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Abstract Poliomyelitis vaccination via live Oral Polio Vaccine (OPV) suffers from the
inherent problem of reversion: the vaccine may, upon replication in the human gut, mu-
tate back to virulence and transmissibility resulting in circulating vaccine derived polio
viruses (cVDPVs). We formulate a general mathematical model to assess the impact of
cVDPVs on prospects for polio eradication. We find that for OPV coverage levels below
a certain threshold, cVDPVs have a small impact in comparison to the expected endemic
level of the disease in the absence of reversion. Above this threshold, the model predicts
a small but significant endemic level of the disease, even where standard models predict
eradication. In light of this, we consider and analyze three alternative eradication strate-
gies involving a transition from continuous OPV vaccination to either continuous Inacti-
vated Polio Vaccine (IPV), pulsed OPV vaccination, or a one-time IPV pulse vaccination.
Stochastic modeling shows continuous IPV vaccination is effective at achieving eradica-
tion for moderate coverage levels, while pulsed OPV is effective if higher coverage levels
are maintained. The one-time pulse IPV method may also be a viable strategy, especially
in terms of the number of vaccinations required and time to eradication, provided that a
sufficiently large pulse is practically feasible. More investigation is needed regarding the
frequency of revertant virus infection resulting directly from vaccination, the ability of
IPV to induce gut immunity, and the potential role of spatial transmission dynamics in
eradication efforts.
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1. Introduction

Vaccination for a number of diseases is currently performed through administration of
live-attenuated virus vaccines. Attenuation means that the virus has been altered geneti-
cally into a state of low virulence and low transmissibility. Attenuation is often accom-
plished by passage through successive animal host tissues in which there is selective pres-
sure for mutations that reduce the virulence and transmissibility in humans; this differs
from inactivated virus vaccines where the virus is killed by treatment with a chemical
agent or some physical process (Woodrow and Levine, 1990). An intrinsic problem with
live-attenuated virus vaccines is that of back mutation or reversion, whereby the live virus,
upon replicating in its human host, may regain its virulence and transmissibility, poten-
tially causing infection in the vaccinee and his or her contacts. Reversion to higher trans-
missibility is a potentially serious barrier to disease eradication.

An important and well documented example in which reversion takes place is in the
use of Oral Polio Vaccine (OPV). Poliovirus is an RNA virus, and may appear in one of
three antigenic types. Transmission may be either fecal to oral, or oral to oral. Initially,
the virus resides in the pharynx and intestines of the host. Subsequently, it may invade
the local lymphoid tissue, entering the blood stream and eventually invading the motor
neurons. Damage to these neurons may result in varying degrees of paralysis. It should
be noted that there is no cross immunity between antigenic types. As well, the standard
formulation of OPV is trivalent: it contains attenuated versions of all three types (each of
which is capable of undergoing reversion and potentially causing paralysis (Anon, 1994)).

In cases where OPV vaccination results in paralysis, this effect is commonly referred to
as vaccine associated paralytic polio (VAPP). Vaccine viruses which have regained trans-
missibility and neurovirulence are referred to as circulating vaccine derived polioviruses
(cVDPVs) (John, 2004).

Though largely replaced in the developed world by the Salk injectable inactivated po-
lio virus vaccine (IPV) (Anon, 2005a), OPV is still the primary vaccine in the developing
world. Since 1988, the World Health Organization (WHO) has advocated the exclusive
use of OPV for polio eradication, citing five primary factors: (1) low cost, (2) simple ad-
ministration (oral), (3) high effectiveness for a small number of doses, (4) ability to induce
a high level of intestinal immunity, and (5) the possibility of contact vaccination whereby
vaccinated individuals may spread the vaccine virus resulting in secondary immunizations
(John, 2004).

While the efficacy of OPV is generally excellent, it has been shown to induce a reduced
immune response in some individuals living in regions where diarrheal disease is highly
endemic. Recent work has traced the problem to the use of trivalent OPV. Studies now
show that monovalent OPV can be used to achieve a high level of efficacy in the regions
where standard trivalent OPV has been problematic (Grassly et al., 2007). Consequently,
vaccine efficacy should not presently represent a concern for OPV.

The drawbacks of OPV are the risk of VAPP and the creation of cVDPVs. IPV, on
the other hand, involves no risk of reversion as it is a killed virus. However, IPV has the
disadvantages that it is roughly five times more expensive to produce (Offit, 2005), must
be injected, cannot produce contact vaccinations, and is believed to induce a lower level
of intestinal immunity (Laasri et al., 2005). Intestinal immunity is important as vaccinated
individuals with no intestinal immunity can still have polio virus replicating in their in-
testines, and thus serve as carriers of the disease (in spite of being immune themselves).
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Recent studies show enhanced potency IPV (eIPV) provides improved intestinal immu-
nity, but eIPV is still believed to be inferior to OPV in this respect (Laasri et al., 2005).

The creation of cVDPVs from OPV poses an obstacle to eventual polio eradication.
Since 2000, four outbreaks of cVDPVs have been identified in Madagascar, the Philip-
pines, Hispaniola and China (Heymann et al., 2005). In the cases of China and Hispan-
iola, these outbreaks occurred more than 5 years after the regions had been certified
as polio free. It is important to note that detection of cVDPVs is complicated by the
fact that most polio infections cause little or no illness: the ratio of paralytic to inap-
parent or asymptomatic polio has been estimated to be 1:200 (Heymann et al., 2005;
Anon, 2005a).

In this work, we investigate an infectious disease transmission model that includes
the possibility of reversion. We provide tools to assess the epidemiological impact of
reversion, and the creation of cVDPVs, assuming the present polio vaccination strategy
in developing countries (continuous OPV vaccination). We then address the problem of
polio eradication, presenting three alternative polio eradication strategies involving both
IPV and OPV and comparing their effectiveness. The mathematical model is built from the
basic SIR model, which we review first. Although we focus on polio here, we emphasize
that the model is relevant to many diseases for which live virus vaccines exist.

2. The basic SIR model

The basic Susceptible-Infected-Removed (SIR) model is the simplest transmission model
for diseases that confer lifelong immunity. In spite of its simplicity, it successfully pre-
dicts the shape of epidemic curves (Kermack and McKendrick, 1927) and yields useful
quantitative predictions of eradication thresholds (Anderson and May, 1991).

We will assume initially that the population is sufficiently large that we can treat the
number of individuals who are susceptible (§ ), infected (1) or removed (Ié) as continuous
variables. Note that “infected” individuals are assumed to be infectious and “removed”
individuals are immune to the pathogen. If a vaccine exists and a fixed proportion of
individuals is vaccinated as soon as any maternally-acquired immunity has waned, the
model can be written

ds B - -

— =(—pwN—=I8§—uS 1

T (I—=pyw N us, (1a)
Il B -- N

—=—1S- 1, 1b
TN (m+vy) (1b)
dR .

T =pvN+yl —uR. (1c)

Here, the total population is N = S+1+R.The parameters of the model are the propor-
tion vaccinated (p), the birth rate (v, for natality), the transmission rate (), the recovery
rate () and the natural death rate (u, for mortality). The mean infectious period is 1/y.
The model assumes that immunity is lifelong and that there is no disease-induced mor-
tality (or that disease-induced mortality is sufficiently rare that its dynamical effect is
negligible). It should also be noted that individuals may be asymptomatic for part (or all)
of the infectious period.
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~ Equation (1) is forward invariant in the non-negative orthant {(S‘, I,R) |S>0,1>0,
R > 0}, so initially non-negative solutions can never become negative. To see this, note
that if S =0 then dS/dt > 0 (and similarly for / and R).

