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Abstract. We derive accurate, closed-form analytical approximations for the phase-plane tra-
jectories of the standard susceptible-infectious-removed (SIR) epidemic model, including host births
and deaths, giving a complete description of the transient dynamics. Our approximations for the
SIR ordinary differential equations also allow us to provide convenient, accurate analytical approxi-
mations for the associated Poincar\'e map, and the minimum and maximum susceptible and infectious
host densities in each epidemic wave. Our analysis involves matching asymptotic expansions across
branch cuts of the Lambert W function.
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1. Introduction. Infectious disease transmission dynamics have been modeled
with a susceptible-infectious-removed (SIR) compartmental framework since the early
20th century [19, 3]. What has become the standard SIR ordinary differential equation
(ODE) model ((1.1) below) was first published by Kermack and McKendrick in 1927
[13] (hereafter KM). The SIR model, with and without vital dynamics (host births and
deaths), and the simpler susceptible-infectious-susceptible (SIS) model, together have
been called ``the three most basic epidemiological models for microparasitic infections""
[11].

The SIS model can easily be solved exactly [11]. In contrast, an exact solution for
the time course of the state variables in the standard SIR ODEs has never been found,
though KM did find an approximate analytical solution that is reasonably accurate
for weakly transmissible diseases and that has often been used to obtain (usually
qualitative) insights (e.g., [4, 26, 22]).

If we ignore the recruitment of new susceptible individuals---whether they result
from births, immigration, or decay of immunity---then the SIR ODEs can be solved
exactly in the susceptible-infectious phase plane [11]. No such exact analytical solution
in the phase plane is available for the more realistic situation in which susceptible
recruitment is not negligible.

In this paper, we use multiple scale and singular perturbation methods [24, 14]
to obtain accurate analytical approximations to the phase-plane trajectories of the
standard SIR ODEs with vital dynamics. A natural small parameter is the infectious
period relative to host lifetime (denoted \varepsilon ), but we find that substantially simpler
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PHASE PLANE TRAJECTORIES FOR THE SIR MODEL 1581

expressions are obtained by expanding in the (even smaller) parameter1 \epsilon = \varepsilon /\scrR 0,
where \scrR 0 is the basic reproduction number.

Our interest in approximating the phase-plane solutions of the SIR ODEs was
motivated by a problem in stochastic epidemic theory, namely estimating the prob-
ability of persistence of a pathogen after an initial epidemic in a na\"{\i}ve population.
Our solution to that problem [25] depends on an analytical estimate of the fraction
susceptible near the end of a major outbreak ((3.53) below), which is one of many
expressions that we derive here.

We are not the first to attempt to approximate solutions of the SIR ODEs in
the phase plane. In particular, van Herwaarden [27]---who was also motivated by
(a different approach to) the stochastic extinction problem---presented some closely
related approximations that are valid in specific regions of the phase plane. Here, we
provide approximations that are uniformly valid throughout the phase plane, and we
derive approximate expressions for a number of epidemiologically important quantities
(e.g., the peak and minimum prevalence, and the minimum and maximum susceptible
frequency, following initial disease invasion and following subsequent epidemics).

Our matching yields simple expressions that can, unlike previous results, be ap-
plied to an arbitrary number of epidemic cycles. Consequently, we obtain a complete
analytical description of the phase plane trajectories (including the full transient dy-
namics), which allows us to find an accurate analytical approximation to the Poincar\'e
map for the SIR model.

The related expressions that van Herwaarden [27] has presented previously---in
addition to applying only to restricted subregions of the phase plane---depend on
the numerical evaluation of integrals for which explicit analytical forms cannot be
found. In contrast, our results are fully analytical closed-form expressions that are
valid everywhere in phase space. We succeed by exploiting Lambert's W function [7]
to invert implicit relations, and by asymptotic matching across branch cuts of the W
function. The asymptotic techniques that we use are nontrivial and not part of the
standard technical toolbox employed in mathematical epidemiology. Consequently,
we present our analyses without assuming any familiarity with matched asymptotics,
and we hope that in so doing we have made it easier for readers to apply the methods
to other problems.

For convenience in using our approximations, all of our major results are summa-
rized in Tables 2 and 3.

1.1. The SIR model with vital dynamics. Writing the proportions of the
host population that are susceptible, infectious, and removed as X, Y , and Z, respec-
tively, the standard SIR ODEs are [2]

dX

dt
= \mu (1 - X) - \beta XY ,(1.1a)

dY

dt
= (\beta X  - \gamma  - \mu )Y ,(1.1b)

dZ

dt
= \gamma Y  - \mu Z ,(1.1c)

where \mu is the per capita rate of birth and death, \beta is the transmission rate, and
\gamma is the recovery (or removal) rate. Our focus in this paper is on solutions of these
deterministic equations (1.1), but elsewhere [25] we show how they can be used to-
gether with a branching process approximation to obtain accurate analytical results

1We find it convenient to pronounce ``epsilon over Rnought"" as ``Eeyore"" [21].

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1582 TODD L. PARSONS AND DAVID J. D. EARN

for the fully stochastic model (including the probability of pathogen extinction due to
stochastic effects). In keeping with our stochastic analysis [25], we reserve S, I, and
R for the number of individuals in each state. For the sake of clarity, we adopt the
convention of using lowercase letters to indicate independent variables and uppercase
to indicate dependent variables.

We henceforth work with dimensionless parameters. To that end, we first note
that a natural timescale is the expected duration of an individual's infectious period,

Tinf =
1

\gamma + \mu 
.(1.2)

Expressing the expected infectious period in units of the expected host lifetime (1/\mu ),
we define

\varepsilon =
\mu 

\gamma + \mu 
.(1.3)

The basic reproduction number (\scrR 0) is the product of the transmission rate \beta and the
mean infectious period,

\scrR 0 =
\beta 

\gamma + \mu 
,(1.4)

which gives the expected total number of new infections caused by a single infective
individual introduced into a na\"{\i}ve population. We define a new time variable, \tau =
t/(\gamma + \mu ), so that one time unit corresponds to the expected duration of an individual's
infectious period. The SIR model then becomes

dX

d\tau 
= \varepsilon (1 - X) - \scrR 0XY ,(1.5a)

dY

d\tau 
= (\scrR 0X  - 1)Y .(1.5b)

The sum X(\tau )+Y (\tau )+Z(\tau ) = 1 for all \tau \geq 0, so the two equations above completely
describe the dynamical system (1.1). Since \scrR 0 is the expected number of infections
during the period \varepsilon , the expected time---in natural units---until the first infection is
the ratio of \varepsilon and \scrR 0,

\epsilon =
\varepsilon 

\scrR 0
;(1.6)

\epsilon turns out to be a better choice of small parameter to use in our analysis, because it
leads to simpler asymptotic expressions.

Equations (1.5) have two nullclines. The y nullcline, dY
d\tau = 0, is the line

x=
1

\scrR 0
,(1.7a)

whereas the x nullcline, dX
d\tau = 0, is the curve

y= \epsilon 

\biggl( 
1

x
 - 1

\biggr) 
.(1.7b)

When \scrR 0 > 1, these two nullclines intersect at (x \star , y \star ), where

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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PHASE PLANE TRAJECTORIES FOR THE SIR MODEL 1583

x
 \star 
=

1

\scrR 0
,(1.8a)

y
 \star 
= \varepsilon 

\biggl( 
1 - 1

\scrR 0

\biggr) 
= \varepsilon (1 - x

 \star 
) .(1.8b)

It is well known that any trajectory departing from an initial point (x\mathrm{i} , y\mathrm{i}) in the
positive cone \{ (x, y) : x > 0, y > 0\} eventually converges on a globally asymptomati-
cally stable endemic equilibrium (EE) at (x

 \star 
, y

 \star 
), whereas the disease-free equilibrium

(DFE) at (1,0) is a saddle attracting the set \{ (x, y) : y = 0\} . Approach to the EE
occurs via damped oscillations provided [10, eq. 13]

\varepsilon <
4(\scrR 0  - 1)

\scrR 0
2 = 4x

 \star 
(1 - x

 \star 
) .(1.9)

This condition is satisfied for most diseases of interest; we restrict our focus to this
typical behavior.

We will be primarily concerned with the phase-plane trajectories of (1.5), so rather
than using those equations directly, we will make use of the phase-plane equations,

dY

dx
=

(\scrR 0x - 1)Y

\varepsilon (1 - x) - \scrR 0xY
=

(x - x \star )Y
\epsilon (1 - x) - xY(1.10)

and

dX

dy
=
\varepsilon (1 - X) - \scrR 0Xy

(\scrR 0X  - 1)y
=
\epsilon (1 - X) - Xy

(X  - x \star )y
.(1.11)

Thus, Y (x) and X(y) indicate phase-plane solutions where x (resp., y) is the in-
dependent variable, whereas we use X(\tau ) and Y (\tau ) to indicate the solution to the
time-parametrized equations (1.5). We shall need both equations (1.10) and (1.11).
Equation (1.10) (equation (1.11)) is singular where the susceptible (infectious) hosts
attain their minimum and maximum density, x and x (y and y ), for a given cycle

(these are points where nullclines, (1.7a) and (1.7b), are crossed). These singular
points (see Figures 1 and 2) divide different branches of the multifunctions Y (x) and
X(y), and we will need each equation to extend the solution beyond the singularities
of the other. No exact analytical form is available for any of these turning points, but
with our matched asymptotic expansions, we obtain asymptotic approximations to
all of them (see Table 2 for a summary). We shall refer to the part of the trajectory
above the x nullcline (1.7b) as the epidemic phase or simply as epidemic (e.g., we will
speak of the initial epidemic, second epidemic, and so on) and the part below the x
nullcline as the trough.

1.2. The method of matched asymptotic expansions. Given a small pa-
rameter \epsilon , an asymptotic sequence is a collection of functions2

\{ \varphi j(\epsilon ), j = 1,2, . . .\} such that \varphi j+1(\epsilon )\ll \varphi j(\epsilon )(1.12)

(a typical choice is \varphi j(\epsilon ) = \epsilon j - 1, but as we shall see below, other choices are often
necessary). Given an equation---which may be an ordinary or partial differential

2We use the Hardy--Vinogradov notation: f(\epsilon )\ll g(\epsilon ) if and only if lim\epsilon \rightarrow 0
f(\epsilon )
g(\epsilon )

= 0. We also use

Landau's ``O"" notation where convenient: f(\epsilon ) = o(g(\epsilon )) if f(\epsilon )\ll g(\epsilon ), and f(\epsilon ) = \scrO (g(\epsilon )) if there
exists a positive constant C such that | f(\epsilon )| \leq C| g(\epsilon )| as \epsilon \rightarrow 0.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1584 TODD L. PARSONS AND DAVID J. D. EARN
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Fig. 1. Sample solution of the SIR model (1.1) for \scrR 0 = 2. Top left: the frequencies of suscep-
tible and infectious individuals. Symbols indicate the critical points of the curve of the corresponding
color. The jth local minimum (maximum) of the susceptible (infective) frequency is labeled x

j
(xj )

(y
j
(y

j
)); in (3.46b), (3.47), and (3.48) we give approximations to these optima. Dashed lines indi-

cate the endemic equilibrium (1.8) of the model (1.1). Small yellow dots along trajectories are spaced
by one time unit (the mean infectious period). Bottom left: the frequency of infectious individuals
(on a log scale) as a function of time. Right: trajectories in the susceptible-infectious phase plane
with the nullclines (top right: linear scale; bottom right: log scale). (Color online.)

0 5 10 15 20 25 30 35

0.2

0.4

0.6

0.8

1.0

CPU time: 0.179S, Vector field evaluations: 2203, Ratio: 12307.3

X
Y

τ

R0 = 17, ε = 0.01, n = 104, I0 = 1

y

y

x

x

y
1

y1
x1

x1
y2

0 5 10 15 20 25 30 35

Time

10-4

10-3

10-2

10-1

CPU time: 0.179S, Vector field evaluations: 2203, Ratio: 12307.3

τ

y

y

y
1

y1
y2

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

CPU time: 0.056S, Vector field evaluations: 1641, Ratio: 29303.6

y

x

S

10-3 10-2 10-1 100

10-4

10-3

10-2

10-1

CPU time: 0.042S, Vector field evaluations: 1641, Ratio: 39071.4

y

yx

x
y
1

y1

x1 x1

xx

x

y

Fig. 2. Sample solution of the SIR model (1.1) for \scrR 0 = 17. See caption to Figure 1, but note
that unlike Figure 1 both axes are logarithmic in the bottom right panel here.
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PHASE PLANE TRAJECTORIES FOR THE SIR MODEL 1585

equation---for an unknown function Y that depends on \epsilon , we can look for a formal
asymptotic series solution:

Y (x; \epsilon ) =

\infty \sum 
j=0

Yj(x)\varphi j(\epsilon ) .(1.13)

Note that we do not demand that the series converge; the infinite upper limit on the
sum is to indicate that one could in principle compute an arbitrary number of terms.

