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Epidemiologists usually study the interaction between a host population and one parasitic infection.
However, di¡erent parasite species e¡ectively compete, in an ecological sense, for the same ¢nite group of
susceptible hosts, so there may be an indirect e¡ect on the population dynamics of one disease due to
epidemics of another. In human populations, recovery from any serious infection is normally preceded by
a period of convalescense, during which infected individuals stay at home and are e¡ectively shielded
from exposure to other infectious diseases.We present a model for the dynamics of two infectious diseases,
incorporating a temporary removal of susceptibles. We use this model to explore population-level
consequences of a temporary insusceptibility in childhood diseases, the dynamics of which are partly
driven by di¡erences in contact rates in and out of school terms. Signi¢cant population dynamic inter-
ference is predicted and cannot be dismissed in the limited case-study data available for measles and
whooping cough in England before the vaccination era.
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1. INTRODUCTION

Childhood viral and bacterial infections remain an
important public health problem and their dynamics also
have broader scienti¢c implications. In recent years,
analyses of mathematical models (and comparisons with
incidence data) have uncovered fundamental mechanisms
that control the dynamics and persistence of parasitic
infections (Bartlett 1957; London & Yorke 1973; Dietz
1979; Scha¡er & Kot 1985; McLean & Anderson 1988;
Diekmann & Kretzschmar 1991; Anderson & May 1991;
Levin & Durrett 1996; Hethcote 1997; Grenfell &
Harwood 1997; Earn et al. 1998). Using a theoretical
approach, it has been possible to explore the relative
bene¢ts of di¡erent potential immunization strategies. Is
it best, for example, to vaccinate all children at a speci¢c
age or to vaccinate children of all ages simultaneously at
regular intervals? Should all geographical locations be
treated identically or should there be a greater emphasis
placed on urban compared to rural areas? Mathematical
models have been useful for estimating a critical vaccina-
tion level that will eradicate an infection (May &
Anderson 1984; Hethcote 1988; Anderson & May 1991;
Agur et al. 1993; Nokes & Swinton 1997; Stone et al. 1998).

Such epidemiological studies usually address the
dynamics of one infection at a time. There has been
signi¢cant and interesting work on mixed infections and
cross-immunityöwhen an individual has been infected
by more than one aetiological agentöbut these studies
have focused on the immunological interaction between
more than one strain of the same parasite; di¡erent
strains of malaria and in£uenza are particularly

interesting in this respect (Dietz 1979; Anderson & May
1991; Gupta et al. 1994; Taylor et al. 1997; Andreasen et al.
1997; Gilbert et al. 1998).

By contrast, in this paper we investigate non-
immunological disease interactions based on ecological
considerations that show up only at the population level.
The primary mechanism for this disease `interference'
centres on the convalescence period: following an
infection, convalescing individualsöwho are essentially
quarantined at homeöare almost completely isolated
from the rest of the population. To a good approximation,
such individuals are temporarily insusceptible to other
infections (Feng & Thieme 1995). Given that di¡erent
parasites compete for hosts, during a major national
outbreak of one disease, thousands of susceptibles are
e¡ectively unavailable to other parasites for a period of
time. This prompts us to ask: what are the potential
population-dynamic e¡ects of periods of insusceptibility
on host^multi-microparasite systems?

This question is potentially relevant to numerous
diseases, but we concentrate here on its consequences for
common childhood respiratory infections, such as measles
and whooping cough. We present a new model in which
susceptibles may be infected by two di¡erent diseases,
and try to identify signatures of population-level inter-
ference between the diseases. Speci¢cally, we are inter-
ested in possible changes in the dynamics that may be
induced by the presence of another parasite. Is it possible,
for example, that the population-level interaction
between two diseases can change the frequency of disease
outbreaks? Are two diseases likely to be synchronized due
to the strength of seasonality in contact rates or will
interference prevent large outbreaks from occurring
simultaneously in the same year?
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2. BIOLOGICAL MOTIVATION FOR THE MODEL

In the classic SEIR model, the host population is divided
into four epidemiologic compartments, comprising indivi-
duals who are susceptible to a given disease (S), exposed
but not yet infectious (E), infective (I) or recovered and
immune (R) (Anderson & May 1991). We add a ¢fth
compartment containing individuals who are convales-
cent (C). If only one disease is present then our `SEICR'
model will behave identically to the standard `SEIR'
model. If other diseases are present, however, then
quarantine of convalescents becomes important. To allow
for potential interference among di¡erent diseases, we
must further subdivide the host population according to
infection history relative to each disease. Here, we restrict
ourselves to two diseases, which we label `1' and `2'.

