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We present an approach to computing the probability of epidemic “burnout,” i.e., the
probability that a newly emergent pathogen will go extinct after a major epidemic. Our
analysis is based on the standard stochastic formulation of the Susceptible-Infectious-
Removed (SIR) epidemic model including host demography (births and deaths) and
corresponds to the standard SIR ordinary differential equations (ODEs) in the infinite
population limit. Exploiting a boundary layer approximation to the ODEs and a birth-
death process approximation to the stochastic dynamics within the boundary layer,
we derive convenient, fully analytical approximations for the burnout probability.
We demonstrate—by comparing with computationally demanding individual-based
stochastic simulations and with semi-analytical approximations derived previously—
that our fully analytical approximations are highly accurate for biologically plausible
parameters. We show that the probability of burnout always decreases with increased
mean infectious period. However, for typical biological parameters, there is a relevant
local minimum in the probability of persistence as a function of the basic reproduction
numberR0. For the shortest infectious periods, persistence is least likely ifR0 ≈ 2.57;
for longer infectious periods, the minimum point decreases to R0 ≈ 2. For typical
acute immunizing infections in human populations of realistic size, our analysis of the
SIR model shows that burnout is almost certain in a well-mixed population, implying
that susceptible recruitment through births is insufficient on its own to explain disease
persistence.

epidemics | stochastic processes | SIR model | extinction

It is well known that solutions of the standard ordinary differential equations (ODEs)
describing a Susceptible-Infectious-Removed (SIR) epidemic with host births and
deaths (aka “vital dynamics” or “demography”) eventually converge on a globally
asymptomatically stable equilibrium (1). Approach to the endemic equilibrium (EE)
typically occurs via damped oscillations, motivating the use of the SIR model with
demography as a basis for models of observed recurrent epidemics of childhood
infections such as measles (2–6). For many biologically reasonable parameter values
and population sizes, however, the troughs of these oscillations pass through infectious-
host densities corresponding to a small fraction of an individual—the so-called “atto-
fox problem” (7)—calling into question the appropriateness of the deterministic
SIR model.

Here, we estimate the probability that a pathogen disappears at the end of a major
epidemic in a stochastic individual-based SIR model, in a population of finite size.
In the large population limit, the densities of each type (S, I , R) are asymptotically
deterministic and governed by the standard SIR ODEs (8). We will refer to pathogen
extinction soon after introduction as fizzle, whereas if the pathogen escapes fizzle, we will
refer to extinction at the end of a major epidemic as epidemic burnout,* following the
terminology of Dushoff (9). We will say that the pathogen persists if it has a subsequent
epidemic wave, although it is worth mentioning that we always expect eventual extinction
in a stochastic model with a finite population (10); the time to extinction of a pathogen
that has survived to a state near the endemic equilibrium is considered in, e.g., refs.
11–13. Fig. 1 shows sample paths of the proportion of infectious individuals for the
stochastic SIR model (together with the trajectory obtained from the ODE), illustrating
fizzle, burnout, and persistence.

*While “fade-out” (or “fadeout”) is commonly used to describe this extinction, e.g., ref. 4, §2.3, we find it conceptually
useful to follow ref. 9 in distinguishing between extinction after a first major epidemic versus that occurring after multiple
epidemics, and reserve the term fadeout for the latter.
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Fig. 1. Sample paths of the stochastic SIR model (Fig. 2) and the ODE
(Eq. 5) showing fizzle, burnout, and persistence. (A) The frequencies of
susceptible, infectious, and removed individuals in the ODE (symbols indicate
the critical points of the curve of the corresponding colour). Dashed lines
indicate the endemic equilibrium (Eq. 8) of the deterministic model (Eq. 5).
(B) The proportion of infectious individuals as a function of time. The
boundary layer—inside which we approximate the stochastic dynamics with
a birth-death process—is shaded in yellow, and the first point at which the
deterministic trajectory enters the boundary layer is indicated with a heavy
yellow dot. (C) Probability density of the time to extinction, estimated from
106 realizations of the stochastic process. The vertical lines show the time
�� (Eq. 76) for which the probability of fizzle after �� is less than � (the lines
correspond to � = 10−4 and 10−6). (D and E) Trajectories in the susceptible-
infectious phase plane with the nullclines; the vertical scale is linear in (D) and
logarithmic in (E). The thin black curve is the boundary of the deterministically
accessible region, defined by S + I = 1. Small yellow dots along trajectories
are spaced by one time unit (the mean infectious period).

The problem of epidemic burnout has been of ongoing interest
(4, 14, 15), e.g.,

“The question ‘will the agent go extinct after the first
outbreak?’ cannot be answered within the context of a
deterministic description. So we would like to be able
to switch back to a stochastic description at the end of
the epidemic outbreak. While it is well known how to
calculate the probability of extinction from a branching
process in a constant environment…, it seems difficult
to do so when environmental quality (from the point
of view of the agent, i.e., the presence of susceptibles!)
is improving linearly at a certain rate.” (14, p. 42)

and has been previously approached via perturbation methods
(16, 17) and by hybrid analytical-numerical approaches (18):

1. van Herwaarden (16) (henceforth vanH) starts from a large
population diffusion approximation to the Markov chain
formulation of the SIR model (Model). Under the assumption
that the individual mortality rate is low, a highly accurate
approximation to the solution of the infinite-population limit
SIR ODEs is obtained, which is in turn used to estimate
the point of entry to a boundary layer where the number of
infectious individuals is very small. In the boundary layer,
the backward equation for the diffusion approximation† is

†See, e.g., refs. 19 or 20 for a discussion of the forward and backward diffusion equations;
ref. 21 is an excellent introduction to boundary-layer methods for Markov chains.

tractable and is used to obtain an analytical approximation to
the burnout probability [vanH, Eq. (5.13)], which requires
the numerical evaluation of an integral. It is, to quote
Diekmann and Heesterbeek (14, p. 42), “an ingenious piece of
work,” although it is challenging to interpret for non-experts.

2. By contrast, Meerson and Sasorov (17) (henceforth MS) retain
the discrete population model. They estimate the probability
of extinction as the probability of reaching the state with only
one infective individual (weighted by the expected number
of returns to this state‡) times the probability that a single
infective recovers before transmitting to any other individuals.
They approximate this probability by the product of the ex-
pected total time (summed over multiple returns) in the state
with a single infectious individual and the disease recovery rate
(which is the rate of going extinct given that there is only one
infectious individual). The time in the single-infective state is
characterized by linear equations obtained by integrating the
forward equations (see, e.g., ref. 19, §14.2) for all transient
states over all time, for which an approximate solution is
found via a WKB ansatz (see, e.g., ref. 22, Chapter 10) in
the large population limit (i.e., a diffusion approximation is
introduced implicitly). Under these assumptions, the burnout
probability is shown to decay exponentially in the population
size, with a constant of proportionality that is approximated
analytically in the parameter regime where the initial expo-
nential growth rate of infectious individuals greatly exceeds
the per capita turnover rate (equivalent to � −  � � in our
formulation below). While providing coarser estimates than
vanH, this approach yields a deterministic approximation to
the most probable trajectory to pathogen extinction via a
Hamiltonian formalism (see, e.g., refs. 23 and 24, Exercise
5.7.36). Like vanH, the approximation of MS involves an in-
tegral that cannot be evaluated analytically and presents a non-
trivial numerical problem due to singularities in the integrand.

3. More recently, after identifying discrepancies between
the analytical results of vanH and MS and the results of
simulations, especially at smaller values of the expected
population size n, (18) introduced a computational approach
that scales as O(n2). As in the previous approaches, Ballard
et al. (18) use the solution of the SIR ODEs—now evaluated
numerically and summed with a higher-order Gaussian
correction (8, Theorem 11.2.3)—to identify the point of entry
into a boundary layer, where a simplified form of the Markov
chain is then simulated to estimate the probability of burnout.