It is more convenient to work with the SIR model in terms of proportions of the popu-
lation, so we apply the variable transformations

S I R

S=—, I=—, R=—.
N

N 2

If the population is constant (i.e., v = p, which is an excellent approximation when look-
ing at short time scales) then Eq. (2) simply represents scaling by a constant. More gen-
erally, N will grow (or decay) at exponential rate v — 1. Noting that

dX 1dX X dN

el il 3
dt N dt N? dt ®)
where X is S, I or R, we obtain the SIR model in terms of proportions:
ds
— ={—-pw—pBpIS—vS, (4a)
dt
a1 BIS 1 1 (4b)
e —yI—vl,
dt v
dR oyl R (4¢)
— =pv —VR. c
dr p 14

The forward invariance of Eq. (1) in the non-negative orthant implies that Eq. (4) is for-
ward invariant in the simplex {(S,7) |0<S <1,0<1 <1,0 < S+ [ < 1}. Furthermore,
as S+ 1 4+ R =1, one of these equations is redundant, so we drop Eq. (4c).

In subsequent sections, we will employ Eq. (4) to model continuous IPV vaccination,
as reversion is not an issue for the killed virus vaccine.

2.1. Analysis of the basic SIR model

A key characteristic of an infectious disease in a given population is its basic reproductive
ratio, Ry, which is defined to be the average number of secondary infections caused by
a single infected individual in a population with no immunity. Ry is the product of the
transmission rate and the mean time that an individual is infectious, hence for the model
given by Eq. (4) (with constant population)

Ro = p .
v+

&)

System (4) has two equilibria. Denoting the equilibrium proportions of individuals
that are susceptible and infected by S* and I*, respectively, the disease free equilibrium
(DFE) is
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The endemic equilibrium is

S*_l I* = v 1 1 7)
2T Ry 2Tyt Ro P)

It is convenient to define two further dimensionless quantities in terms of the model para-
meters:

_ Vv
_y+v,

f (®)
which is the mean time spent in the infected class as a fraction of mean life-span (assum-
ing a constant population) and

1
Perit = 1- io 9)

We can then express the endemic equilibrium as

1

Si=—,
2 RO

Iz*zf(pcrit_p)s (10)
from which we see that p is the critical vaccination level: the endemic equilibrium
exists (i.e., is positive and hence biologically meaningful) if and only if p < pc. It can be
shown that if the vaccination proportion p > p.: then the DFE is globally asymptotically
stable (states near the DFE stay near the DFE and every solution eventually approaches the
DFE). Similarly, if p < p. then any initial condition with 7 (0) > 0 eventually converges
to the endemic equilibrium (Hethcote, 2000; Korobeinikov and Wake, 2002). Biologically,
Derie 18 an eradication threshold: the disease will persist if and only if p < p.;. Note that
this critical vaccination proportion is determined solely by the basic reproductive ratio Ry.
The proportion of the population that is immune at a given time is often called the degree
of herd immunity. Thus, p.q is the level of herd immunity that must be maintained to
prevent persistence should an eradicated disease be reintroduced.

3. The live-attenuated vaccine model: modeling OPV

To account for the effects of a live-attenuated virus vaccine such as OPV, we assume a
fixed proportion of those vaccinated will become infected by the revertant virus. All other
vaccinations are taken to be successful at conferring immunity without illness. Leaving
the other aspects of the SIR model intact, the new model can be depicted graphically as
in Fig. 1 and expressed mathematically (in terms of proportions S, I and R) via

ds

E:(l—p)v—ﬁIS—vS, (11a)
dI
E:q,’)pv—i—ﬁIS—yl—vI, (11b)
dR
—=0-¢)pv+yIl —vR. (11c)

dr
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Birth | vV

Vaccination

Transmission Recovery

Fig.1 Flow diagram for the live-attenuated vaccine model that we use to investigate the effects of OPV on
polio transmission. The flow diagram for the basic SIR model (Eq. (1)) is obtained by setting the reversion
factor ¢ to zero. The model (for any value of ¢) is expressed in Eq. (11) in terms of proportions of the
population that are susceptible, infectious or removed.

Here ¢ is the reversion factor, i.e., the proportion of those vaccinated who become in-
fected by the revertant virus (0 < ¢ < 1). As in Eq. (4), Eq. (11c¢) is superfluous and we
deal with the two-dimensional system defined by Egs. (11a) and (11b). Note that since
the three types of polio do not interact immunologically, we have not included any strain
structure in the model.

There has been considerable recent interest in models that include a separate compart-
ment for vaccinated individuals (Brauer, 2003), rather than simply the proportion vacci-
nated as specified by p in Eq. (11). A separate vaccinated compartment can be impor-
tant if the vaccine has limited efficacy (or if vaccine-induced immunity wanes) because
vaccinated individuals may remain (or become) partially susceptible. The “breakthrough
infections” that occur in this situation typically lead to multiple endemic equilibria and
backward bifurcations (Brauer, 2003). However, as mentioned in the introduction, OPV is
highly efficacious and yields lifelong immunity, so we have not included a separate vac-
cinated compartment. Our reversion model formalizes the effect of immediate infection
that results occasionally from vaccination, as opposed to susceptibility to infection from
subsequent exposures following vaccination.

3.1. Epidemiological parameters for poliomyelitis

Epidemiological parameter estimates for poliomyelitis and OPV are given in Table 1. The
vaccine reversion factor (¢) is estimated indirectly from two parameters that have been
estimated previously: the mean number of paralytic polio cases as a proportion of total
polio cases (para) and the incidence of paralytic polio in newly vaccinated infants (Vipgant)-
Assuming that VAPP in infants really does result directly from vaccination (as opposed to
contact with an infected individual) and that any increase in 7p,, With age can be ignored,
the reversion proportion for OPV is

‘/il’l N —
¢ = 2~ 1074, (12)

T para
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Table 1 Epidemiological parameter estimates for poliomyelitis

Parameter Symbol Estimate Source

Basic Reproductive Ratio Ro 6 Anderson and May (1991)
Mean Infectious Period 1/y 16 days Anderson and May (1991)
Birth Rate, developed countries v 0.02 year*1 McDevitt (1999), Anon (2001)
Birth Rate, developing countries v 0.04 year_] Anon (2001)

#, developed countries f 8.76 x 1074 Eq. (8) (Section 2.1)

#, developing countries f 1.75 x 1073 Eq. (8) (Section 2.1)

Infant VAPP Incidence Vinfant 1/1400000 Anon (2005a)

Paralytic Polio/Total Polio Cases Tpara 1/200 Anon (1994, 2005a)

OPV Reversion proportion ¢ 1074 Eq. (12) (Section 3.1)

Note that since OPV contains attenuated versions of all three antigenic types, any of which
may revert, we may treat ¢> as an upper bound for reversion in each type.