In developing our model, we have envisaged a simpli-
¢ed natural history of infection for each disease (¢gure 1):

(i) a susceptible individual enters the exposed class, and
has negligible probability of contracting the second
disease simultaneously.

(ii) after the latent period, the individual becomes infec-
tious but is not yet symptomatic and still has
negligible probability of contracting the other
disease.

(iii) when symptoms appear and the disease is diagnosed
the individual is sent home to convalesce.

(iv) after recovering, the individual reactivates suscept-
ibility to the other disease, if previously unexposed
to it.

Note that for greater tractability, we have assumed that
temporary insusceptibility to a second infection begins as
soon as an individual is exposed to the ¢rst, whereas the
period of isolation does not begin until the individual is
quarantined at home. This assumption is not unrealistic.

In reality, it is likely that increased non-speci¢c immuno-
logical activity following an acute infection will make it
di¤cult for another infection to become established.
Clearly, there are some well known examples of opportu-
nisticöusually bacterialöinfections that invade those
already infected (such as in£uenza and pneumonia), but
these are relatively rare, especially in childhood infec-
tions.

Our model has three categories of susceptibles: those
who have not contracted either infection and hence are
susceptible to both (S1;2) and those who have been
previously infected by one disease (and have now recov-
ered) but are still susceptible to the other (Si;R, i � 1; 2).
(In our notation, the ¢rst index refers to one disease and
the second to the status with respect to the other infec-
tion.) Thus, the numbers of individuals in these compart-
ments change according to

dS1;2
dt
� �N ÿ

�X2
i�1

�i(t)Ii=N � �
�
S1,2, (1)

dSi;R
dt
� �jCj;T ÿ (�i(t)Ii=N � �)Si,R. (2)

Here � and � represent the per capita birth and death
rates respectively, N is the total population size, Ii denotes
the total number of individuals infected with disease i
and �i(t) gives its transmission rate. The equation for Si;R
includes the rate, �j, at which those previously infected
with disease j leave the convalescent class Cj;T (where T
signi¢es temporary insusceptibility to the other disease)
and enter the susceptible class for disease i. The convales-
cent period for disease j is 1=�j. Similarly, there are two
categories of infectives for each disease: those who have
never contracted the other disease (Ii;T, i � 1; 2) and
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Figure 1. Schematic representation of the main epidemiologic compartments in the two-disease model. For the sake of simplicity,
we have omitted the exposed and convalescent classes.



those who are now immune to it because they have
acquired it previously (Ii;R, i � 1; 2):

dIi;T
dt
� �iEi;T ÿ (�� i)Ii;T, (3)

dIi;R
dt
� �iEi;R ÿ (�� i)Ii;R. (4)

Here, 1=�i and 1=i are the latent and infectious periods
for disease i. (Note that in equations (1) & (2) and else-
where we have used Ii � Ii;T � Ii;R.) The key aspect of the
new model is, of course, that there are independent equa-
tions describing the dynamics of convalescents:

dCi;T

dt
� iIi;T ÿ (�� �i)Ci;T: (5)

The full list of variables and parameters together with the
set of thirteen di¡erential equations describing the system
are presented in tables 1, 2 and 3. A simpli¢ed schematic
representation of the model is given in ¢gure 1.

The structure of our model is similar to that of Dietz
(1979), who was concerned with instances when immuno-
logical interactions within hosts cause temporary
insusceptibility to other strains of the same parasite. Dietz
based his model on the simpler SIR framework without
exposed and convalescent classes, and deduced dynamical
equilibria in the absence of seasonality in contact rates.
For childhood diseases, however, the seasonal pattern of
contacts among school children is fundamentally impor-
tant (Bartlett 1957; London & Yorke 1973; Bolker 1993;
Grenfell et al. 1995; Finkensta« dt & Grenfell 1998;
Finkensta« dt et al. 1998) and is included in our analysis.We
use a strict `term-time forcing' function, as introduced by
Schenzle (1984): contact rates are high on school days
and low on other days.