The approximations of vanH and MS are summarized in §2.3
of ref. 18. We compare the performance of these approximations
with that of an analytical approximation that we have derived
in the spirit of the quote from ref. 14 above. Like vanH and
ref. 18, we use the SIR ODEs to approximate the stochastic SIR
trajectories outside a boundary layer. Then, inside the boundary
layer, we use a time-inhomogeneous birth-and-death process
that approximates the true stochastic dynamics more accurately
than the diffusion approximation of vanH (in Boundary Layer
Independent Estimates, we obtain the expression from vanH as
an approximation to ours). Our approach is simpler and more
intuitive than the diffusion approximation, and—in contrast
to all previous work—we obtain fully analytical expressions
that are numerically stable and can be computed without
recourse to numerical evaluation of integrals. Our approach
yields expressions for the probability of persistence after any

‡In practice, there is negligible probability of returning to the state with one infective after
an excursion to a state with many infectives.
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number of epidemic waves and is also more amenable to
generalizations than singular perturbation analysis of diffusion
approximations; indeed, while we do not discuss the matter in
detail here, the boundary-layer diffusions of vanH correspond to
large population approximations for the branching processes we
consider here (similar to limits in refs. 25 and 26).

Approach and Analysis
Model. We consider the spread of an infectious disease in a
discrete population in which births balance deaths on average, so
there is a well-defined expected population size n. We consider
a sequence of models indexed by n, and for the nth model denote
by Sn(t), In(t) and Rn(t) the numbers of individuals at time t
who are susceptible, infectious, and removed, respectively. The
total population size is

Nn(t) = Sn(t) + In(t) + Rn(t) . [1]

Births and immigration of new susceptible individuals occur
at constant rate �n, while deaths occur at per capita rate �,
independent of disease status. Thus, at every time t, we have

E
[
Nn(t)] = n , [2]

where the expectation is taken over realizations of the stochastic
process. Infectious individuals recover at rate  , and new
infections occur according to the law of mass action in a well-
mixed population, i.e., at rate

�Sn(t)In(t)
n

. [3]

Since the demographic and epidemiological rates depend only
on the state of the system at the current time, our sequence is an
ensemble of Markov chain models (indexed by the expected total
population size n).

Following a common convention in probability theory, we
use upper case for functions and lower case for indices and the
values of functions at a given time. We index the functions by
expected population size because we need to consider the limit of
the sequence of functions as n→∞, whereas we use subscripts
on function values to specify time, e.g., s0 = Sn(0).

The model structure is indicated in a compartmental transfer
diagram in Fig. 2, and the nature and rates of each type of event
are summarized in Table 1.

Deterministic Approximation. In the limit of large population
size, the stochastic SIR model (Fig. 2 and Table 1) is well-
approximated by deterministic ODEs. More precisely, writing

Xn =
Sn
n
, Yn =

In
n
, Zn =

Rn
n

, [4]

Fig. 2. Compartmental model for an SIR epidemic with vital dynamics.
Labels on the arrows correspond to individual jump rates between states.
For simplicity, the model is defined so that births/immigrations on average
balance deaths, so that the expected total population size (E[Nn(t)] = n) is
fixed.

Table 1. Event types in the stochastic SIR model
Event type Rate Transitions

Birth/immigration �Nn Sn → Sn + 1
Transmission �SnIn/Nn Sn → Sn − 1, In → In + 1
Recovery In In → In − 1, Rn → Rn + 1
Susceptible death �Sn Sn → Sn − 1
Infectious death �In In → In − 1
Removed death �Rn Rn → Rn − 1

in the limit n → ∞, the frequencies
(
Xn(t), Yn(t), Zn(t)

)
converge [almost surely on finite time intervals (8)] to the solution(
X (t), Y (t), Z(t)

)
of the ODEs,

dX
dt

= �(1− X )− �XY , [5a]

dY
dt

= (�X −  − �)Y , [5b]

dZ
dt

= Y − �Z . [5c]

Formally, to make this connection, one must be careful to have
a sensible relationship between the initial conditions for the
stochastic processes and the initial conditions for the ODEs.
For example, given an initial state

(
X (0), Y (0), Z(0)

)
for the

ODEs, if one takes(
Xn(0), Yn(0), Zn(0)

)
=

1
n
( ⌊

n X (0)
⌋
,
⌊
n Y (0)

⌋
,
⌊
n Z(0)

⌋ )
,

[6]

then the theorem applies. More generally, one must choose initial
conditions

(
Xn(0), Yn(0), Zn(0)

)
for the stochastic processes

such that the limits limn→∞ Xn(0), etc. exist, and one must
take these limits as initial conditions for the ODEs (see
Theorem 11.2.1 in ref. 8, p. 456); Example B on p. 453 of Ethier
& Kurtz (8) illustrates how the SIR model without demography
relates to the hypotheses of the theorem, and Chapter 5 in ref.
27 provides a pedagogical introduction to Kurtz’s results in the
context of epidemic models.

The trajectories of the deterministic SIR model (Eq. 5) always
converge to a globally asymptotically stable (GAS) equilibrium
point, which can be shown via a combination of the Poincaré
Bendixson Theorem and Dulac’s criterion (28) or via a Lyapunov
function (29). The nature of the asymptotic state is determined
by the basic reproduction number (the expected total number of
new infections caused by a single infective individual introduced
into a naive population),

R0 =
�

 + �
. [7]

If R0 ≤ 1, then the GAS fixed point is the disease free equi-
librium, (x, y) = (1, 0), whereas if R0 > 1, then all solutions
converge—either via damped oscillations or monotonically—to
an endemic equilibrium,

(x?, y?) =
(

1
R0

, "
(

1−
1
R0

))
, [8]

where
" =

�
 + �

[9]

gives the mean infectious period as a fraction of the mean host
lifetime. Our analysis requires that " is small but not too small
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( 1
n � "� 1), which is true for a wide variety of common acute

immunizing infections (Table 2). The upper bound (" � 1)
is essential so we can justify perturbation expansions in ". The
lower bound ( 1

n � ") is equivalent to n" � 1, which ensures
that the number of infectives at equilibrium (ny?) is substantially
greater than 1 (from Eq. 8, ny? ∼ n"). The ODEs continue to
provide a good approximation to the epidemic dynamics until the
prevalence y (the proportion of hosts that are infectious) becomes
small; we take “small” to mean that y is less than the equilibrium
prevalence y? (Eq. 8). Thus, we take the boundary layer—within
which the dynamics must be treated stochastically—to be the
region of the phase plane where y < y? (in Boundary Layer
Independent Estimates, we also give approximations independent
of the specific choice of boundary layer).

The need to analyze the dynamics differently within the
boundary layer is especially clear if we consider the introduction
of a single infectious individual into a fully susceptible popula-
tion. If R0 > 1, then in the ODE system (Eq. 5) Y (t) will
deterministically increase, whereas in the stochastic model, Yn(t)
will fizzle with probability 1/R0 (30); i.e., the ODE (Eq. 5)
fails to capture the dynamics of the stochastic model (Fig. 2)
when there are few infectives. We therefore use a birth-and-death
process to approximate the dynamics of the number of infectious
hosts when that number is small (in contrast, susceptibles can be
assumed to remain sufficiently abundant that we can always use
the deterministic approximation X (t)).