4. Analysis of the OPV model
4.1. Equilibria

Unlike typical epidemiological models, the OPV model (11) has no DFE. Instead, for
any parameter set with ¢ > 0, there is a single (endemic) equilibrium. Indeed, setting the
derivatives to zero in Egs. (11a) and (11b) and summing the resulting two equations yields

1
S*=1-p(l—¢)— 1" (13)
f
where S* and I* denote equilibrium values. Inserting (13) into (11b) (set to zero) then
yields

_pof

1 *2 L _ *
i (pcnt p(l ¢)) I Reo

f

Solving this quadratic for /* (and insisting that it be non-negative) yields the unique
solution

0. (14)

L1 1 P pof?
"= Ef(pcrit - p( —¢>)) +\/|:§f(pcrit —p( —¢))i| + Ry (15)

Note that pye = p(1 — ¢) is the true vaccination proportion, i.e., the proportion of vac-
cinations that are successful. It is convenient to define

Ap = perit — p(1 = @). (16)

The equilibrium defined by Egs. (13) and (15) may then be more simply expressed as

S*zl—p(l—qﬁ)—lAp— [lAp]er@ (17a)
2 2 Ro’
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el iapt [ ia L (17b)
“TRTPTVTP] TR

This equilibrium is always biologically meaningful: it can be shown that (S*, 7*) lies in
theregion {(S,71):S>0,1>0,S+1 <1}if0 < p <1land0 < ¢ <1 (see Appendix A).

4.2. Stability

In this section, we show that the equilibrium (17) is globally asymptotically stable. Bio-
logically, this means that regardless of the proportions of the population that are suscep-
tible (S), infectious (/) and immune (R), the model predicts the virus will persist and
approach the endemic prevalence level given by (17b).

We begin by considering how the system behaves if it is perturbed slightly away from
the equilibrium. We show that the equilibrium (S*, I*) is not only locally stable but always
hyperbolic, i.e., that the Jacobian matrix of the system at (S*, I*) never has eigenvalues
with zero real parts. Hyperbolic stability implies that for any initial conditions sufficiently
close to the equilibrium, the solution trajectory converges exponentially to the equilib-
rium.

4.2.1. Local stability
Linearizing Egs. (11a) and (11b) about the equilibrium (17) and computing the Jacobian
matrix we find

(=Bl —v _Bs*
"( I ﬂS*—(y+v)>' (18)

If ¢ =0, the system (11) reduces to the standard SIR model (4) and the equilibrium given
by Eqgs. (17) corresponds to either the endemic equilibrium (6) of the standard SIR model
(for p < peit) or the DFE (10) of the standard SIR model (for p > p.;). In either case,
the equilibrium in question is locally asymptotically stable and, provided p # pc, it is
hyperbolic (Hethcote, 2000) (J has no eigenvalues on the imaginary axis). If p = pgi
then the DFE of the standard SIR model (¢ = 0) is locally asymptotically stable but non-
hyperbolic.
The eigenvalues of J can be written

_rtv

Ay >

{—(1 )+ Ro(S* = 1%

:l:\/[RO(S*+I*) — (1= )] —4R2S*1* } (19)

Note that the dependence of these eigenvalues on ¢ is hidden in the expressions for S*
and I* (Eq. (17)). Since A+ depend continuously on ¢, to prove hyperbolic stability of the
equilibrium (17) for any ¢ > 0 and p # p.; it suffices to show that no eigenvalue of J
crosses the imaginary axis as ¢ is varied, for an arbitrary fixed p # p... Given this, and
the fact that the eigenvalues of J are also continuous functions of p, it will follow that the
equilibrium is hyperbolically stable also for p = p; if we can show that J cannot have
an eigenvalue with zero real part for any ¢ > 0.
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Eigenvalues may cross the imaginary axis either at 0 or at Ai where A # 0. We treat
these cases separately. Suppose first that 0 is an eigenvalue of J. Then the determinant of
J must be zero, i.e.,

BI*v+y)—vBS*+v(v+y)=0. (20)

Using Eq. (13) to write S* in terms of I*, and after some algebraic manipulation, we find

2
—I" = Ap. 2n
f
Inserting (17b) for 7* into (21) yields
LN, pef?
—fA =0. 22
\/<2f p) - Ro 22

But this is impossible for ¢ > 0, so J does not have a zero eigenvalue.
Now suppose that J has a purely imaginary eigenvalue Ai. Then

det(J — Ail) = (—BI* —v — AD(BS* — (v +y) — Ai) =0, (23)

where I is the 2 x 2 identity matrix. Examining the imaginary part of Eq. (23) and sim-
plifying yields

v 1
I — =4+ 85—

— =0. 24
5 R (24

Using (13) to express S* in terms of I* and rearranging yields

1 v
(1 + ?)I* + E = Perit — Ptrue- (25)

As I'* > 0, the left-hand side of (25) is strictly positive. Thus if pci < puwye We have
a contradiction. If pcit > puge then from Eq. (17b) it is apparent that if ¢ > O then
I* > fAp = f(Peit — Puue)- Substituting this inequality into Eq. (25) gives a left-hand
side that is strictly greater than p..; — pie, and we have a contradiction.

Thus, the eigenvalues of J do not cross the imaginary axis for any ¢ > 0, and the
endemic equilibrium given by Eq. (17) is hyperbolically, and hence locally asymptotically

stable.

4.2.2. Global stability

As the system is two-dimensional, global asymptotic stability can be established by ap-
plying Poincaré—Bendixson theory and Dulac’s Criterion (Perko, 1996). Consider an au-
tonomous system of ordinary differential equations,

dx

E:f(xvy)v (263)

dy
= =g(x,y), 26b
T g(x,y) ( )
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where f and g are continuously differentiable, and suppose that D is a bounded region
in the plane such that there exists a single stable equilibrium point of (26) in the closure
of D. If a given orbit remains in D for all ¢+ > O then the Poincaré-Bendixson theorem
says that the orbit must either have a non-trivial periodic orbit as its w-limit set or tend
asymptotically to the equilibrium.

Dulac’s Criterion states that given a simply connected region D in the plane, with f
and g continuously differentiable as above, if there exists a continuously differentiable
function C(x,y), such that the divergence of the vector field 0,(Cf) + 9,(Cg), is not
identically zero and does not change sign in D, then there can be no non-trivial periodic
orbits contained in D.

Our live-attenuated virus model is a two-dimensional system with orbits bounded (in
forward time) in the closure of the triangular region whose boundary is formed by the
lines S=0,7=0and S+ I =1 (as discussed for the basic SIR model in Section 2).
In fact, we have the stronger condition that the interior of this set, which we denote as
B={(S,I)|S>0,I>0,5+1I <1}, is forward invariant and for all initial conditions
on its boundary the flow is into B (see Appendix C). There is one (hyperbolically) stable
equilibrium point in the closure of B, located in B itself (see Appendix A), and given
by Eq. (17). The functions f(S, I) and g(S, I) given by (11a) and (11b) are infinitely
differentiable with respect to both § and /. Therefore, applying the Poincaré—Bendixson
theory, any orbit must be periodic, have another non-trivial periodic orbit as its w-limit
set, or tend asymptotically to the equilibrium (17). To establish that every orbit must in
fact tend to the equilibrium, we rule out the existence of periodic orbits in the closure of
B using the Dulac function

C(S, = % 27

Notice that C(S, I) is infinitely differentiable in B. Therefore, applying Dulac’s criterion
yields

ds dl I? 1
3 (C(S, ”Z) 9 (C(S, I)E) = —w. (28)

Equation (28) is strictly negative for all points in 3. Hence, no periodic orbits can exist
and by the Poincaré—Bendixson theorem, all orbits must converge to the (hyperbolically)
stable equilibrium (17).

4.2.3. Damping frequencies and rate of convergence for polio

4.2.3.1. Damping frequencies Figure 2 shows the frequency of damped oscillations
onto the equilibrium (17) as a function of the vaccination proportion p. The birth rate used
is representative of developed countries (Table 1). The dashed curve shows the results in
the case of zero reversion (¢ = 0), corresponding to the standard SIR model, while the
solid curve shows results for the estimated OPV reversion proportion (¢ = 10~*, Table 1).
The damping frequency Fyamp is given by

a2
NS —
2

where A is either of the two eigenvalues given in Eq. (19).