Substituting the formal series into the exact equation (1.10) and equating terms
of common order \varphi j(\epsilon ), we obtain a hierarchy of equations that can be solved sequen-
tially for the Yj(x). The first few terms of such a series solution often yield a good
approximation to the exact solution. However, this approach may fail in regions of
rapid change (e.g., near boundaries or singularities) called layers,3 especially in differ-
ential equations where one or more derivatives have coefficients depending on \epsilon , which
can make imposing all boundary (or initial or terminal) conditions impossible. The
method of matched asymptotic expansions begins by identifying layers where different
approximations better capture the correct behavior of the solution. These layers co-
incide with regions where some term in the equation is implicitly of size comparable
to \epsilon (i.e., of order \eta (\epsilon ) for some function \eta ), even when it doesn't explicitly contain \epsilon ,
so that neglecting terms including \epsilon fails to capture the correct dynamics. Boundary
layers refer to subsets of the domain adjacent to the boundary (where one of the
dependent variables is small compared to some function of \epsilon ), whereas interior layers
occur away from the boundaries (e.g., shear flow4 in a vector field could result in a
region where one or more derivatives is small compared to a function of \epsilon ). Corner
layers arise where boundary and/or interior layers intersect. (For the SIR model that
we study here, there are boundary and corner layers, but no interior layers.) The
locations of these layers are fully determined qualitatively (e.g., ``near the x-axis"" or
``where dX/d\tau is small"") but their quantitative width is characterized only up to an
order of magnitude; one cannot exactly specify where the trajectory enters or departs
a layer.

Outside of such layers, the so-called outer solution provides a good approximation
to the exact solution, but inside the layers it fails to capture the correct qualitative
behavior. Within a layer, rescaling of the independent and/or dependent variables by
appropriately chosen factors \eta (\epsilon ) is used to amplify the local behavior, and the result-
ing equation is then solved via another asymptotic series to obtain an inner solution
that performs well in the layer, but typically is a poor approximation outside the
layer. Inner and outer solutions are bridged by determining values for the constants
of integration in the inner and outer solutions so that the various solutions intersect,
and can thus be combined into a continuous approximation to the solution. When
a combined solution is continuous, but not differentiable, a corner layer (and corner
layer solution) near the point of intersection can be included in the matching to form
a smooth approximation to the true trajectory that performs equally well across the
entire domain (a uniform asymptotic solution). We discuss the matching procedure in
greater detail in section 3 below. Just as one cannot quantitatively specify the various
layers, it is generally impossible to exactly characterize the domain of applicability of
the corresponding solutions, hence the importance of matching to obtain a uniformly
valid solution.

3The terminology reflects the origins of the method in fluid mechanics [1].
4Shearing flow refers to adjacent regions where a vector field has substantially different magni-

tudes.
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1586 TODD L. PARSONS AND DAVID J. D. EARN

Table 1
Estimates of parameters associated with the natural history of infection for a variety of diseases.

The observed parameters are the basic reproduction number (\scrR 0), the mean latent period (T\mathrm{l}\mathrm{a}\mathrm{t}), and
the mean infectious period (T\mathrm{i}\mathrm{n}\mathrm{f}). The values of the other parameters were derived using (1.2),
(1.3), (1.6), and (1.8a). Note that the mean intrinsic generation interval in the SIR model (1.1) is
T\mathrm{g}\mathrm{e}\mathrm{n} = 1/\gamma \simeq T\mathrm{i}\mathrm{n}\mathrm{f}, whereas in the SEIR model (which includes an exposed state in which individuals
are not yet infectious), T\mathrm{g}\mathrm{e}\mathrm{n} \simeq T\mathrm{l}\mathrm{a}\mathrm{t} + T\mathrm{i}\mathrm{n}\mathrm{f} [16, 6]; consequently, SIR and SEIR dynamics correspond
most closely if we set 1/\gamma in the SIR model to be the sum of the observed mean latent and infectious
periods. We set \mu = 0.02/year to mimic human birth and death rates, and we compute \varepsilon = \mu /(\gamma + \mu )
(1.3). Where original sources present a range, we have listed the midpoint. Many of the estimates
come from Anderson and May [2] (\scrR 0 from their Table 4.1 [2, p. 70], and the mean latent and
infectious periods from their Table 3.1 [2, p. 31]).

T\mathrm{l}\mathrm{a}\mathrm{t} T\mathrm{i}\mathrm{n}\mathrm{f}

Disease \scrR 0 x \star (days) (days) \varepsilon \times 103 \epsilon \times 103 Source

measles 17 0.059 8 5 0.71 0.042 [2]
pertussis 17 0.059 8 14 1.2 0.071 [2]

mumps 12 0.08 15 6 1.1 0.092 [2]

chickenpox 11 0.091 10 5 0.82 0.075 [2]
COVID-19 (Delta) 6.8 0.15 5.8 14 1.1 0.16 [17]

rubella 6.5 0.15 10 7 0.93 0.14 [2]

scarlet fever 5.5 0.18 1.5 18 1 0.19 [2]
smallpox 4.5 0.22 15 7 1.2 0.27 [15]

COVID-19 (ancestral) 3 0.33 3.7 14 0.97 0.32 [17]

HIV 2.2 0.47 87 270 19 8.9 [12]
influenza (1918) 1.8 0.56 2 2.5 0.25 0.14 [20, 2]

Ebola 1.6 0.62 9.3 7 0.89 0.56 [29]

pneumonic plague 1.3 0.77 4.3 2.5 0.37 0.29 [9]

Table 1 lists estimates of natural history of infection parameters for a variety
of common diseases. For the problem at hand, observing that infectious periods
are typically of order days or weeks, whereas typical human lifetimes are longer than
50 years, we see that \epsilon (1.6) will generally be quite small. Consequently, we anticipate
that matched asymptotic solutions Y (x; \epsilon ) and X(y; \epsilon ) will provide good approxima-
tions to the exact solutions of (1.10) and (1.11). In subsequent sections, we derive
and compare these asymptotic solutions to numerically computed trajectories for an
illustrative parameter set (chosen with \varepsilon larger than for any acute infectious disease of
humans so that discrepancies between the exact and asymptotic solutions are visible).

2. Outer and inner solutions. As a first step in our analysis, in this section
we derive solutions in the various subdomains where different approximations are
natural. We consider the subdomains in the order in which they are encountered
along a trajectory. Then, in section 3, we match local approximations to obtain a
single global approximation that is uniformly valid throughout phase space.

2.1. Outer solution. An outer solution is an asymptotic solution---obtained in
the original variables---that captures the behavior of the exact solution in the majority
of phase space. Replacing Y in (1.10) with

\mathrm{o}\mathrm{u}\mathrm{t}

Y (x; \epsilon ) =

\infty \sum 
j=0

\mathrm{o}\mathrm{u}\mathrm{t}

Yj(x)\epsilon 
j ,(2.1)

and equating terms of similar order in \epsilon , we obtain a hierarchy of equations that can

be solved inductively for
\mathrm{o}\mathrm{u}\mathrm{t}

Y0(x),
\mathrm{o}\mathrm{u}\mathrm{t}

Y1(x), and so on. The lowest order equation is

d
\mathrm{o}\mathrm{u}\mathrm{t}

Y0
dx

=
x
 \star 

x
 - 1 ,(2.2)
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PHASE PLANE TRAJECTORIES FOR THE SIR MODEL 1587

which has generic solution

\mathrm{o}\mathrm{u}\mathrm{t}

Y0(x) =
\mathrm{o}\mathrm{u}\mathrm{t}

C0  - x+ x
 \star 
lnx ,(2.3)

where
\mathrm{o}\mathrm{u}\mathrm{t}

C0 is an arbitrary constant.5 We can determine
\mathrm{o}\mathrm{u}\mathrm{t}

C0 by specifying initial con-
ditions (x

\mathrm{i}
, y

\mathrm{i}
), in which case (2.3) gives the phase-plane trajectory of the SIR ODEs

without vital dynamics, i.e., for \epsilon = 0; see subsection 3.1.1 below. In subsection
3.1.2, we derive ``effective initial conditions"" that allow us to approximate subsequent
epidemic waves.

2.2. \bfity -axis boundary layer. For large values of \scrR 0, the trajectories of the SIR
model approach the y-axis very closely, even when y is far from 0 (compare Figure 1
with \scrR 0 = 2 to Figure 2 with \scrR 0 = 17). Consequently, if \scrR 0 is large, then there will
be substantial periods during which x will be \scrO (\epsilon ) or smaller, and we can no longer
assume that the effects of terms proportional to \epsilon in (1.10) can be safely neglected.
Instead, we consider a boundary layer solution along the y-axis, making a change of
variables x= \epsilon \xi in (1.10) to get

dY

d\xi 
=

(\epsilon \xi  - x \star )Y
1 - \epsilon \xi  - \xi Y .(2.4)

Positing an asymptotic series solution,

y\mathrm{b}

Y (\xi ; \epsilon ) =

\infty \sum 
j=0

y\mathrm{b}

Yj(\xi )\epsilon 
j ,(2.5)

we get, to lowest order,

d
y\mathrm{b}

Y0
d\xi 

=
x
 \star 

y\mathrm{b}

Y0

\xi 
y\mathrm{b}

Y0  - 1
.(2.6)

It is not immediately obvious how to solve this equation. However, if we invert the
ODE, defining \xi =\Xi 0(y), we have

d\Xi 0

dy
=

\Xi 0

x
 \star 

 - 1

x
 \star 
y
,(2.7)

and we can now find a solution using the method of integrating factors, which yields

y\mathrm{b}

X0(y) = \epsilon \Xi 0(y) =
\epsilon 

x
 \star 

e
y
x \star 

\biggl( 
E1

\biggl( 
y

x
 \star 

\biggr) 
+

y\mathrm{b}

C0

\biggr) 
,(2.8)

where E1(z) =
\int \infty 
z

e - u

u du is the exponential integral function (see, e.g., [23, sec-
tion 6.2(i)]).

2.3. \bfitx -axis boundary layer. The outer solution
\mathrm{o}\mathrm{u}\mathrm{t}

Y (x; \epsilon ) (2.1) is a function of
x and cannot have the same qualitative behavior as the exact trajectories, which have
multiple branches as the fraction susceptible decreases to a minimum (x) and then

recovers (Figures 1 and 2). We thus seek a boundary layer solution
x\mathrm{b}

Y (x; \epsilon ) along the
x-axis that will capture the dynamics when infectious hosts are rare (i.e., y\ll 1).

5Throughout, we adopt the convention that C, with any combination of sub- and/or superscripts,
indicates a constant of integration.
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1588 TODD L. PARSONS AND DAVID J. D. EARN

Attempting to duplicate the analysis of subsection 2.2 above, we obtain the trivial

solution
x\mathrm{b}

Y (x; \epsilon ) \equiv 0 (see Appendix A). Since 0 < y\ll 1 by assumption in this layer,
we must conclude that an asymptotic series solution in powers of \epsilon is not possible.

Instead, it must be that
x\mathrm{b}

Y (x; \epsilon ) is transcendentally small, i.e., vanishes more rapidly
than any power \epsilon j as \epsilon \rightarrow 0 [14, p. 4].

As a means to guess the asymptotic dependence of
x\mathrm{b}

Y (x; \epsilon ) on \epsilon , we formally solve
(1.10) from the point of entry to the boundary layer (xin) to an arbitrary point within
it (x) assuming that Y (x; \epsilon ) is \scrO (\epsilon ) or smaller. This yields

x\mathrm{b}

Y (x; \epsilon ) =
x\mathrm{b}

Y (xin; \epsilon ) exp

\biggl( 
 - 1

\epsilon 

\int x

x\mathrm{i}\mathrm{n}

x \star  - u
(1 - u) - u

\epsilon Y (u; \epsilon )
du

\biggr) 
.(2.9)

We first note that xin <x \star , so for xin <u<x \star , 1 - u> x \star  - u> 0 in the integrand above.

Moreover, since
x\mathrm{b}

Y (u; \epsilon ) is transcendentally small we can expect that u\epsilon 
x\mathrm{b}

Y (u; \epsilon )\ll 1 - u.
Thus, the integrand can be expected to be positive for u in an interval wider than
(xin, x \star ) and, consequently, the integral can be expected to be positive and \scrO (1)
with respect to \epsilon . Finally, the coefficient

x\mathrm{b}

Y (xin; \epsilon ) is evaluated at the edge of the
boundary layer and can therefore be expected to be \scrO (1). Putting these heuristic

insights together, we hypothesize that
x\mathrm{b}

Y (x; \epsilon ) is exponentially small in x with rate
proportional to 1

\epsilon . Consequently, we are led to what is known as a WKB ansatz [5,
Chapter 10], that is, we postulate a solution of the form

x\mathrm{b}

Y (x; \epsilon ) = e - 
1
\epsilon \phi (x;\epsilon )(2.10)

for some nonnegative function \phi (x; \epsilon ) that can be expanded in an asymptotic series
in powers of \epsilon . Substituting this ansatz (2.10) into (1.10) gives us

1

\epsilon 

d\phi 

dx
=

x
 \star 
 - x

\epsilon (1 - x) - xe - 1
\epsilon \phi (x;\epsilon )

,(2.11)

for which we posit a series solution,

\phi (x; \epsilon ) =

\infty \sum 
j=0

\phi j(x)\epsilon 
j ,(2.12)

so that

e - 
1
\epsilon \phi (x;\epsilon )

(2.13)

= e - 
1
\epsilon \phi 0(x)e - \phi 1(x)e - \epsilon \phi 2(x) - \epsilon 2\phi 3(x)+\cdot \cdot \cdot 

= e - 
1
\epsilon \phi 0(x)e - \phi 1(x)

\biggl( 
1 - 
\bigl( 
\epsilon \phi 2(x)+\epsilon 

2\phi 3(x)+\cdot \cdot \cdot 
\bigr) 
+

1

2!