Birth-and-Death Process Heuristic. New infections occur at rate

�Sn(t)
n

In(t) = �Xn(t)In(t) ≈ �X (t)In(t), [10]

while the number of infectious hosts decreases by one due to
recovery or death at rate

( + �)In(t) . [11]

When there are few infectious hosts (In(t) < ny?), we ap-
proximate In(t) by a linear birth and death process with time-
inhomogeneous per capita rates b(t) and d(t), where

b(t) = �X (t) , [12]
d(t) =  + � . [13]

Note that when X (t) equals x? (the classical herd immunity
threshold), b(t) = d(t), and the birth and death process transi-
tions from subcritical to supercritical. Unlike in models without
demography, the birth of new susceptible individuals ensures that
a population will eventually cross the herd immunity threshold.
Therefore, even if the number of infectious hosts initially declines
it can eventually grow exponentially, if the infection survives until
X (t) > x?.

We can estimate the survival probability for this branching
process, and thus, the persistence probability, using the following
result.

Theorem 1 [Kendall (31)]. Let K(t) be a birth and death process
with time-inhomogeneous per-capita birth rate b(t) and death
rate d(t). The probability of eventual extinction starting from one
individual at time 0 is

q =

(
1 +

1∫
∞

0 e−
∫ t

0 [b(s)−d(s)] dsd(t)dt

)−1

. [14]

The extinction probability starting from k individuals is qk.

Consequently, the probability of indefinite persistence (a branch-
ing process will either go extinct or grow indefinitely), starting
from k individuals at time 0, is

ℙ{K(∞) > 0} = 1− qk . [15]

To complete our persistence probability estimate, we need
an expression for the proportion susceptible at time t (X (t) in
Eq. 12). As suggested visually by the example shown in Fig. 1,
inside the boundary layer (y < y?), both the deterministic and
the stochastic trajectories spend most of their time at prevalences
much lower than y? [note the log scale in the subfigures (B) and
(E)]. Consequently, we can approximate X (t) by solving (Eq. 5)
with Y (0) = 0. Thus, we set

dX
dt
≈ �(1− X ), [16]

and solve this approximate equation as if it were exact to obtain

X (x0, t) ≈ 1− (1− x0)e−�t . [17]

Here, x0 is the fraction susceptible at the initial time t = 0, and
we write X (x0, t) to emphasize the dependence on the initial
state. We also write q(x0) for the value of q in Eq. 14 obtained
by taking b(t) = �X (x0, t).

We first apply this branching process approximation to a
population at the disease-free equilibrium (DFE). Thus, we set
x0 = 1 in (Eq. 17), which yields X (1, t) ≡ 1; hence, we
have a time-homogeneous branching process in this case, and
the integral in (Eq. 14) is easily evaluated and yields q(1) =

1
R0

= x?. Considering a small number of initially infective
individuals, In(0) = k, we recover the classical expression for
the establishment probability (30), that is, the probability that
the pathogen does not fizzle:

pk = 1− xk? . [18]

We now use Kendall’s q (Eq. 14) to compute the burnout
probability. Assuming that the pathogen does not fizzle, the
number of infectious hosts will rapidly exceed ny? individuals,§
at which point the densities of both susceptible and infective
hosts are well approximated by the ODEs (Eq. 5). To proceed,
we need a formula for the fraction of hosts that are susceptible
when the trajectory enters the boundary layer at the end of an
epidemic; we denote this fraction xin to emphasize that it refers
to the susceptible proportion upon entry into the boundary layer
(the point (xin, y?) is indicated by a heavy yellow dot in Fig. 1). In
ref. 34, assuming " is small,¶ we derive an approximate expression
for the fraction susceptible, X (y, xi), as a function of the fraction
infectious (y) and the initial fraction susceptible (xi). Using that
approximation, we have

xin = X (y?, xi) ≈− x?W0

(
−R0xie−R0(xi−y?)

)
+ " eR0y?

(
E1(R0y?)− E1(R0y0)

)
. [19]

§More precisely, for any y < y0 (Eq. 21), conditional on not fizzling, the probability that
In(t) hits 0 before hitting yn is exponentially small in n with exponential rate depending
on y [for a rigorous demonstration see ref. 32 (Supplementary Information §8.2); ref. 33
gives explicit higher-order terms for the SIS model].
¶In ref. 34, we use � = "/R0 rather than " as the small parameter, because using �
leads to simpler expressions (see, e.g., (Eq. 24) below). Here, however, we analyze the
dependence of our expressions on the epidemiologically relevant parameters R0 and "
and have re-written expressions from ref. 34 accordingly.
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Here, W0 denotes the principal branch of the Lambert W -
function# (35), E1(x) =

∫
∞

x
e−t
t dt is the exponential integral

function (36, §8.2.1) and y0 is the peak prevalence in the limit
"→ 0 (i.e., � → 0), i.e., the maximum fraction infectious in
the SIR model without vital dynamics,

y0 = xi − x?
(
1 + ln (xi/x?)

)
. [21]

(See e.g., ref. 37 for a derivation of y0.) Taking xi = 1
corresponds to the invasion of a novel pathogen into an
epidemiologically naive population (i.e., at the DFE). Later
(Subsequent Epidemic Waves), we give an iterative scheme for
xi,j, an “effective initial fraction susceptible” that—substituted
for xi in Eqs. 19 and 21—gives the fraction susceptible at the
end of the jth epidemic wave after invasion at the DFE. We
compare our approximation of xin for xi = 1 to the value
obtained by numerically integrating the SIR ODEs (Eq. 5) in
Fig. 3 and discuss its domain of applicability below (The Domain
of Applicability of the Approximation (Eq. 19) to xin).

If we now take t = 0 to be the end of a major epidemic,
i.e., the time when the infectious host density falls below y? and
x0 = xin, then the density of infectious hosts is small, and the
density of susceptible hosts is well approximated by X (xin, t)
(we are preparing a rigorous treatment of these results; here, we
will content ourselves with showing that our analytical results
closely match the results of individual-based simulations). We
can thus estimate the conditional burnout probability—i.e.,
the probability of burnout conditional on not fizzling—by

q(xin)ny? . [22]

and the conditional persistence probability by

1− q(xin)ny? . [23]

A B

Fig. 3. Susceptible proportion (xin) upon entry into the boundary layer (y <

y?). (A) xin as a function ofR0 (Eq. 7). (B) xin as a function of " (Eq. 9). The exact
value of xin (obtained by numerically solving the SIR ODEs (Eq. 5)) is shown
with solid curves, our approximation (Eq. 19) is shown with dashed curves,
and the approximation of vanH is shown with dotted curves. Based on Eq.
42, the minimum R0 for which our approximation of xin (Eq. 19) is valid is
≈ e2" (i.e., 1.02027 for " = 0.01 and 1.0020027 for " = 0.001).

# If ℰ(z) = zez , Lambert’s W -function W(z) (35) solves the “left-sided” inverse relation
ℰ(W(z)) = z. This equation has countably many solutions, each corresponding to
branches Wi of the W -function; we will need the two real branches, W0 , which maps
[− 1

e ,∞) to [−1,∞), and W−1 , which maps [− 1
e ,0) to (−∞,−1]. For these two branches,

Wi is a partial ‘‘right-sided’’ inverse function for ℰ(z):

W−1(ℰ(z)) = z if z ≤ −1
W0(ℰ(z)) = z if z ≥ −1.

[20]

Below (Computing the Epidemic Burnout Probability), we com-
pute an exact expression for q(xin),

q(xin) =
(

1 +
"

z−aezℊ(a, z)

)−1
[24a]

where z =
R0

"
(1− xin), [24b]

and a =
R0

"
(1− x?) . [24c]

Here, ℊ denotes the lower incomplete gamma function|| (36,
§8.2.1); we use the nonstandard notation ℊ to avoid confusion
with our recovery rate parameter  . Below (Asymptotics for Small
"), we derive an approximation for q(xin) that is extremely
accurate for small values of ":

q(xin) ≈

1 +
1√

2�
"(R0−1)

( a
z
)aez−a

−1

. [25]

We emphasize that this expression is elementary and numerically
stable.