. 29

F damp =
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Fig. 2 Frequency of damped oscillations (Fgamp, (29)) about the globally asymptotically stable endemic
equilibrium (17) of the OPV model (11) and the reversion-free SIR polio model, as a function of vac-
cination proportion (p). The curves are shown only over the narrow range of p for which there is a
non-negligible difference in the damping frequencies for the two models. Parameter values, including
the estimated OPV reversion proportion (¢), are given in Table 1 (the birth rate is that listed for developed
countries). Both models exhibit a critical vaccination threshold beyond which the globally stable equi-
librium is no longer reached by damped oscillations (p¢¢ in the SIR model). Increasing the value of the
reversion proportion ¢ leads to a decrease in this threshold value. For the estimated value of ¢ >~ 10~4 (Ta-
ble 1), this decrease represents only a 0.4% reduction from p.j; &~ 0.83 in the reversion-free model. Sim-

ilar results are obtained if the OPV reversion proportion is taken an order of magnitude higher: ¢ ~ 103
yields a threshold of p ~0.81.

Figure 2 illustrates that for the estimated value of ¢, the difference in the frequency of
damped oscillations compared to zero reversion is negligible. The maximum difference
occurs near the SIR model’s eradication threshold, p = p.. As p is increased through
Deiit, the DFE (6) changes from unstable to globally asymptotically stable. The solid curve
in Fig. 2 shows a frequency Fyamp = 0 for p > pei; because the DFE is not approached by
damped oscillations.

While the unique equilibrium of the live-attenuated vaccine model (17) is always en-
demic (and stable), the manner in which it is approached parallels the distinct behaviors
near each of the stable equilibria of the standard SIR model. Figure 2 shows that there
is a threshold level of vaccination below which the endemic equilibrium is reached by
damped oscillations, and above which there is no oscillatory behavior. This threshold is
lower than the SIR model’s eradication threshold p.;, though for ¢ = 10~ the difference
between the thresholds is only 0.4%. Numerical explorations like in Fig. 2 for a wide
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range of reversion proportions (107® < ¢ < 1072) indicate that there is always a threshold
value pyamp such that damped oscillations occur if and only if p < pgamp. Moreover, paamp
decreases as ¢ is increased.

4.2.3.2. Rate of convergence To quantify the attractivity of the (globally stable) equi-
librium of the OPV model (11), Fig. 3 shows the minimal rate of convergence of solutions
in a sufficiently small neighborhood of the equilibrium (17), as a function of the vaccina-
tion proportion p. The dashed curve shows the convergence rate for the estimated OPV
reversion proportion ¢ (Table 1), while the solid curve shows the convergence rate for the
case of no reversion (¢ = 0), which corresponds to the standard SIR model. The minimal
rate of convergence is calculated as

Fin = min{—R(y), —RA}, (30)
A1
0.18 = SIR model
v OPV model
0.16
0.14+
0.02
£o12r 0015
€
§ 01 0.01
S
S 0.005
g
§ 0.08
5 0.8332 0.8333 0.8334 0.8335
(]
Lgc‘i 0.06

0.04

0.02

1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Vaccination proportion

Fig. 3 Local minimum rate of convergence (rmyin, Eq. (30)) of solutions to the globally asymptotically
stable equilibrium for the OPV polio model and the standard SIR polio model without vaccine reversion,
as a function of vaccination proportion p. Values of parameters, including the estimated OPV reversion
proportion ¢ are given in Table 1. Birth rates used are for developed countries. For high and low levels
of vaccination, the local rates of convergence are very similar. However, as the vaccination proportion is
increased toward the theoretical vaccination threshold for the SIR polio model, p¢.i; =~ 0.83, the rate for
OPYV increases sharply to a maximum followed by an equally sharp decrease to rates comparable to those
in the SIR polio model. It should be noted that as p = pj; is a point of stability exchange between the
endemic equilibrium and disease free equilibrium in the SIR model, the rate of convergence is zero at this
point.
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where L. are the eigenvalues given in Eq. (19). Note that in the zero reversion case, the
convergence rate shown is always to the globally asymptotically stable equilibrium (the
endemic equilibrium for p < p. and the DFE for p > pgi).

Figure 3 shows that for the estimated value of the OPV reversion proportion (Table 1)
the rate of convergence onto the globally asymptotically stable equilibrium (17) differs
negligibly from the rate for the standard SIR polio model when the vaccination proportion
is either significantly greater or significantly smaller than the theoretical SIR eradication
threshold p.;. However, when p approaches p, the rate of convergence for the OPV
model increases sharply, attaining a maximum, and then sharply decreases to the levels
of the SIR polio model. In contrast, in the SIR model, as there is an exchange of stability
between the endemic and the disease free equilibrium at p = p.;, the rate of convergence
is near zero for p in a neighborhood of p.. When the reversion proportion ¢ is taken
orders of magnitude higher or lower, results are qualitatively similar. As ¢ is increased,
the maximum value of the rate r;, is increased and attained at a lower vaccination pro-
portion p.

4.3. Implications for continuous OPV vaccination

Figure 4 shows, as a function of the vaccination proportion p, the predicted equilibrium
number of infectives and annual expected cases of paralytic polio in a (constant) popula-
tion of one hundred million (i.e., I*N with I* from Eq. (17b) and N = 108). Since the
mean time spent in the infected class is 1/(y + v), and the probability that polio will be-
come paralytic is 7., (Table 1), the number of cases of paralytic polio expected in time
T as a proportion of the population is

P(T) = mpaa"(y + )T 3D

The solid curve in Fig. 4 is based on the parameter estimates in Table 1 (birth rates used
are for developed countries), whereas the dotted (dashed) curve uses a value of ¢ that is
an order of magnitude below (above) the estimated value. Note that the range of p shown
in Fig. 4 is mostly beyond the eradication threshold for the standard SIR (pgic =~ 0.83).

For the estimated value of the reversion factor (¢ ~ 10™*), Fig. 4 indicates that even
in a population with 90-95% vaccination coverage the model predicts persistence of the
disease at an endemic level of 20 to 30 infected individuals per hundred million, and
an event rate of two or three cases of paralytic polio per hundred million per year. This
prediction agrees closely with the observed event rate in the United States from 1988 to
2000 when OPV was in use (8—10 cases of paralytic polio annually in a population ~300
million; Anon, 2005a). This agreement suggests that the estimated ¢ is of the right order
of magnitude, since the event rate predicted in Fig. 4 is sensitive to ¢.

The main purpose of the OPV model (11) is to help understand the significance of
emergent cVDPVs. This is perhaps best illustrated in Fig. 5, which shows the difference
between the endemic number of infectives predicted by the OPV model, Eq. (17b), and
the number of infectives predicted by the standard SIR model, Eq. (6) or (10) (the SIR
endemic level is also plotted for comparison). For p < 0.75, the difference is negligible
(two orders of magnitude smaller than the number of infectives predicted by the standard
SIR model). The difference is maximal (~380 per hundred million population) for p =
0.83 = p.t, the eradication threshold in the absence of reversion.
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Fig. 4 Equilibrium number of infectives and expected cases of Paralytic Polio annually per hundred mil-
lion population as a function of OPV vaccination proportion p, for p > 0.82. The solid line represents
results for the estimated value of the reversion proportion, ¢ ~ 10=4. A small but significant endemic
level of the disease is predicted. Dashed lines represent reversion proportions an order of magnitude above
and below the estimated value (1073 and 1073 ). Note that for the standard SIR model, eradication of the
disease is predicted for all p > pci¢ ~ 0.83.

