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a b s t r a c t

Viruses contained in live-attenuated virus vaccines (LAVV) can be transmitted between individuals,
resulting in secondary or contact vaccinations. This fact has been exploited successfully in the use of
the Oral Polio Vaccine (OPV) to better control wild-type polio viruses. In this work we analyze general
LAVV vaccination models for infections that confer lifelong immunity. We consider both standard
(continuous) vaccination strategies and pulse vaccination programs (where mass vaccination is carried
out at regular intervals). For continuous vaccination, we provide a complete global analysis of a very
general compartmental ordinary differential equation LAVVmodel.We find that the threshold vaccination
level required for the eradication of wild-type virus depends on the basic reproduction numbers of both
the wild-type and vaccine viruses, but is otherwise independent of the distributions of the durations in
each of the sequence of stages of disease progression (e.g., latent, infectious, etc.). Furthermore, even for
vaccine viruses with reproduction numbers below one, which would naturally fade from the population
upon cessation of vaccination, there can be a significant reduction in the threshold vaccination level. The
dependence of the threshold vaccination level on the virus reproduction numbers largely generalizes
to the pulse vaccination model. For shorter pulsing periods there is negligible difference in threshold
vaccination level as compared to continuous vaccination campaigns. Thus,we conclude that current policy
in many countries to employ annual pulsed OPV vaccination does not significantly diminish the benefits
of contact vaccination.

© 2009 Elsevier Inc. All rights reserved.
1. Introduction

Both currently and historically live-attenuated virus vaccines
(LAVV) have been employed against a wide range of viral dis-
eases. Examples include the smallpox vaccine, the Oral Polio Vac-
cine (OPV), measles vaccine, and HIV vaccines currently under
development (Blower et al., 2001; Woodrow and Levine, 1990).
Unlike an inactivated vaccine, a LAVV is a functioning, repli-

cating virus that has been significantly reduced in virulence and
transmissibility through the attenuation process. Typically this
attenuation is achieved by passing the virus through a sequence of
animal host tissues where there is selective pressure for mutations
that reduce its virulence (Woodrow and Levine, 1990).
The transmission of LAVVs, so-called inadvertent or contact vac-

cinations is the focus of this work. Although the transmissibility
of LAVVs is significantly reduced compared with native or viru-
lent forms, it has long been recognized that LAVV transmission can
be sufficient to have an important effect on the epidemiological
dynamics at the population level. The World Health Organization
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(WHO) has cited contact vaccination as one of the five primary rea-
sons for the use of OPV in the developing world (Hull et al., 1994;
John, 2004). In this case it is seen as a benefit, as the transmis-
sion of vaccine virus lowers the proportion of the population that
must be directly vaccinated to control the spread of the wild-type
virus.
Contact vaccinationmay have played an important role in lead-

ing to the eradication of smallpox in the 1970s. However, observed
smallpox contact vaccination (Neff et al., 2002) is currently viewed
negatively because it implies a risk of serious allergic reaction in
individuals who have not chosen to be vaccinated. In addition, as
for any LAVV, the smallpox vaccine virus has the potential to mu-
tate and thereby revert to the original wild-type form (Woodrow
and Levine, 1990). The potential to re-introduce an eradicated
pathogen makes contact vaccination a very dangerous risk in this
case.
We focus our attention specifically on LAVV vaccination for

infectious diseases that generally confer lengthy or lifelong im-
munity to the infecting pathogen. These include not only po-
lio and smallpox, but also childhood infectious diseases such as
measles, mumps, rubella and pertussis. We investigate the sig-
nificance of the role of contact vaccination in decreasing the re-
quired vaccination coverage to control pathogenic wild-type virus
spread, specifically deriving analytical expressions for the critical
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Fig. 1. Flow diagram for the SIVRmodel, the simplest LAVVmodel. The population
size is N . The ODE formulation of this model is given, in terms of proportions of the
population, by system (1).

vaccination coverage levels in terms of epidemiologically measur-
able quantities.
The first part of our analysis deals with LAVV programs in

which vaccination takes place continuously. We begin by present-
ing the simplest LAVV models, which are variants of the standard
Susceptible-Infected-Removed (SIR) and Susceptible-Exposed-
Infectious-Removed (SEIR)models; we then proceed to expand the
results to a very general staged progression model, which among
other things allows us to examine more realistically distributed
latent and infectious periods for both the wild-type and vaccine
viruses.
The second part of our analysis deals with pulse vaccination

LAVV programs. In such programs mass vaccinations are per-
formed at regular time intervals. This analysis has particular rel-
evance to polio, as some form of annual pulse OPV campaign is
currently in use in 55 countries around the globe (Anon, 2008).
Throughout this work we make the simplifying assumption

that the vaccine virus cannot undergo reversion (a return to its
virulent formviamutation).While this ignores a potentially critical
biological process, we have previously shown that reversion is
likely to contribute significantly to the population dynamics of
the pathogen only if cessation of vaccination is planned within a
few years (Wagner and Earn, 2008). Since we do not consider this
‘‘endgame’’ in this paper, ignoring reversion does not represent a
significant approximation.
Some previous mathematical modelling of LAVV transmission

has been carried out for HIV (Blower et al., 2001) and OPV (Eichner
and Hadeler, 1995). In the case of HIV, LAVV transmission was
investigated in the context of an imperfectly attenuated vaccine,
which – in addition to having limited efficacy – had the potential to
cause the disease itself, irrespective of reversion. In the case of OPV,
a simple LAVV model was formulated and a partial local analysis
performed (Eichner andHadeler, 1995); a full global analysis of this
OPV model is a special case of the general results we derive in the
following sections.
A list of symbols used in this article is presented in Table 1.

2. LAVV models

The simplest LAVV model is based on the standard SIR model
(Anderson andMay, 1991; Hethcote, 2000) and can be represented
as a flow chart (Fig. 1) or as a set of coupled ordinary differential
equations (ODEs),

dS
dt
= (1− p)ν − βIIS − βVVS − νS (1a)

dI
dt
= βIIS − (ν + γI)I (1b)

dV
dt
= pν + βVVS − (ν + γV)V (1c)
dR
dt
= γII + γVV − νR. (1d)

The host population is split into homogeneous classes representing
the proportions of individuals who are susceptible (S), infectious
with wild-type virus (I), infectious with attenuated vaccine virus
(V ) or immune (R). The parameters βI, βV, 1γI and

1
γI
represent the

transmission rates and mean infectious periods for the wild-type
and vaccine viruses, respectively. In the flow chart, both birth (at
per capita rate ν) and natural death (at per capita rateµ) are shown.
However, because Eq. (1) is written in terms of proportions rather
than numbers of individuals in each compartment, only ν appears
in the ODEs (He and Earn, 2007; Wagner and Earn, 2008). Also
notice that with the assumption of standard incidence (Hethcote,
2000) ( βN in Fig. 1), the proportional model is independent of the
population size N .
The parameter p is the proportion of individuals who are

vaccinated before entering the susceptible class (in practice, there
is often a substantial delay between birth and vaccination so
that maternally-acquired immunity has had a chance to wane).
These vaccinated individuals then enter the attenuated virus
infectious class (V ) and are able to pass the vaccine virus to
susceptible individuals, resulting in contact vaccinations. The
model (1) assumes that there is no disease-specific mortality, that
vaccination – whether direct or inadvertent – confers lifelong
immunity, and that the vaccine virus does not evolve (and hence
cannot revert to the virulent form). The assumption of lifelong and
complete immunity is particularly valid in the case of LAVVs for
childhood diseases, as they provide an active immune response
very similar to natural infection (Kew et al., 2004; Woodrow and
Levine, 1990).
We denote the basic reproduction numbers of the wild-type

and vaccine viruses as R0 and RV, respectively. The basic repro-
duction number is defined in the standard manner as the aver-
age number of secondary infections (or secondary immunizations)
caused by a single infectious individual in a fully susceptible pop-
ulation. As the vaccine virus is attenuated, substantially reducing
both transmissibility as well as virulence, we impose the condition
RV < R0. Furthermore we assumeR0 > 1 as otherwise the virus
would fade out from the population naturally without vaccination.
The ODE system (1) was originally proposed by Eichner and

Hadeler (1995) to model polio dynamics when vaccinating with
Oral Polio Vaccine (OPV). They showed that system (1) exhibits
a disease free equilibrium (DFE), which is (locally) asymptotically
stable, whenever

p ≥ pcrit
(
1−

RV

R0

)
, (2)

where pcrit is the minimum proportion of the population that must
be vaccinated to eradicate a disease with a vaccine that is not
transmissible, i.e.,

pcrit = 1−
1

R0
. (3)

It is important to note that contact vaccination leads to a signif-
icant reduction in the threshold vaccination proportion (2) even
for RV < 1, in which case we expect the vaccine virus to fade
from the population upon cessation of vaccination. This reduction
of critical proportion is demonstrated in Fig. 2, which compares the
critical proportion under contact vaccination to pcrit (standard vac-
cination) for various fixedRV values across a range ofR0 values.
Below the threshold (2), system (1) has a biologically meaning-

ful endemic equilibrium.We demonstrate below that the DFE is, in
fact, globally asymptotically stable if condition (2) holds and that
the endemic equilibrium is globally asymptotically stable other-
wise. These conclusions are also valid for models that incorporate
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Fig. 2. Critical vaccination proportion (2) as a function of wild-type virus basic
reproduction number R0 for fixed values of vaccine virus basic reproduction
numberRV . Also shown is the standard critical vaccination level pcrit (dashed black
line) corresponding toRV = 0. Contact vaccination leads to a significant reduction
in the critical vaccination proportion even forRV < 1 and relatively highR0 values.
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Fig. 3. Flow diagram for the SEIVR model. The compartments EV and EI represent
exposed classes of individuals who have been infected, respectively, by the vaccine
and wild-type virus but are not yet infectious. The mean latent periods for the
vaccine and wild-type virus are given by 1