\bigl( 
\epsilon \phi 2(x)+\epsilon 

2\phi 3(x)+\cdot \cdot \cdot 
\bigr) 2
+\cdot \cdot \cdot 

\biggr) 
= e - 

1
\epsilon \phi 0(x)e - \phi 1(x)

\biggl( 
1 - \epsilon \phi 2(x) + \epsilon 2

\biggl( 
\phi 2(x)

2

2
 - \phi 3(x)

\biggr) 
+ \cdot \cdot \cdot 

\biggr) 
,

which is transcendentally small on any set where \phi 0(x) is strictly positive (below we
determine conditions under which \phi 0(x) > 0 on at least part of the interval (0,1)).
If \phi 0(x)> 0, then the term e - 

1
\epsilon \phi (x;\epsilon ) is transcendentally small and we can omit it in

(2.11) to obtain
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PHASE PLANE TRAJECTORIES FOR THE SIR MODEL 1589

d\phi 0
dx

=
x \star  - x
1 - x ,(2.14a)

d\phi j
dx

= 0 , j = 1,2, . . .(2.14b)

and hence

\phi 0(x) =C\phi 0  - x - (1 - x
 \star 
) ln(1 - x) ,(2.15)

\phi j(x) =C\phi j , j = 1,2, . . .(2.16)

From the derivative (2.14a), we see that \phi 0(x) is increasing for x< x \star , is decreasing
for x> x

 \star 
, and has a vertical asymptote for x= 1. In particular, provided

C\phi 0 <x \star + (1 - x
 \star 
) ln(1 - x

 \star 
) ,(2.17)

\phi 0(x) will be strictly positive on some subinterval of (0,1), as required. Inserting
(2.15) and (2.16) in (2.13), we have an approximate solution in the x-axis boundary
layer,

x\mathrm{b}

Y (x; \epsilon ) = (1 - x) - 1
\epsilon (1 - x \star ) e

1
\epsilon (C

\phi 
0  - x)+C\phi 

1 .(2.18)

2.4. Corner layers. Close to the minimum susceptible frequency (x), our outer
(2.3) and inner (2.18) solutions have tangents of positive and negative slope, respec-
tively (see Figure 4), and thus meet in a nondifferentiable corner, which we address
by seeking a corner layer solution [14, p. 67]. The trajectories have vertical slope at
x , i.e., dY

dx is singular, so we will instead work with dX
dy . The increase from x is

caused by importation of new susceptible hosts at a rate proportional to \epsilon [see (1.11)],
so we would expect the ``turn-around"" (change in sign of derivative) only when the
frequency of infectives is sufficiently low that the first term dominates the second term
in the numerator of (1.11), i.e., when y is \scrO (\epsilon ). We therefore amplify the behavior
near the x-axis, making a change of variable, y= \epsilon \upsilon , which converts (1.11) to

dX

d\upsilon 
= \epsilon 

1 - X  - X\upsilon 
(X  - x

 \star 
)\upsilon 

.(2.19)

Positing a series solution

\mathrm{c}\mathrm{o}\mathrm{r}

X (\upsilon ; \epsilon ) =

\infty \sum 
j=0

\mathrm{c}\mathrm{o}\mathrm{r}

Xj(\upsilon )\epsilon 
j(2.20)

yields, to lowest order,
d
\mathrm{c}\mathrm{o}\mathrm{r}
X 0

d\upsilon = 0, so
\mathrm{c}\mathrm{o}\mathrm{r}

X0 is constant,

\mathrm{c}\mathrm{o}\mathrm{r}

X0(\upsilon ) =
\mathrm{c}\mathrm{o}\mathrm{r}

C 0 .(2.21)

The next order term is

d
\mathrm{c}\mathrm{o}\mathrm{r}

X1

d\upsilon 
= - 

\Biggl( 
1 - 

\mathrm{c}\mathrm{o}\mathrm{r}

C 0

x \star  - 
\mathrm{c}\mathrm{o}\mathrm{r}

C 0

\Biggr) 
1

\upsilon 
+

\Biggl( \mathrm{c}\mathrm{o}\mathrm{r}

C 0

x \star  - 
\mathrm{c}\mathrm{o}\mathrm{r}

C 0

\Biggr) 
,(2.22)

with solution

\mathrm{c}\mathrm{o}\mathrm{r}

X1(\upsilon ) = - 
\Biggl( 

1 - 
\mathrm{c}\mathrm{o}\mathrm{r}

C 0

x
 \star 
 - 

\mathrm{c}\mathrm{o}\mathrm{r}

C 0

\Biggr) 
ln\upsilon +

\Biggl( \mathrm{c}\mathrm{o}\mathrm{r}

C 0

x
 \star 
 - 

\mathrm{c}\mathrm{o}\mathrm{r}

C 0

\Biggr) 
\upsilon +

\mathrm{c}\mathrm{o}\mathrm{r}

C 1 .(2.23)
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1590 TODD L. PARSONS AND DAVID J. D. EARN

We now insert (2.21) and (2.23) in (2.20), and convert back to the original variable
y. Noting that ln\upsilon = lny+ ln \epsilon  - 1, we obtain

\mathrm{c}\mathrm{o}\mathrm{r}

X (y; \epsilon ) =
\mathrm{c}\mathrm{o}\mathrm{r}

C 0 +

\Biggl( \mathrm{c}\mathrm{o}\mathrm{r}

C 0

x \star  - 
\mathrm{c}\mathrm{o}\mathrm{r}

C 0

\Biggr) 
y - \epsilon ln \epsilon  - 1

\Biggl( 
1 - 

\mathrm{c}\mathrm{o}\mathrm{r}

C 0

x \star  - 
\mathrm{c}\mathrm{o}\mathrm{r}

C 0

\Biggr) 
 - \epsilon 
\Biggl[ \Biggl( 

1 - 
\mathrm{c}\mathrm{o}\mathrm{r}

C 0

x \star  - 
\mathrm{c}\mathrm{o}\mathrm{r}

C 0

\Biggr) 
lny - 

\mathrm{c}\mathrm{o}\mathrm{r}

C 1

\Biggr] (2.24)

+\scrO (\epsilon 2).

This solution contains a term of order \epsilon ln \epsilon  - 1, which is intermediate between \scrO (1)
and \scrO (\epsilon ), and which we did not include in our proposed asymptotic series in \upsilon (2.20).
The emergence of such a term when switching back to original variables is known as
``transcendental switchback"" [24, p. 71]. When this phenomenon occurs it is necessary
to go back and include the intermediate order explicitly in the asymptotic sequence
at the outset, as it may lead to novel terms that are essential for matching. Thus, we
replace our initial ansatz (2.20) with

\mathrm{c}\mathrm{o}\mathrm{r}

X (\upsilon ; \epsilon ) =
\mathrm{c}\mathrm{o}\mathrm{r}

X0(\upsilon ) + \epsilon ln \epsilon  - 1
\mathrm{c}\mathrm{o}\mathrm{r}

X ln(\upsilon ) + \epsilon 
\mathrm{c}\mathrm{o}\mathrm{r}

X1(\upsilon ) +\scrO (\epsilon 2) ,(2.25)

which includes a term of order \epsilon ln \epsilon  - 1 in addition to powers of \epsilon . Inserting (2.25) in
(2.19) we obtain a new hierarchy of ODEs, with one new equation,

d
\mathrm{c}\mathrm{o}\mathrm{r}

X ln

dy
= 0,(2.26)

which yields a new constant,

\mathrm{c}\mathrm{o}\mathrm{r}

X ln(y)\equiv 
\mathrm{c}\mathrm{o}\mathrm{r}

C ln .(2.27)

Our revised expansion is

\mathrm{c}\mathrm{o}\mathrm{r}

X (y; \epsilon ) =
\mathrm{c}\mathrm{o}\mathrm{r}

C 0 +

\Biggl( \mathrm{c}\mathrm{o}\mathrm{r}

C 0

x
 \star 
 - 

\mathrm{c}\mathrm{o}\mathrm{r}

C 0

\Biggr) 
y+ \epsilon ln \epsilon  - 1

\Biggl[ 
\mathrm{c}\mathrm{o}\mathrm{r}

C ln  - 
\Biggl( 

1 - 
\mathrm{c}\mathrm{o}\mathrm{r}

C 0

x
 \star 
 - 

\mathrm{c}\mathrm{o}\mathrm{r}

C 0

\Biggr) \Biggr] 
(2.28)

 - \epsilon 
\Biggl[ \Biggl( 

1 - 
\mathrm{c}\mathrm{o}\mathrm{r}

C 0

x
 \star 
 - 

\mathrm{c}\mathrm{o}\mathrm{r}

C 0

\Biggr) 
lny - 

\mathrm{c}\mathrm{o}\mathrm{r}

C 1

\Biggr] 
+\scrO (\epsilon 2) ,

which differs from (2.28) only in that it includes
\mathrm{c}\mathrm{o}\mathrm{r}

C ln in the \scrO (\epsilon ln \epsilon  - 1) term. Below,
in subsection 3.1.2, we will see that the additional degree of freedom provided by the

constant
\mathrm{c}\mathrm{o}\mathrm{r}

C ln is essential to successfully match other asymptotic solutions.

Remark 1. While this section concerns dynamics near x , a virtually identical
analysis provides a corner solution near x , where the fraction susceptible is at its
maximum prior to a second epidemic wave. In particular, we again have a solution

of the form (2.28), albeit for different values of the constants
\mathrm{c}\mathrm{o}\mathrm{r}

C 0 and
\mathrm{c}\mathrm{o}\mathrm{r}

C 1. We will
refer to the corner solutions near x and x as the ``left"" and ``right"" corner solutions,
\mathrm{l}\mathrm{c}

X and
\mathrm{r}\mathrm{c}

X , respectively.

2.5. Scaled exponential and Lambert \bfitW functions. To match our various
solutions, some functions of x, some functions of y, we need to write all expressions
as functions of the same variable. For our matching, the common variable will be y,
which is facilitated by two functions that we introduce in this section.
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PHASE PLANE TRAJECTORIES FOR THE SIR MODEL 1591

The expression zez occurs frequently in our analysis, with z often being a nontriv-
ial expression itself. Consequently, in order to reduce equation clutter and emphasize
patterns in expressions more clearly, we define the scaled exponential function,

E (z) = z ez .(2.29)

The second function is the LambertW function [7], a transcendental multifunction
defined by the implicit relation

E (W (z)) = z .(2.30)

Thus, W is a Lambert W function if E is its left inverse. There are countably many
such functions of a complex argument, leading to countably many branches Wi(z).
There are two branches that are real-valued for real arguments. We will need both real-
valued branches, which are denoted W - 1 and W0. They have overlapping domains,
but nonoverlapping ranges,

W - 1 :
\bigl[ 
 - 1

e
,0
\bigr) 
\rightarrow ( - \infty , - 1] ,(2.31a)

W0 :
\bigl[ 
 - 1

e
,\infty 
\bigr) 
\rightarrow [ - 1,\infty ) .(2.31b)

Thus, these two branches meet at (E ( - 1), - 1),

W - 1(E ( - 1)) =W0(E ( - 1)) = - 1 .(2.32)

For any i, E is also a partial right inverse of Wi, i.e., Wi(E (z)) = z on part of the
domain of E . The set on which Wi(E (z)) = z depends on i; for i\in \{  - 1,0\} ,

W - 1(E (z)) = z if z \leq  - 1 ,
W0(E (z)) = z if z \geq  - 1 .(2.33)

However, Wi(E (z)) is well-defined outside the region on which E is a right inverse,
and it is on the domain where Wi(E (z)) \not = z that we frequently need to evaluate it.
Indeed, the explicit final size formula for the SIR model (and many other models) is
[18, eq. (A.2)]

Z(\scrR 0) = 1+
1

\scrR 0
W0(E ( - \scrR 0)) .(2.34)

Graphs of E (z) and Wi(E (z)) are shown in Figure 3.
We briefly recall some series and asymptotic expansions of the Lambert W func-

tion that we will need below. See [7] for details and proofs.
(i) Implicitly differentiating the identity E (Wi(z)) =Wi(z)e

Wi(z) = z and solving
for dWi

dz one finds that

dWi

dz
=

Wi

z(1 +Wi)
.(2.35)

(ii) Applying the Lagrange inversion theorem (see, e.g., [8, p. 180]) to the power
series for E (z), one finds that near 0,

W0(z) =

\infty \sum 
n=1

( - n)n - 1

n!
zn = z +\scrO (z2) ,(2.36)

with radius of convergence 1
e .
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W−1(ze
z)

Fig. 3. E (z) = zez (2.29) and Lambert W functions (2.30) evaluated at E (z).

(iii) For large z, there is a (convergent) asymptotic series representation,

W0(z) =L1  - L2 +

\infty \sum 
m=0

\infty \sum 
n=1

( - 1)m
m!

Ln2
Lm+n
1

, z\rightarrow \infty ,(2.37)

where L1 = lnz and L2 = ln(lnz). The same expansion applies for W - 1(z) as
z\rightarrow 0 - if one replaces L1 and L2 with \~L1 = ln( - z) and \~L2 = ln( - ln ( - z)).