We infer that for levels of vaccination even 5% below the theoretical eradication thresh-
old in the absence of reversion (p.t), the impact of cVDPVs is likely to be negligible
compared to the impact of the native viruses. Consequently, if coverage levels cannot be
brought close to p.i; then use of OPV is likely to be easy to justify. However, in situations
like the present, where coverage levels reaching p.; are plausibly within reach, it appears
that OPV can itself become the primary impediment to eradication.

It should be noted that although Figs. 4 and 5 are plotted using birth rates for de-
veloped countries (Table 1), the shape of the curves is practically invariant to the birth
rate v. To see this, note that the equations for the proportion of infected individuals at the
endemic equilibrium in the SIR model (6) and the equilibrium in the OPV model (17b)
scale linearly with f (8) and are otherwise independent of v (notwithstanding the negli-
gible dependence of R on v). Thus Figs. 4 and 5 will scale essentially linearly with birth
rates (for birth rates in a realistic range). For example, to produce these figures for birth
rates representative of developing countries (Table 1) one need only scale both vertical
axes by a factor of 2.
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Fig. 5 Effects of reversion on the endemic number of infective individuals at equilibrium. The solid
line shows, as a function of vaccination proportion p, the predicted endemic equilibrium for the standard
SIR model (4) (which may be thought of as a model of IPV vaccination or a theoretical OPV that never
reverts). The dotted curve shows the difference between the predicted endemic number of infectives in the
(continuous) OPV vaccination model (17) (with reversion) and the standard SIR model. For vaccination
levels even 5% below pg.it ~ 0.83, the effect of reversion is negligible. As the vaccination level approaches
Perit» the reversion-free SIR model predicts eradication of the disease, while the OPV model with reversion
predicts a small but significant endemic level of the disease (note the different scales on the left and right
axes of the plot). For the estimated parameters in Table 1, the difference between the models is maximized
near pgrit, though this is not the case for much larger values of the reversion proportion ¢.

4.3.1. Sensitivity to distribution of infectious period

In both the SIR model (4) and our OPV reversion model (17), there is an implicit as-
sumption that infectious periods are exponentially distributed. This assumption is usually
made in epidemiological modeling because it greatly simplifies the mathematical formu-
lation, yielding a small system of ordinary differential equations. For arbitrary distribu-
tions of stage durations, the models become more complex systems of integro-differential
Eq. (22).

In general, real distributions of infectious periods are not well-fitted by exponential
distributions (Lloyd, 2001). In the context of OPYV, there is one potentially advantageous
aspect of the exponential distribution: its extremely long tail, i.e., finite probability of
individuals remaining infectious for an extremely long time. This may be reasonable for
polio because some individuals (with severely compromised immune systems) have been
observed to shed poliovirus for extremely long periods (Anon, 2005b). Nevertheless, the
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existence of chronic shedders is unlikely to result in a precisely exponential distribution
of infectious periods.

Does the implicit assumption of an exponential distribution of infectious periods af-
fect our conclusions? To address this, we examine how the predicted endemic level of
infectives (17b) changes as the shape of the infectious period distribution is changed from
extremely broad (exponential) to extremely narrow (almost no variation about the mean
infectious period, 1/y).

We suppose the distribution of infectious periods is a Gamma distribution
Gamma(n, %), with mean 1/y and shape parameter n. The probability density for the

distribution Gamma(n, #) is

1 n,n—1,—nyx
glx;n, — =M, x> 0. (32)
ny I'(n)

For n = 1 we obtain the exponential distribution and the limit n — oo yields a Dirac delta
distribution. The probability densities for several values of n are shown in Fig. 6a.

For integer n, a standard trick (Anderson and Watson, 1980; Bailey, 1964; Lloyd, 2001;
Ma and Earn, 2006) allows us to express our OPV model as a system of n 4 1 ordinary
differential equations:

ds
—— =0 =pv—BIS—vS, (33a)
dt
dI,
$=¢pV+ﬂIS—(ny+V)11, (33b)
dl,
—— =nyh =y +v)b, (33¢)
dt
dI,
dt :l’l)/ln,1 —(n)/'i‘v)ln, (33(1)
dR
ar =(-¢)pv+nyl, —vR. (33e)

Here, the proportion of infectious individuals is / =) ;_, I; and the new infectious sub-
classes I; represent a mathematical device with no intended biological interpretation.

In Appendix B, we show that Eq. (33) has a unique endemic equilibrium for any n
(not just the case n = 1 as considered in previous sections). We computed this endemic
equilibrium using the estimated OPV parameters (Table 1), for a large range of shape
parameters from n = 1 to 1,000. For each n, we verified that the equilibrium is locally
stable by numeric computation of the eigenvalues (using the MATLAB function eig).

Figure 6b shows the relationship between the equilibrium endemic level of infection
(I*) and the shape parameter (n) for a specific vaccination proportion (p = 0.85). For
this particular p, it is clear that the effect of distribution shape on /* is negligible. More
generally, for any p € [0, 1], I* varies by less than 0.1% if n is varied from 1 to 1000.
Thus the predicted endemic level appears to be robust with respect to the distribution of
the infectious period.
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Fig. 6 The effect of the shape of the infectious period distribution on the endemic level of infection in
the OPV model (see Section 4.3.1 and Appendix B). (a) Probability density functions for Gamma distribu-
tions with mean 1 = 16 days and shape parameter n (see Eq. (32)). Note that n = 1 yields the exponential

distribution. For n = 1, 000 the peak density value is 0.789. (b) Endemic number of polio infectives per
hundred million as a function of distribution shape, for fixed vaccination proportion p = 0.85. Epidemio-
logical parameters are as given in Table 1 for developing countries. For fixed mean infectious period, the
shape of the full distribution of infectious periods has a negligible effect on the endemic level of polio
infection.

5. Final eradication strategies

It is not likely to be possible to eradicate polio using a continuous OPV vaccination strat-
egy, because a continuous source of infectives is inevitable (as a result of reversion). We,
therefore, explore the benefits of several alternative polio vaccination strategies that may
eliminate the continuous source of new infectious individuals:

(1) Pulsed OPV vaccination. Mass vaccinations are to be performed at regular intervals
such as every year or every other year (Agur et al., 1993; Nokes and Swinton, 1997).
A revised model incorporating pulsed vaccination is described below.

(2) Switch to continuous IPV vaccination. The standard SIR model is appropriate for [PV
because there is no reversion.

(3) One-time mass vaccination with IPV. While continuous IPV vaccination at a high
level may not be financially and logistically feasible, given a high level of herd im-
munity following a broad OPV vaccination program, a single mass IPV campaign
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might be sufficient to extinguish the disease. The model required is just a simplifica-
tion of the pulsed vaccination model (without repeats).

Since genuine eradication means reducing the infective population to zero, the problem
can be properly addressed only in a stochastic setting with finite populations. After intro-
ducing a model for pulsed vaccination, we turn to stochastic simulations to investigate the
above three proposed polio eradication strategies.