A di¡erent model, concerned with the possible e¡ects
of convalescence on the dynamics of a single disease, has
been explored previously by Feng & Thieme (1995). They
de¢ned the number of àctive' individuals in the
population (A) as the total population size minus those in
the convalescent class (A � N ÿ C) and they scaled the
transmission parameter (�) with A rather than the
constant N (the idea being that only active individuals
are homogeneously mixed). This formulation yields a
time-varying transmission rate even without explicit
forcing and so, with a non-zero convalescent period,
epidemic cycles are possible without making � explicitly
time dependent. We have not adopted this formalism
since we see no reason to assume that the removal of a
fraction of the population will in fact increase the likeli-
hood of susceptibles coming into contact with infecteds.

In the next section, we use our model to explore the
dynamics of two childhood infections that have the same
basic reproductive ratio (R0) but di¡er in infectiousness and
infectious period: disease 1 has a shorter infectious period
than disease 2 (1 > 2), but is more infectious
(�1(t) > �2(t)). In our model, disease 1 is likened to measles
and disease 2 is based on whooping cough (pertussis).

3. MODEL STRUCTURE AND DYNAMICS

Interference can be identi¢ed only by comparison with
the dynamics of each infection in isolation, so we ¢rst use
the deterministic SEIR model and term-time forcing
(Schenzle 1984) to summarize the behaviour of each
disease when the other is not present, for a range of
seasonal forcing amplitudes (London & Yorke 1973;
Kuznetsov & Piccardi 1994; Li & Muldowney 1995).

(a) Single-disease dynamics
For su¤ciently high seasonal amplitude (b1), disease 1

exhibits biennial outbreaks, with a major outbreak every

Dynamics of childhood diseases P. Rohani and others 2035

Proc. R. Soc. Lond. B (1998)

Table 1. Variables in the two-disease model, with i � 1; 2 and
j 6� i:

variable description

S1;2 susceptible to both infections
Si;R susceptible to disease i, recovered from j
Ei;T exposed to i, temporarily insusceptible to j
Ei;R exposed to i, recovered from j
Ii;T infectious with i, temporarily insusceptible to j
Ii;R infectious with i, recovered from j
Ci;T convalescing from i, temporarily insusceptible to j

Table 2. Di¡erential equations in the two-disease model
(i � 1; 2 and j 6� i).

equation description

dS1;2
dt
� �N ÿ

X2
i�1

�i(t)Ii=N � �
 !

S1;2

births, new infections
and deaths

dSi;R
dt
� �jCj;T ÿ (�i(t)Ii=N � �)Si;R

return of convalescents
and new infections

dEi;T

dt
� �i(t)IiS1;2=N ÿ (�� �i)Ei;T

new infections,
mortality and end of
latency

dEi;R

dt
� �i(t)IiSi;R=N ÿ (�� �i)Ei;R

new infections,
mortality and end of
latency

dIi;T
dt
� �iEi;T ÿ (�� i)Ii;T

newly infectious,
mortality and diagnosis

dIi;R
dt
� �iEi;R ÿ (�� i)Ii;R

newly infectious,
mortality and diagnosis

dCi;T

dt
� iIi;T ÿ (�� �i)Ci;T

new convalescents,
mortality and recovery

Table 3. Parameters of the two-disease model with i � 1,2.

parameter description

�,� per capita birth and mortality rates
�i(t) time-varying contact rate for disease i
1=�i latency period for disease i
1=i infectious period for disease i
1=�i convalescence period for disease i



other year. As b1 approaches unity, however, the biennial
pattern gives way to chaos (¢gure 2a). In contrast, due to
its longer infectious period, the deterministic dynamics of
disease 2 are always strictly annual, irrespective of the
strength of seasonality (¢gure 2b).