Thus, the burnout probability—i.e., the probability of not
fizzling (Eq. 18) but disappearing after an epidemic—is

pk q(xin)ny? , [26]

where n is the expected total population size, y? is the equilibrium
prevalence (Eq. 8), q is the probability of eventual extinction
(under post-epidemic conditions) starting from one infectious
individual (Eq. 14), and k is the initial number of infectious
individuals. Our exact expression for q(xin) is given in (Eq. 24).
Similarly, the persistence probability—i.e., the probability of
not fizzling (pk) and then not burning out after a first epidemic
(Eq. 23)—is

P1(R0, ", n, k) = pk (1− q(xin)ny?) . [27]

More generally, the probability of persisting beyond the mth
epidemic wave is

Pm(R0, ", n, k) = pk
m∏
j=1

(
1− q(xin,j)ny?

)
, [28]

where
xin,j = X (y?, xi,j) [29]

(see Eq. 19 and Subsequent Epidemic Waves). For biologically
reasonable values of ",R0, and n, we find that the difference be-
tween P1(R0, ", n, k) and Pm(R0, ", n, k) is negligible, because
q(xin,j) � 1 for j ≥ 2. Intuitively, because the troughs between
epidemics get shallower and shallower, an invading disease that
survives burnout is almost certain to persist through many more
cycles.

Thus, in Results, we focus on burnout after the initial epidemic
when a novel disease invades a fully susceptible population.
There, we use our accurate, numerically stable, and computa-
tionally efficient approximation for q(xin) (Eq. 25), obtained via
Eqs. 19 and 37a, to compute the probability of burnout.

||ℊ(a, z) =
∫ z

0 ta−1e−t dt is proportional to the cumulative distribution function for the
gamma distribution. We use this fact to compute ℊ(a, z) accurately in our burnout R
package, mentioned in footnote **.

PNAS 2024 Vol. 121 No. 5 e2313708120 https://doi.org/10.1073/pnas.2313708120 5 of 12
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Results
Fig. 4 shows that our analytical approximation for the persistence
probability (Eq. 27) agrees very well with the same probability
estimated from large numbers of simulations. The probability is
shown as a function of the basic reproduction number (R0) with
fixed mean infectious period (" = 0.01). The panels differ only in
the underlying expected population size (ranging from n = 104

to 107). For each value of R0, the simulation-based persistence
probability was estimated from 107 individual-based stochastic
realizations of the model (Fig. 2 and Table 1). Note that " = 0.01
corresponds to an infectious period that is 1% of the average
lifetime, far longer than is realistic for most acute immunizing
infections; however, our approximation only improves for smaller
". We use " = 0.01 in Fig. 4 so that discrepancies between the
simulations and analytical results are visible.

Our simple approximation for Kendall’s q (Eq. 25) allows us
to easily and quickly explore the conditional and unconditional
probability of pathogen extinction across the entire range of
biologically plausible values ofR0 and ". Fig. 5 shows a contour
plot of the persistence probability (this graph would have required
years of computer time to produce from simulations). As was

Fig. 4. Persistence probability as a function of the basic reproduction
number R0, for population sizes ranging from n = 104 to 107. The vertical
scale is linear in the left column and logarithmic in the right column; the
horizontal scale is logarithmic (in R0 − 1) in all panels. (The horizontal axis
range is fromR0 − 1 = 1

64 = 0.015625 to 64, but our approximation is valid
only forR0−1 ≳ 0.02027; see Eq. 42.) The initial state is (Sn(0), In(0), Rn(0)) =
(n − 1,1,0). The mean infectious period as a fraction of mean lifetime is
" = 0.01, which is unrealistically long for most infections (Table 2), but the
agreement between the analytical approximation (Eq. 27) and numerical
simulations (Stochastic simulation algorithm) is better for smaller " (we use a
large value of " so that discrepancies are visible). In addition to our analytical
approximation (Eq. 27), we show the semi-analytical approximations of
Meerson and Sasorov [MS (17)] and van Herwaarden [vanH (16)]. The thin
red curve shows the probability of not fizzling, 1− 1

R0
.

Fig. 5. Probability of persistence after a large epidemic (P1, Eq. 27) as a
function of basic reproduction number (R0) and mean infectious period as
a proportion of mean lifetime ("), for population size n = 106. The initial
state is assumed to be a single individual introduced into a fully susceptible
population (In(0) = k = 1, Sn(0) = n − k). Positions for the red dots for
infectious diseases of humans are from Table 2 [to avoid text overlap, measles
is shifted up by 1 to 18, pertussis down by 1 to 16, and COVID-19 (Delta) up by
0.6 to 7.4]. The solid red curve shows the local minimum of persistence
probability, and the dotted red line shows the analytical approximation
(Eq. 63) to the local minimum.

observed previously (18, 38), Fig. 5 indicates that the burnout
probability is non-monotone inR0 for " ≲ 0.016. In this range
of ", the probability of persistence is lowest for basic reproduction
numbers in the range 2 ≲ R0 ≲ 2.57, and increases rapidly
with increasing R0. Below (The R0 Maximizing the Probability
of Burnout), we compute a linear approximation to the value
of R0 at which the persistence probability is minimized. The
upper limit of 2.57 for the persistence-minimizing range of R0
is the limit as " → 0 in Eq. 63; Fig. 5 shows that this linear
approximation performs very well over the range where the
persistence probability is non-monotonic. Less intuitively, the
persistence probability increases for smallR0 (below the red curve
in Fig. 5) asR0 decreases to one. We note, however, that except
for very large expected population size n, the secondary peak in
the persistence probability—which occurs for 1 < R0 ≲ 2—
remains small (cf. Fig. 4), except for pathogens with extremely
long infectious periods. Fig. 5 also suggests that for fixed R0,
the probability of persistence always increases with increasing ",
which we confirm analytically below (The Burnout Probability is
a Decreasing Function of "). Note that � = R0( + �) = R0

1−" ,
so varying " while holdingR0 constant simultaneously varies the
infectious period and contact rate by a factor of O(").

Discussion
The problem of infectious disease persistence following a major
epidemic (4, p. 20; 14, p. 42; 47, p. 451; 9, 15, 38) is important
for identifying characteristics of pathogens that can successfully
invade, and is related to the notion of a “critical community size”
required for a disease to persist in the long term (30).

6 of 12 https://doi.org/10.1073/pnas.2313708120 pnas.org
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Given sufficient computing resources, it is possible to estimate
the persistence probability for a given model from large numbers
of stochastic, individual-based simulations. The gray curves in
Fig. 4 show this probability estimated from simulations of
the SIR model. Fig. 4 also shows the probability estimated
using previous analytical methods (16, 17) (blue and orange
curves) and our approximation (black curves). All three analytical
approaches yield similar results,** and differences in the estimated
probabilities can be seen only on a logarithmic scale in the limit
as R0 → 1+ (e.g., for R0 ≲ 1.05 in Fig. 4), where all of
these approximations†† are technically invalid: in a stochastic,
finite population model, as R0 → 1+ there is no phase during
which the deterministic model is a good approximation, and
the distinction between fizzle, burnout, and fadeout breaks
down (48). Analysis of the limit R0 → 1+ could improve
understanding of the process of eradication as the magnitude of
control measures is increased, but for the burnout problem on
which we focus here, the limitR0 → 1+ is of limited interest.