σV
, 1
σI
and N represents the total

population size.

latent periods (delays between the time of infection or vaccination
and the onset of infectiousness); see the SEIVR model depicted in
Fig. 3.Muchmore generally,we show in this paper that these global
stability results are valid for any staged progression LAVV model
(depicted generically in Fig. 4).
2.1. Global stability of generalized LAVV models

We show that for the very general class of LAVV models de-
picted in Fig. 4, there is always a unique DFE and a critical vaccina-
tion threshold that is always given by Eq. (2). If p ≥ pcrit(1 −

RV
R0
)

then the DFE is globally asymptotically stable, while if p < pcrit(1−
RV
R0
) there exists a unique globally asymptotically stable endemic

equilibrium. An important feature of the general staged progression
model that we consider is that any of the stages of infection can
have durations that are distributed realistically (as opposed to ex-
ponentially). Mathematically, each stage is Erlang distributed with
an arbitrary shape parameter (seeWagner and Earn (2008) Section
4.3.1 for mathematical details).

2.1.1. The general staged progression LAVV model
We begin by formulating the general staged progression LAVV

model depicted in Fig. 4 as the following system of ODEs.

dS
dt
= (1− p)ν −

n∑
j=1

βVj VjS −
k∑
j=1

β Ij IjS − νS (4a)

dV1
dt
= pν +

n∑
j=1

βVj VjS −
(
ν + γ V1

)
V1 (4b)

dV2
dt
= γ V1 V1 −

(
ν + γ V2

)
V2 (4c)

...

dVn
dt
= γ Vn−1Vn−1 −

(
ν + γ Vn

)
Vn (4d)

dI1
dt
=

k∑
j=1

β Ij IjS −
(
ν + γ I1

)
I1 (4e)

dI2
dt
= γ I1I1 −

(
ν + γ I2

)
I2 (4f)

...

dIk
dt
= γ Ik−1Ik−1 −

(
ν + γ Ik

)
Ik (4g)

dR
dt
= γ Ik Ik + γ

V
n Vn − νR. (4h)

In system (4), the variables Vj represent infected stages (latent if
the transmission rate βVj = 0 and infectious if β

V
j > 0). Similarly,

the Ij representwild-type virus infected stages andβ Ij are the trans-
mission rates in these stages. We denote the numbers of vaccine
k

N
k

k

Fig. 4. Flow diagram for the general staged progression SI1I2 · · · IkV1V2 · · · VnR model, which includes an arbitrary number of stages of infection for both the wild-type and
vaccine viruses.



82 B.G. Wagner, D.J.D. Earn / Theoretical Population Biology 77 (2010) 79–94
virus and wild-type virus infected classes by n and k, respectively.
Without loss of generality, we assume Vn and Ik are the final vac-
cine and wild-type virus stages with nonzero infectivity (further
classes with βVj = 0 or β

I
j = 0 could be absorbed into the removed

class R). As in Eq. (1) the expanded model (4) is written in terms
of proportions, so only the per capita birth rate ν appears and not
the per capita death rate µ. The parameters 1

γ Vj
and 1

γ Ij
represent

the mean duration of the jth vaccine and wild-type virus infected
stages respectively, and p is the proportion of newborns that are
successfully vaccinated (after maternal antibodies have waned).

2.1.2. Basic reproduction numbers
We calculate the basic reproduction numbers of the vaccine

(RV) and wild-type virus (R0), defined to be the number of
secondary transmissions of a single infectious individual in an
otherwise fully susceptible population. From the definition, we see
that each virus must be considered independently. If considering
the vaccine virus we fix all wild-type virus classes to zero, and vice
versa, and set vaccination to zero. Applying the next generation
method (Diekmann et al., 1990; van denDriessche andWatmough,
2002) to the resulting system yields the reproduction numbers,

RV =

(
βV1(

ν + γ V1
) + n∑

j=2

βVj(
ν + γ Vj

) ( j−1∏
i=1

γ Vi(
ν + γ Vi

))) (5a)

R0 =

(
β I1(

ν + γ I1
) + k∑

j=2

β Ij(
ν + γ Ij

) ( j−1∏
i=1

γ Ii(
ν + γ Ii

))) . (5b)

The next generation method provides a straightforward algorithm
to obtain reproduction numbers by examining the stability of the
system at the DFE. For staged progression models, reproduction
numbers are worked out explicitly in van den Driessche and
Watmough (2002), along with a complete discussion of the
method.
Eq. (5) can be also understood at a heuristic level. For example

(for constant population) the term
βVj(
ν+γ Vj

) can be understood as
the average number of people infected (in a fully susceptible
population) by an individual in the jth class, while the product

term
∏j−1
i=1

γ Vi(
ν+γ Vi

) represents the probability that an individual
beginning in the first class will proceed to the jth class before
dying. Summing over all classes gives the total average number of
infections.

2.1.3. The disease free equilibrium
By definition, the DFE has Ij∗ = 0 for all j, and at equilibriumwe

must have

V ∗j =
γ Vj−1

(ν + γ Vj )
V ∗j−1, j ≥ 2. (6)

Summing Eqs. (4a) and (4b) at equilibrium yields the relation

S∗ = 1−

(
ν + γ V1

)
ν

V ∗1 . (7)

Expressing V ∗j in terms of V
∗

1 via Eqs. (6) and (5) and substituting
(4a) into (4b) at equilibrium yields the quadratic equation(
ν + γ V1

)
ν

V ∗1
2
−

(
1−

1
RV

)
V ∗1 −

pν
RV

(
ν + γ V1

) = 0. (8)
We compute the unique positive solution of (8) yielding the DFE,

S∗ =

1− 1
2

(
1−

1
RV

)
−

√(
1
2

(
1−

1
RV

))2
+
p

RV

 (9a)

V ∗1 =
ν

(ν + γ V1 )

×

1
2

(
1−

1
RV

)
+

√(
1
2

(
1−

1
RV

))2
+
p

RV

 (9b)

V ∗j =
ν

(ν + γ V1 )

(
j∏
i=2

γ Vi−1

(ν + γ Vi )

)

×

1
2

(
1−

1
RV

)
+

√(
1
2

(
1−

1
RV

))2
+
p

RV

 (9c)

Ij∗ = 0. (9d)

It should be noted that the equilibrium proportion of susceptibles,
S∗, depends only on the reproduction numbers R0 and RV, and
not on the durations of any of the stages. The non-negativity
of the equilibrium (see Appendix A of Wagner and Earn (2008))
implies that the equilibrium lies in the biologically meaningful set
= {S, Vi, Ii : S, Vi, Ii ≥ 0, S +

∑n
i=1 Vi +

∑k
i=1 Ii ≤ 1} by the

arguments in Appendix A.2.

2.1.4. Endemic equilibrium
For p < pcrit(1−

RV
R0
) there exists a unique endemic equilibrium.

To see this, we first note that (6) holds, as does the analogous
relationship for the infected classes,

Ij∗ =
γ Ij−1

(ν + γ Ij )
Ij−1∗, j ≥ 2. (10)

Applying (10) and (5) to (4e) at equilibrium yields(
ν + γ I1

) (
1−R0S∗

)
= 0, (11)

which is equivalent to

S∗ =
1

R0
. (12)

Similarly, applying (6), (5) and (12) to Eq. (4b) yields

V ∗1 =
pνR0(

ν + γ I1
)
(R0 −RV)

(13)

which is positive under the attenuation condition that RV < R0.
Substituting expression (13) into (4a) at equilibrium and again
using (6), (5) and (10) yields

I1∗ =
ν(

ν + γ I1
) ((1− 1

R0

)
− p

(
1+

RV

(R0 −RV)

))
. (14)

We see that I1∗ > 0 if and only if p <
(
1− 1

R0

)
(1− RV

R0
), and the

endemic equilibriummay be expressed as

S∗ =
1

R0
(15a)

V ∗1 =

(
pνR0(

ν + γ V1
)
(R0 −RV)

)
(15b)

V ∗j =

(
pνR0(

ν + γ V1
)
(R0 −RV)

)(
j∏
i=2

γ Vi−1(
ν + γ Vi

))
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j = 2, . . . , n (15c)

I1∗ =

(
ν(

ν + γ I1
))((1− 1

R0

)
− p

(
1+

RV

(R0 −RV)

))
(15d)

Ij∗ =

(
ν(

ν + γ I1
))( j∏

i=2

γ Ii−1(
ν + γ Ii

))
×

((
1−

1
R0

)
− p

(
1+

RV

(R0 −RV)

))
j = 2, . . . , k. (15e)

Again, the fact that the equilibrium is non-negative implies that it
lies in the biologically meaningful state regionB.

2.2. Global stability conditions

We use Lyapunov’s direct method (LaSalle and Lefschetz, 1961)
to establish that the DFE is globally asymptotically stable if p ≥
pcrit(1 −

RV
R0
) and that the endemic equilibrium is asymptotically

stable if p < pcrit(1−
RV
R0
).