(b) Two-disease dynamics
When the two diseases are combined in our model, it is

immediately apparent that they do interfere at the popu-
lation level (¢gure 2c). The presence of disease 2 s̀impli-
¢es' the dynamics of disease 1. Compared to the single-
disease bifurcation diagram (¢gure 2a), the transition
point from annual to biennial outbreaks occurs at slightly
higher seasonal amplitude. Interference also reduces the
propensity for four-year cycles or more complex dynamics
at high levels of seasonality. The interaction has a more
striking e¡ect on the dynamics of disease 2, which no
longer shows strictly annual cycles. For much of the range
of seasonal amplitude, there are major outbreaks only
every second year, and when the level of seasonal forcing
is extremely high, chaos ensues.

We can gain insight into the e¡ects of disease 1 on
disease 2 by reconsidering equation (2) with i � 1 and

j � 2. The rate at which individuals infected with disease
1 return to the susceptible population is dictated by the
sum of the incubation, infectious and convalescence
periods (1=�1 � 1=1 � 1=�1). If this period is relatively
long, there will be many susceptibles temporarily
removed from the population, following an outbreak of
disease 1. Given that on its own disease 1 exhibits a very
strong biennial pattern, this periodic removal of suscepti-
bles e¡ectively introduces another forcing function to
disease 2. The net e¡ect of this is to make the dynamics of
disease 2 more c̀omplicated' and similar to disease 1
(hence, rigidly annual dynamics give way to predom-
inantly biennial outbreaks or even chaos).

The e¡ects of disease 2 on disease 1 are a little more
subtle. Because of its long infectious period, the dynamics
of disease 2 have a very strong annual component, even
when they have a period of more than one year. This
regular, almost annual, removal of potential susceptibles
for disease 1 has the same net e¡ect as lowering the
amplitude of the seasonal forcing in contact rates (b1). As
a consequence, the dynamics of the infection with the
shorter infectious period are simpli¢ed slightly, with a
more pronounced annual signature.
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Figure 2. Bifurcation diagrams for the deterministic single-disease SEIR model with term-time forcing (a) and (b) and the
deterministic two-disease model (c) as a function of seasonal amplitude b1. The term-time forcing is implemented such that the
contact rate for disease i on school days is given by �i�t� � b0;i � �1� b1�, else �i�t� � b0;i � �1ÿ b1� (where b0;i represents the basic
contact rate). (a) Disease 1: short infectious period (`measles') with b0;1 � 1250 yrÿ1, 1=�1 � 8 d and 1=1 � 5 d. (b) Disease 2:
long infectious period (`whooping cough') with b0;2 � 625 yrÿ1, 1=�2 � 8 d and 1=2 � 10 d. (c) Two disease model (measles
represented by red dots, whooping cough by dark blue dots) with 1=�1 � 7 d and 1=�2 � 14 d. In all simulations, N � 5� 107

and � � � � 0:02 yrÿ1. We discarded a 400-year transient before recording the number of infectives on day 1 of the next
100 years. Wrap-around initial conditions were used.



In addition to the general dynamical consequences of
disease interaction, the temporal correlation of cases of
each disease is of great interest. To explore the correlation
between the two infections, we used a stochastic (Monte-
Carlo) version of the two-disease model (e.g. Bartlett
1957; Grenfell 1992; Renshaw 1993). Not surprisingly,
when the dynamics are annual, the two infections are
perfectly in-phase (due to the strong in£uence of seasonal
forcing). Simulation time-series show that given biennial
or longer period £uctuations, there is a marked tendency
for the diseases to be negatively correlated, with the major
outbreaks being out-of-phase. It is interesting to note that
during a major outbreak of either infection, the propor-
tion of the susceptible population that is insusceptible is
typically less than 5% and yet this has a pronounced
e¡ect. In ¢gure 3 we present a frequency histogram for
the cross-correlation coe¤cients of 60 simulations of the
stochastic two-disease model and two independent
stochastic SEIR models. Clearly, the time-series are
signi¢cantly more negatively correlated when the two
diseases are allowed to interfere. The results for the SEIR
model show that although it is possible that chance events
may cause outbreaks of two independent diseases to be
out-of-phase with each other, this e¡ect is not nearly as
pronounced as that resulting from interference.

