all available information to estimate
epidemiological parameters (e.g., aggregating all serial intervals
observed until certain time of an epidemic). For example, ref.
18 recently suggested that up-to-date serial interval data are
necessary to accurately estimate the reproduction number. We
explore the consequences of neglecting changes in the realized
serial interval distribution on estimates of the basic reproduction
number.

When an epidemic is ongoing, the observed serial inter-
vals are subject to right censoring because we cannot observe
a serial interval if either an infector or an infectee has not
yet developed symptoms. For example, if we were to measure
serial intervals on day 8 as in Fig. 4A, we will only be able to
observe the first six events (ID 1 to 6). Fig. 4B demonstrates
how the effect of right censoring in the observed serial inter-
vals translates to the underestimation of the basic reproduction
number R0 in our stochastic simulations (assuming R0 =2.5 as
in Fig. 3). Notably, even if we could observe and aggregate all
serial intervals across all transmission pairs after the epidemic

A B

DC

Fig. 4. Estimating the reproduction number from the observed serial intervals. (A) Schematic representation of line list data collected during an epidemic.
(B) Estimates of R0 based on all observed serial intervals completed by a given time. (C) Schematic representation of line list data rearranged by symptom
onset date of infectors. (D) Estimates of R0 based on all observed serial intervals started by a given time. Black dashed lines represent the mean initial
forward serial interval andR0. Black solid lines represent the mean intrinsic serial interval andRintrinsic. Colored solid lines represent the mean estimates of
R0 across 10 stochastic simulations. Colored ribbons represent the range of estimates ofR0 across 10 stochastic simulations.
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has ended, we would still underestimate the initial mean for-
ward serial interval (and therefore R0), likely by a large amount.
The observed serial interval distribution converges to the intrin-
sic serial interval distribution, as the incubation periods and
generation intervals will no longer be subject to backward
biases. In fact, we would even underestimate the intrinsic value
slightly due to contraction of the forward generation interval
distribution during the susceptible depletion phase if the epi-
demic burnt through the population (Fig. 3C). Therefore, aggre-
gated distributions of serial intervals that have been collected
throughout different periods of an epidemic must be interpreted
with care.

Here, we provide a heuristic way of assessing potential biases
in the estimate of the mean initial forward serial interval and
therefore R0 retrospectively. We can rearrange the line list and
group observed serial intervals based on the symptom onset
date of infectors (Fig. 4C); as we showed earlier, serial inter-
vals that share the same symptom onset date of a primary case
give us the forward serial interval distribution. Then, we can
compare how the shape of the serial interval distribution (par-
ticularly its mean) as well as the estimate of R0 change as we
incorporate more recent cohorts into the analysis; that is, we
analyze observed serial intervals from infectors who became
symptomatic before time t and evaluate how the estimates
change as we increase t . This approach is analogous to averag-
ing over a set of forward intervals, just as using all information
up to a certain time is analogous to averaging over a set of
backward intervals (Fig. 4D); the major difference is that we

focus on serial intervals that begin in a certain period, rather
than those that end in a certain period. During the exponen-
tial growth phase, the estimates of the mean serial interval and
R0 are consistent with the true value (see “initial forward” in
Fig. 4 B and D); adding more data allows us to make more pre-
cise inference during this period. However, the cohort-averaged
estimates decrease rapidly soon after the exponential growth
period, reflecting changes in the forward serial interval distribu-
tions. This approach allows us to detect dynamical changes in
the forward serial interval distributions and their effect on the
estimates of R0.

Applications to the COVID-19 Pandemic. Finally, we reanalyze
serial intervals of COVID-19 collected by Du et al. (13) from
mainland China, outside Hubei province, based on 468 transmis-
sion events reported between January 21 and February 8, 2020.
Du et al. (13) estimated the mean serial interval of 3.96 d (95%
CI: 3.53 d to 4.39 d) and R0 of 1.32 (95% CI: 1.16 to 1.48).
Fig. 5A shows the distribution of symptom onset dates of all
individuals within 468 transmission pairs (consisting of a total
of 752 unique individuals), resembling a COVID-19 epidemic
curve in China (compare figure 1 in ref. 40). In order to quan-
tify changes in serial intervals, we group them by the symptom
onset dates of the primary (Fig. 5B) and secondary (Fig. 5C)
cases—corresponding to forward and backward serial interval
distributions, respectively—and compute their mean and 95%
quantiles. Fig. 5B shows that the mean forward serial interval
decreases over time. While the decrease is likely to be affected