The Lyapunov functions we construct are related to those used
by Guo and Li (2006) to prove global stability in a standard
epidemiological staged progression model. The Guo–Li functions
are in turn generalizations of Lyapunov functions recently devel-
oped to prove global stability for a variety of epidemiological and
ecological models (Freedman and So, 1985; Korobeinikov, 2004;
Korobeinikov andMaini, 2004; Korobeinikov andWake, 2002). The
primary reason that these methods work for a wide range of high-
dimensional ecological and epidemiological models is that they do
not rely on explicit equilibrium expressions. Instead, we only re-
quire implicit relationships among the parameters and equilibria
(which are straightforwardly derived directly from the differential
equations) and the positive invariance of the positive cone with
respect to the dynamical system.

2.2.1. Global stability of the disease free equilibrium
To establish the global asymptotic stability of the DFE (9) when

p ≥ pcrit(1−
RV
R0
) we first note that this condition is equivalent to

the condition S∗ ≤ 1
R0
(Appendix C).We then proceed to construct

a Lyapunov function of the form

LDFE = L1DFE + L
2
DFE (16a)

L1DFE = I1 +
k∑
j=2

ajIj (16b)

L2DFE =
(
S − S∗ ln (S)

)
+
(
V1 − V ∗1 ln (V1)

)
+

n∑
j=2

bj
(
Vj − V ∗j ln

(
Vj
))

(16c)

where aj, bj are appropriately chosen positive coefficients and ∗
denotes the equilibrium value at the DFE. We note that LDFE has
a global minimum (with respect to the positive cone) located at
the DFE which we denote as X0 = (S∗, V ∗1 . . . V

∗

k , 0, . . . 0) and
furthermore that for any variable P ,

∂

∂P

(
P − P∗ ln (P)

)
= 1−

P∗

P
. (17)
2.2.2. Construction of L1DFE
We observe that Eqs. (4e)–(4g) can be written in the form

d
dt


I1
I2
...
Ik

 =


k∑
j=1

β Ij IjS

0
...
0

− V


I1
I2
...
Ik

 , (18)

where the k× kmatrix V is given by

V =


−(ν + γ I1)

γ I1 −(ν + γ I2)

γ I2 −(ν + γ I3)

. . .
. . .

γ Ik−1 −(ν + γ Ik)

 . (19)

The matrix V has a non-negative inverse which can be computed
directly as

V−1

=



1

(ν + γ I1)

γ I1

(ν + γ I1)(ν + γ
I
2)

1

(ν + γ I2)

γ I1γ
I
2

(µ+ γ I1)(ν + γ
I
2)(ν + γ

I
3)

γ I2

(ν + γ I2)(ν + γ
I
3)

1

(ν + γ I3)

.

.

.
.
.
.

.

.

.
. . .


.

(20)

Furthermore, R0 can be expressed in a straightforward manner
(Diekmann et al., 1990; van den Driessche and Watmough, 2002)
in terms of V as

R0 =
(
β I1 β I2 . . . β Ik

)
V−1


1
0
...
0

 . (21)

Motivated by (18) and (21), we choose the coefficients aj as(
1 a2 . . . ak

)
=
1

R0

(
β I1 β I2 . . . β Ik

)
V−1 , (22)

where we note that the leading coefficient is equal to 1 by
construction (Eq. (21)).
It then follows from (16b), (18), (21) and (22) that

d
dt
L1DFE =

(
1 a2 . . . ak

) d
dt


I1
I2
...
Ik


=

(
S −

1
R0

) k∑
j=1

β Ij Ij . (23)

2.2.3. Construction of L2DFE
We first write obtain the required implicit equilibrium expres-

sions among the state variables at S and V1, . . . , Vn, namely

(1− p)ν =
n∑
j=1

βVj V
∗

j S
∗
+ νS∗ (24a)

n∑
j=1

βVj V
∗

j = (γ
V
1 + ν)V

∗

1 − pν (24b)
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γ Vj−1V
∗

j−1(
ν + γ Vj

) = V ∗j , j = 2, . . . , n. (24c)

From expressions (16c) and (17) we see that

d
dt
L2DFE =

(
1−

S∗

S

)
dS
dt
+

(
1−

V ∗1
V1

)
dV1
dt

+

n∑
j=2

bj

(
1−

V ∗j
Vj

)
dVj
dt
. (25)

We select the coefficients bj using the same inductive algorithm
presented by Guo and Li (2006), which yields

bn =
βVn S

∗(
ν + γ Vn

) (26a)

bj =
bj+1γ Vj + β

V
j S
∗(

ν + γ Vj
) , j = 2, . . . , n− 1 . (26b)

We note that the definition as Vn as the final class with nonzero
vaccine virus infectivity, βVn > 0, ensures that bj > 0 for all j, and
that recurrence relation (26) can be straightforwardly solved (Guo
and Li, 2006) to yield

bj =

n∑
i=j
βVi V

∗

i S
∗

(
ν + γ Vj

)
V ∗j
, j = 2, . . . , n . (27)

We compute the first term of (25) as(
1−

S
S∗

)
dS
dt
= (1− p)ν −

n∑
j=1

βVj VjS −
k∑
j=1

β Ij IjS − νS

−(1− p)ν
S∗

S
+

n∑
j=1

βVj VjS
∗
+

k∑
j=1

β Ij IjS
∗
+ νS∗

=

n∑
j=1

βVj V
∗

j S
∗
+ νS∗ −

n∑
j=1

βVj VjS −
k∑
j=1

β Ij IjS − νS

−

n∑
j=1

βVj V
∗

j
S∗2

S
− ν
S∗2

S
+

n∑
j=1

βVj VjS
∗
+

k∑
j=1

β Ij IjS
∗
+ νS∗

= νS∗
(
2−

S
S∗
−
S∗

S

)
−

k∑
j=1

β Ij IjS +
k∑
j=1

β Ij IjS
∗

−

n∑
j=1

βVj VjS +
n∑
j=1

βVj VjS
∗
+

n∑
j=1

βVj V
∗

j S
∗
−

n∑
j=1

βVj
S∗2

S

≤ −

k∑
j=1

β Ij IjS +
k∑
j=1

β Ij IjS
∗
−

n∑
j=1

βVj VjS +
n∑
j=1

βVj VjS
∗

+

n∑
j=1

βVj V
∗

j S
∗
−

n∑
j=1

βVj
S∗2

S
. (28)

In Eq. (28) we substitute for (1 − p)ν using (24a) and in the final
inequality we use the fact that

(
2− S

S∗ −
S∗
S

)
≤ 0 with equality

only if S = S∗. This inequality is just a corollary of the fact that the
arithmetic mean is always greater than or equal to the geometric
mean (Appendix B).
Computing the second term of (25), using (4) and (24b), we find(
1−

V ∗1
V1

)
d
dt
V1 = pν − pν

V ∗1
V1
+

n∑
j=1

βVj VjS −
(
ν + γ V1

)
V1
−

n∑
j=1

βVj VjS
V ∗1
V1
+
(
ν + γ V1

)
V ∗1

= 2pν − pν
V ∗1
V1
+

n∑
j=1

βVj VjS −
(
ν + γ V1

)
V1

−

n∑
j=1

βVj VjS
V ∗1
V1
+

n∑
j=1

βVj V
∗

j S
∗ . (29)

Now we proceed as in Guo and Li (2006) to make the inductive
choice of the coefficients bj clear. For j ≥ 2,

bj

(
1−

V ∗j
Vj

)
d
dt
Vj = bjγ Vj−1Vj−1 − bj

(
ν + γ Vj

)
Vj

− bjγ Vj−1Vj−1
V ∗j
Vj
+ bj

(
ν + γ Vj

)
V ∗j . (30)

Using the choice of the coefficients bj (26), we find
n∑
j=1

βVj VjS
∗
−
(
ν + γ V1

)
V1 +

n∑
j=2

bjγ Vj−1Vj−1 − bj
(
ν + γ Vj

)
Vj

=
(
βV1 S

∗
−
(
ν + γ V1

)
+ b2γ V1

)
V1 + (βVn S

∗
− bn

(
ν + γ Vn

)
)Vn

+

n−1∑
j=2

(
βVj S

∗
+ bj+1γ Vj − bj

(
ν + γ Vj

))
Vj

=
(
βV1 S

∗
−
(
ν + γ V1

)
+ b2γ V1

)
V1. (31)

Eq. (31) may be further simplified by substituting from Eq. (27) for
b2 and employing (24b) and (24c). In this way we find(
βV1 S

∗
−
(
ν + γ V1

)
+ b2γ V1

)
V1

=

βV1 S∗ − (ν + γ V1 )+
n∑
j=2
βVj V

∗

j S
∗

(
ν + γ V2

)
V ∗2
γ V1

 V1

=

(
−
(
ν + γ V1

)
V ∗1 +

n∑
j=1

βVj V
∗

j S
∗

)
V1
V ∗1

= −pν
V1
V ∗1
. (32)

Therefore, collecting terms from (31), (32), (29) and (25), we see
that

d
dt
L2DFE ≤

(
k∑
j=1

β Ij IjS
∗
−

k∑
j=1

β Ij IjS

)
+ pν

(
2−

V ∗1
V1
−
V1
V ∗1

)

+

(
−

n∑
j=1

βVj V
∗

j
S∗2

S
−

n∑
j=1

βVj VjS
V ∗1
V1
−

n∑
j=2

bjγ Vj−1Vj−1V
∗

j

Vj

)