(iv) We will also find it useful to expand

fi(z) =Wi( - Ae - A - B+z) =Wi(E ( - A)e - Bez)(2.38)

in a series about z = 0 for various values of A and B. Using (2.35), we find

fi(z) =Wi(E ( - A)e - B) + Wi(E ( - A)e - B)
1 +Wi(E ( - A)e - B)z +\scrO (z

2) .(2.39)

In particular, (2.33) tells us that if B = 0 then

fi(z) = - A - 
A

1 - Az +\scrO (z
2)(2.40)

if i= 0 and A\leq 1 or i= - 1 and A\geq 1.

2.6. Inverting the outer and inner solutions. To facilitate matching, we
now exploit the scaled exponential E (2.29) and Lambert's W (2.30) to invert some
of our asymptotic solutions.

Our outer solution (2.3) can be rearranged by setting
\mathrm{o}\mathrm{u}\mathrm{t}

Y0(x) = y and using (2.29),

 - 1

x
 \star 

e(y - 
\mathrm{o}\mathrm{u}\mathrm{t}
C0)/x \star = E

\Bigl( 
 - x

x
 \star 

\Bigr) 
.(2.41)

Next, using (2.33), we have

Wi

\Bigl( 
 - 1

x
 \star 

e(y - 
\mathrm{o}\mathrm{u}\mathrm{t}
C0)/x \star 

\Bigr) 
=Wi

\biggl( 
E
\Bigl( 
 - x

x
 \star 

\Bigr) \biggr) 
= - x

x
 \star 

,(2.42)
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PHASE PLANE TRAJECTORIES FOR THE SIR MODEL 1593

where the i =  - 1 branch is to be used in the right half-plane \{ (x, y) : x \geq x \star \} (since
W - 1 \leq  - 1, (2.31a)), whereas the i = 0 branch is to be used in the left half-plane
\{ (x, y) : x\leq x

 \star 
\} (since W0 \geq  - 1, (2.31b)). From (2.42), we obtain

\mathrm{o}\mathrm{u}\mathrm{t}

X i
0(y) = x= - x

 \star 
Wi

\biggl( 
 - 1

x \star 
e(y - 

\mathrm{o}\mathrm{u}\mathrm{t}
C0)/x \star 

\biggr) 
.(2.43)

Thus, the inversion yields a multifunction
\mathrm{o}\mathrm{u}\mathrm{t}

X i
0(y) with two branches, both of which we

need. These branches correspond to the growth (i =  - 1) and decline (i = 0) phases

of the epidemic, which meet at y=
\mathrm{o}\mathrm{u}\mathrm{t}

Y0(x \star ) (the maximum of
\mathrm{o}\mathrm{u}\mathrm{t}

Y0(x), and thus also the

upper bound of the domain of its inverse,
\mathrm{o}\mathrm{u}\mathrm{t}

X i
0(y)).

Similarly, we can invert our inner solution in the x-axis boundary layer (2.18) to
get

x\mathrm{b}

Xi
0(y) = 1+ (1 - x \star )Wi

\biggl( 
 - 1

1 - x
 \star 

e
 - 1 - C

\phi 
0

1 - x \star 

\biggl( 
eC

\phi 
1

y

\biggr) \epsilon 
1 - x \star 

\biggr) 
,(2.44)

where now the i =  - 1 and i = 0 branches give the solution for x \leq x
 \star 
and x \geq x

 \star 
,

respectively (the opposite of the situation for
\mathrm{o}\mathrm{u}\mathrm{t}

X i
0(y) in (2.43), where i= - 1 and i= 0

correspond to the right and left half-planes, respectively).

Remark 2. Once the constants have been determined by matching, we will be
able to exploit the resulting symmetry (and the function E ) to simplify the inverted
expressions considerably.

3. Matched asymptotic solutions. We now turn to the task of identifying
the unknown constants in the solutions above and combining these local approxima-
tions into a uniform approximation of the trajectory. Suppose we have two or more
solutions defined at different asymptotic scales (e.g., our outer (subsection 2.1) and
corner (subsection 2.4) solutions). The local solutions are obtained by imposing a
scale on dependent or independent variables (e.g., we supposed x is \scrO (1) to get the
outer solution and assumed y was \scrO (\epsilon ) to get the corner solution, whereas we ob-
tained the y-axis boundary layer solution (subsection 2.2) by assuming X is \scrO (\epsilon )). In
practice, however, each local solution remains valid over some larger domain that can
be characterized with another asymptotic scale. Matching (see, e.g., [14, section 2.1])
is achieved by considering an intermediate scale \eta = \eta (\epsilon ) on which all solutions remain
valid. Solutions to be matched are evaluated at x= \eta x\eta (or y= \eta y\eta ) for some x\eta (or
y\eta ) independent of \epsilon (for readability, we suppress the explicit dependence of \eta itself

on \epsilon ). The constants of integration (e.g.,
\mathrm{c}\mathrm{o}\mathrm{r}

C 0, C
\phi 
1 , etc.) are then chosen so that the

two solutions agree as well as possible (i.e., so that they coincide on as many orders
as possible when both are expanded as an asymptotic series). The matched solution
is obtained by summing the component solutions---with the choice of constants of
integration that maximizes their mutual agreement---and subtracting their common
overlap (the sum of all terms occurring in both asymptotic series).

To illustrate the process without getting bogged down in details, suppose F (x)
and G(x) are outer and inner (e.g., boundary layer) asymptotic series approximations
for a given (exact) function E(x). Moreover, suppose we have

F (x) = f0(x) + f1(x)\varphi 1(\epsilon ) + f2(x)\varphi 2(\epsilon ) + f3(x)\varphi 3(\epsilon ) +\scrO (\varphi 4(\epsilon )) ,(3.1)

G(x) = g2(x)\varphi 2(\epsilon ) + g3(x)\varphi 3(\epsilon ) +\scrO (\varphi 4(\epsilon )) ,(3.2)

where the functions fj and gj contain arbitrary constants, and \{ \varphi j\} is an asymptotic
sequence (subsection 1.2), which typically refines the asymptotic sequences initially
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1594 TODD L. PARSONS AND DAVID J. D. EARN

defined for the outer and inner solutions. If, say, the constants in f2(x) and g2(x)
can be chosen so that these functions coincide exactly for all x, then f2(x)\varphi 2(\epsilon ) =
g2(x)\varphi 2(\epsilon ) is the overlap, and our matched approximation to E(x) would be

F (x) +G(x) - f2(x)\varphi 2(\epsilon ) .(3.3)

If it were possible to choose the values of constants so that F and G agree in more
than one order, so the overlap contains multiple orders (the more the better), then
the resulting matched solution would be smoother (just as matching both a function
and its derivative at a single point leads to a smoother approximation at that point).

The matched solution has the virtue of being a valid approximation in both the
inner and outer domains, so that one does not need to decide a priori which lo-
cal solution (e.g., outer, boundary, or corner) best approximates a given part of the
trajectory.

In what follows, we will give a detailed treatment of the first matching (which
includes the outer, corner, and x-axis boundary layer solutions) and describe the
second matching (which also includes the y-axis boundary layer solution) much more
briefly. For easy reference, we summarize our results in Tables 2 and 3 and list
the matching constants in Table 4. We compare the first and second matchings to
the numerically evaluated trajectory in Figures 4(a) and 4(b), respectively. We find
excellent agreement for all inital conditions (x

\mathrm{i}
, y

\mathrm{i}
) from which the trajectory does

not approach the y-axis too closely; more precisely, our approximations are accurate
unless x

\mathrm{f}
(x\mathrm{i} , y\mathrm{i})\ll \epsilon , where x

\mathrm{f}
(x\mathrm{i} , y\mathrm{i}) is given in (3.8) below.

Table 2
Approximations of quantities of epidemiological interest for the trajectory of (1.5) that emanates

from (x\mathrm{i} , y\mathrm{i} ). Each entry may depend upon entries above it in the table (but never on entries below).
These quantities are used in our approximations to the full trajectories in Table 3. We use ``(KM)""
to indicate quantities that are exact for the Kermack--McKendrick SIR model without vital dynamics
(\epsilon = 0). With vital dynamics (\epsilon > 0), the peak prevalence y

0
is an approximation, and there is no

``final"" size, but the quantity x\mathrm{f} appears in the approximation to the minimum fraction susceptible
(x

0
). Replacing x\mathrm{i} by x\mathrm{i},j as defined in (3.46) gives asymptotic approximations for the jth epidemic

wave. We discuss the effective initial condition (x\mathrm{i},2 ) in subsection 3.1.3. The expressions for the
minimum and maximum susceptible densities (x

0
, x0 ) are identical except that x

0
is evaluated at x\mathrm{f}

and x0 is evaluated at x\mathrm{i},2 . In these expressions, note that (x\mathrm{f} , \epsilon (
1
x
\mathrm{f}
 - 1)) and (x\mathrm{i},2 , \epsilon (

1
x
\mathrm{i},2
 - 1)) are

points on the x nullcline dX/d\tau = 0. We write the formulae for x
0
and x0 as compactly as possible

here; see (3.29) for the same expression written out with separate terms for each asymptotic order.

Quantity Expression Equation

Equilibrium susceptible density x \star 
1

\scrR 0
(1.8a)

Peak prevalence (KM) y
0

y\mathrm{i} + x\mathrm{i}  - x \star (1 + ln (x\mathrm{i}/x \star )) (3.7)

Final size (KM) x\mathrm{f}  - x \star W0(E ( - x\mathrm{i}/x \star )e
 - y

\mathrm{i}
/x \star ) (3.8)

Minimum prevalence y
0

y
0
(
1 - x

\mathrm{f}
1 - x \star 

)
1 - x \star 

\epsilon e - 
x \star  - x

\mathrm{f}
\epsilon e

 - \mathrm{E}\mathrm{i}\mathrm{n}(y
0
/x \star )

(3.30)

Minimum susceptible density x
0

x\mathrm{f} + \epsilon 
1 - x

\mathrm{f}
x \star  - x

\mathrm{f}
(1 + ln(\epsilon ( 1

x
\mathrm{f}
 - 1)/y

0
)) (3.29)

Effective initial condition x\mathrm{i},2 1 + (1 - x \star )W0(E ( - 1 - x
\mathrm{f}

1 - x \star 
)) (3.33)

Maximum susceptible density x0 x\mathrm{i},2  - \epsilon 
1 - x

\mathrm{i},2

x
\mathrm{i},2

 - x \star 
(1 + ln(\epsilon ( 1

x
\mathrm{i},2
 - 1)/y

0
)) (3.43)

Peak prevalence, second wave y
0,2

x\mathrm{i},2  - x \star (1 + ln (x\mathrm{i},2/x \star )) (3.45)
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PHASE PLANE TRAJECTORIES FOR THE SIR MODEL 1595

Table 3
Matched solutions for SIR trajectories. The quantities x \star , x\mathrm{f} , y0

, x\mathrm{i},2 , and y
0,2

are expressed

in terms of the parameters \scrR 0 and \epsilon in Table 2. Left and right corner solutions are valid in a
neighborhood of the points (x\mathrm{f} ,0) and (x\mathrm{i},2 ,0), respectively (and are identical up to swapping x\mathrm{f} and
x\mathrm{i},2). Left and right matched solutions are uniformly valid to the left and right of the y nullcline
(x= x \star ). Setting (x\mathrm{i} , y\mathrm{i} ) = (1,0) gives a first epidemic wave emanating from the DFE. Asymptotic
approximations for the jth epidemic wave (for j \geq 1) are obtained by replacing x\mathrm{i} with x\mathrm{i},j , x\mathrm{f} by
x\mathrm{f},j , x\mathrm{i},2 by x\mathrm{i},j+1 , y0

by y
0,j

, and y
0,2

and y
0,j+1

in the expressions and domains (see (3.46)). For

each of the outer, inner, and left and right corner solutions, the equation reference first is the ``raw""
expression with undetermined matching constants (the matched values are listed in Table 4) and
then the ``matched"" expression with the matched values of the constants inserted. Gray text is used
to emphasize a factor in the x-axis boundary layer approximation and a term in the left matched
solution that appear when we include the y-axis boundary layer approximation in the matching;
Figure 4(a) shows results without the gray quantities, whereas Figure 4(b) shows the improvement
obtained by including them.