5.1. Pulse vaccination models

A pulsed version of our live-attenuated vaccine model (11) can be expressed as the fol-
lowing set of impulsive differential equations.

j—f =v—(Bl+v)S— an:S(nT*)(S(t —nT), (34a)
dI— IS 1 S(nT™)s T 34b
- =BIS—(+y) +¢p; (nT7)8(t —nT), (34b)
d—R— I+ (1—¢) ZS( T7)6(t —nT)— VR (34¢)
o =y d)p 4 n n VR, C
SnT™) = 1ir(I)1+ S(nT —e¢), (34d)

where the sums are over all integers n. In this pulsed model, vaccinations are performed
only at intervals of period 7', not continuously. At each pulse time, a proportion p of
the susceptible population receives the vaccine. The above equations generalize the pulse
vaccination model of Stone and colleagues (Stone et al., 2000) to include the reversion
factor ¢.

If there is only one pulse (at time 7'), and we consider IPV (no reversion), then the
equations simplify to

j—f=v—(ﬂl+v)S—pS(T*)8(t—T), (35a)
ar _ IS I 35b
dR ~

E:yl—i—pS(T )6(t —T) — VR, (35¢)
S(TT) = 111(1)1+ S(T —e). (35d)

5.2. Stochastic simulations

Equations (4), (34), and (35), represent deterministic models that can be used to explore
the three proposed alternative vaccination strategies. However, integrating the differential
equations will not allow us to estimate the probability that a given strategy will success-
fully lead to polio eradication. To that end, we recast these models as continuous time
Markov processes, which are fully stochastic and involve finite populations. We use the
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standard Gillespie algorithm (Gillespie, 1976), in which the various terms in the differ-
ential equations are interpreted as event rates for the various Markov processes involved.
(Figure 1 shows all the state transitions that occur, with their rates.)

We are thinking of each of the three proposed strategies as final eradication strategies
after a normal, continuous OPV vaccination program has come as close as possible to
eradication. Therefore, we take as the initial conditions for our simulations the equilibrium
of our model (11) with an assumed OPV coverage level p = 0.85 (slightly above the
eradication threshold in the absence of reversion, p.; =~ 0.83). In all simulations, we
used a population of one hundred million (N = 10%), and the birth rate was taken to be
representative of the developing world (Table 1). The pulsing period was taken to be one
year (T = 1 yr) and the first pulse was applied immediately after ceasing the continuous
OPV program. The one-time IPV vaccination was also applied immediately after ceasing
OPV vaccination. The model parameter p in Eq. (34) was varied over the range 0-0.35
while p in Eq. (35) was varied over the range 0-0.40.

5.2.1. Pulsed OPV versus continuous IPV

Figure 7 shows, for the strategies of pulsed OPV and continuous IPV vaccination in a
developing region, the probability of polio eradication within 4 years as a function of the
effective number of vaccinations performed. Here we define the effective number to be the
number of vaccinations performed on susceptible individuals, noting that under a realistic
pulse vaccination strategy one might expect the true number of vaccinations to exceed
the effective number due to duplicate vaccinations. It should be noted that this definition
of effective number has no relationship to reversion. In order to simplify the comparison
of the continuous and pulse vaccination strategies, we introduce the idea of the effec-
tive vaccination proportion for a pulse vaccination strategy, which can be expressed as
follows:

V(T)
Tv

Deft = , (36)

where T is the pulsing period, V (T) is the average effective number of vaccinations per
pulsing period and v is the birth rate. Thus, under this definition, a continuous vaccina-
tion strategy with vaccination proportion p = pes would vaccinate the same number of
individuals as the corresponding pulse strategy in a given pulsing period.

Substantial effects of stochasticity are evident in Fig. 7. Even if we cease vaccination
altogether (left limit of Fig. 7) there is a non-zero probability that polio will go extinct
within 4 years. In developing countries (the situation depicted in Fig. 7), this fadeout prob-
ability is very small (less than 1%) but it should be noted that the probability of fadeout
after stopping vaccination altogether is much greater for smaller birth rates; in particular,
for birth rates typical of developed countries (Table 1), the one-year fadeout probability
upon ceasing vaccination is 17%. Sensitivity of fadeout probabilities to birth rates occurs
for two reasons: the birth rate determines the rate at which new susceptible individuals
are recruited into the population and the equilibrium number of infected individuals is
(approximately) proportional to the birth rate (Eq. (17b)).

Continuing to focus on birth rates appropriate for developing countries, we see from
Fig. 7 that for any p.s < 0.3 the four-year fadeout probability remains negligible if pulsed
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Fig. 7 Probability of Polio eradication within 4 years as a function of the average annual effective num-
ber of vaccinations, for annually pulsed OPV (dashed curve) and continuous IPV vaccination (solid curve)
in a population of one hundred million (with birth rates typical of developing countries; Table 1). The
lower horizontal axis gives the average annual effective number of vaccinations as a proportion of the
average annual births as defined by pegr in Eq. (36) (for 7' = 1). For continuous vaccination this reduces
to the vaccination proportion p in Eq. (4). The upper horizontal axis gives the raw annual average num-
ber of vaccinations (in millions per 100 million population). Continuous IPV campaigns are successful
for moderate vaccination coverage (p 2 0.7). For very low vaccination coverage (p < 0.3) pulsed OPV
campaigns are no better than ceasing vaccination altogether, due in part to the introduction of infectives
through vaccination. However, pulsed OPV can also be successful if a moderate coverage level is achieved
(petr > 0.75), though the vaccination level required is greater than that required for continuous IPV.

OPV is employed, and small (~10%) if continuous IPV is used. However, moderate vac-
cination levels (peg ~ 0.7) yield great improvement. The four-year fadeout probability
reaches 90% for peg ~ 0.75 using OPV or peg ~ 0.7 with IPV.

In general, pulsed OPV vaccination is less effective than the corresponding IPV strate-
gies with the same number of doses. For small OPV pulses, the probability of eradication
is no better than if no OPV vaccination is performed at all (due to the introduction of
infectives via reversion). However, for sufficiently large OPV pulses, increased herd im-
munity outweighs the input of infectives and switching from continuous OPV vaccination
to pulsing is likely to be very helpful. In particular, Fig. 7 indicates that switching from
85% continuous OPV vaccination to 85% pulsed OPV vaccination once per year will
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change the probability of fadeout within 4 years from zero to nearly 1 using the same
number of doses.

5.2.2. Single pulse OPV versus single pulse IPV

The most effective strategy might be the application of one large pulse of IPV, following
a successful continuous OPV vaccination campaign. Figure 9 shows the probability of
eradication within one year as a function of the effective number of IPV or OPV vaccina-
tions in a one-time pulse. As an example, note from the figure that an application of five
million effective doses, representing less than 35% of the susceptible population, leads
to a one-year fadeout probability of less than 80% if OPV is used but greater than 95%
if IPV is used. Furthermore, as illustrated by Fig. 10, eradication is witnessed in shorter
time intervals following IPV vaccination as compared to an equivalent OPV pulse. Thus,
a one-time IPV pulse may be desirable both from the perspectives of total number of
vaccinations and time to eradication.

5.2.3. Rational policy options

Our models indicate that one-time mass and continuous IPV coverage are effective erad-
ication strategies, even at moderate coverage levels, while pulsed OPV vaccination may
be a viable option as long as a sufficiently high level of coverage is maintained. Note that
while OPV is much cheaper and easier to administer than IPV, the logistical advantage
of needing to reach a much smaller proportion of the population for the same payoff in
probability of eradication is an important benefit of [PV.

It should also be noted that in this discussion the IPV model assumes full intestinal
immunity of the vaccinated individual. This is, of course, a simplification, and IPV is
generally thought to induce lower levels of intestinal immunity compared to OPV (Laasri
et al., 2005). Consequently, it is likely that the eradication probabilities that we have pre-
dicted for the IPV programs are overestimated (by an unknown amount). The significance
of lowered gut immunity is still an open question, though as previously mentioned, recent
studies suggest that enhanced potency IPV (eIPV) induces an improved level of intestinal
immunity over previous IPV offerings (Laasri et al., 2005).