+

(
n∑
j=2

bj
(
ν + γ Vj

)
V ∗j + 2

n∑
j=1

βVj V
∗

j S
∗

)

≤

(
k∑
j=1

β Ij IjS
∗
−

k∑
j=1

β Ij IjS

)
︸ ︷︷ ︸

F

+

(
−

n∑
j=1

βVj V
∗

j
S∗2

S
−

n∑
j=1

βVj VjS
V ∗1
V1
−

n∑
j=2

bjγ Vj−1Vj−1V
∗

j

Vj

)
︸ ︷︷ ︸

G

+

(
n∑
j=1

bj
(
ν + γ Vj

)
V ∗j + 2

n∑
j=2

βVj V
∗

j S
∗

)
︸ ︷︷ ︸

H

, (33)
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with equality if and only if S = S∗ and V1 = V ∗1 . The terms
G and H may be simplified to show G + H ≤ 0, precisely as
in Guo and Li (2006). We include the argument here for the sake
of completeness. Using the solution of the inductive relationship
for the terms bj

(
ν + γ Vj

)
V ∗j (27) yields

H =
n∑
j=2

bj
(
ν + γ Vj

)
V ∗j + 2

n∑
j=1

βVj V
∗

j S
∗

=

n∑
j=1

(j+ 1)βVj V
∗

j S
∗ . (34)

Substituting for bj in terms of (27), applying the equilibrium
relationship (24c) and exchanging the order of summation, yields
n∑
j=2

bjγ Vj−1Vj−1V
∗

j

Vj
=

n∑
j=2

n∑
r=j

βVr V
∗

r S
∗
γ Vj−1Vj−1(
ν + γ Vj

)
Vj

=

n∑
j=2

n∑
r=j

βVr V
∗

r S
∗
V ∗j Vj−1
VjV ∗j−1

=

n∑
j=2

βVj V
∗

j S
∗

j∑
r=2

V ∗r V
∗

r−1

VrV ∗r−1
. (35)

Using (27) and (35) yields the desired result

G+ H = βV1 V
∗

1 S
∗

(
2−

S∗

S
−
S
S∗

)
+

n∑
j=2

βVj V
∗

j S
∗

(
(j+ 1)−

S∗

S
−
SVjV ∗1
S∗V ∗j V1

−

j∑
r=2

V ∗r Vr−1
VrV ∗r−1

)
≤ 0 , (36)

with equality if and only if S = S∗, V1 = V ∗1 , . . . , Vj = V
∗

j , since
the arithmetic mean is always greater than the geometric mean
(Appendix B).
Combining (23), (33) and (36) yields

d
dt
LDFE =

d
dt
L1DFE +

d
dt
L2DFE ≤

(
S∗ −

1
R0

) k∑
j=1

β Ij IjS. (37)

Applying the result of Appendix C, which states

S∗ ≤
1

R0
⇐⇒ p ≥ pcrit

(
1−

RV

R0

)
, (38)

we obtain the desired result

p ≥ pcrit

(
1−

RV

R0

)
H⇒

d
dt
LDFE ≤ 0 , (39)

with equality in Eq. (39) along a subset ofK = {(S, V1, . . . , Vn, I1,
. . . , Ik) : S = S∗, V1 = V ∗1 , . . . , Vj = V

∗

j }, containing the first n+1
coordinates of the DFE, X0. Notice that if S∗ = 1

R0
then equality in

(39) holds everywhere in K . However, it is evident from (4) that
X0 is the only invariant subset ofK . Hence, the LaSalle Invariance
Principle (LaSalle and Lefschetz, 1961; LaSalle, 1976) guarantees
that X0 is globally asymptotically stable, completing the proof.

2.2.4. Global stability of the endemic equilibrium
We employ a Lyapunov function of the standard form to prove

that the endemic equilibrium (15) is globally asymptotically stable
whenever it exists, i.e., if p < pcrit(1−

RV
R0
). The Lyapunov function

is

LEE =
(
S − S∗ ln (S)

)
+
(
I1 − I1∗ ln (I1)

)
+
(
V1 − V ∗1 ln(V1)

)
+

n∑
j=2

cj
(
Vj − V ∗j ln(Vj)

)
+

k∑
j=2

dj
(
Ij − Ij∗ ln(Ij)

)
, (40)
where ∗ denotes the value at the endemic equilibrium (15). Again
we choose the aj, bj by the inductive algorithm presented in Guo
and Li (2006), such that

cn =
βVn S

∗(
ν + γ Vn

) (41a)

cj =
cj+1γ Vj + β

V
j S
∗(

ν + γ Vj
) j = 2 . . . n− 1 (41b)

dk =
β IkS
∗(

ν + γ Ik
) (41c)

dj =
dj+1γ Ij + β

I
j S
∗(

ν + γ Ij
) j = 2 . . . k− 1. (41d)

Much of the analysis is identical to that of Section 2.2.1 of this
paper and Section 5 of Guo and Li (2006), so we highlight only the
differences.
The equilibrium relationships, (24b) and (24c), still hold for the

endemic equilibrium as they did for the DFE. However, Eq. (24a) is
now replaced by the expression

(1− p)ν =
n∑
j=1

βVj V
∗

j S
∗
+

k∑
j=1

β Ij Ij
∗S∗ + νS∗ (42)

and we now have the equilibrium relationships

k∑
j=1

β Ij Ij
∗S∗ =

(
ν + γ I1

)
I1∗ (43a)

γ Ij−1Ij−1
∗(

ν + γ Ij
) = Ij∗ . (43b)

We compute the first term of ddt LEE analogously to (25), employing
(42).

∂LEE
∂S

d
dt
S =

(
1−

S∗

S

)
dS
dt

= νS∗
(
2−

S
S∗
−
S∗

S

)
+

(
−

n∑
j=1

βVj VjS +
n∑
j=1

βVj VjS
∗
+

n∑
j=1

βVj V
∗

j S
∗
−

n∑
j=1

βVj V
∗

j
S∗2

S

)

+

(
−

k∑
j=1

β Ij IjS +
k∑
j=1

β Ij IjS
∗
+

k∑
j=1

β Ij Ij
∗S∗ −

k∑
j=1

β Ij Ij
∗
S∗2

S

)

≤

(
−

n∑
j=1

βVj VjS +
n∑
j=1

βVj VjS
∗
+

n∑
j=1

βVj V
∗

j S
∗
−

n∑
j=1

βVj V
∗

j
S∗2

S

)
︸ ︷︷ ︸

AV

+

(
−

k∑
j=1

β Ij IjS +
k∑
j=1

β Ij IjS
∗
+

k∑
j=1

β Ij Ij
∗S∗ −

k∑
j=1

β Ij Ij
∗
S∗2

S

)
︸ ︷︷ ︸

AI

(44)

with equality only when S = S∗. We now can split our calculations
into

d
dt
LEE ≤

(
AV +

(
1−

V ∗1
V1

)
d
dt
V1 +

n∑
j=2

cj

(
1−

Vj
V ∗j

)
d
dt
Vj

)

+

(
AI +

(
1−

I∗1
I1

)
d
dt
I1 +

k∑
j=2

dj

(
1−

Ij
I∗j

)
d
dt
Ij

)
. (45)
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The first term of (45) is exactly that computed in Eqs. (28)–(32),
while the second term is exactly that computed in Eqs. (25)–(33)
of Guo and Li (2006). We therefore conclude that

d
dt
LEND ≤ 0 , (46)

with equality if and only if S = S∗, V1 = V ∗1 , . . . , Vj = V
∗

j , I1 =
I1∗, . . . , Ij = Ij∗. This confirms that the endemic equilibrium (15)
is globally asymptotically stable when it exists.

2.3. Disease- and vaccine-induced mortality

The model (4) does not take into account the effects of disease-
or vaccine-inducedmortality. Using a relatedmodel, we take these
factors into account.Wedemonstrate that inclusion of these effects
does not change the qualitative results (stability thresholds). The
staged progression model we consider may be phrased in the
following manner,

dS
dt
= (1− p)B−

n∑
j=1

βVj VjS −
k∑
j=1

β Ij IjS − µS (47a)

dV1
dt
= pB+

n∑
j=1

βVj VjS −
(
µ+ γ V1 + ε

V
1

)
V1 (47b)

dV2
dt
= γ V1 V1 −

(
µ+ γ V2 + ε

V
2

)
V2 (47c)

...

dVn
dt
= γ Vn−1Vn−1 −

(
µ+ γ Vn + ε

V
n

)
Vn (47d)

dI1
dt
=

k∑
j=1

β Ij IjS −
(
µ+ γ I1 + ε

I
1

)
I1 (47e)

dI2
dt
= γ I1I1 −

(
µ+ γ I2 + ε

I
2

)
I2 (47f)

...

dIk
dt
= γ Ik−1Ik−1 −

(
µ+ γ Ik + ε

I
k

)
Ik (47g)

dR
dt
= γ Ik Ik + γ

V
n Vn − µR. (47h)

In contrast to (4) the system (47) is phrased in terms of total
population N rather than proportions. The total birth rate is given
by B, εVj and ε

I
j represent the vaccine- and wild-type virus-induced

death rates in each stage, while µ is the per capita natural death
rate. The terms βVj , β

I
j represent the total transmission rate of

vaccine and wild-type virus in each stage. Note that this model
assumes pseudo-mass action incidence β as opposed to standard
incidence β