Solution Notation Expression Branch (\bfiti ) Domain Equation

Outer
\mathrm{o}\mathrm{u}\mathrm{t}

X i
0(y,x\mathrm{i} , y\mathrm{i} )  - x \star Wi(E ( - x\mathrm{i}/x \star )e

(y - y
\mathrm{i}
)/x \star )

\Biggl\{ 
0 x\leq x \star 

 - 1 x\geq x \star 
[0, y

0
] (2.43),

(3.6)

y-axis
bdry

y\mathrm{b}

X0(y)
\epsilon 
x \star 

e
 - y

x \star (E1(
y
x \star 

) - E1(
y
0

x \star 
)) -- [y

0
, y

0
] (3.52)

Left

corner

\mathrm{l}\mathrm{c}

X (y; \epsilon ) x\mathrm{f} +
x
\mathrm{f}

x \star  - x\mathrm{f}
y+ \epsilon 1 - x\mathrm{f}

x \star  - x\mathrm{f}
ln (y

0
/y) -- [y

0
, y

0
] (2.28),

(3.28)

x-axis
bdry

x\mathrm{b}

Xi
0(y)

1 + (1 - x \star )\times 
Wi

\Bigl( 
E ( - 1 - x

\mathrm{f}
1 - x \star 

)(
y
0
y
)

\epsilon 
1 - x \star 

e
 - \epsilon 

1 - x \star 
\mathrm{E}\mathrm{i}\mathrm{n}(y

0
/x \star )

\Bigr) 
\Biggl\{ 
 - 1 x\leq x \star 

0 x\geq x \star 
[y

0
, y

0
] (3.59)

Right
corner

\mathrm{r}\mathrm{c}

X (y; \epsilon ) x\mathrm{i},2  - 
x
\mathrm{i},2

x
\mathrm{i},2

 - x \star 
y - \epsilon 

1 - x
\mathrm{i},2

x
\mathrm{i},2

 - x \star 
ln (y

0
/y) -- [y

0
, y

0,2
] (2.28),

(3.36)

Matched,

left

\leftarrow  - 
X (y; \epsilon )

\mathrm{o}\mathrm{u}\mathrm{t}

X 0
0(y,x\mathrm{i} , y\mathrm{i} ) +

x\mathrm{b}

X - 1
0 (y) - x\mathrm{f}

+
y\mathrm{b}

X0(y) +
\epsilon 
x \star 

\Bigl( 
ln ( y

y
0

) + Ein(
y
0

x \star 
)
\Bigr) -- [y

0
, y

0
] (3.61)

Matched,

right

 - \rightarrow 
X (y; \epsilon )

\mathrm{o}\mathrm{u}\mathrm{t}

X  - 1
0 (y,x\mathrm{i},2 ,0) +

x\mathrm{b}

X0
0(y; \epsilon ) - x\mathrm{i},2 -- [y

0
, y

0,2
] (3.42)

3.1. Matching outer, corner, and \bfitx -axis boundary layer solutions.

3.1.1. Kermack and McKendrick's phase plane solution. Given an initial
condition (x\mathrm{i} , y\mathrm{i}), the constant of integration in (2.3) is readily found to be

\mathrm{o}\mathrm{u}\mathrm{t}

C0 = y
\mathrm{i}
+ x

\mathrm{i}
 - x

 \star 
lnx

\mathrm{i}
,(3.4)

so that
\mathrm{o}\mathrm{u}\mathrm{t}

Y0(x,x\mathrm{i} , y\mathrm{i}) = y\mathrm{i} + x\mathrm{i}  - x+ x \star ln

\biggl( 
x

x\mathrm{i}

\biggr) 
,(3.5)

which is the phase plane solution first discovered by KM for the SIR model without
vital dynamics. Equivalently, using (2.43), we can express the solution as a function
of y,

\mathrm{o}\mathrm{u}\mathrm{t}

X i
0(y,x\mathrm{i} , y\mathrm{i}) = - x \star Wi

\bigl( 
 - (x\mathrm{i}/x \star )e

(y - y
\mathrm{i}
 - x

\mathrm{i}
)/x \star 

\bigr) 
(3.6)

= - x
 \star 
Wi

\bigl( 
E ( - x

\mathrm{i}
/x

 \star 
)e(y - y\mathrm{i} )/x \star 

\bigr) 
.

Provided x
\mathrm{i}
\geq x

 \star 
and y

\mathrm{i}
\geq 0, the solution (3.5) is nonnegative and concave, with two

positive roots (x
\mathrm{f}
\in (0, x

 \star 
) and another in (x

 \star 
,1)), and a unique maximum y

0
at x

 \star 
,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

07
/2

3/
24

 to
 3

8.
12

2.
12

0.
22

6 
by

 D
av

id
 E

ar
n 

(e
ar

n@
m

at
h.

m
cm

as
te

r.
ca

).
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



1596 TODD L. PARSONS AND DAVID J. D. EARN
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(b)

Fig. 4. Solutions of the SIR ODEs (1.1) and approximations (Table 3). Top panels: \scrR 0 = 2
and \varepsilon = 0.01. Bottom panels: \scrR 0 = 17 and \varepsilon = 0.001, similar to measles and whooping cough (Table
1). Various outer and inner approximations are shown in gray, and the matched approximation
is in black. The numerically computed solutions are red, as in Figures 1 and 2. The right panels

include the y-axis boundary layer approximation (
y\mathrm{b}

Y ) in the matching. All trajectories are plotted
on a log-log scale in order to emphasize discrepancies between the red and black curves.

y
0
(x\mathrm{i} , y\mathrm{i}) =

\mathrm{o}\mathrm{u}\mathrm{t}

Y0(x \star , x\mathrm{i} , y\mathrm{i}) = y\mathrm{i} + x\mathrm{i}  - x \star 
\bigl( 
1 + ln (x\mathrm{i}/x \star )

\bigr) 
.(3.7)

Note that y
0
(x\mathrm{i} , y\mathrm{i}) and x

\mathrm{f}
(x\mathrm{i} , y\mathrm{i}) are the true peak prevalence and final size for the

SIR model without vital dynamics (\epsilon = 0) started from (x
\mathrm{i}
, y

\mathrm{i}
); y

0
only approximates

the peak prevalence for the model with vital dynamics, and there is no ``final"" size if
there is a continuous source of new susceptibles. Nevertheless, we informally refer to x

\mathrm{f}

as the ``final size"" for convenience (note that there is a minimum fraction susceptible,
x , near x

\mathrm{f}
(x\mathrm{i} , y\mathrm{i}); see (3.29) below).

Using the i= 0 branch to give the solution in the half-plane x\leq x \star , (3.6) gives us
an explicit expression for x

\mathrm{f}
(x

\mathrm{i}
, y

\mathrm{i}
) [18],

x
\mathrm{f}
(x\mathrm{i} , y\mathrm{i}) =

\mathrm{o}\mathrm{u}\mathrm{t}

X0
0(0) = - x \star W0

\Bigl( 
E ( - x\mathrm{i}/x \star )e

 - y
\mathrm{i}
/x \star 

\Bigr) 
.(3.8)

The series expansion for Lambert's W function (2.36) then yields

x
\mathrm{f}
(x

\mathrm{i}
, y

\mathrm{i}
) = x

\mathrm{i}
e - (x

\mathrm{i}
+y

\mathrm{i}
)/x \star +\scrO 

\bigl( 
(x

\mathrm{i}
/x

 \star 
)e - 2(x

\mathrm{i}
+y

\mathrm{i}
)/x \star 

\bigr) 
(3.9)

= x\mathrm{i}e
 - \scrR 0(x\mathrm{i}

+y
\mathrm{i}
) +\scrO 

\bigl( 
\scrR 0(x\mathrm{i}e

 - \scrR 0(x\mathrm{i}
+y

\mathrm{i}
))2
\bigr) 
,

so the final size is exponentially small in\scrR 0, with a correction of exponentially smaller
order.
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PHASE PLANE TRAJECTORIES FOR THE SIR MODEL 1597

When there is no risk of ambiguity, we suppress the dependence on x\mathrm{i} and y\mathrm{i}

and write
\mathrm{o}\mathrm{u}\mathrm{t}

Y0(x),
\mathrm{o}\mathrm{u}\mathrm{t}

X i
0(x), y0

, and x
\mathrm{f}
. Note that [x

\mathrm{f}
, x\mathrm{i} ] is the interval on which

\mathrm{o}\mathrm{u}\mathrm{t}

Y0(x)
is nonnegative, and thus its domain for practical purposes; its range, [0, y

0
], is the

domain for its inverse
\mathrm{o}\mathrm{u}\mathrm{t}

X i
0(y).

3.1.2. Matching in the left half-plane (\bfitx \leq \bfitx 
\star 
). Our next step is to match

the outer solution
\mathrm{o}\mathrm{u}\mathrm{t}

X0
0(y) ((3.6) with initial point (x\mathrm{i} , y\mathrm{i})) with the corner solution

\mathrm{c}\mathrm{o}\mathrm{r}

X (y; \epsilon ) (2.28). Note that although we assume the initial point lies in the right half-
plane (i.e., x \star \leq xi), in the present subsection it is the i = 0 branch of the outer
solution that we need because we are investigating only the part of the trajectory
that lies in the left half-plane.

In order to consider the behavior near (x
\mathrm{f}
,0) on scales intermediate between the

outer solution (3.6) and the corner solution (2.28), we take y= \eta y\eta with

\epsilon \ll \eta \ll 1(3.10)

(we haven't yet identified an appropriate intermediate scale, but examples that satisfy
(3.10) include \eta = \epsilon 1/2 and \eta = \epsilon ln \epsilon  - 1).

Inserting (x
\mathrm{i}
, y

\mathrm{i}
) in the outer solution (3.6), expanding it using (2.39), and using

(3.8) to find x
\mathrm{f}
, we obtain

\mathrm{o}\mathrm{u}\mathrm{t}

X0
0(\eta y\eta ) = - x \star W0

\Bigl( 
E ( - x\mathrm{i}/x \star )e

 - y\mathrm{i} e\eta y\eta /x \star 

\Bigr) 
= x

\mathrm{f}
+ \eta 

x
\mathrm{f}

x
 \star 
 - x

\mathrm{f}

y\eta +\scrO (\eta 2) .(3.11)

On the other hand, inserting y= \eta y\eta in the corner solution (2.28) and expanding

ln (\eta y\eta ) = - ln\eta  - 1 + lny\eta ,(3.12)

we can write

\mathrm{c}\mathrm{o}\mathrm{r}

X (\eta y\eta ; \epsilon ) =
\mathrm{c}\mathrm{o}\mathrm{r}

C 0 + \eta 

\mathrm{c}\mathrm{o}\mathrm{r}

C 0

x
 \star 
 - 

\mathrm{c}\mathrm{o}\mathrm{r}

C 0

y\eta + \epsilon ln \epsilon  - 1

\Biggl( 
\mathrm{c}\mathrm{o}\mathrm{r}

C ln  - 
1 - 

\mathrm{c}\mathrm{o}\mathrm{r}

C 0

x
 \star 
 - 

\mathrm{c}\mathrm{o}\mathrm{r}

C 0

\Biggr) 

+ \epsilon ln\eta  - 1

\Biggl( 
1 - 

\mathrm{c}\mathrm{o}\mathrm{r}

C 0

x
 \star 
 - 

\mathrm{c}\mathrm{o}\mathrm{r}

C 0

\Biggr) 
 - \epsilon 
\Biggl( 

1 - 
\mathrm{c}\mathrm{o}\mathrm{r}

C 0

x
 \star 
 - 

\mathrm{c}\mathrm{o}\mathrm{r}

C 0

ln (y\eta ) - 
\mathrm{c}\mathrm{o}\mathrm{r}

C 1

\Biggr) 
+\scrO (\epsilon 2).

(3.13)

If we now refine our initial assumption (3.10) to \epsilon ln \epsilon  - 1\ll \eta \ll (\epsilon ln \epsilon  - 1)1/2\ll 1, then
in the expansions (3.11), (3.13) each term has a distinct asymptotic order, ensuring
that

\epsilon \ll \epsilon ln\eta  - 1\ll \epsilon ln \epsilon  - 1\ll \eta \ll (\epsilon ln \epsilon  - 1)1/2\ll 1 .(3.14)

Consequently, if we take

\mathrm{c}\mathrm{o}\mathrm{r}

C 0 = x
\mathrm{f}

and
\mathrm{c}\mathrm{o}\mathrm{r}

C ln =
1 - 

\mathrm{c}\mathrm{o}\mathrm{r}

C 0

x
 \star 
 - 

\mathrm{c}\mathrm{o}\mathrm{r}

C 0

=
1 - x

\mathrm{f}

x \star  - x\mathrm{f}

,(3.15)

then the two solutions (3.11), (3.13) coincide to6 \scrO (\epsilon ln \epsilon  - 1). For the moment,
\mathrm{c}\mathrm{o}\mathrm{r}

C 1

remains undetermined, but we will use it to match with the inner solution.