6. Summary and conclusions

We have presented a compartmental model that takes into account the possibility of re-
version in live attenuated virus vaccines (Fig. 1 and Eqgs. (11)). For a non-zero reversion
proportion of the vaccine (¢ > 0), the model has one biologically meaningful (endemic)
equilibrium, which is globally asymptotically stable.

We applied the model to polio dynamics, assuming oral polio vaccine (OPV) is given
to a fixed proportion of newborns (p), and investigated the impact of circulating vac-
cine derived polio viruses (cVDPVs). For our estimated value of the reversion proportion
(¢ ~ 10™*; Table 1), we found that for vaccination levels (p) less than 75% the effect of
cVDPVs is negligible compared to the expected endemic level of the disease in the ab-
sence of reversion. We concluded that if OPV coverage levels are below the critical level
required for eradication in the absence of reversion (p < pc =~ 0.83), then it is best to
focus on trying to increase OPV coverage levels (the benefits of increased coverage far
outweigh the negative impact of vaccine reversion). However, if p can be brought close
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Fig. 8 Probability of Polio eradication as a function of time for a 4 year continuous IPV vaccination
program with vaccination proportion p = 0.7 (solid curve) and pulse OPV with vaccination parameter
p = 0.2 and pulse period T = 1 yr, corresponding to pesr =~ 0.7 (see Eq. (36)). The population size is
one hundred million with birth rates typical of developing countries (Table 1). Non-zero probability of
eradication is apparent slightly after half a year for both strategies. For OPV pulses, there is little increase
in eradication probability for roughly half a year following each pulse, due to the pulse introducing a
significant number of infectives via vaccine reversion. It should be noted that both strategies exhibit quickly
diminishing returns, with the bulk of eradications occurring within the first 2 years of simulations.

to peic then other strategies should be considered to increase the probability of eradication
(the inevitable input of new cVDPVs resulting from continuous OPV vaccination must be
avoided).

We considered three alternative eradication strategies that eliminate continuous input
of cVDPVs: pulsed OPV vaccination, continuous injectable polio vaccine (IPV) vaccina-
tion, and one-time mass IPV vaccination. Based on simulations of stochastic models, we
found that continuous or mass [PV vaccination achieves a higher probability of eradica-
tion (per dose) than pulsed OPV. In spite of the much greater cost per dose for IPV, we
expect that investment in IPV vaccination following a successful continuous OPV cam-
paign will be more effective because the time to eradication is likely to be substantially
shorter (Figs. 8 and 10).

The key parameter in our models is the reversion factor ¢, which can be estimated only
crudely. Our modeling would benefit from a more precise estimate of ¢, noting that by re-
version we mean regaining both virulence and transmissibility. Revertant vaccine viruses
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Fig. 9 Probability of Polio eradication within one year, as a function of the effective number of vaccina-
tions for a single vaccine pulse of IPV or OPV in a population of one hundred million (with birth rates
typical of developing countries; Table 1). The lower horizontal axis shows the proportion of susceptibles
vaccinated (parameter p in Eq. (35); note that ¢ = O for IPV as there is no reversion). The upper hori-
zontal axis shows the total number of vaccinations given. IPV achieves superior eradication probabilities
in comparison to OPV for equivalent numbers of vaccinations. Note that for less than five million IPV
vaccinations, corresponding to less than 35% of the susceptible population (as given by Eq. (17a)), the
probability of eradication within one year is 95%.

probably do not always regain full transmissibility, so an estimate of R for revertant
strains would be helpful.

We have ignored the benefit of contact vaccination via OPV: because the vaccine
is live, vaccinated individuals can transmit the vaccine and thereby immunize non-
vaccinated individuals. This effect should (slightly) lower the predicted endemic number
of infectives below that predicted by our model.

With respect to final eradication strategies, a more thorough understanding of IPV’s
effectiveness in inducing gut immunity is needed. In addition, polio models account-
ing for spatial heterogeneity and seasonality in transmission rates should be investigated,
since synchronization of fadeouts could increase the probability of eradication (Earn et al.,
1998, 2000; Earn and Levin, 2006).
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Fig. 10 Probability of polio eradication as a function of time, for a single vaccine pulse of IPV (¢ = 0)
or OPV (¢ as in Table 1) with p = 0.28 (where p is the susceptible vaccination proportion in Eq. (35)).
The population is one hundred million (with birth rates typical of developing countries; Table 1). For IPV,
non-zero probability of eradication is apparent for shorter time intervals in comparison to OPV. Non-zero
probability of eradication for OPV is observed almost 2 months later than for IPV.

Appendix A:

We show here that if 0 < p < 1 and 0 < ¢ <1 then the equilibrium given by (17) is
contained in the biologically relevant region B={(S,1):S>0,1>0,S+1 < 1}.

First, if p¢ > 0 then

1 2 ope |1
—A 2o |ZA
[300] + o> |30

)

so I* > 0 in Eq. (17b).
Second, we can re-express Eq. (17a) as

]2 po
2 2

1 1
§*=1 _pcrit+_Ap_ I:_Ap Ro

+

(A.1)

(A2)
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Since 1 — peie = 1/Ro, we therefore have

S50 e gl A 2+p¢ (A.3a)
> — 4 = > — —_—, .Ja
Ry " 2°F 2% TR,
— LiIa SN 2+p¢ (A.3b)
— + = > | = —_—, .
Re 277 277 TR,
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R Ro  Ro (&.30)
= ! +1(1 ! (1—9)> pop (A.3d)
— - — - —¢) > .
Ro Ry) ¥ pe.
— p<l (A.3e)
Finally, summing Egs. (17a) and (17b) to obtain
11 1. T po
S +I'=—+ (1 Ap —(1— —A ==, A4
+ R0+2( +HAp == f) [2 p] * R (A4)
and defining
F(f)=1—(S"+1"), (A.3)

we must show F(f) > 0 for all relevant values of f (i.e., for 0 < f < 1 from defini-
tion (8)). To see this, note that

1
F(l)=1——=——-Ap=p(1—-¢)=0 (A.6)
Ro
and
dF 1A 1A 2+p¢ ATa)
ar ~ 27T [277] TR e
<0 forall f, (A.7b)

so F(f)>0forall f<1.

Appendix B:

We formally calculate the endemic equilibrium of the Gamma distributed OPV reversion
model (33). We use the superscript * to denote the equilibrium value and we define the
dimensionless parameter

v

Ja (B.1)

=n)/+v'
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For n =1, f, reduces to f, as defined in Eq. (8). For the Gamma distributed SIR model,
the basic reproductive number R is given by van den Driessche and Watmough (2002)

Ro = é(l — (= f)"). (B2)

In terms of Ry, the critical vaccination proportion (which is meaningful in the absence
of reversion) is still given by the usual formula (9).
Setting Eq. (33) to zero, for k > 2 we find

I'=0-fol, (B.3)
and hence
IF=0— ). (B.4)

We therefore have

B e/ LI ¢ B 9 L
I _;Ik_ —a= 1) If= 7 I7. (B.5)

Summing Eqgs. (33a) and (33b) at equilibrium yields
* 1 *
S =1—-p(l—-9)——1I}. (B.6)

Substituting Eq. (B.6) into (33b) (set to zero), expressing I* in terms of I} via (B.5) and
simplifying in terms R yields the quadratic equation

| 3
L e —pa— )17 — ”f;{

=0. (B.7)

This quadratic equation for /; has exactly the same form as Eq. (14) for /* in the case
n = 1. Asin Section 4.1, defining Ap = p.ic — p(1 — ¢) and solving the quadratic for /]
(insisting that it be non-negative) yields the unique solution

1 17
11*=fn[5Ap+ [EAp] +%—ﬂ (B.3)

from which Egs. (B.5) and (B.6) imply

I'=[(1-10-=f)" —lAp+ —lApz—i-—p B.9
[ ( fn)] 2 |:2 :| Ro | (B-92)
S =1 1 IA 1A . B.9%

—p( —¢)—§ P — [5 P] +—RO- (B.9b)

As expected, for the exponential distribution (n = 1), Eq. (B.9) reduces to (17).
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Appendix C:

Here we show that for the live attenuated virus model (11),if0<p<land0<¢ <1
then the region B={(S,1):S>0,1 > 0,5 + I < 1} is forward invariant, and for all
initial conditions along the boundary of B the flow of Eq. (11) is into B.