N . The previous LAVV models considered assumed
standard incidence. Other parameters are as defined in (4).
Themotivation for our departure from using proportionalmod-

els is mathematical in nature. As demonstrated in He and Earn
(2007) for the proportional version of the standard SIR model with
disease-induced mortality, inclusion of disease-induced mortal-
ity results in quadratic terms not present in the original propor-
tional model. Due to this fact, the form of Lyapunov functions
used to show stability in the absence of vaccine- and disease-
induced mortality cannot be straightforwardly employed. How-
ever, assuming a constant birth rate, the Lyapunov functions can
be straightforwardly applied to the model written in terms of total
population (47). In the absence of vaccine- and disease-induced
mortality there is no difference between the models (47) and (4)
after the latter is expressed in proportions.
Since the total birth rate is fixed, the model (47) will be valid

over time periods for which the total birth rate is relatively stable.
As previously noted the model (4) employs pseudo-mass action
mixing as opposed to standard mass action mixing. This assump-
tion is not biologically unrealistic, as pseudo-mass action mixing
has been shown to successfully predict transitions in dynamics of
childhood diseases (Bauch and Earn, 2003; Earn et al., 2000).
For system (47) the basic reproduction numbers of the wild-

type and vaccine virus are (Guo and Li, 2006; van den Driessche
and Watmough, 2002)

RV =
B
µ

(
βV1(

µ+ γ V1 + ε
V
1

) + n∑
j=2

βVj(
µ+ γ Vj + ε

V
j

)
×

(
j−1∏
i=1

γ Vi(
µ+ γ Vi + ε

V
i

))) (48a)

R0 =
B
µ

(
β I1(

µ+ γ I1 + ε
I
1

) + k∑
j=2

β Ij(
µ+ γ Ij + ε

I
j

)
×

(
j−1∏
i=1

γ Ii(
µ+ γ Ii + ε

I
i

))) . (48b)

Straightforward computation establishes that system (47) has a
unique DFE given by

S∗ =
B
µ

1− 1
2

(
1−

1
RV

)
−

√(
1
2

(
1−

1
RV

))2
+
p

RV


(49a)

V ∗1 =
B(

µ+ γ V1 + ε
V
1

)
×

1
2

(
1−

1
RV

)
+

√(
1
2

(
1−

1
RV

))2
+
p

RV

 (49b)

V ∗j =
B(

µ+ γ V1 + ε
V
1

) ( j∏
i=2

γ Vi−1(
µ+ γ Vi + ε

V
i

))

×

1
2

(
1−

1
RV

)
+

√(
1
2

(
1−

1
RV

))2
+
p

RV

 , (49c)
Ij∗ = 0 (49d)

and a unique endemic equilibrium given by

S∗ =
B

µR0
(50a)

V ∗1 =

(
pBR0(

µ+ γ V1 + ε
V
1

)
(R0 −RV)

)
(50b)

V ∗j =

(
pBR0(

µ+ γ V1 + ε
V
1

)
(R0 −RV)

)(
j∏
i=2

γ Vi−1(
µ+ γ Vi + ε

V
i

))
j = 2, . . . , n (50c)

I1∗ =

(
B(

µ+ γ I1 + ε
I
1

))
×

((
1−

1
R0

)
− p

(
1+

RV

(R0 −RV)

))
(50d)
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Ij∗ =

(
B(

µ+ γ I1 + ε
I
1

))( j∏
i=2

γ Ii−1(
µ+ γ Ii + ε

I
i

))
×

((
1−

1
R0

)
− p

(
1+

RV

(R0 −RV)

))
j = 2, . . . , k. (50e)

By employing Lyapunov functions analogous to those used to show
global stability of the DFE and EE for the LAVV model (4), it is seen
that the EE is globally asymptotically stablewhenever p < pcrit(1−
RV
R0
)while the DFE is globally asymptotically stable whenever p ≥

pcrit(1 −
RV
R0
). The computations follow exactly from the stability

proofs for system (4), therefore we do not repeat them here.
We see that incorporating vaccine- and wild-type virus-

induced death rates, the stability threshold for wild-type virus
eradication appears the same as Eq. (2), specified by the reproduc-
tion numbers of the vaccine and wild-type virus. Note, however,
that the expressions for the reproduction numbers are different in
the presence of disease- and/or vaccine-induced mortality.

3. Contact vaccination within a pulse vaccination campaign

Contact vaccination within a pulse vaccination campaign may
be described by the following equations, where the time interval
between vaccination pulses is T . The underlying structure is based
upon the standard (SIR)model (Anderson andMay, 1991), ignoring
disease- and vaccine-induced mortality, and using proportions as
state variables,

dS
dt
= ν − β I(t)IS − βV(t)VS − νS (51a)

dV
dt
= βV(t)VS − (ν + γ V)V (51b)

dI
dt
= β I(t)IS − (ν + γ I)I (51c)

dR
dt
= γ II + γ VV − νR (51d)

S(nT+) = (1− ppulse)S(nT−) n ∈ N (51e)

V (nT+) = V (nT−)+ ppulseS(nT−). (51f)

The parameter ppulse is the pulse vaccination proportion, i.e., the
proportion of susceptibles who are vaccinated during each
vaccination pulse. We use the notation

S(nT−) = lim
ε→0+

S(nT − ε), (51g)

and, for the sake of generality, we allow the vaccine virus trans-
mission rate βV(t) and the wild-type virus transmission rate β I(t)
to be time dependent. However, we assume that the transmission
rates are continuous functions of time and T -periodic,

βV(t + T ) = βV(t) , (51h)

β I(t + T ) = β I(t) . (51i)

In practice, the pulse interval T will always be a multiple of one
year, so we are including the possibility of any seasonal changes in
transmission rates for any realistic pulse interval. Other quantities
in (51) have the samemeanings that they do in systems (1) and (4).

3.1. Existence of the disease free T-periodic solution

We prove that for the system given by (51) a biologically
meaningful T -periodic disease free solution (DFS) always exists. The
stability of this solution, and the existence of multiple T -periodic
disease free solutions, will be discussed in subsequent subsections.
Existence is shown in the following manner. Firstly, we enforce

the disease free condition, I ≡ 0, so Eq. (51c) is automatically
satisfied and we are left with the reduced system

dS
dt
= ν − βV(t)VS − νS (52a)

dV
dt
= βV(t)VS − (ν + γ V)V (52b)

S(nT+) = (1− ppulse)S(nT−) , n ∈ N, (52c)

V (nT+) = V (nT−)+ ppulseS(nT−) . (52d)

Eq. (52) is two-dimensional and non-autonomous. Nevertheless,
existence of a T -periodic solution may be shown by exploiting
the theory of impulsive differential equations. We proceed by
applying the methods described in Bainov and Simeonov (1993).
The mathematical proofs as well as necessary definitions and
theorems (as in Bainov and Simeonov (1993)) are presented in
Appendix D.

3.2. Stability of the T-periodic disease free solution

3.2.1. Necessary conditions
Having shown that a disease free T -periodic solution always

exists, we now seek to discover under what conditions this solu-
tion is asymptotically stable. To this end we investigate the varia-
tional equation obtained from linearization of system (51) about
the disease free T -periodic solution which we denote {S(t) =
Ŝ(t), V (t) = V̂ (t), I(t) = 0}. The variational equation that gov-
erns the growth and decay of perturbations (s, v, i) about the DFS
is given as follows, where ẋ denotes the time derivative of x. For
t 6= kT ,

 ṡv̇
i̇

 =
−βV(t)V̂ (t)− ν −βV(t)Ŝ(t) −β I(t)Ŝ(t)

βV(t)V̂ (t) βV(t)Ŝ(t)− (ν + γ V) 0
0 0 β I(t)Ŝ(t)− (ν + γ I)



×

sv
i

 (53a)

while for t = kT ,(s(kT )
v(kT )
i(kT )

)
=

(
(1− p) 0 0
p 1 0
0 0 1

)s(kT−)v(kT−)
i(kT−)

 . (53b)

The fundamental matrix solution Ψ (t) of (53) is defined to be

Ψ (t) =

(s1 s2 s3
v1 v2 v3
i1 i2 i3

)
(54a)

Ψ (0) = I (54b)

where each column of (54a) is a solution of (53). The stability of
the T -periodic solution is determined by the eigenvalues of Ψ (t)
evaluated at time t = T . This result is explained by standard
floquet theory (Perko, 1996). For any perturbation from the DFS
whichwe denote ε0S , ε

0
V , ε

0
I , the growth of the perturbation is given

as(
εS(T )
εV (T )
εI(T )

)
= Ψ (T )

ε0Sε0V
ε0I

+ O((ε0)2). (55)
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if all eigenvalues ofΨ (T )havemagnitude less thanone, sufficiently
small perturbations will decay at least geometrically with every
period T and the DFS will be (locally) asymptotically stable.
Although there is no general method for constructing the fun-

damentalmatrix,much can still be said about it. It can be seen from
(53) that the equation for the perturbation i(t) is decoupled from
the rest of the system and thus can be explicitly solved as

i(t) = i(0)e
∫ t
0 β
I(r)S̃(r)−(ν+γ I)dr . (56)

As a result, we can slightly simplify the form of the fundamental
matrix and write

Ψ (T ) =

Ψ11(T ) Ψ12(T ) Ψ13(T )
Ψ21(T ) Ψ22(T ) Ψ23(T )
0 0 e

∫ T
0 [β

I(t)Ŝ(t)−(ν+γ I)] dt

 . (57)