The key parameters that determine the strength of
disease interference are the convalescence rates for each
infection (�1 and �2), although the incubation and infec-

tious periods will also play a role. Results not presented
here show that when the convalescence period of either
infection is very long (�1 or �2 are very small), a signi¢cant
proportion of the potential susceptible population is insus-
ceptible for much of the time. This acts as another source
of forcing on the system and can result in a complex
pattern of abundance for both infections. However, the
primary e¡ect of long convalescence periods is to increase
the negative temporal correlation between the diseases.

The most epidemiologically important result to note
from this section is that the model con¢rms that two such
infections do indeed have a signi¢cant dynamic e¡ect on
each other at the population level. We have explored the
interaction between two diseases with a large range of
parameter values but this did not a¡ect our qualitative
results. The e¡ects we have discussed are representative of
the generic properties of the two-disease model. To
summarize, these are:

(i) the disease with the shorter infectious period shows
slightly simpler dynamics

(ii) the disease with the longer infectious period shows
more complex dynamics, as dictated by the other
infection;

(iii) major outbreaks of the two diseases tend to be nega-
tively correlated, occurring in di¡erent years.

What is the likelihood of observing disease interference
in practice? To investigate this, we would ideally need
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diseases 1 and 2. In (a), we plot CCs calculated from 60
realizations of a Monte-Carlo version of the two-disease
model. These results show that the temporal dynamics of the
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have shown the CCs of data generated using independent
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parameters. These show that such strongly negative
correlations are very unlikely to arise purely by chance (mean
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the caption to ¢gure 2, with b1 � 0:1 and annual immigration
rates of 20 per million for disease 1 and 10 per million for
disease 2.

1

1000

100

10

10

100

1000

10

100

1000

10000

ca
se

s
ca

se
s

ca
se

s

(a)

(b)

(c)

46
.0

54
.0

53
.5

52
.9

52
.4

51
.9

51
.3

50
.8

50
.3

49
.2

48
.6

48
.1

47
.6

47
.0

46
.5

49
.7

year

Figure 4. Weekly case-reports for measles (red) and
whooping cough (dark blue) in (a) London, (b) Liverpool
and (c) She¤eld from 1946^1954 (log scale).



2038 P. Rohani and others Dynamics of childhood diseases

Proc. R. Soc. Lond. B (1998)

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
–0.2

–0.1

0

0.1

0.2

0.3

0.4

0.5

 London

 Birmingham

 Liverpool

 Manchester

 Sheffield
 Bristol

 Nottingham

 Hull

 Coventry

ratio of annual measles counts in odd/even years

co
rr

el
at

io
n 

co
ef

fi
ci

en
t

annual dynamics biennial dynamics

(a)

← Leeds

←

←

←

←

←
←

←
←

←

0

0.5

1

1.5

2

2.5

3

annual dynamics

nu
m

be
r

–0.2 –0.1 0 0.1 0.2 0.3 0.4 0.5 0.6

biennial dynamics

correlation coefficient

(b)

(c)

0

0.5

1

1.5

2

2.5

3

nu
m

be
r

Figure 5. Analysis of data from the top ten cities in England. We used the measles time-series to classify the data as either
annual or biennial. In (a), we plot the average ratio of annual measles counts (odd/even years) in successive two-year periods
versus the estimated cross-correlation coe¤cient for each city. To explore possible interference e¡ects, we analysed the same
data in a di¡erent way by plotting the annual measles counts in successive years. The time-series for each city were split into
an annual and a biennial section using the distance from the 45� line. In (b) and (c), we plot the correlation histogram for the
annual (mean� 0:297 and s.d. � 0:206) and biennial regimes (mean� 0:089 and s.d. � 0:185), repectively.



long-term pre-vaccination incidence data (longer than
twenty years) for a number of childhood infections under
constant demographic conditions. These infections must
conform to the assumptions of the SEIR model: namely,
they should be easily diagnosable, confer life-long
immunity following infection and have no vector, animal
reservoir or latent transmission. A search of the literature
revealed that data of this quality for more than one
disease in the same place are not currently available.