6The assumptions \epsilon \ll \eta and \eta \ll (\epsilon ln \epsilon  - 1)1/2 (3.14) together imply that \epsilon 2 \ll \eta 2 \ll \epsilon ln \epsilon  - 1,
which is necessary to ensure that the \scrO (\eta 2) terms in (3.11) are negligible in comparison to \epsilon ln \epsilon  - 1.
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1598 TODD L. PARSONS AND DAVID J. D. EARN

To match the corner layer solution with the inner (x-axis boundary layer) solution
we now let \eta denote a different asymptotic order,

e - 
C
\epsilon \ll \eta \ll \epsilon \ll 1 for all C > 0.(3.16)

Since we are interested in x\leq x \star , as noted after (2.44) we must use the i= - 1 branch

of the inner solution
x\mathrm{b}

Xi
0(y). We will use (2.39) to derive an asymptotic expansion for

x\mathrm{b}

X - 1
0 (y), which motivates us---after some algebraic exploration---to set

C\phi 0 = c\phi 0  - (1 - x
 \star 
) ln (1 - c\phi 0 ) .(3.17)

This choice for C\phi 0 in (2.44) leads to

x\mathrm{b}

X - 1
0 (\eta y\eta ) = 1+ (1 - x

 \star 
)W - 1

\Biggl( 
 - 1 - c\phi 0
1 - x

 \star 

e
 - 1 - c

\phi 
0

1 - x \star 

\biggl( 
eC

\phi 
1

\eta y\eta 

\biggr) \epsilon 
1 - x \star 

\Biggr) 
(3.18a)

= 1+ (1 - x
 \star 
)W - 1

\Biggl( 
E

\biggl( 
 - 1 - c\phi 0

1 - x
 \star 

\biggr) 
e\epsilon \psi (\eta y\eta )

\Biggr) 
,

where \psi (y) =
1

1 - x
 \star 

ln

\biggl( 
eC

\phi 
1

y

\biggr) 
.(3.18b)

Our assumption that \eta \ll \epsilon \ll 1 (3.16) implies that \eta \ll \epsilon \ll \epsilon ln \epsilon  - 1 \ll \epsilon ln\eta  - 1 \ll 1.
Observing that \epsilon \psi (\eta y\eta ) = \scrO (\epsilon ln\eta  - 1), we can therefore apply (2.38) and (2.40) to
(3.18) to obtain

x\mathrm{b}

X - 1
0 (\eta y\eta ) = c\phi 0 + \epsilon 

\biggl( 
1 - c\phi 0
x
 \star 
 - c\phi 0

\biggr) \bigl( 
C\phi 1  - lny\eta 

\bigr) 
+ \epsilon ln\eta  - 1

\biggl( 
1 - c\phi 0
x
 \star 
 - c\phi 0

\biggr) 
+\scrO (\epsilon 2).(3.19)

Furthermore, comparing (3.13) and (3.19) to order \scrO (\epsilon ), we see that the overlap is
maximized by taking

c\phi 0 =
\mathrm{c}\mathrm{o}\mathrm{r}

C 0 = x
\mathrm{f}

(see (3.15)), and
\mathrm{c}\mathrm{o}\mathrm{r}

C 1 =
1 - x

\mathrm{f}

x \star  - x\mathrm{f}

C\phi 1 ,(3.20)

whereas C\phi 1 is yet to be determined.
With the values of the constants determined above, the outer (3.11) and corner

(3.13) solutions have a common overlap of

x
\mathrm{f}
+ \eta 

x
\mathrm{f}

x \star  - x\mathrm{f}

y\eta ,(3.21)

whereas for the corner and inner (3.19) solutions, the overlap is

x
\mathrm{f}
 - \epsilon 1 - x\mathrm{f}

x \star  - x\mathrm{f}

x\mathrm{f}(C
\phi 
1  - lny\eta ) + \epsilon ln\eta  - 1 1 - x\mathrm{f}

x \star  - x\mathrm{f}

.(3.22)

Summing the outer (3.11), inner (3.19), and corner (3.13) solutions and subtracting
these two overlaps yields a matched solution to the left of x

 \star 
,

\leftarrow  - 
X (y; \epsilon ) =

\mathrm{o}\mathrm{u}\mathrm{t}

X0
0(y; \epsilon ) +

x\mathrm{b}

X - 1
0 (y; \epsilon ) - x

\mathrm{f}
.(3.23)

(Subtracting the overlaps (3.21), (3.22) removes the corner solution (3.13) from the
matched solution; the corner was nonetheless necessary to determine the matching

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

07
/2

3/
24

 to
 3

8.
12

2.
12

0.
22

6 
by

 D
av

id
 E

ar
n 

(e
ar

n@
m

at
h.

m
cm

as
te

r.
ca

).
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



PHASE PLANE TRAJECTORIES FOR THE SIR MODEL 1599

constant c\phi 0 .) For the matched solution to be continuous,
\leftarrow  - 
X must agree at (x \star , y0

)
with the outer solution (3.6) in the right half-plane, i.e., we need

\leftarrow  - 
X (y

0
; \epsilon ) = x

 \star 
=

\mathrm{o}\mathrm{u}\mathrm{t}

X - 1
0 (y

0
) .(3.24)

This requirement is satisfied provided

C\phi 1 = lny
0
.(3.25)

While we have used the i= - 1 branch to find C\phi 0 and C\phi 1 , these same constants
appear in the identical expression for the i = 0 branch (2.44), hence yielding the
solution for x\geq x

 \star 
without further work. Thus, substituting the values of the matching

constants C\phi 0 and C\phi 1 into (2.44), we find that the x-axis boundary layer inner solution
expressed as a function of y is

x\mathrm{b}

Xi
0(y; \epsilon ) = 1+ (1 - x \star )Wi

\biggl( 
E
\Bigl( 
 - 1 - x

\mathrm{f}

1 - x \star 

\Bigr) \biggl( y
0

y

\biggr) \epsilon 
1 - x \star 

\biggr) 
.(3.26)

Substituting the values of C\phi 0 and C\phi 1 into (2.18) gives us an alternative description
of the boundary layer dynamics as a function of x,

x\mathrm{b}

Y (x; \epsilon ) = y
0

\biggl( 
1 - x

\mathrm{f}

1 - x

\biggr) 1 - x \star 
\epsilon 

e - 
x - x

\mathrm{f}
\epsilon .(3.27)

Inserting the values of
\mathrm{c}\mathrm{o}\mathrm{r}

C 0 and
\mathrm{c}\mathrm{o}\mathrm{r}

C ln (3.15), and
\mathrm{c}\mathrm{o}\mathrm{r}

C 1 [(3.20), (3.25)], into (2.28), we
see that the corner solution near x

\mathrm{f}
is

\mathrm{l}\mathrm{c}

X (y; \epsilon ) = x
\mathrm{f}
+

x\mathrm{f}

x \star  - x\mathrm{f}

y+ \epsilon 
x

\mathrm{f}

x \star  - x\mathrm{f}

ln

\biggl( 
y

0

y

\biggr) 
,(3.28)

where, as noted in Remark 1, we use ``lc"" to emphasize that this is a ``left corner""
solution lying in the left half-plane. We will consider a right corner solution below.

Minimum susceptible proportion. The left corner solution (3.28) approximately
characterizes the trajectory near x , the point where the fraction susceptible is mini-

mized. Solving d
\mathrm{c}\mathrm{o}\mathrm{r}

X/d\upsilon = 0 (2.19), we find that its minimum occurs at \upsilon =
\bigl( 

1
x
\mathrm{f}
 - 1
\bigr) 
,

whence the minimum fraction susceptible is approximately

x
0
= x

0
(x

\mathrm{f}
) =

\mathrm{l}\mathrm{c}

X

\biggl( 
\epsilon 

\biggl( 
1

x
\mathrm{f}

 - 1

\biggr) 
; \epsilon 

\biggr) 
= x

\mathrm{f}
+ \epsilon 

\biggl( 
1 - x

\mathrm{f}

x
 \star 
 - x

\mathrm{f}

\biggr) \left[  1 + ln

\left(  \epsilon 
\Bigl( 

1
x
\mathrm{f}
 - 1
\Bigr) 

y
0

\right)  \right]  (3.29)

= x
\mathrm{f}
 - \epsilon ln \epsilon  - 1

\biggl( 
1 - x

\mathrm{f}

x
 \star 
 - x

\mathrm{f}

\biggr) 
+ \epsilon 

\biggl( 
1 - x

\mathrm{f}

x
 \star 
 - x

\mathrm{f}

\biggr) \Biggl[ 
1 + ln

\Biggl( 1
x
\mathrm{f}
 - 1

y
0

\Biggr) \Biggr] 
.

Prevalence trough. Substituting x = x
 \star 
into (3.27) gives us an approximation to

y , the minimum fraction infectious after the initial epidemic,

y
0
= y

0

\biggl( 
1 - x

\mathrm{f}

1 - x
 \star 

\biggr) 1 - x \star 
\epsilon 

e - 
x \star  - x

\mathrm{f}
\epsilon .(3.30)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

07
/2

3/
24

 to
 3

8.
12

2.
12

0.
22

6 
by

 D
av

id
 E

ar
n 

(e
ar

n@
m

at
h.

m
cm

as
te

r.
ca

).
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



1600 TODD L. PARSONS AND DAVID J. D. EARN

Point of entry into the boundary layer. With the known values of the match-
ing constants c\phi 0 (3.20) and C\phi 0 (3.17), we can write the leading term (2.15) in the
asymptotic series (2.13), by which we obtained the inner solution, as

\phi 0(x) = (x - x
\mathrm{f}
) - (1 - x \star ) ln

\biggl( 
1 - x

\mathrm{f}

1 - x

\biggr) 
.(3.31)

The inner solution ((2.10), (2.18)) is proportional to e - 
\phi 0(x)

\epsilon (see (2.13)). Con-
sequently, as we observed in subsection 2.3, the inner solution is trancendentally
small in \epsilon  - 1 on the set of x where \phi 0(x) > 0, whereas we see from (3.31) that
\phi 0(x\mathrm{f}

) = 0. Thus, (x
\mathrm{f}
, Y (x

\mathrm{f}
)) is effectively the point of entry into the boundary layer:

e - \phi 0(x\mathrm{f}
)/\epsilon = 1=\scrO (1), whereas for x> x

\mathrm{f}
(near x

\mathrm{f}
), e - \phi 0(x)/\epsilon is transcendentally small.

Point of exit from the boundary layer. In addition to x
\mathrm{f}
, \phi 0(x) has a second

root that we denote x
\mathrm{i},2

(for reasons that will become clear when we complete the
matching). The point x\mathrm{i},2 is where the trajectory exits the boundary layer: \phi 0(x)> 0
for x \in (x

\mathrm{f}
, x\mathrm{i},2), and \phi 0(x) < 0 for x > x\mathrm{i},2 . Just as we used a corner solution at x

\mathrm{f}

to characterize the transition from the outer solution to the inner solution entering
the boundary layer,7 a right corner solution at x

\mathrm{i},2
allows us to match the inner

solution to a new outer solution corresponding to the second epidemic wave. To find
an expression for x

\mathrm{i},2
we substitute x= x

\mathrm{i},2
into (3.31) and obtain

(1 - x \star ) ln
\biggl( 

1 - x
\mathrm{f}

1 - x\mathrm{i},2

\biggr) 
 - (x\mathrm{i},2  - x\mathrm{f}

) = 0.(3.32)

As in subsection 2.6, we solve this for x
\mathrm{i},2

using the Lambert W -function and find

x
\mathrm{i},2

= 1+ (1 - x
 \star 
)W0

\biggl( 
E

\biggl( 
 - 1 - x

\mathrm{f}

1 - x
 \star 

\biggr) \biggr) 
.(3.33)

3.1.3. Matching in the right half-plane (\bfitx \geq \bfitx 
\star 
). As in subsection 3.1.2, our

matched inner layer solution (3.26) can be continued to the right of x
 \star 
by switching

from the i =  - 1 to the i = 0 branch of Lambert's W . As we observed above, this
boundary layer solution is transcendentally small for x < x\mathrm{i},2 , i.e., for all y such that
x\mathrm{b}

X0
0(y; \epsilon ) < x\mathrm{i},2 . As the trajectory leaves the boundary layer, the fraction infectious

goes from transcendentally small to \scrO (1), until eventually the rate of infection exceeds
the rate of replenishment of susceptible hosts by host vital dynamics, causing a second
turn-around, where now the fraction susceptible starts to decrease. Our inner solution
fails to capture this turn-around, which we now address, as in subsection 3.1.2, with
a (right) corner solution near x

\mathrm{i},2
.

We begin by considering our solutions on a scale \eta that is intermediate between

\scrO (\epsilon ) and transcendentally small (3.16). Expanding the inner solution
x\mathrm{b}

X0
0(\eta y\eta ) as in

(3.19), we find that

x\mathrm{b}

X0
0(\eta y\eta ) = x

\mathrm{i},2
+ \epsilon 

1 - x\mathrm{i},2

x
 \star 
 - x

\mathrm{i},2

\bigl( 
lny

0
 - lny\eta 

\bigr) 
+ \epsilon ln\eta  - 1 1 - x\mathrm{i},2

x
 \star 
 - x

\mathrm{i},2

+\scrO (\epsilon 2).(3.34)

7The pedantic reader (or author) might observe that the corner solution was obtained by assum-
ing that y=\scrO (\epsilon ), whereas the outer and inner solutions correspond to y=\scrO (1) and transcendentally
small y, respectively. This apparent incongruity is reconciled by considering the solutions in a very

small neighborhood of x\mathrm{f} : for C > 0, exp( - \phi 0(x\mathrm{f}
+C\epsilon \mathrm{l}\mathrm{n} \epsilon  - 1)

\epsilon 
) = \scrO (\epsilon ), and it is in this \scrO (\epsilon ln \epsilon  - 1)

neighborhood of x\mathrm{f} that the solutions match, which is reflected in the scaling (3.14) required when
matching the solutions in subsection 3.1.2.
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PHASE PLANE TRAJECTORIES FOR THE SIR MODEL 1601

Comparing this expansion to the corner series (3.13), we see that a maximal matching
is obtained by taking

\mathrm{c}\mathrm{o}\mathrm{r}

C 0 = x
\mathrm{i},2
,

\mathrm{c}\mathrm{o}\mathrm{r}

C ln =
1 - x

\mathrm{i},2

x \star  - x\mathrm{i},2

, and
\mathrm{c}\mathrm{o}\mathrm{r}

C 1 =
1 - x

\mathrm{i},2

x \star  - x\mathrm{i},2

lny
0
.(3.35)

Substituting these values in (3.13) gives us the right corner solution,

\mathrm{r}\mathrm{c}

X (y; \epsilon ) = x\mathrm{i},2 +
x

\mathrm{i},2

x \star  - x\mathrm{i},2

y+ \epsilon 
1 - x

\mathrm{i},2

x \star  - x\mathrm{i},2

ln

\biggl( 
y

0

y

\biggr) 
+\scrO (\epsilon 2) .(3.36)