Because the eigenvalues of block diagonal matrices are the eigen-
values of each of the blocks, the form of (57) implies that one of the
eigenvalues of Ψ (T ) is

λ3 = e[
∫ T
0 β

I(t)Ŝ(t) dt]−(ν+γ I)T . (58)

The T -periodic solution (DFS) will be local asymptotically stable if

max
i=1,2,3

|λi(Ψ (T ))| < 1 , (59)

and only if

max
i=1,2,3

|λi(Ψ (T ))| ≤ 1 . (60)

Inserting (58) in (60) gives a necessary condition for stability,

|λ3| ≤ 1 ⇐⇒
∫ T

0
β I(t)Ŝ(t) dt ≤ (ν + γ I)T . (61)

A complete closed-form analytical expression for the Ψij cannot in
general be computed, sowewill be forced to complete the stability
analysis numerically. If condition (61) is satisfied then the stabil-
ity of the DFS will be determined by the eigenvalues of the smaller
matrix

Ψreduced(T ) =
(
Ψ11(T ) Ψ12(T )
Ψ21(T ) Ψ22(T )

)
. (62)

Ψreduced(T )may be thought of as the fundamental matrix solution
of the variational equation (53) restricted to the (S, V ) plane. In the
following sections we will numerically investigate the eigenvalues
of this matrix to determine the stability of the DFS.
It is enlightening to note that if the transmission rate β I(t) =

β I, a constant, then expression (61) simplifies to the ubiquitous
condition (d’Onofrio, 2002; Shulgin et al., 1998; Stone et al., 2000)

1
T

∫ T

0
Ŝ(t) dt ≤

γ I + ν

β I
=
1

R0
, (63)

which states that the average proportion of the population that
is susceptible (over a pulse interval T ) must be kept below
the threshold level 1

R0
. The general necessary condition (61) is

different only in that the average of Ŝ(t) is weighted by the
oscillation in transmission rate.

3.2.2. Sufficient conditions for stability
For the remainder of our analysis, we focus on the case of

constant transmission: βV(t) = βV, β I(t) = β I. The T -periodic
DFS will be asymptotically stable whenever

1
T

∫ T

0
Ŝ(t)dt <

1
R0

(64a)

max
i=1,2
|λi(Ψreduced(T ))| < 1. (64b)
In Eq. (64b) λi denotes the Floquet multipliers, eigenvalues of
Ψreduced(T ), where Ψreduced(t) is fundamental matrix solution of
the variational equation about the T -periodic DFS (Ŝ(t), V̂ (t)). The
variational equation is given by(
ṡ
v̇

)
=

(
−βVV̂ (t)− ν −βVŜ(t)
βVV̂ (t) βVŜ(t)− (ν + γ V)

)(
s
v

)
,

t 6= kT (65a)

s(kT ) = (1− ppulse) s(kT−) (65b)

v(kT ) = v(kT−)+ ppulse s(kT−) (65c)

s(kT−) = lim
ε→0+

s(kT − ε). (65d)

As there is no general analytical method for computing the fun-
damental matrix solution of the non-autonomous equation (65)
we compute the eigenvalues of Ψreduced(T ) numerically. We de-
fine a non-linear map as the integration

∫ T
0 of system (52) using

a fourth-order Runge–Kutta scheme with stepsize of 12 day. The T -
periodic DFS is the fixed point of thismap. Beginning from a known
solution (RV = 0) or one obtained numerically from successive
integrations of the map, we use the bifurcation and continuation
analysis software CONTENT 1.5 (Kuznetsov, 1998) to numerically
continue the T -periodic DFS as a function of the systemparameters
and compute the floquet multipliers (64b). We subsequently in-
vestigate global stability via simulation inMATLAB, using a fourth-
order adaptive stepsize routine.
So far, we have focused on the T -periodic DFS that we know

exists. Our analysis does not rule out the possibility of multiple
coexisting period-T or period-kT disease free solutions, or more
complicated dynamics. We address these issues in our numerical
analysis in the next subsection.

3.2.3. Uniqueness of disease free solutions
Pulse vaccination without transmission of vaccine virus (RV =

0) has been well studied. In this case there exists a unique T -
periodic DFS which can be computed straightforwardly. Further-
more, for a given vaccination proportion of susceptibles (ppulse in
(51)) there exists a maximum pulsing period Tmax for which this
DFS is globally asymptotically stable (d’Onofrio, 2005; Stone et al.,
2000; Shulgin et al., 1998). The fundamental idea that local stabil-
ity of the T -periodic DFS in fact implies global stability has been
extended to SEIR type models with Gamma distributed latent and
infectious periods (d’Onofrio, 2002, 2004).
In the numerical analysis we now describe, we considered

vaccine virus in the fairly large range 0 < RV ≤ 7. The birth rate
was fixed at ν = 0.02 yr−1 and the vaccine virus infectious period
was taken to be 1

γ V
= 16 days, roughly corresponding to wild-

type poliovirus (Anderson and May, 1991). For RV ≤ 5 and T =
1, 2, 3 years, the T -periodic DFS was computed via continuation in
CONTENT 1.5, and found to be always locally stable in the (S, V )
plane (64b). Subsequent simulations indicated that the computed
DFS is likely the unique stable DFS in this parameter range. For
T = 6 years, the same results hold for 0 < RV ≤ 4, with a
seemingly unique DFS that is locally asymptotically stable in the
(S, V ) plane. (We note that in their continuous OPV vaccination
models, Eichner and Hadeler (1995) considered R0 = 12 and
RV = 3.)
For higher RV, holding RV fixed and varying the pulsing

proportion (0 ≤ ppulse ≤ 1) we observe a sequence of limit
point bifurcations resulting in bistability and hysteresis. As a two-
parameter bifurcation in (ppulse,RV) space, this is manifested as a
cusp bifurcation starting at RV > 4. Fig. 5 shows the coexisting
stable and unstable DFS in (S, V ) space for T = 6, RV = 7. The
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Fig. 5. Bifurcation diagram for the T = 6 periodic disease free solution in the
(S, V ) plane (RV = 7, 1/γ V = 16 days, ν = 0.02). The bifurcation parameter
is ppulse , the pulse vaccination proportion, while the dependent parameter is S(T−),
the proportion of susceptibles immediately before the vaccination pulse. The (S, V )
stable solution branches are shownwith solid lines, unstable branches with dashed
lines. Black rectangles indicate the location of the limit point bifurcations. The
system exhibits bistability and hysteresis in the narrow range 0.030 < ppulse <
0.035.

bifurcation parameter is the pulse vaccination proportion ppulse
while the vertical axis gives the proportion of the susceptible
population immediately before the vaccination pulse, which we
denote S(T−). The solid line denotes stable solution branches in
(S, V ) space, while the dashed lines denote unstable branches.
There are two coexisting (S, V ) stable DFSs in a narrow range

of the proportion of susceptibles vaccinated (0.030 ≤ ppulse ≤
0.035). For smaller RV this window is even narrower and closer
to zero. The significance of the two coexisting DFSs is negligible in
practice. These coexisting solutions are asymptotically stable in the
(S, V ) plane; however, to be stable in the full (S, V , I) space (51),
condition (63) must also be satisfied. For the range of ppulse where
there is bistability, computing the average level of susceptibles for
each DFS over the pulsing period T , and enforcing the stability
condition (63), we find numerically that

1
T

∫ T

0
Ŝ(t) dt ≤

1
R0
⇐⇒ RV ≈ R0. (66)

So, the coexisting (S, V ) stable DFSs will be stable in the full
(S, V , I) space only ifRV ≈ R0. Result (66)maybe intuitively obvi-
ous as the parameter range of bistability occurs when ppulse is very
close to zero. For example, if a single vaccinated personwere intro-
duced into a population with no other vaccination, the wild-type
virus could only be eradicated if RV > R0. This is to say that the
vaccine virus must out-compete the wild-type virus. Similarly for
only a small amount of vaccination, the vaccine virus must remain
almost as competitive as the wild-type virus in order to achieve
eradication.
The attenuation process results in vaccine virus reproduction

numbers RV that are significantly lower than the wild-type virus
R0; hence, we expect the coexisting DFS to be unstable for all
realistic parameters. Furthermore, no bifurcations – cusp or oth-
erwise – were detected for T = 1, 2, 3 years. Thus, we find that for
realistic epidemiological parameters the full epidemiological sys-
tem exhibits at most one asymptotically stable DFS.

4. Control of wild virus spread

We now consider the control implications of the combination
of pulse vaccination and contact vaccination, which wewill abbre-
0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 C
rit

ic
al

 P
ul

se
 V

ac
ci

na
tio

n 
P

ro
po

rt
io

n

Basic Reproduction Number R

0 5 10 15 20
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

C
rit

ic
al

 E
ffe

ct
iv

e 
V

ac
ci

na
tio

n 
P

ro
po

rt
io

n

Basic Reproduction Number R

a b

Fig. 6. (a) Critical effective vaccination proportion peff,crit in the absence of
contact vaccination (RV = 0) as a function of wild-type virus reproduction basic
reproduction number R0 . For continuous vaccination as well as pulse vaccination
the curve is given by peff,crit = pcrit =

(
1− 1

R0

)
independent of the pulsing

period T . (b) Critical pulse vaccination proportion ppulse,crit in the absence of contact
vaccinationRV = 0 as a function of wild-type virus basic reproduction numberR0 .
Pulsing periods of T = 1, 2, 6 years are considered. ppulse,crit increases non-linearly
with R0 . Note that higher T and R0 values necessitate vaccination of nearly all
susceptibles. However, for annual and biennial pulses ppulse,crit remains in a realistic
range.

viate to ‘‘PC vaccination’’ for convenience. We analyze our model
(51) with two comparisons in mind, both related to the ability of
contact vaccination to help control wild-type virus spread.