While our approximation agrees closely with previous work
(16, 17) for ranges of R0 that are biologically relevant, there
are several important theoretical and practical advantages of our
approach; our analysis

• is simpler and easier to understand, since it is based directly
on the underlying stochastic process rather than on a diffusion
approximation (and is consequently easier to apply to models
that are more complex than the SIR model considered here);

• yields fully analytical approximations that are numerically
stable, unlike the previous analytical approaches (16, 17),
which depend on non-trivial numerical integrations with
singular integrands;

• predicts the persistence probability after an arbitrary number
of epidemic waves.

We expand on these points below.
We have obtained useful analytical estimates (Eqs. 24, 25, 27,

and28) of the SIR epidemic burnout and persistence probabilities
in a well-mixed population, via a hybrid use of ODEs when
prevalence is high and time-dependent branching processes when
prevalence is low. As noted after Eq. 28, the probability of
burning out in each subsequent epidemic trough after persisting
through the first is negligibly small for the SIR model.

Our time-dependent branching process approach (Birth-and-
Death Process Heuristic) also yields analytical results that are
more amenable to computation than previous approximations
(16, 17). Our application of Laplace’s method to approximate
the integral in Kendall’s q (Eq. 14) is particularly useful. Eq.
25 for the conditional burnout probability provides a fully
analytical formula—not requiring the numerical evaluation of
integrals as in previous approaches (16, 17)—that can be
evaluated without numerical instabilities and agrees very well
with numerical simulations across a wide range of biologically
plausible values of R0 and ". The convenience and speed of
our simple analytical expression for the persistence probability
(Eq. 27) also allows us to obtain results for larger population
sizes than are tractable via hybrid numerical methods (18) and
facilitates efficient exploration of more of the parameter space
(though with less accuracy at smaller population sizes).

**We have implemented all three approximations in an open-source R package, which
we used to create our figures. The package is available at https://github.com/davidearn/
burnout.
††Differences between our approximation and those of refs. 16 and 17 asR0 → 1+ arise
at least in part because they use � rather than " as the small parameter, and consequently
predict persistence for �/ > 1 rather than �/( + �) > 1.

As is suggested visually by Fig. 5, and proved below (The
Burnout Probability is a Decreasing Function of "), the persistence
probability increases with infectious period (") across all values
of R0. For any given infectious period, one viable life history
strategy for persistence is a highR0 (dark gray shading in Fig. 5).
In addition to this highR0 strategy, for a limited range of longer
infectious periods (" ≲ 0.016), there is a second life-history strat-
egy that promotes persistence: R0 close to but greater than one.
We use our analytical results to compute a linear approximation
to the value of R0 > 1 at which the burnout probability is
maximized (see Eq. 63 in The R0 Maximizing the Probability
of Burnout). This approximation shows excellent agreement
with the numerical results over the range of " for which the
secondary peak exists and the burnout probability is numerically
distinguishable from 1 (in Fig. 5, the dotted red curve is the ap-
proximation and the solid red curve is the numerically computed
exact value). Intriguingly, with the exception of the ancestral
strain of SARS-CoV-2—which has been replaced by variants with
much higher R0—the endemic infectious diseases of humans
listed in Table 2 roughly divide into high and lowR0 strategies.

These life history strategies can be interpreted in terms of the
herd immunity threshold, x = x? = 1

R0
, i.e., the minimum

proportion susceptible at which the epidemic can grow from a
small number of infections. WhenR0 is large, the herd immunity
threshold x? is low, allowing the fraction susceptible to rapidly
reach the threshold. When R0 is low, there is a larger reservoir
of susceptible hosts at the end of the first major epidemic, which
reduces the wait until the herd immunity threshold is crossed.
In either case, a longer infectious period (larger ") allows the
pathogen to “wait out” the period of herd immunity. This non-
monotonicity of the burnout probability as a function ofR0 was
previously observed (18, 38), and the maximum burnout proba-
bility was conjectured to occur forR0 ≈ 3 (38) orR0 = 2 (18).
We have shown that, in fact, the value ofR0 at which the proba-
bility is maximized is a decreasing function of " (solid red curve in
Fig. 5). The probability-maximizingR0 varies fromR0 ' 2.57
for "→ 0 (Eq. 63) to R0 ' 2 for " ' 0.016; for larger ", the
persistence probability increases monotonically withR0.

These results also have evolutionary implications: reduced
virulence may be associated with longer infectious periods

Table 2. Representative parameters for acute immu-
nizing infections (and HIV for comparison)

Tlat Tinf
Disease R0 [days] [days] "× 103 Source

Measles 17 8 5 0.71 (4)
Pertussis 17 8 14 1.2 (4)
Mumps 12 15 6 1.1 (4)
Chickenpox 11 10 5 0.82 (4)
COVID-19 (Delta) 6.8 5.8 14 1.1 (39)
Rubella 6.5 10 7 0.93 (4)
Scarlet fever 5.5 1.5 18 1 (4)
Smallpox 4.5 15 7 1.2 (40)
COVID-19 (ancestral) 3 3.7 14 0.97 (39)
HIV 2.2 87 270 19 (41)
Influenza (1918) 1.8 2 2.5 0.25 (4, 42)
Ebola 1.6 9.3 7 0.89 (43)
Pneumonic plague 1.3 4.3 2.5 0.37 (44)

The basic reproduction number (R0), mean latent period (Tlat), and mean infectious period
(Tinf) are taken from the cited sources. The dimensionless parameter " is defined in Eq. 9
in terms of the recovery rate () and birth-death rate (�) in the SIR model. We associate
1/ with the mean generation interval of the SEIR model, i.e., 1/ = Tlat + Tinf (45, 46), set
� = 0.02/year to mimic human birth and death rates, and compute " = �/( + �). Where
original sources present a range, we have listed the midpoint. Many of the estimates come
from Anderson and May (4) [R0 is taken from Table 4.1 (4, p. 70); the mean latent and
infectious periods come from Table 3.1 (4, p. 31)]. All the diseases listed in this table are
shown in Fig. 5.

PNAS 2024 Vol. 121 No. 5 e2313708120 https://doi.org/10.1073/pnas.2313708120 7 of 12
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(e.g., if fewer hosts die while infectious), thereby reducing the
probability of burnout. This suggests a mechanism—distinct
from the population genetics/weak selection arguments presented
in ref. 32—that could explain how in finite populations,
natural selection may favour strains with reduced virulence while
maximizingR0: strains that achieve higherR0 by increasing their
infectious period are more likely to persist than those that achieve
higherR0 by increasing transmissibility. A model of multi-strain
competition is necessary to test this hypothesis (we consider the
special case of selection for vaccine escape in ref. 49).

While the qualitative inferences we have made from analysis
of the stochastic SIR model are suggestive of general processes,
and—as we have observed above—could have interesting impli-
cations, further research is needed to determine whether they
really do generalize broadly. Most acute immunizing infections
afflicting human populations have short infectious periods and
moderate R0 values, and with these constraints, our analysis of
the stochastic SIR model indicates that extinction of the pathogen
at the end of the first major epidemic is almost certain in a well-
mixed population.

Fig. 5 makes clear that the stochastic SIR model is insufficient
on its own to explain pathogen persistence; it is essential to con-
sider additional mechanisms, e.g., waning immunity or antigenic
evolution resulting in effective loss of host immunity (50), rescue
effects in a meta-population (51, 52), long-lived carrier infections
(see ref. 53 for a recent survey), or zoonotic reservoirs (50, 54).

Multi-type or non-Markovian birth-and-death processes (55,
56), combined with more complicated compartmental models
or renewal equation models with more general generation
intervals (46) may allow our approach to be extended to models
incorporating, e.g., latent periods and asymptomatic and carrier
infections, or greater or lesser variability in infectious periods.
A more difficult problem is to consider pathogen persistence in
a meta-community of linked sites (52, 57), or other structured
populations, rather than a well-mixed population. Smaller local
community sizes tend to make local extinction more likely,
whereas asynchrony in epidemic dynamics could allow pathogens
to reinvade following a local extinction (58). Are these processes
adequate to plausibly explain the persistence of pathogens? Is the
existence of low/high R0 strategies generic, or an artifact of the
SIR compartmental model? Are longer infectious periods always
favourable for pathogen persistence? These questions suggest
avenues for future work.