Beyond the turn-around at the corner, we are again in the domain of validity

of the outer solution
\mathrm{o}\mathrm{u}\mathrm{t}

X i
0(y) (2.43), where we now use the i =  - 1 branch as we are

matching in the right half-plane. To match corner and outer solutions, we choose
\epsilon \ll \eta \ll 1 and set y= \eta y\eta . As we did for C\phi 0 in the inner solution in subsection 3.1.2,
equation (3.17), we make a change of constants,

\mathrm{o}\mathrm{u}\mathrm{t}

C0 =
\mathrm{o}\mathrm{u}\mathrm{t}

c0  - x \star ln
\mathrm{o}\mathrm{u}\mathrm{t}

c0 ,(3.37)

in (2.43) to get

\mathrm{o}\mathrm{u}\mathrm{t}

X - 1
0 (\eta y\eta ) = - x \star W - 1( - (

\mathrm{o}\mathrm{u}\mathrm{t}

c0/x \star )e
 - 

\mathrm{o}\mathrm{u}\mathrm{t}
c0  - \eta y\eta 

x \star ) = - x \star W - 1

\bigl( 
E
\bigl( 
 - (

\mathrm{o}\mathrm{u}\mathrm{t}

c0/x \star )
\bigr) 
e

\eta y\eta 
x \star 

\bigr) 
.(3.38)

Expanding this expression using (2.38) and (2.40) then gives us

\mathrm{o}\mathrm{u}\mathrm{t}

X - 1
0 (\eta y\eta ) =

\mathrm{o}\mathrm{u}\mathrm{t}

c0 + \eta 

\mathrm{o}\mathrm{u}\mathrm{t}

c0

x \star  - 
\mathrm{o}\mathrm{u}\mathrm{t}

c0
y\eta +\scrO (\eta 2) .(3.39)

Substituting y= \eta y\eta in (3.36) and expanding exactly as in (3.13), we find that (3.36)
and (3.39) agree to order \scrO (\eta ) provided

\mathrm{o}\mathrm{u}\mathrm{t}

c0 = x
\mathrm{i},2
.(3.40)

Thus, the matched solution is

\mathrm{o}\mathrm{u}\mathrm{t}

X - 1
0 (y,x

\mathrm{i},2
,0) = - x

 \star 
W - 1

\Bigl( 
E
\bigl( 
 - x

\mathrm{i},2
/x

 \star 

\bigr) 
ey/x \star 

\Bigr) 
.(3.41)

As in our derivation of the left solution
\leftarrow  - 
X (y; \epsilon ) (3.23), we sum the outer (3.41), in-

ner (3.26), and corner (3.36) solutions and subtract their overlaps to obtain a uniform
asymptotic solution to the right of x

 \star 
,

 - \rightarrow 
X (y; \epsilon ) =

\mathrm{o}\mathrm{u}\mathrm{t}

X - 1
0 (y,x

\mathrm{i},2
) +

x\mathrm{b}

X0
0(y; \epsilon ) - x\mathrm{i},2

.(3.42)

Smoothly joined approximations. We now have consistent approximations to the
trajectory that starts from (x\mathrm{i} , y\mathrm{i}). From the initial time until the peak prevalence is
reached, the trajectory is in the right half-plane and we use the KM solution (3.5) for
the model without vital dynamics (\epsilon = 0). We then continue into the left half-plane

using
\leftarrow  - 
X (y; \epsilon ) (3.23) until the first prevalence trough is reached at x = x \star , where we

switch to
 - \rightarrow 
X (y; \epsilon ) (3.42) to approximate the rising segment of the second epidemic.

The switches from one approximation to another are differentiable and always occur
when x = x

 \star 
, and the combined approximation is uniformly valid (i.e., valid to the
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1602 TODD L. PARSONS AND DAVID J. D. EARN

same order throughout the phase plane). We compare
\leftarrow  - 
X (y; \epsilon ) (3.23) and

 - \rightarrow 
X (y; \epsilon )

(3.42) to numerically evaluated trajectories in Figure 4(a).

Effective initial conditions. Comparing
\mathrm{o}\mathrm{u}\mathrm{t}

X - 1
0 (y,x

\mathrm{i},2
,0) (3.41) to

\mathrm{o}\mathrm{u}\mathrm{t}

X i
0(y,x\mathrm{i}

, y
\mathrm{i}
) (3.6),

we see that (x
\mathrm{i},2
,0) is an effective initial condition for the second epidemic: if (x

\mathrm{i},2
,0)

were used as the initial state in the KM (\epsilon = 0) solution, the resulting trajectory would
meet the second rise of the actual solution as it curves up from the left in the phase
plane at (approximately) x0 (see below). Thus, while (x\mathrm{i},2 ,0) is not a point on the
actual trajectory, it represents an ``effective"" initial condition that would give rise to
the true dynamics after the end (i.e., trough) of the first epidemic. This observation
motivates our choice of notation x

\mathrm{i},2
.

Maximum fraction susceptible. Just as the minimum value of the left corner so-
lution near x

\mathrm{f}
(3.28) gives an estimate of x (3.29), the maximum value for the right

corner solution near x\mathrm{i},2 (3.36) gives us an estimate of x , the maximum fraction
susceptible before a second epidemic wave,

x
0
= x

0
(x

\mathrm{i},2
) = x

\mathrm{i},2
 - \epsilon 1 - x\mathrm{i},2

x
\mathrm{i},2
 - x

 \star 

\biggl( 
1 + ln

\biggl( 
\epsilon 

\biggl( 
1

x
\mathrm{i},2

 - 1

\biggr) \Big/ 
y

0

\biggr) \biggr) 
,(3.43)

which occurs at y= \epsilon 
\bigl( 

1
x
\mathrm{i},2
 - 1
\bigr) 
.

Peak prevalence for the second wave. Writing (3.41) as a function of x via KM's
formula (3.5),

\mathrm{o}\mathrm{u}\mathrm{t}

Y0(x) = x
\mathrm{i},2
 - x+ x

 \star 
ln (x/x

\mathrm{i},2
),(3.44)

we can also obtain an approximation of the second epidemic's prevalence peak,

y
0,2
\approx x

\mathrm{i},2
 - x

 \star 
(1 + ln (x

\mathrm{i},2
/x

 \star 
)) .(3.45)

3.1.4. Matching beyond the first epidemic wave. Our uniform matched
asymptotic solutions,

\leftarrow  - 
X (3.23) and

 - \rightarrow 
X (3.42), were derived for the first epidemic

wave starting from (x
\mathrm{i}
, y

\mathrm{i}
). However, a straightforward observation allows us to use

the formulae for
\leftarrow  - 
X and

 - \rightarrow 
X for the entire trajectory (i.e., all epidemic waves). Other

than x \star and \epsilon (or the more fundamental parameters\scrR 0 and \varepsilon ), the only parameters on
which our approximations depend are the initial condition (x\mathrm{i} , y\mathrm{i}), the approximate
maximum size of the epidemic (y

0
) (equation (3.7)), the final size of the epidemic

without vital dynamics (x
\mathrm{f}
) (equation (3.8)), and the effective initial condition for

the next epidemic (x
\mathrm{i},2
) (equation (3.33)).

Epidemic iteration. We write x
\mathrm{i},j

for the effective initial condition associated with
the jth epidemic wave. Setting xi,1 = xi, yi,1 = yi, and yi,j = 0 for j > 1, we iteratively
obtain xi,j+1 from xi,j and yi,j by computing

x
\mathrm{f},j

= x
\mathrm{f}
(x

\mathrm{i},j
, y

\mathrm{i},j
) = - x

 \star 
W0

\bigl( 
E ( - x

\mathrm{i},j
/x

 \star 
)ey\mathrm{i},j /x \star 

\bigr) 
,(3.46a)

y
0,j

= y
0
(x

\mathrm{i},j
, y

\mathrm{i},j
) = y

\mathrm{i},j
+ x

\mathrm{i},j
 - x

 \star 

\bigl( 
1 + ln (x

\mathrm{i},j
/x

 \star 
)
\bigr) 
,(3.46b)

x
\mathrm{i},j+1

= 1+ (1 - x
 \star 
)W0

\biggl( 
E

\biggl( 
 - 1 - x

\mathrm{f},j

1 - x \star 

\biggr) \biggr) 
.(3.46c)

The intermediate quantities, x
\mathrm{f},j

and y
0,j
, are the final fraction susceptible and maxi-

mal fraction infectious, respectively, for the SIR model without vital dynamics (\varepsilon = 0)
with initial condition (x\mathrm{i},j , y\mathrm{i},j ).
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PHASE PLANE TRAJECTORIES FOR THE SIR MODEL 1603

Substituting these expressions (3.46) into
\leftarrow  - 
X (3.23) and

 - \rightarrow 
X (3.42) provides uniform

matched asymptotic approximations to the full jth epidemic wave for all j \geq 1:
\leftarrow  - 
X

maps to [x
0,j
, x

 \star 
] and

 - \rightarrow 
X maps to [x

 \star 
, x

0,j
], where

x
0,j

= x
0
(x

\mathrm{f},j
, y

0,j
) = x

\mathrm{f},j
+ \epsilon 

1 - x
\mathrm{f},j

x \star  - x\mathrm{f},j

\biggl( 
1 + ln

\biggl( 
\epsilon 

\biggl( 
1

x
\mathrm{f},j

 - 1

\biggr) \big/ 
y

0,j

\biggr) \biggr) 
,(3.47a)

x0,j = x0(x\mathrm{i},j+1 , y0,j
) = x\mathrm{i},j+1  - \epsilon 

1 - x
\mathrm{i},j+1

x\mathrm{i},j+1  - x \star 

\biggl( 
1 + ln

\biggl( 
\epsilon 

\biggl( 
1

x\mathrm{i},j+1

 - 1

\biggr) \big/ 
y

0,j

\biggr) \biggr) 
.

(3.47b)

Poincar\'e map. If we think of the y nullcline (x = x
 \star 
) as a surface of section, we

can use (3.46) to explicitly write down the associated Poincar\'e map. Using (3.30), we
define

y
0,j

= y
0
(x

\mathrm{f},j
, y

0,j
) = y

0,j

\Bigl( 1 - x
\mathrm{f},j

1 - x
 \star 

\Bigr) 1 - x \star 
\epsilon 

e - 
x \star  - x

\mathrm{f},j
\epsilon .(3.48)

We can then iteratively define the time-forward Poincar\'e map on the y nullcline via

y
0,1
\rightarrow y

0,1
\rightarrow y

0,2
\rightarrow y

0,2
\rightarrow y

0,3
\rightarrow y

0,3
\rightarrow \cdot \cdot \cdot .(3.49)

3.2. Improved matching including the \bfity -axis boundary layer solution.
We conclude our analysis with a second matching that includes the boundary layer

solution along the y-axis,
y\mathrm{b}

X0(y), (2.8), which contributes logarithmic terms similar
to those provided by the corner solution (2.28) that facilitated our previous matching
in (3.13). For biologically relevant parameters, this new matching improves signifi-

cantly upon our formulae for
\leftarrow  - 
X , (3.23), and

 - \rightarrow 
X , (3.42).

Having a boundary layer along the y-axis is sensible only for trajectories that
approach the y-axis. Consequently, when studying this layer, unlike previously (sub-
section 3.1), we are now assuming implicitly that x

\mathrm{f}
= \scrO (\epsilon ) (since x

\mathrm{f}
< x and no

trajectory gets closer than x to the y-axis). In particular, since

x
\mathrm{f}
= - x

 \star 
W0

\biggl( 
E

\biggl( 
 - x\mathrm{i}

x
 \star 

\biggr) 
e - y\mathrm{i}/x \star 

\biggr) 
= - 1

\scrR 0
W0(E ( - \scrR 0x\mathrm{i}

)e - \scrR 0y\mathrm{i} )(3.50)

= x\mathrm{i}e
 - \scrR 0(x\mathrm{i}

+y
\mathrm{i}
) +\scrO (\scrR 0x

2
\mathrm{i}
e - 2\scrR 0(x\mathrm{i}

+y
\mathrm{i}
)),

and x\mathrm{i} + y\mathrm{i} \leq 1, we are implicitly assuming that e - \scrR 0 = \scrO (\epsilon ) or, equivalently, \scrR 0 =
\scrO (ln \epsilon  - 1). For the diseases listed in Table 1, \scrR 0/ ln \epsilon 

 - 1 ranges from \simeq 0.17 (for
pneumonic plague and influenza) to \simeq 1.7 (for measles and pertussis), suggesting it is
not unreasonable to assume \scrR 0/ ln \epsilon 

 - 1 =\scrO (1). In Figure 4, \scrR 0/ ln \epsilon 
 - 1 \simeq 0.38 in the

top panels and \simeq 1.7 in the bottom panels.
As with our original matching (subsection 3.1), we use the outer solution expressed

as a function of y,
\mathrm{o}\mathrm{u}\mathrm{t}

X i
0(y) (3.6), and since we are matching in the left half-plane

(x\leq x
 \star 
), we set i= 0. Matching

\mathrm{o}\mathrm{u}\mathrm{t}

X0
0(y) with the y-axis boundary layer solution

y\mathrm{b}

X0(y)
(2.8) is uncharacteristically simple: the two are of different asymptotic orders (\scrO (1)
and \scrO (\epsilon )), and the solutions have no overlap. The matched solution is thus their sum,

with the constant
y\mathrm{b}

C0 as yet undetermined.
We set

y\mathrm{b}

C0 = - E1

\biggl( 
y

0

x
 \star 

\biggr) 
(3.51)
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1604 TODD L. PARSONS AND DAVID J. D. EARN

so that
y\mathrm{b}

X0(y) vanishes when evaluated at (x \star , y0
) and consequently the sum

\mathrm{o}\mathrm{u}\mathrm{t}

X0
0(y) +

y\mathrm{b}

X0(y) agrees at (x \star , y0
) with

\mathrm{o}\mathrm{u}\mathrm{t}

X - 1
0 (y) (3.6), the corresponding focal approximation in

the right half-plane (x\geq x \star ). Thus,
y\mathrm{b}

X0(y) becomes

y\mathrm{b}

X0(y) =
\epsilon 

x \star 
e - y/x \star 

\biggl( 
E1

\biggl( 
y

x \star 

\biggr) 
 - E1

\biggl( 
y

0

x \star 

\biggr) \biggr) 
.(3.52)

With the choice (3.51) for
y\mathrm{b}

C0, the sum

Xin(y; \epsilon ) :=
\mathrm{o}\mathrm{u}\mathrm{t}

X0
0(y) +

y\mathrm{b}

X0(y)(3.53)

= - x
 \star 
W0

\biggl( 
E

\biggl( 
 - x\mathrm{i}

x
 \star 

\biggr) 
e(y - y\mathrm{i} )/x \star 

\biggr) 
+ \epsilon 

ey/x \star 

x
 \star 

\biggl( 
E1

\biggl( 
y

x
 \star 

\biggr) 
 - E1

\biggl( 
y

0

x
 \star 

\biggr) \biggr) 
is a very good approximation to the trajectory, except in the x-axis boundary layer.
Elsewhere [25], we use (3.53) to approximate the fraction susceptible at the point of
entry into the set \{ (x, y) : y\leq y

 \star 
\} (hence ``in"").