4.1. Definitions and terminology

4.1.1. PC versus standard pulse vaccination
Firstly,wewish to compare the efficacy of PC vaccination to that

of standard pulse vaccination (i.e., pulse vaccination in the absence
of vaccine virus transmission). This comparison may be achieved
straightforwardly by examining ppulse,crit, the threshold level of
the pulse vaccination proportion ppulse required for asymptotic
stability of the DFS (note that ppulse,crit depends on the pulse
interval T ).
For convenience, we define a normalized critical pulse propor-

tion as

p̂pulse,crit(RV,R0) =
ppulse,crit(RV,R0)
ppulse,crit(0,R0)

, (67)

which represents the value of ppulse,crit normalized by the value of
ppulse,crit in the absence of contact vaccination (RV = 0). Therefore,
definition (67) gives the critical pulse vaccination proportion as a
proportion of the critical value under standard pulse vaccination.

4.1.2. PC versus CC vaccination
Secondly, we wish to answer whether – in the presence of con-

tact vaccination – pulse vaccination campaigns (i.e., PC vaccina-
tion) will be more or less effective in controlling wild-type virus
spread than continuous vaccination campaigns (i.e., CC vaccina-
tion). This second question is not as straightforward to answer, as
there are many ways to compare the continuous (1) and pulse (51)
vaccination models.
One relevant measure of comparison is the critical effective

pulse vaccination proportion peff,crit required to ensure stability of
the DFS. We define the effective pulse vaccination proportion to
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Fig. 7. Normalized critical effective vaccination proportion p̂eff,crit (70a) as a
function of vaccine virus basic reproduction number RV for pulse and continuous
vaccination campaigns. (a) R0 = 6. (b) R0 = 14. Continuous vaccination is
optimal in the sense of p̂eff,crit (and therefore peff,crit) given by Eq. (70a). As the
period of vaccination T and R0 are increased p̂eff,crit increases. For relatively long
vaccination periods and high values of R0 there is little advantage as compared
to standard vaccination; however for annual vaccine pulses there remains a
significant advantage and negligible difference with the continuous vaccination
curve. Alternating pulse intervals between one year and 1.5 years (green dotted
curve) leads to results that are negligibly different from annual pulses (blue solid
curve).(For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

be the number of successful vaccinations per pulsing period as a
proportion of births over that same period,

peff =
vaccinations per pulse interval T

νT
. (68)

Definition (68) is natural since in the case of continuous vaccina-
tion it reduces to the standard parameter p, the proportion of new-
borns vaccinated. Thus, for continuous vaccination peff,crit can be
computed analytically, while for pulse vaccination we compute it
numerically. The critical values for continuous and pulse vaccina-
tion are given, respectively, by

peff,crit(RV,R0) = pcrit

(
1−

RV

R0

)
(continuous)

peff,crit(RV,R0) =
ppulse,crit S(T−)

νT
(pulse).

(69a)

In Eq. (69a), S(T−) is the proportion of the population that is
susceptible immediately before the vaccination pulse (in the T -
periodic DFS with ppulse = ppulse,crit).
In the absence of contact vaccination (RV = 0) the value

of peff,crit is in fact equivalent for both continuous and pulse
vaccination, independent of the vaccination period T (d’Onofrio,
2002; Shulgin et al., 1998). This fact is illustrated in Fig. 6a, which
shows peff,crit forRV = 0 as a function ofR0 for pulsing periods of

T = 1, 2, 3, 6 years. The result is a single curve pcrit =
(
1− 1

R0

)
as predicted by Eq. (69a).
Due to this equality it is useful to define normalized quantities

to compare CC and PC vaccination programs. We normalize by the
value pcrit, the value of peff,crit when RV = 0. We define p̂eff,crit to
be the normalized critical effective vaccination proportion, which
can be expressed for continuous and pulse vaccination programs
respectively as

p̂eff,crit(RV,R0) = 1−
RV

R0
(continuous)

p̂eff,crit(RV,R0) =
peff,crit(RV,R0)
peff,crit(0,R0)

(pulse)

peff,crit(0,R0) = pcrit .

(70a)

4.2. Numerical results

4.2.1. PC versus CC
Figs. 7(a) and (b) show the normalized critical effective vacci-

nation proportion p̂eff,crit as a function ofRV for wild-type viruses
withR0 = 6 and 14. Vaccine virus reproduction numbers are con-
sidered in the range 0 ≤ RV ≤ 4. The solid red line in each figure
represents p̂eff,crit for continuous vaccination given by the analyti-
cal expression (70a).
Continuous vaccination gives a lower bound for p̂eff,crit. For

pulse vaccination strategies p̂eff,crit increases as both the pulsing
period and R0 are increased. For sufficiently small periods the
pulse vaccination results converge to those for continuous vaccina-
tion. For the parameter ranges considered, we see that even for an-
nual pulsing, p̂eff,crit differs negligibly from the threshold (70a) for
continuous vaccination. Additionally we see that for non-constant
pulse intervals, demonstrated by the case of alternating pulse in-
tervals of 1 and 1.5 years, the value of p̂eff,crit is strongly influ-
enced by the minimum pulse interval. It will lie slightly above
the value of p̂eff,crit when considering the minimum pulse interval
alone (i.e., constant pulse interval case).
Continuous vaccination is – from the point of view of contact

vaccination – an optimal strategy, in that removing susceptibles
continuously maximizes the benefit of contact vaccination. We
stress that we say optimal only in the sense of contact immuniza-
tion, as there are a variety of other reasons why pulse vaccination
as an overall strategy may be superior to continuous vaccination
(Sabin, 1991; Wagner and Earn, 2008).

4.2.2. PC versus standard pulse vaccination
It is useful to note that if S(T−) is independent ofRV then Eqs.

(69) and (70) straightforwardly imply that p̂pulse,crit = p̂eff,crit. For
the parameter values considered in this work, we have seen that
S(T−) depends extremely weakly on RV. Consequently, graphs
thatwehavedrawnas a function of p̂eff,crit differ negligibly from the
corresponding graphs as a function of p̂pulse,crit; this equivalence
is illustrated in Fig. 8 which shows p̂pulse,crit (Fig. 8(a)) and p̂eff,crit
(Fig. 8(b)) as a function of RV for R0 = 12. At the scales
represented there is no detectable difference between the curves.
Since the behaviour of p̂eff,crit and p̂pulse,crit is practically

equivalent, the discussion of Fig. 7 in Section 4.2.1 applies to
p̂pulse,crit. Hence, we see that for pulse vaccination the critical pulse
vaccination proportion is bounded below by

ppulse,crit(RV,R0) ≥ ppulse,crit(0,R0)
(
1−

RV

R0

)
, (71)

where ppulse,crit(0,R0) is the critical pulse vaccination proportion
for standard pulse vaccination (no contact vaccination). Reiterating
the statements of Section 4.2.1, there is little difference between
the bounding curve and the curve for annual vaccination pulses,
but the difference increases as the pulsing period T is increased.
Values of ppulse,crit(0,R0) are shown in Fig. 6(b) for pulsing

periods of 1, 2 and 6 years. Notice that for T = 6 andR0 ≈ 17 in
the absence of contact vaccination nearly 100% of the susceptible
population must be vaccinated in every pulse, which is unrealistic.
However, for biennial and shorter pulsing periods, ppulse,crit(0,R0)
lies in a realistic range.
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Fig. 8. Normalized critical effective vaccination proportion p̂eff,crit (70a) (a) and
normalized critical pulse vaccination proportion p̂pulse,crit (67) (b) as a function of
vaccine virus basic reproduction number (RV) for a wild-type virus of R0 = 12
and a range of pulsing periods. Notice p̂pulse,crit ≈ p̂eff,crit . This approximate equality
holds across the range of childhood diseases 0 < R0 ≤ 30 and is a direct result of
the fact that S(T−), though strongly dependent onR0 , depends very weakly onRV
(69a) (70a).

4.2.3. Dependence on infectious period

The previous numerical results assumed a vaccine virus mean
infectious period of 1

γ V
= 16 days, which corresponds approxi-

mately to the infectious period of wild-type poliovirus (Anderson
and May, 1991). However, the results we have described are in
fact valid much more generally, demonstrating only a very weak
dependence on the length of the infectious period (for RV fixed).
Fig. 9 shows the normalized critical pulse vaccination proportion
p̂pulse,crit, and the normalized critical effective vaccination propor-
tion p̂eff,crit as a function of RV for annual pulse vaccination cam-
paigns and vaccine virus infectious periods of 1

γ V
= 1 day, 16 days

and 1 year. Thewild-type virus reproduction number is set atR0 =
16. The range of mean infectious periods up to a year includes
all childhood infections, of which most have duration less than 1
month (Anderson and May, 1991).
In Fig. 9(b), p̂pulse,crit is indistinguishable for the three different

mean infectious periods, again lying slightly above the line 1− RV
R0
.