A B

DC

Fig. 5. Observed serial intervals of COVID-19 and cohort-averaged estimates of R. (A) Symptom onset dates of all individuals within 468 transmission
pairs included in the contact tracing data. (B and C) Forward and backward serial intervals over time. Serial interval data have been grouped based on the
symptom onset dates of primary (B) and secondary (C) cases. Points represent the means. Vertical error bars represent the 95% equitailed quantiles. Solid
lines represent the estimated locally estimated scatterplot smoothing fits. The dashed lines represent the maximum and minimum observable delays across
the range of reported symptom onset dates. (D) Cohort-averaged estimates of R0 assuming doubling period of 6 and 8 d (14, 39). Ribbons represent the
associated 95% bootstrap CIs. The data were taken from supplementary materials of ref. 13.
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by the right censoring (indicated by the closeness between the
quantiles of the observed serial intervals and maximum observ-
able serial intervals), the increase in the proportion of negative
serial intervals indicates changes in the forward serial inter-
val distribution; this proportion is unlikely to be affected by
left censoring (based on the gap between the quantiles of the
observed serial intervals and minimum observable serial inter-
vals). The decrease in the mean forward serial interval was
probably driven by interventions against spread. Interventions
during this time period both decreased (and then reversed) the
growth rate of COVID-19 cases—thus increasing the backward
incubation period—and also reduced generation intervals, by
preventing infections once cases were identified. Both of these
would have acted to reduce the forward serial interval. Fig. 5C
shows that the mean backward serial interval increased over
time, also likely driven directly by the decrease in COVID-19
infections.

While the qualitative changes in the mean forward and back-
ward serial interval are consistent with our earlier simulations
(Fig. 3), the initial mean forward serial interval (Fig. 5B) appears
to be larger than what we calculated based on previously esti-
mated incubation period and generation interval distributions
(Fig. 2C). This difference may imply that the incubation period
and generation interval (Table 1) were underestimated, as nei-
ther study explicitly accounted for the fact that the observed
intervals were drawn from the backward distributions and were
likely to have been censored.

Fig. 5D shows the cohort-averaged estimates of R0, which
remain roughly constant until day January 17 and suddenly
decrease; this sudden decrease is due to changes in the forward
serial intervals consistent with the dynamics seen in our simu-
lations (Fig. 4). The cohort-averaged estimates of R0 based on
the early forward serial intervals are also consistent with pre-
vious estimates of R0 of the COVID-19 epidemic in China (1,
37): R0 =2.6 (95% CI: 2.2 to 3.1) and R0 =3.4 (95% CI: 2.7
to 4.3) based on a doubling period of 8 d or 6 d, respectively,
using serial interval data from infectors who developed symp-
toms by January 17. These early cohort-averaged estimates of R0

are unlikely to be affected by the right censoring, as we expect the
degree of right censoring to be low (Fig. 5A). Therefore, the orig-
inal R0 estimate of 1.32 (95% CI: 1.16 to 1.48), which neglects
the changes in the forward serial interval distribution, underesti-
mates R0 by a factor of 2.0 to 2.6. This example demonstrates
the danger of using the observed serial intervals to calculate
the reproduction number without organizing serial intervals into
cohorts.

Discussion
Generation and serial intervals determine the time scale of
disease transmission, and are therefore critical to dynamical
modeling of infectious outbreaks. We have shown that the initial
forward serial interval distribution—measured from the cohort
of infectors who developed symptoms during the exponential
growth phase of an epidemic—provides the correct link between
the exponential growth rate r and the initial reproduction num-
ber R. In general, the forward serial interval distributions will
not match the intrinsic serial interval distribution (which has
the same mean as the intrinsic generation interval distribution)
because the incubation period of the infectors (conditional on
their symptom onset date of the infector) will be subject to back-
ward biases. In particular, the mean forward serial interval can
decrease over time for COVID-19, as individuals who develop
symptoms later in an epidemic are more likely to have longer
incubation periods, and therefore have greater opportunity to
transmit presymptomatically. Failing to account for these effects
can result in underestimation of initial R.

Recently, Ali et al. (41) also showed that forward serial
intervals of COVID-19 decreased through time in China. They

grouped serial intervals by the symptom onset date of infectors
across 14-d periods and found that the mean forward serial inter-
val decreased from 7.8 d to 2.6 d. While they attributed the
decrease in serial intervals to reduction of the isolation delay,
their regression analysis showed that isolation delays explain only
51.5% of the variation in serial intervals (they could explain up to
72% of the variance by including other intervention measures).
Our framework provides an explanation for the remaining vari-
ation: Changes in the backward incubation period during the
decreasing phase of an epidemic act to further shorten serial
intervals due to increased amount of presymptomatic transmis-
sion (even in the absence of nonpharmaceutical interventions).
Isolation delays and other intervention measures affect the
amount of onward transmission, and therefore the distribution
of realized (forward) generation intervals. They therefore are not
expected to explain all of the variation in forward serial intervals,
since these additionally depend on both the backward incubation
period of the infector and the forward incubation period of the
infectee (Fig. 1B).