As shown in Section 3, since the model (11) is constructed in terms of proportions, the
closure of B is forward invariant. Therefore, it is sufficient to show that the flow of (11)
along the boundary of B is into 5.

The boundary is given by the lines S =0, / =0 and S + I = 1. Along the line S =0,
the flow of (11) is given by

ds

- =(1-p)v, (C.1)

5=0

which is positive for any p < 1. Hence the flow along the line S = 0 is into 5. Similarly,
if I =0 then

dl

o =¢pv, (C2)

1=0

which is positive provided p > 0 and ¢ > 0. Finally, along the line S+ 1 =1,

d(S+1)

7 =—(=¢)pv—yl=—=(1—=¢)pv, (C3)

S+1=1

which is negative provided ¢ < 1 and p > 0. Thus, the flow along the boundary lines is
into .

References

Agur, Z., Cojocaru, L., Mazor, G., Anderson, R.M., Danon, Y.L., 1993. Pulse mass measles vaccination
across age cohorts. Proc. Natl. Acad. Sci. USA 90, 11698-11702.

Anderson, R.M., May, R. M., 1991. Infectious Diseases of Humans, Dynamics and Control. Oxford Science
Publications.

Anderson, D., Watson, R., 1980. On the spread of a disease with gamma distributed latent and infectious
periods. Biometrika 67(1), 191-198.

Anon, 1994. Polio Eradication Field Guide Technical Paper No. 40. Technical Report, Word Health Orga-
nization and Pan American Health Organization.

Anon, 2001. National Vital Statistics Report. Technical Report 49 (1), National Center for Health Statistics,
http://www.cdc.gov/nchs/data/natality/nvs49_1t1.pdf.

Anon, 2005a. Diseases and Conditions: Polio. Technical Report, Centers for Disease Control and Preven-
tion, http://www.cdc.gov/nip/publications/pink/polio.pdf.

Anon, 2005b. Morb. Mortal Wkly Rep. Technical Report 41, CDC.

Bailey, N., 1964. Some stochastic models for small epidemics in large populations. Appl. Stat. 13(1),
9-19.

Brauer, F., 2003. Backward bifurcations in simple vaccination models. J. Math. Anal. Appl. 298, 418-431.

Earn, D.J.D., Levin, S.A., 2006. Global asymptotic coherence in discrete dynamical systems. Proc. Natl.
Acad. Sci. USA 103(11), 3968-3971.

Earn, D.J.D., Rohani, P, Grenfell, B.T., 1998. Persistence chaos and synchrony in ecology and epidemiol-
ogy. Proc. Roy. Soc. Lond. Ser. B Biol. Sci. 265(1390), 7-10.

Earn, D.J.D., Levin, S.A., Rohani, P., 2000. Coherence and conservation. Science 290(5495), 1360-1364.



280 Wagner and Earn

Gillespie, D.T., 1976. A general method for numerically simulating the stochastic time evolution of cou-
pled chemical reactions. J. Comput. Phys. 22, 403—434.

Grassly, N.C., Wenger, J., Durrani, S., Bahl, S., Deshpande, J.M., Sutter, R.W., Heymann, D.L., Aylward,
R., 2007. Protective efficacy of a monovalent oral type 1 poliovirus vaccine: a case-control study.
Lancet 369, 1356-1362.

Hethcote, H.W., 2000. The mathematics of infectious diseases. SIAM Rev. 42(4), 599-653.

Heymann, D.L., Sutter, R.-W., Aylward, R.B., 2005. A global call for new polio vaccines. Nature 434,
699-700.

John, J., 2004. A developing country perspective of vaccine associated paralytic poliomyelitis. Bull. World
Health Organ. 82, 53-58.

Kermack, W.O., McKendrick, A.G., 1927. A contribution to the mathematical theory of epidemics. Proc.
Roy. Soc. Lond. Ser. A 115, 700-721.

Korobeinikov, A., Wake, G.C., 2002. Lyapunov functions and global stability for SIR, SIRS, and SIS
epidemiological models. Appl. Math. Lett. 15, 955-960.

Laasri, M., Lottenbach, K., Belshe, R., Wolff, M., Rennels, M., Plotkin, S., Chumakov, K., 2005. Effect
of different vaccination schedules on excretion of oral poliovirus vaccine strains. J. Infect. Dis. 193,
2092-2098.

Lloyd, A.L., 2001. Realistic distributions of infectious periods in epidemic models: changing patterns of
persistence and dynamics. Theor. Popul. Biol. 60, 59-71.

Ma, J., Earn, D.J.D., 2006. Generality of the final size formula for an epidemic of a newly invading infec-
tious disease. Bull. Math. Biol. 68, 679-702.

McDevitt, T., 1999. World Population Profile: 1998. Technical Report, U.S. Census Bureau, http://iggi.
unesco.or.kr/web/iggi_docs/05/952662740.pdf.

Nokes, D.J., Swinton, J., 1997. Vaccination in pulses: a strategy for global eradication of measles and
polio? Trends Microbiol. 5(1), 14-19.

Offit, P.A., 2005. The Cutter Incident. Yale University Press, New Haven.

Perko, L., 1996. Differential Equations and Dynamical Systems. Springer, Berlin.

Stone, L., Shulgin, B., Agur, Z., 2000. Theoretical examination of the pulse vaccination policy in the SIR
epidemic model. J. Math. Comput. Model. 31, 207-215.

van den Driessche, P., Watmough, J., 2002. Reproduction numbers and sub-threshold endemic equilibria
for compartmental models of disease transmission. Math. Biosci. 180, 29-48.

Woodrow, G.C., Levine, M.M., 1990. New Generation Virus Vaccines. Dekker, New York.



	Circulating Vaccine Derived Polio Viruses and their Impact on Global Polio Eradication
	Abstract
	Introduction
	The basic SIR model
	Analysis of the basic SIR model

	The live-attenuated vaccine model: modeling OPV
	Epidemiological parameters for poliomyelitis

	Analysis of the OPV model
	Equilibria
	Stability
	Local stability
	Global stability
	Damping frequencies and rate of convergence for polio
	Damping frequencies
	Rate of convergence


	Implications for continuous OPV vaccination
	Sensitivity to distribution of infectious period


	Final eradication strategies
	Pulse vaccination models
	Stochastic simulations
	Pulsed OPV versus continuous IPV
	Single pulse OPV versus single pulse IPV
	Rational policy options


	Summary and conclusions
	Appendix A
	Appendix B
	Appendix C
	References