Materials and Methods
Computing the Epidemic Burnout Probability. To apply Kendall’s q (Eq.14)
to the problem of epidemic burnout, we need to compute the integral

I(xin) =

∫
∞

0
e−

∫ t
0 [�X(xin ,s)−(+�)] ds( + �) dt [30a]

=

∫
∞

0
e−
∫ �

0

[
R0X(xin , �

+� )−1
]

d� d� , [30b]

where, in the second line, we use the mean duration of infection (1/( + �))
as the time unit and write � = ( + �)s, � = ( + �)t. Recalling Eq. 17, we
can write

X(�) ≡ X
(
xin,

�
 + �

)
= 1− (1− xin)e

−"� , [31]

and hence

X′(�) = "(1− xin)e
−"� = "

(
1− X(�)

)
. [32]

Now, to evaluate the inner integral in Eq. 30a, we make a change of variables,
using x = X(�) as the variable of integration:

∫ �

0

[
R0X

(
xin,

�
 + �

)
− 1

]
d�

=

∫ X(�)

X(0)

[
R0x − 1

] 1
dx
d�

dx =

∫ X(�)

xin

R0x − 1
"(1− x)

dx

= −
R0
"

(X(�)− xin)−
R0
"

(1− x?) ln
1− X(�)

1− xin
. [33]

Changing variables in a similar way, we have∫ T

0
e−
∫ �

0

[
R0X(xin , �

+� )−1
]

d� d� [34a]

=

∫ T

0
e
R0
" (X(�)−xin)+

R0
" (1−x?) ln 1−X(�)

1−xin d� [34b]

=

∫ X(T)

xin

e
R0
" (x−xin)

(
1− x

1− xin

)R0
" (1−x?) dx

"(1− x)
. [34c]

We are interested in the probability of ultimate extinction, which corresponds
to taking the limit as T →∞, or, equivalently, X(T)→ 1, giving us

I(xin) =

∫ 1

xin

e
R0
" (x−xin)

(
1− x

1− xin

)R0
" (1−x?) dx

"(1− x)
[35a]

=
1
"
e
R0
" (1−xin)

(
R0
"

(1− xin)

)−R0
" (1−x?)

×

∫ R0
" (1−xin)

0
e−xx

R0
" (1−x?)−1 dx [35b]

=
1
"
e
R0
" (1−xin)

(
R0
"

(1− xin)

)−R0
" (1−x?)

× ℊ
(
R0
"

(1− x?),
R0
"

(1− xin)

)
, [35c]

where we recallℊdenotes the lower incomplete gamma function. Eq.24 follows
immediately.

Asymptotics for Small ". We may also write I(xin) (Eq. 35) as

I(xin) =
1
"

∫ 1

xin

1
1− x

e
R0
"

(
x−xin+

(
1−x?

)
ln
(

1−x
1−xin

))
dx [36a]

=
1
"

∫ 1

xin

h(x)e
�(x)
" dx , [36b]

for h(x) = 1
1−x and �(x) = R0

(
x − xin +

(
1− x?

)
ln
( 1−x

1−xin

))
.

Assuming " is small, we can apply Laplace’s method (22, §6.4): provided
xin ≤ x?,�(x) has its maximum at x = x?, so

I(xin) ∼
1
"

√
2�"
|�′′(x?)|

h(x?)e
�(x?)
" [37a]

=

√
2�

"(R0 − 1)
e
R0
" (x?−xin)

(
1− x?
1− xin

)R0
" (1−x?)

, [37b]

yielding Eq. 25.

Remark 1: Note that, since xin < x?,

0 < −R0

∫ x?

xf

ln (1− t) dt

= R0 ((x? − xin) + (1− x?) ln (1− x?)− (1− xin) ln (1− xin))

< R0 ((x? − xin) + (1− x?) ln (1− x?)− (1− x?) ln (1− xin))

= �(x?), [38]

so the Laplace approximation and thus the original integral (Eq. 35a) are both
exponentially large in "−1.

8 of 12 https://doi.org/10.1073/pnas.2313708120 pnas.org
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Subsequent Epidemic Waves. In ref. 34, we derive an iterative scheme to
compute “effective initial conditions” for every epidemic wave following initial
disease invasion. Writing xi,j for the fraction susceptible at the start of the jth
epidemic wave, we find our trajectory approximations agree very closely with
the “exact” value obtained by solving the SIR ODEs (Eq. 5) numerically, starting
from the DFE.

Setting xi,1 = 1, we iteratively obtain y0,j and xi,j+1 (Eq. 19) from xi,j by
computing

xf,j = −x?W0
(
ℰ(−xi,j/x?)

)
, [39a]

y0,j = xi,j − x?
(

1 + ln (xi,j/x?)
)

. [39b]

xi,j+1 = 1 + (1− x?)W0

(
ℰ
(
−

1− xf,j

1− x?

))
. [39c]

Note that xf,j and y0,j, are the final fraction susceptible (i.e., when the pathogen
has gone extinct) and maximal fraction infectious, respectively, for the SIR model
without vital dynamics (" = 0) with initial condition (xi,j, 0+).

The Domain of Applicability of the Approximation (Eq. 19) to xin. The
refined trajectory approximation that yields Eq.19 is derived in ref. 34 under the
assumption thatR0 is large. Despite this, we find that the approximation to xin
obtained from it (Eq. 19) performs very well for all but values ofR0 very close
to 1 or very large values of " > 0 (Fig. 3). In particular, W0(x) is undefined for
x < −e−1, so we must have

−R0e
−R0(1−y?) > −e−1, [40]

or, expanding and rearranging using Eq. 8,

" < 1−
lnR0
R0 − 1

= 1 +
x? ln x?
1− x?

. [41]

Alternately, we can find an approximate lower bound forR0,

R0 > e2", [42]

by observing that for any x ≥ 1, 1 − ln x
x−1 ≤

1
2 ln x. To derive this latter

inequality, note that both sides approach a limit of 0 as x→ 1, whereas

d
dx

(
1−

ln x
x − 1

−
1
2

ln x
)

=
1

(x − 1)2

(
ln x −

x2
− 1

2x

)
. [43]

Again, ln x − x2
−1

2x vanishes at x = 1, whereas

d
dx

(
ln x −

x2
− 1

2x

)
= −

(x − 1)2

2x
≤ 0, [44]

so ln x − x2
−1

2x ≤ 0 for x ≥ 1, and thus, d
dx

(
1− ln x

x−1 −
1
2 ln x

)
≤ 0 also,

proving the desired inequality.

Boundary Layer Independent Estimates. Thus far, we have computed the
burnout probability via a specific, but arbitrary choice of boundary layer y?,
and explicit solutions for xin, the fraction susceptible when first entering the
boundary layer under the ODE approximation (Eq. 5). Here, we consider an
alternative approach, using results from refs. 34 and 59 to implicitly characterize
xin. In conjunction with Eq. 35, this allows us—at the cost of a small loss of
precision—to give expressions for the extinction and persistence probabilities
that are independent of the precise choice of threshold, provided the threshold
is O("). In addition to being of interest in and of themselves, we use them
to compute the value of R0 maximizing the burnout probability (The R0
Maximizing the Probability of Burnout) and also to show how one derives the
result of ref. 16 as an approximation to Eq. 24 (Boundary Layer Independent
Estimates).