Our results support the use of serial interval distributions
for calculating the R during the exponential growth phase,
but they also reveal gaps in current practices in incorporating
serial interval distributions into outbreak analyses. For example,
ref. 18 recently emphasized the importance of using up-to-
date serial interval data for accurate estimation of time-varying
reproduction numbers. However, our results show that, if obser-
vational biases in the forward serial interval through time are
not accounted for, using up-to-date serial interval data can actu-
ally exacerbate the underestimation of R in the initial growth
phase of an outbreak. Future studies should explore how neglect-
ing changes in the forward serial interval distribution can affect
the estimates of R beyond the exponential growth phase, and
potentially reassess existing estimates of R. We also suggest that
modelers should aim to characterize spatiotemporal variation in
forward serial interval distributions. These modeling approaches
should be coupled with epidemiological investigation through
contact tracing. Going forward, an additional advantage of early,
intensive contact tracing of emerging diseases is that it provides
the best information to characterize the initial forward serial
interval distribution.

Our study underlines the fact that the serial interval distribu-
tion depends not only on the generation interval and incubation
period distributions but also on the correlation between their
duration in a given individual. Here, we use a bivariate lognormal
distribution to capture these correlations phenomenologically
and to show that realized serial intervals can decrease over time
in the context of COVID-19. Although their true correlation
will depend on viral load dynamics, we expect our conclusions
about decreasing serial intervals of COVID-19 to be robust, as
individuals with longer incubation periods will generally have a
longer time window to transmit before symptom onset. In gen-
eral, the impact of increasing backward incubation periods on
the forward serial intervals are likely to be disease specific—for
example, we show, in SI Appendix, section S5, that the initial for-
ward serial interval distribution can be equivalent to the intrin-
sic generation interval distribution, regardless of the growth
rate r , due to independence between the incubation period
and time from symptom onset to transmission and the lack
of presymptomatic transmission. Future studies trying to inter-
pret realized serial intervals should consider carefully the joint
distribution between the generation intervals and incubation
periods.

In closing, we lay out a few practical principles for analyz-
ing and interpreting serial interval data. First, serial intervals
should be cohorted based on the symptom onset date of the
infector (and not of the infectee) whenever possible. Previous
studies have often regarded serial intervals as an intrinsic quan-
tity, having the same mean as the intrinsic generation interval
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(7, 8, 10, 19), but the distribution (and the mean) of observed
serial intervals differs from this expectation, and changes through
time, due to epidemic dynamics. Second, aggregating serial inter-
vals across different cohorts and epidemic periods should be
avoided because the realized serial interval distribution can be
subject to different censoring and epidemiological biases: Even
when all realized serial intervals can be observed throughout
an unmitigated epidemic, we do not obtain the intrinsic serial
interval distribution, due to susceptible depletion (Fig. 4). Third,
applying serial interval information across epidemics of a given
disease should be done with care, because serial intervals are epi-
demic specific, rather than disease specific. Finally, serial interval
data should be accompanied by a trajectory of the epidemic
curve, whenever possible, to provide epidemiological context. In
practice, these recommendations will sometimes be hard to fol-
low, due to limited data about serial intervals, but these issues
should be kept in mind when interpreting serial interval data to
inform transmission dynamics.

More broadly, our study underlines the importance of care-
fully defining measured epidemiological time distributions. Pre-
vious studies have shown the importance of forward vs. backward
measurement of generation intervals (19, 23, 24); we generalize
these ideas and show that they apply to other epidemiologi-
cal distributions. Some studies during the early phases of the
COVID-19 epidemics have tried to correct for the backward
biases (42), but changes in the backward delay distributions due
to changing cohort sizes are expected to be a pervasive feature
of outbreak dynamics. Cohorting epidemiological delays by the
primary event time can help avoid backward biases (although
censoring biases can still exist) as well as detect potential changes
in the distribution.

Here, we assume that all individuals develop symptoms and
that the entire transmission process, including all relevant epi-
demiological delays, is known exactly. In practice, identifying
who infected whom is difficult, in general, and asymptomatic and
presymptomatic transmission of COVID-19 exacerbates this dif-
ficulty (11, 43, 44). Biases in the observed serial intervals will
necessarily bias the estimates of R. Furthermore, when one of
the individuals in a transmission pair is asymptomatic, there is
no symptom-based serial interval. Neglecting the time scale of
asymptomatic transmission may also bias the estimates of R (45).

Despite these limitations, our analysis of serial intervals of
COVID-19 from China provides further support for our the-
oretical framework, demonstrating temporal variation in serial
intervals and its effect on the estimates of R. Most existing
estimates of the serial intervals of COVID-19 implicitly or explic-
itly assume that the serial interval distributions remain constant
throughout the course of an epidemic (11, 13, 46–49). Our study
provides a rationale for reassessing estimates of serial inter-
val distributions—and their use in estimating R—during the
COVID-19 pandemic.

Data Availability. All data and code are stored in a publicly available GitHub
repository (https://github.com/parksw3/serial). All study data are included in
the article and SI Appendix.
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