4. CASE STUDY: MEASLES AND WHOOPING COUGH

IN ENGLAND

In the absence of ideal data, we look for interference
e¡ects in time-series for measles and whooping cough in
England from 1946^1954, which pre-dates mass vaccina-
tion for either disease (Grenfell & Anderson 1989). The
measles data are thought to be relatively accurate (at
least 60% of cases are reported; Clarkson & Fine 1985),
whereas the accuracy of reporting is thought to be quite
low in the whooping cough data (ranging between 5^
25%; Clarkson & Fine 1985; Hethcote 1997).

Measles conforms closely to the SEIR assumptions, but
whooping cough is much more complex (discussed
below). Both infections have R0 ' 17 (Anderson & May
1991) with parameters similar to those we explored in the
previous sections.

We have data for the largest 60 cities in England and
Wales; to illustrate the wide range of observed dynamics,
we have plotted the weekly case reports of measles and
whooping cough in London, Liverpool and She¤eld from
1946 to 1954 (¢gure 4). The pattern of interaction
between these two diseases clearly di¡ers from city to
city. In London (¢gure 4a), for example, outbreaks of
both diseases occur annually in the years immediately
following World War II (the so-called `baby-boom' e¡ect)
and naturally the infections are in phase. In later years,
both diseases show a biennial pattern; in this regime,
there seems to be little consistent correlation between the
two infections. Sometimes, during the spring of 1951, for
example, the epidemics peak roughly simultaneously
while at other times (e.g. 1953), there is no overlap. On
the other hand, in Liverpool (¢gure 4b), measles
outbreaks always occur annually (associated with high
birth rates; Finkensta« dt et al. 1998) and whooping cough
epidemics occur biennially. In these data, there seems to
be quite a strong negative correlation between the two
infections, which may perhaps be attributable to interfer-
ence e¡ects. Finally, in She¤eld (¢gure 4c), both measles
and whooping cough are biennial for the ¢rst 6^7 years,
while there is no rigid pattern in later years. What is
clear, however, is that their major outbreaks are strikingly
out-of-phase with each other, at least during 1946^1951.
We carried out a more systematic analysis of these data

by attempting to characterize the periodicity of disease
dynamics and comparing this with the estimated correla-
tion co¤cient (¢gure 5). A simple approach is to use the
ratio of odd/even year annual measles counts in succes-
sive biennia as a guide (¢gure 5a). If the average of this
ratio is close to one, then the dynamics may be considered
annual. As can be seen in ¢gure 5a, the dynamics of
measles in She¤eld and Bristol are biennial in the period
1946^1954. The correlation coe¤cients of measles and

whooping cough in this period are negative for these
cities. The remaining cities exhibit mostly annual
dynamics and as expected from the model predictions,
the outbreaks of measles and whooping cough in these
cities are either e¡ectively uncorrelated (Birmingham
and Coventry) or positively correlated. An exception to
this ¢nding is Liverpool, where measles outbreaks are
annual and yet the diseases appear to be weakly nega-
tively correlated. This may be better understood by
considering the raw time-series (¢gure 4b). The source of
the negative correlation between these two infections is
clearly caused by the timing of whooping cough
outbreaks. While in England and Wales the highest
number of cases are usually reported in early spring, in
Liverpool, the peak pertussis counts are observed at the
turn of the year. The cause of this peculiarity is unclear.

Another potential approach to identify interference
e¡ects in the data is to plot annual measles counts in year
t � 1 versus counts in year t. The distance of each point
from the 45� line gives an indication as to the nature of
the dynamics. Using this approach, we characterized
sections of the measles time-series in each city as either
annual (close to the 45�) or biennial. In ¢gures 5b,c, we
have plotted the frequency histograms for the correlation
coe¤cients of measles and whooping cough weekly data
in each city for annual and biennial dynamics, respec-
tively. The di¡erences between these histograms are not
statistically signi¢cant, but there is a clear shift towards
negative correlation co¤cients when the dynamics are
biennial.