In refs. 34 and 59, we use the method of matched asymptotic expansions
(60, 61) to derive analytical approximations to the phase-plane trajectories of the
SIR model with vital dynamics, i.e., expressions Y(x) and X(y) expressing the
density of infectious hosts as a function of the density of susceptible hosts and vice
versa. In the boundary layer, we obtain lowest- and first-order approximations
to Y(x): the lowest-order approximation (34) is

Y(x) ≈ y0

(
1− xf
1− x

)R0
" (1−x?)

e
R0
" (xf−x), [45]

whereas the refined estimate (59) is

Y(x) ≈
(

1
xf
− 1

)
(x? − xf)

(
1− xf
1− x

)R0
" (1−x?)

× e
−
R0
" (x−xf)+

(
1
xf
−1
)−1
Y1
xf
(1)

, [46]

where
xf = −x?W0

(
−R0e

−R0
)

[47]

is the final size of the SIR epidemic without vital dynamics (62) and

Y1
xf
(1) =

∫ 1

xf

[( x?
t
− 1

)(1
u
− 1

)
1

1− u + x? ln u

−

(
1
xf
− 1

)
1

t − xf

]
dt [48a]

≈

(
1
xf
−

x?
x? − xf

)
ln xf −

x?
x? − xf

(
1
xf
− 1

)
. [48b]

A very closely related expression (using� rather than" as the small parameter) is
derived in ref. 16.

Recalling that, Y(xin) = y?, evaluating either of Eq. 45 or 46 at x = xin
gives us a relation between xin, xf, and y?. From the former (Eq. 45), we have(

1
1− xin

)R0
" (1−x?)

e−
R0
" xin ≈

y?
y0

(
1

1− xf

)R0
" (1−x?)

e−
R0
" xf ,

[49]

whereas the latter (Eq. 46) gives us(
1

1− xin

)R0
" (1−x?)

e−
R0
" xin

≈
y?

(1− xf)
(
x?
xf
− 1

) ( 1
1− xf

)R0
" (1−x?)

× e
−
R0
" xf+

(
1
xf
−1
)−1
Y1
xf
(1)

. [50]

Substituting Eq. 49 into the integrand in Eq. 35a and proceeding as above
gives

I(xin) ≈
y?
y0

∫ 1

xin

(
1− x
1− xf

)R0
" (1−x?)

e
R0
" (x−xf)

dx
"(1− x)

[51a]

=
1
"
y?
y0

(
R0
"

(1− xf)

)−R0
" (1−x?)

e
R0
" (1−xf)

× ℊ
(
R0
"

(1− x?),
R0
"

(1− xin)

)
. [51b]

Set z′ = R0
" (1 − xf). Then, az (Eqs. 24b and 24c) and a

z′ are fixed, while as
" → 0, a → ∞ and ℊ(a, z) ∼ Γ(a) − zae−z (see ref. 36, §8.11.6) and
similarly for ℊ(a, z′). Thus

(z′)−aez
′

(ℊ(a, z′)− ℊ(a, z)) ∼
( z
z′

)a
ez
′
−z
− 1. [52]
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and the error in replacing xin by xf in the incomplete gamma function in Eq.
51b is equal to

1
"
y?
y0

(
1− xin
1− xf

)R0
" (1−x?)

e−
R0
" (xf−xin) [53a]

=
1
"
y?
y0
e
R0
"

[
(1−x?) ln

(
1−xin
1−xf

)
−(xf−xin)

]
[53b]

=
1
"
y?
y0
e
R0
"

[
(1−x?) ln

(
1+

xf−xin
1−xf

)
−(xf−xin)

]
[53c]

=
1
"
y?
y0
e
R0
"

[
(xf−xin)

xf−x?
1−xf

+O("2)
]
. [53d]

Bothxf−xin andy? areO("),whereas xf−x?
1−xf

isO(1), sothiserror isO(1). Thus,
in absolute terms, the error is not small. However, as we observed above,I(xin)

is exponentially large in "−1, so the error is negligible relative to this leading
term [indeed, replacing the incomplete gamma function by Γ

(
R0
" (1− x?)

)
produces a similarly negligible error]. We can also replace xin by xf in the Laplace
approximation with negligible error:

I(xin) ≈
y?
y0

√
2�

"(R0 − 1)

( a
z′

)a
ez
′
−a. [54]

Similarly, repeating the same argument using the higher-order expression,
Eq. 50, gives

I(xin) ≈
1
"

y?

(1− xf)
(

1
R0xf
− 1

) (z′)−a

× e
z′+

(
1
xf
−1
)−1
Y1
xf
(1)

ℊ(a, z′) [55a]

≈
y?

(1− xf)
(

1
R0xf
− 1

)√ 2�
"(R0 − 1)

( a
z′

)a

× e
z′−a+

(
1
xf
−1
)−1
Y1
xf
(1)

. [55b]

Now, we recall from Eqs. 14 and 22 that the burnout probability is

q(xin)
ny? =

(
1 +

1
I(xin)

)−ny?
[56a]

= e
−ny? ln

(
1+ 1

I(xin)

)
[56b]

≈ e
−

ny?
I(xin) . [56c]

Above, we showed that I(xin) is exponentially large in "−1 as " → 0 and,
thus, that the error in making the last approximation (Eq. 56c) is exponentially
small.

Substituting any of the expressions Eq. 51b, 54, 55a, or 55b for I(xin) in
Eq.56c, we see that the factorsy? cancel, giving us an approximate expression for
the burnout probability that does not depend on the specific choice of threshold,
only upon its order of magnitude, ":

q(xin)
ny? ≈ e

−
n"y0

(z′)−aez′ℊ(a,z′) [57a]

≈ e
−ny0

√
"(R0−1)

2�

(
z′
a

)a
ez
′
−a
, [57b]

or

q(xin)
ny? ≈ exp

− n"(1− xf)
(

1
R0xf
− 1

)
(z′)−a e

z′+
(

1
xf
−1
)−1
Y1
xf
(1)

ℊ (a, z′)

 [58a]

≈ e
−n(1−xf)

(
1
R0xf
−1
)√ "(R0−1)

2�

(
z′
a

)a
e
z′−a−

(
1
xf
−1
)−1

Y1
xf
(1)

,
[58b]

respectively.

Remark 2: If in Eq. 58a we approximate ℊ
(
a, z′

)
by Γ(a) (i.e., if we

approximate the integral up to z′ � 1 by the integral over the whole real
line, introducing an error of O(")), we obtain an expression for the burnout
probability equivalent to that from ref. 16 (up to minor differences resulting
from using different small parameters, � and ").

The R0 Maximizing the Probability of Burnout. Using the simplified
expression for the burnout probability (Eq.57b), we can obtain an approximation
to the value ofR0 that maximizes the probability of burnout linear in "which is
highly accurate across the range of values of " for which the burnout probability
is non-monotone. Eq. 57b is minimized when

y0

√
"(R0 − 1)

2�

(
1− xf
1− x?

)R0
" (1−x?)

e
R0
" (xf−x?) [59]

is maximized, or equivalently, when its partial derivative with respect toR0 is
equal to zero. Computing the partial derivative and collecting terms of like order
in ", we seekR0 such that

1
"

ln

R0 + W0

(
−R0e

−R0
)

R0 − 1

− 1
R0


+

lnR0
R0(R0 − 1− lnR0)

+

√
R0 − 1

2
= 0. [60]

An analytical closed-form solution does not appear to exist, but one can use a
formal asymptotic series expansionR0 =

∑
∞

j=0 rj"
j to obtain a polynomial

approximation in " to arbitrarily large degree (here, we content ourselves with a
linear approximation). Substituting this series into Eq. 60 and collecting terms
of order "−1 and order one, we obtain

ln

(
r0 + W0

(
−r0e

−r0
)

r0 − 1

)
−

1
r0

= 0, [61]

−
1 + (r20 − r0 + 1)W0

(
−r0e

−r0
)

r20(r0 − 1)(1 + W0 (−r0e−r0))
r1

+

√
r0 − 1

2
+

ln r0
r0(r0 − 1− ln r0)

= 0. [62]

We may solve Eq. 61 by Newton iteration to find the unique root r0 =
2.572629848, which we use to solve Eq. 62 to find r1 = −27.71866282,
giving us the linear approximation

arg max
R0>1

q(xin)
ny? ≈ 2.572629848− 27.71866282 ". [63]

We compare this linear approximation to the numerically determined minimum
in Fig. 5.