We next match with the inner solution expressed as a function of y,
x\mathrm{b}

X - 1
0 (y) (2.44)

(now the i =  - 1 branch gives the solution with x \leq x
 \star 
), for which we obtained the

asymptotic expansion for y= \eta y\eta previously, (3.19).
To expand the matched outer and y-axis boundary layer solutions (3.53), we

introduce the complementary exponential integral [23, 6.2.4],

Ein(z) =

\int z

0

1 - e - u
u

du,(3.54)

an entire function that satisfies Ein(z) = z +\scrO (z2) and

E1(z) = Ein(z) - lnz  - \gamma ,(3.55)

where \gamma \simeq 0.57721 is the Euler--Mascheroni constant [23, 5.9.18] (not the recovery
rate in the SIR model (1.1)). Using (3.55), (3.53) becomes

Xin(y; \epsilon ) = x
\mathrm{f}
+ \eta 

\biggl( 
x

\mathrm{f}

x
 \star 
 - x

\mathrm{f}

\biggr) 
y\eta + \epsilon ln\eta  - 1 1

x
 \star 

+\epsilon 
1

x
 \star 

\biggl( 
lny

0
 - lny\eta +Ein

\biggl( 
y

0

x
 \star 

\biggr) \biggr) 
+\scrO (\epsilon \eta ).

(3.56)

Comparing this expression with the asymptotic series expansion for the x-axis bound-
ary layer solution (3.19), we see that the coefficient of lny\eta appears to be different in
the two expansions ( \epsilon x \star 

in (3.56) versus \epsilon 1 - x\mathrm{f}

x \star  - x\mathrm{f}
in (3.19)). This apparent difference is a

consequence of the assumption implicit throughout this section that x
\mathrm{f}
=\scrO (\epsilon ), which

implies that \epsilon 1 - x\mathrm{f}

x \star  - x\mathrm{f}
= \epsilon 

x \star 
+ \scrO (\epsilon 2), so the two coefficients are in fact asymptotically

equal. With this in mind, we see that, as in the original matching,
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PHASE PLANE TRAJECTORIES FOR THE SIR MODEL 1605

c\phi 0 = x
\mathrm{f}
,(3.57)

from which we obtain C\phi 0 via (3.17), whereas now

C\phi 1 = lny
0
 - Ein

\biggl( 
y

0

x
 \star 

\biggr) 
.(3.58)

Substituting c\phi 0 and C\phi 1 into (2.44) yields

x\mathrm{b}

Xi
0(y) = 1+ (1 - x

 \star 
)Wi

\Biggl( 
E

\biggl( 
 - 1 - x

\mathrm{f}

1 - x
 \star 

\biggr) \biggl( 
y

0

y

\biggr) \epsilon 
1 - x \star 

e
 - \epsilon 

1 - x \star 
Ein(y

0
/x \star )

\Biggr) 
.(3.59)

This expression differs from the matched boundary layer solution
x\mathrm{b}

X - 1
0 (y) (3.26) by

an additional factor

e
 - \epsilon 

1 - x \star 
Ein(y

0
/x \star ) = 1 - \epsilon 

1 - x \star 
Ein

\biggl( 
y

0

x \star 

\biggr) 
+\scrO (\epsilon 2),(3.60)

which multiplies the argument of theW -function, giving an\scrO (\epsilon ) refinement to
x\mathrm{b}

X - 1
0 (y).

Summing the outer and two inner solutions and subtracting the common overlap
yields a solution uniformly valid to the left of x= x \star ,

\leftarrow  - 
X (y; \epsilon ) =

\mathrm{o}\mathrm{u}\mathrm{t}

X0
0(y) +

y\mathrm{b}

X0(y) +
x\mathrm{b}

X - 1
0 (y) - x

\mathrm{f}
+

\epsilon 

x
 \star 

\biggl( 
ln

\biggl( 
y

y
0

\biggr) 
+Ein

\biggl( 
y

0

x
 \star 

\biggr) \biggr) 
.(3.61)

This solution can be extended the right half-plane (x \geq x \star ) using the i = 0 branch
of (2.44), with c\phi 0 , C

\phi 
0 , and C\phi 1 as determined above. The matching to the second

epidemic wave then proceeds identically to subsection 3.1.3 (except that the argument

of the inner solution now has the additional factor e
 - \epsilon 

1 - x \star 
Ein(y

0
/x \star )), resulting in

 - \rightarrow 
X (y; \epsilon ) =

\mathrm{o}\mathrm{u}\mathrm{t}

X - 1
0 (y) +

x\mathrm{b}

X0
0(y) - x\mathrm{i},2

.(3.62)

We summarize these results in Table 3 and compare them to the numerically evaluated
trajectories in Figure 4(b).

Subsequent epidemic waves. Just as before (subsection 3.1.4), these solutions can
be extended to subsequent epidemic waves, replacing y

0
, x

\mathrm{f}
, and x\mathrm{i},2 by y

0,j
, x

\mathrm{f},j
, and

x
\mathrm{i},j+1

defined using the iterative scheme in (3.46a)--(3.46c).

4. Discussion. Nonlinear differential equations can rarely be solved exactly.
Creative analyses leading to approximate analytical solutions were once the only way
to study nonlinear systems (see [24, pp. 201--204] for a very concise history), but inter-
est in such approximations has diminished as computers have become more powerful
and software for efficient and accurate numerical solution of differential equations has
become so easily accessible. However, closed-form analytical expressions can often
lead to valuable insights and can facilitate further analyses that would be impossible
or exceedingly challenging to conduct numerically.

We have derived new, fully analytical approximations for the phase plane dy-
namics of the SIR model with vital dynamics. In Table 2, we list our expressions
for key epidemiological quantities, including peaks and troughs of the susceptible and
infectious proportions of the host population. We present a closed-form analytical
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1606 TODD L. PARSONS AND DAVID J. D. EARN

approximation to the Poincar\'e map for the SIR model in subsection 3.1.4. A highly
accurate approximation to the susceptible proportion as the trajectory enters the x-
axis boundary layer is given in (3.53) and is a critical ingredient in a stochastic disease
persistence analysis that we present elsewhere [25].

Our approach has involved matching asymptotic expansions across branch cuts
of a special function (the Lambert W function, subsection 2.5). To our knowledge,
this is the first example of asymptotic matching across branch cuts.

We have considered only the standard SIR model, but the techniques we have
presented can be adapted to other compartmental ODE models. The essential ingre-
dients are a biologically plausible small parameter (e.g., \varepsilon (1.3) or \epsilon (1.6), as considered
here, or the rate of waning of immunity after infection or vaccination) and an ana-
lytically tractable outer solution (e.g., the KM solution to the SIR model without
vital dynamics (3.5), as used here, or solutions of other simple models with nonlinear
incidence rates [28]). We will explore such possibilities in further work.

Appendix A. The failure of direct series in the \bfitx -axis boundary layer.
Knowing that the equilibrium infective frequency y

 \star 
is \scrO (\epsilon ) (1.8b), we might plausibly

posit a boundary layer solution

x\mathrm{b}

Y (x; \epsilon ) = \epsilon \Upsilon (x; \epsilon ) ,(A.1)

where \Upsilon =\scrO (1). Substituting \epsilon \Upsilon for Y in (1.10) yields

\epsilon ((1 - x) - x\Upsilon (x; \epsilon ))
d\Upsilon 

dx
= (x - x

 \star 
)\Upsilon (x; \epsilon ) .(A.2)

Searching for an asymptotic series solution in powers of \epsilon ,

\Upsilon (x; \epsilon ) =

\infty \sum 
j=0

\Upsilon j(x)\epsilon 
j ,(A.3)

and collecting terms of common order \epsilon j yields, for j = 0,

0 = (x - x \star )\Upsilon 0(x) ,(A.4a)

which implies that \Upsilon 0(x) \equiv 0. Now, suppose that \Upsilon 0(x) \equiv \cdot \cdot \cdot \equiv \Upsilon j - 1(x) \equiv 0; then,
for j \geq 1, collecting terms of order \epsilon j in (A.2) yields

0 = (x - x \star )\Upsilon j(x) .(A.4b)

By induction, it follows that \Upsilon j(x)\equiv 0 for all j, and hence that
x\mathrm{b}

Y (x; \epsilon )\equiv 0, which
is a contradiction. We must conclude that our assumption in (A.3) that \Upsilon (x; \epsilon ) can
be expanded in a series of powers of \epsilon is incorrect.
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PHASE PLANE TRAJECTORIES FOR THE SIR MODEL 1607

Appendix B. Summary table of matching constants. Table 4 lists the
matching constants.

Table 4
Matching constants for initial conditions (x\mathrm{i} , y\mathrm{i} ). Subscripts (0, ln, 1) refer to asymptotic orders,

oversets (out, cor, yb) refer to regions where the associated asymptotic expressions are valid, and the
superscript (\phi ) refers to expansion of the auxiliary function \phi (x; \epsilon ) (2.10). Left and right indicate
constants appearing in the left and right corner solutions, while 2nd indicates constants for the
second epidemic wave. See Table 2 for x \star , x\mathrm{f} , y

0
, and x\mathrm{i},2 expressed in terms of \scrR 0 and \epsilon . The

final expressions with these values for the matching constants are listed in Table 3.

Constant Expression Equations
\mathrm{o}\mathrm{u}\mathrm{t}

C0 y\mathrm{i} + x\mathrm{i}  - x \star lnx\mathrm{i} (2.3), (2.43), (3.4)
\mathrm{c}\mathrm{o}\mathrm{r}

C 0 (left) x\mathrm{f} (2.21), (2.28), (3.15)
\mathrm{c}\mathrm{o}\mathrm{r}

C \mathrm{l}\mathrm{n} (left)
1 - x

\mathrm{f}
x \star  - x

\mathrm{f}
(2.28), (3.15)

\mathrm{c}\mathrm{o}\mathrm{r}

C 1 (left)
1 - x

\mathrm{f}
x \star  - x

\mathrm{f}
lny

0
(2.28), (3.20), (3.25)

c\phi 0 x\mathrm{f} (3.20)

C\phi 
0 x\mathrm{f}  - (1 - x \star ) ln (1 - x\mathrm{f} ) (2.15), (2.18), (2.44), (3.17), (3.20)

C\phi 
1 lny

0
(2.16), (2.18), (2.44), (3.25)

\mathrm{c}\mathrm{o}\mathrm{r}

C 0 (right) x\mathrm{i},2 (2.21), (2.28), (3.35)
\mathrm{c}\mathrm{o}\mathrm{r}

C \mathrm{l}\mathrm{n} (right)
1 - x

\mathrm{i},2

x \star  - x
\mathrm{i},2

(2.28), (3.35)

\mathrm{c}\mathrm{o}\mathrm{r}

C 1 (right)
1 - x

\mathrm{i},2

x \star  - x
\mathrm{i},2

lny
0

(2.28), (3.35)

\mathrm{o}\mathrm{u}\mathrm{t}

C0 (2nd) x\mathrm{i},2 (2.3), (2.43)
\mathrm{o}\mathrm{u}\mathrm{t}
c0 (2nd) x\mathrm{i},2  - x \star lnx\mathrm{i},2 (3.37), (3.38), (3.40)

y\mathrm{b}

C0  - E1(
y
0

x \star 
) (2.8), (3.51)

C\phi 
1 (y-axis matching) lny

0
 - Ein(

y
0

x \star 
) (2.16), (2.18), (2.44), (3.58)
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