Our analyses of these data do not provide unequivocal
evidence for the predictions of our two-disease model, but
there appear to be tantalizing glimpses of interference.
Unfortunately, a variety of complications plague these
short time-series. Birth rates in England and Wales
increased signi¢cantly after World War II, peaking in
1947 (Finkensta« dt et al. 1998), which gave rise to
outbreaks with a strong annual component in the years
1946^1952 (¢gure 5a). Thus, in large cities (e.g. London),
the cases of measles and whooping cough during this
period tend to be positively correlated. Another complica-
tion may be due, in part, to the fact that sporadic
localized whooping cough vaccinations started in the
early 1940s (Grenfell & Anderson 1989), hence clouding
the data. A further potential contaminant of the data is
that (as already mentioned) whooping cough can be
di¤cult to diagnose and case reports are thought to
represent only 5^25% of actual cases (most of which do
not lead to a lengthy convalescence period). Thus the
interference e¡ect may be rather one-sided (somewhat
akin to an amensalism): those infected with measles are
successfully diagnosed and quarantined (hence adversely
a¡ecting pertussis dynamics), but many cases of whooping
cough go unnoticed (markedly reducing the interference
e¡ects on measles).

It is also possible that this very simple SEICR frame-
work is not su¤cient to model the behaviour of whooping
cough. Its transmission and the immunological response
it elicits are complicated. It is known, for example, that
some infectious adults may be asymptomatic and thus act
as temporary (and undetected) reservoirs for pertussis
(Hodder & Mortimer 1992). The degree of immunity
following pertussis infection is also a matter of debate; it
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may wane through time (Hodder & Mortimer 1992;
Scott et al. 1997; Hethcote 1997). If so, thenöcontrary to
our traditional assumptionsöwhooping cough may not
primarily infect children, so term-time forcing of the
contact rate may be inappropriate in the absence of age-
structure in the model.

5. DISCUSSION

We have presented a new model for a potential population-
level (non-immunological) interaction between two infec-
tious diseases. The aim has been to explore whether the
temporary removal of susceptibles for the c̀ompeting'
disease has an important dynamic e¡ect on the persistence
and dynamics of a community of childhood diseases.
We have concluded that two diseases with di¡ering

infectious periods can potentially interfere strongly at the
population level. The dynamics of the disease with the
shorter infectious period (likened in this paper to
measles) is not dramatically a¡ected but is slightly s̀tabil-
ized', with a reduced likelihood of exhibiting chaotic
dynamics. However, the disease with the longer infectious
period (e.g. whooping cough) is coerced by the other
disease to show a mostly biennial epidemic pattern,
whereas it is strictly annual in isolation. Our most
straightforward prediction is that epidemics of the two
infections are likely to be negatively correlated (when the
dynamics are not rigidly annual).

Our comparison with the time-series data for the
incidence of measles and whooping cough in England was
suggestive but not conclusive. There seems to be no
unique pattern of interaction between these two
infections; there are qualitative di¡erences between cities
in both the individual dynamics of measles and whooping
cough and in the relationship between the two. As we
have stressed, the di¡erences may in part be due to some
of the complications of pertussis which may mean that
using the simple SEIR framework is inappropriate. In
addition, the time-series are very short and contaminated
both by a transient demographic disruption caused by the
second world war and sporadic pertussis vaccination.

Another limitation of our study is that we have
considered the interaction between only two diseases.
Population-dynamic interference may occur quite
generally. Once diagnosed, infected children are isolated
from other children and our model predicts that this
should a¡ect the frequency of epidemics and extinction
probability. Evidence may exist for interference among
diseases such as measles, mumps and chicken pox, though
currently we do not have access to the relevant time-
series.

Elsewhere, we have shown that epidemiologic inter-
ference can potentially have important consequences for
the design of e¡ective immunization schemes (Rohani et
al. 1999). Our results imply that interference is potentially
a very important factor to bear in mind when multiple
vaccines are being developed. In particular, they point
towards careful timing of vaccinations to make full use of
potential interference e¡ects. Currently, both the measles
and whooping cough vaccines also vaccinate against
other infections; since 1988, the measles vaccine has also
immunized against mumps and rubella (MMR vaccine),
while the whooping cough vaccine is combined with

tetanus and diphtheria (DTP vaccine). There are immu-
nological and economic reasons why some vaccines are
grouped together; our work suggests that epidemiological
factors should also be taken into account (Rohani et al.
1999).
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