The Burnout Probability is a Decreasing Function of ". In what follows, we

show that ∂q(xin)
∂" ≤ 0, from which we conclude that q(xin) is decreasing as "

increases, for all values ofR0. Using Eq. 24, we have

∂q(xin)

∂"
= −q(xin)

2

(
1

ezz−aℊ(a, z)
−
" ∂

∂"
[
ezz−aℊ(a, z)

]
e2zz−2aℊ(a, z)2

)
. [64]

The first term in the large brackets on the right-hand side is always positive, so
the result follows if one can show that " ∂

∂"
[
ezz−aℊ(a, z)

]
≤ 0. Applying the

chain rule gives

"
∂

∂"
[
ezz−aℊ(a, z)

]
[65a]
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= "
∂z
∂"

∂

∂z

[
ezz−aℊ(a, z)

]
+ "

∂a
∂"

∂

∂a

[
ezz−aℊ(a, z)

]
[65b]

= −
(
z +R0

∂xin
∂"

) ∂

∂z

[
ezz−aℊ(a, z)

]
− a

∂

∂a

[
ezz−aℊ(a, z)

]
. [65c]

Recalling that ℊ(a, z) =
∫ z

0 ta−1e−t dt, the latter is equal to

−

(
z +R0

∂xin
∂"

)(
ezz−aℊ(a, z)

(
1−

a
z

)
+

1
z

)
− aezz−a

(∫ z

0
ta−1e−t ln t dt − ℊ(a, z) ln z

)
. [66]

Integrating by parts in the rightmost term, this becomes

−

(
z +R0

∂xin
∂"

)(
ezz−aℊ(a, z)

(
1−

a
z

)
+

1
z

)
− aezz−a

∫ z

0

ℊ(a, t)
t

dt

= −R0
∂xin
∂"

(
ezz−aℊ(a, z)

(
1−

a
z

)
+

1
z

)
− ezz−a+1ℊ(a, z)− 1

− ezz−a
∫ z

0

( a
t
ℊ(a, t)−

a
z
ℊ(a, z)

)
dt. [67]

Now, ℊ(a, z) ≥ 0, whereas a
z = 1−x?

1−xin
≤ 1, since xin < x?, so 1 − a

z ≥ 0
and, since ℊ(a, z) is an increasing function of z, we have∫ z

0

( a
t
ℊ(a, t)−

a
z
ℊ(a, z)

)
dt ≥

∫ z

0

( a
t
−

a
z

)
ℊ(a, t) dt ≥ 0. [68]

Thus, provided ∂xin
∂" ≥ 0, " ∂

∂"
[
ezz−aℊ(a, z)

]
≤ 0, as required.

Finally, from Eq. 19, we see that

∂xin
∂"

= lim
"→0

eR0y?
(
E1(R0y?)− E1(R0y0)

)
≥ 0 , [69]

since y? ≤ y0 and E1(x) is a decreasing function of x.

Simulations.
Stochastic simulation algorithm. Exact realizations of the stochastic SIR model
(Fig. 2 and Table 1) can be obtained using the standard Gillespie algorithm
(63, 64). If we denote the various event rates ai (e.g., a1 = �n, etc.), then
the total event rate is a =

∑
i ai. The time to the next event is drawn from an

exponential distribution with mean 1/a, and the event is taken to be of type i
with probability ai/a. This algorithm scales with expected population size n and
is prohibitively slow when running large numbers of simulations with n ≳ 105.
We therefore used the adaptive � -leaping approximation (65), as implemented
in the adaptivetau R package (66). The key idea in this approach is to identify, at
any point of the simulation, a time � over which the various event rates can be
considered approximately constant, and then determine the number of events
of each type that can be expected over this time interval. We then “leap forward”
by time � rather than treating events individually.
Estimating the Required Number of Simulations. To determine the number
of simulations required to estimate the epidemic burnout probability to a given
accuracy, we use the central limit theorem. Suppose we run m independent
simulations. Let

1i =

{
1 if the ith simulation ends in burnout, and
0 otherwise.

[70]

Then, the law of large numbers (67, §6) tells us that

lim
m→∞

1
m

m∑
i=1

1i = E[11] = q, [71]

whereq is Kendall’sq (Eq.14). Consequently,qm = 1
m
∑m

i=1 1i is an unbiased
estimator (67, p. 483) of q. LetΔ = q− qm be the error in our estimates. Then,
the central limit theorem (67, §27) tells us that

√
mΔ = 1√

m

∑m
i=1(1i − q)

converges to a normal distribution with the same variance as11−q, i.e.,
√
mΔ

converges in distribution to a normal random variable with variance

�2 = E
[
(11 − q)2] = E

[
12

1 − 2q11 + q2] [72a]

=
(

12
· q + 02

· (1− q)
)
− 2q

(
1 · q + 0 · (1− q)

)
+ q2 [72b]

= q(1− q) ≤
1
4
, [72c]

where the inequality in Eq. 72c follows because 0 ≤ q ≤ 1. In particular,
for large m, the expected squared error is E[Δ2] ≲ 1

4m , and thus, to have

E[Δ2] ≤ �, we perform at least m = d 1
4� e runs.

Fizzle vs. Epidemic Burnout. To efficiently distinguish fizzles from epidemic
burnout, we use Eq. 15 to estimate a time �� (measured in units of the mean
infectious period 1/(+�)) such that the probability is less than� that, starting
from k infectious individuals and xi = 1− k

n , a sample path in which infective
individuals are still present at time �� eventually fizzles. Let Tk be the (random)
time of fizzle starting from k individuals. Then, using our birth-and-death process
approximation,

ℙ{Tk > t}
= ℙ{In(t) > 0 | In(0) = k} [73a]

≈ 1−

1 +
1∫ t

0 e
−
∫ s

0 [�−(+�)] du( + �) ds

−k [73b]

= 1−

1 +
1

1
R0−1

(
1− e−(�−−�)t

)
−k . [73c]

Now, because fizzle is not a certainty,

lim
t→∞

ℙ{Tk > t} = 1− xk? > 0 . [74]

To determine �� , we condition on eventual fizzle to estimate its time of
occurrence:

ℙ{Tk > t | Tk <∞}

=
ℙ{Tk > t} − ℙ{Tk =∞}

ℙ{Tk <∞}
[75a]

≈

(
1
R0

)k
−

(
1 + 1

1
R0−1 (1−e−(�−−�)t)

)−k
(

1
R0

)k [75b]

= 1−

1 +
1

R0
R0−1

(
1− e−(�−−�)t

)
−k . [75c]

Solving for ℙ{Tk > �� | Tk <∞} = � yields

�� =
1

R0 − 1
ln

 (1− �)−
1
k −

1
R0

(1− �)−
1
k − 1

 . [76]

Choosing a suitably small �, we assume that any sample path in which infective
individuals are still present at �� will not fizzle.
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Data, Materials, and Software Availability. All study data are included in
the main text. Our open-source R package, which we used to create our figures,
is available at https://github.com/davidearn/burnout (68).
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