In Fig. 9(a), for the vaccine virus infectious periods of 1 day and
16 days, the p̂eff,crit values are indistinguishable from each other,
as well as from the corresponding normalized curves p̂pulse,crit in
Fig. 9(b). For the much larger vaccine virus infectious period of 1
year, there is a slight decrease (<0.04) in p̂eff,crit, in fact differing
negligibly from p̂eff,crit for the continuous vaccination model.
Biologically, this decrease in p̂eff,crit for longer vaccine virus

mean infectious periods occurs because a longer infectious period
yields a higher probability that vaccine infectiousness will persist
until susceptibles have been replenished via births. This allows the
infectious individual to cause a greater number of secondary trans-
missions. However, this effect is noticeable only for very long in-
fectious periods (as long as the pulsing period itself). For childhood
diseases, we conclude that the stability threshold has no signifi-
cant dependence on the vaccine virus infectious period. Since the
stability threshold (65) derived analytically is independent of the
wild-type virus mean infectious period, we conclude that – like for
continuous vaccination – for pulse vaccination the stability thresh-
old depends in practice only on the reproduction numbers R0
andRV.
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Fig. 9. (a) Normalized critical effective vaccination proportion p̂eff,crit (70) for
an annual pulse vaccination campaign (R0 = 16) as a function of vaccine
virus reproduction number RV . Curves show a range of vaccine virus infectious
periods 1/γ V from 1 day to 1 year. The curves for vaccine virus infectious periods
of 1 day and 16 days are indistinguishable, while for 1 year there is a slight
decrease in p̂eff,crit differing negligibly with the continuous vaccination model
(70a). (b) Normalized critical pulse vaccination proportion p̂pulse,crit for annual
pulse vaccination campaigns as a function of vaccine virus reproduction numbers;
parameter values as in (a). For vaccine virusmean infectious periods ranging from 1
day to 1 year there is negligible difference in p̂pulse,crit . Aswell formean vaccine virus
infectious periods of 1 and 16 days the curves of p̂pulse,crit are negligibly different
from the corresponding curves for p̂eff,crit in (a), as explained in Section 4.2.2.

5. Discussion

The benefit of secondary or contact immunization arising from
the use of live-attenuated virus vaccines has long been known by
epidemiologists. Newly vaccinated individuals may pass on vac-
cine virus to their contacts resulting in (secondary) immunization.
In fact, this benefit is cited as one of the five primary reasons for the
use of the Oral Polio Vaccine (OPV) in the developing world (Hull
et al., 1994; John, 2004). In thiswork,we have quantified this bene-
fit, both for different types of vaccination strategies and for vaccine
and wild-type pathogenic viruses with possibly very different epi-
demiological properties.
In the case where vaccinations are performed continuously in

the population, we established that the necessary vaccination pro-
portion to eradicate the wild-type pathogenic virus is given by a
simple expression (2) that depends only on the basic reproduction
numbers of the two viruses. Furthermore, eradication is achieved
regardless of the composition of the population, in terms of sus-
ceptible and infected individuals when vaccination is initiated
(mathematically, the disease free equilibrium is globally asymptot-
ically stable if the vaccination level exceeds the threshold (2)). We
showed that this result is valid regardless of how an individual’s in-
fectiousness varies over the course of his/her infection (from either
wild-type or vaccine virus); an individual may progress through
any number of distinct stages of infection, including latent stages,
with the amount of time spent in each stage given probabilistically
by an effectively arbitrary distribution.
Increasingly in the developing world, vaccination programs for

childhood diseases incorporate some form of pulse vaccination
whereby mass vaccinations are performed at regular intervals as
opposed to continuously. Most notably, many countries in the de-
veloping world employ annual OPV vaccination (Anon, 2008). We
compared the benefits of contact vaccination in pulse vaccination
programs to the results derived for continuous vaccination, with
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specific focus on the use of OPV. We showed that continuous vac-
cination maximizes the benefit of contact vaccination, in terms of
reducing the critical vaccination level for wild-type virus eradica-
tion. This contrasts previous work (not considering the effects of
contact immunization) which indicated that pulse and continuous
vaccination strategies have the same critical vaccination level (in
terms of vaccinations as a proportion of births over the same time
period) (d’Onofrio, 2002; Shulgin et al., 1998).
For a given number of individuals vaccinated, the benefit of

contact vaccination is lower for longer inter-pulse intervals and
for larger wild-type virus basic reproduction numbers. This makes
biological sense because, in addition to introducing new vaccine
virus infectious individuals who can immunize others, vaccination
reduces the pool of susceptible individuals who can become
secondarily vaccinated. Consequently, spreading a given number
of vaccinations evenly in time (continuous vaccination)maximizes
the number of secondary vaccinations that can be achieved.
For OPV use, we found that although continuous vaccination

always yields the lowest vaccination threshold, thresholds for
annual OPV campaigns differ negligibly. However, for biennial and
longer inter-pulse intervals, the differences become significant.
The key point is that there is no significant decrease in the benefits
of contact vaccination for current (annual) pulse OPV campaigns.
Compared to use of an inactivated (non-live) vaccine, even for

low vaccine virus reproduction numbers (RV < 1), there is a sig-
nificant reduction of threshold vaccination levels. Unfortunately,
to assess the importance of contact vaccination quantitatively for
a given pathogen, an estimate ofRV is required. Beyond anecdotal
evidence and limited case studies (Neff et al., 2002), there has been
no emphasis on the estimation of vaccine virus reproduction num-
bers. Such estimation is extremely difficult as, short of performing
detailed serological studies, there is no way to distinguish immu-
nity acquired from the wild-type or vaccine virus.
In this work we have assumed that vaccination (whether pri-

mary or contact) results in complete, lifelong immunity. This is
generally a very good approximation for most childhood dis-
eases (Woodrow and Levine, 1990). However, in the case where
vaccination results in incomplete or waning immunity, contact
vaccination may play an important role in boosting immunity of
previously vaccinated individuals. The significance of contact im-
munization in boosting immunity will be investigated in future
work.
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Appendix A. Mathematical well-posedness

A.1. Positive invariance of the biologically meaningful set

We denote the state of the system (4) as

X = (S, V1, V2, . . . , Vn, I1, I2, . . . , Ik, R). (72)

We show that the biologically meaningful set, defined as

B =

{
X : Xi ≥ 0,

∑
i

Xi = 1

}
, (73)

is positively invariant with respect to Eq. (4). From the form of the
equations it is straightforwardly seen that if all initial states are
non-negative, they remain non-negative for all positive time. Fur-
thermore summing Eqs. (4a)–(4h) yields the differential equation

d
dt

(∑
i

Xi

)
= ν − ν

∑
i

Xi (74)

which has a single equilibrium at
∑
i Xi = 1. Since by definition

any initial condition inB satisfies
∑
i Xi(0) = 1, (74) trivially im-

plies that
∑
i X(t) = 1∀t > 0. Thus, X(t) ∈ B ∀t ≥ 0 and the

model (4) is biologically well posed.
Note that since Eqs. (4a)–(4g) are independent of R, we need

only deal directlywith this subsystem, ignoring Eq. (4h). Thus, it is
convenient to expressB as

B =

{
S, Vi, Ii : S, Vi, Ii ≥ 0, S +

n∑
i=1

Vi +
k∑
i=1

Ii ≤ 1

}
(75)

where it is understood that R = 1− S −
∑n
i=1 Vi −

∑k
i=1 Ii.

A.2. Location of equilibria

We show any equilibrium X∗ of system (4) such that S∗ ≥
0, V ∗i ≥ 0∀i and Ij

∗
≥ 0∀jmust in fact lie in the biologicallymean-

ingful setB. To see this observe that at equilibriumEq. (4h) implies

R∗ =
1
ν

(
γ Vn V

∗

n + γ
I
k Ik
∗
)
. (76)

The assumption that V ∗n , Ik
∗ are non-negative then implies that

R∗ ≥ 0, and thus all states are non-negative. As previously shown
by (74) at any equilibrium we must have

∑
i

X∗i = S
∗
+ R∗ +

n∑
i=1

V ∗i +
k∑
i=1

Ii∗ = 1 (77)

implying that X∗ ∈ B. We make use of this result in the computa-
tion of the disease free and endemic equilibrium.

Appendix B. Geometric and arithmetic means

A standard result is that for any set of positive real numbers

gi > 0, i = 1, . . . ,m, (78)

the arithmetic mean is greater than or equal to the geometric
mean, i.e.,

1
m

m∑
i=1

gi ≥
( m∏
i=1

gi
)1/m

. (79)

If
∏m
i=1 gi = 1, then it follows immediately that

m−
m∑
i=1

gi ≤ 0 , (80)

with equality if and only if gi = 1 for all i.

Appendix C. Vaccination thresholds and the DFE

We show by a sequence of elementary arguments that for the
disease free equilibrium,

S∗ ≤
1

R0
⇐⇒ p ≥

(
1−

1
R0

)(
1−

RV

R0

)
. (81)
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From (9a) we have

S∗ =
1
2
+

1
2RV
−

√
1
4

(
1−

1
R0

)2
+
p

RV
≤
1

R0
(82a)

⇐⇒
1
2
+

1
2RV
−
1

R0
≤

√
1
4

(
1−

1
R0

)2
+
p

RV
. (82b)

We note that sinceRV < R0 andR0 > 1we have 12+
1
2RV
−

1
R0
>

0. Therefore, we have(
1
2
+

1
2RV
−
1

R0

)2
≤
1
4

(
1−

1
RV

)2
+
p

RV
(83a)

⇐⇒ p ≥ 1−
RV

R0
+

RV

R2
0
−
1

R0
(83b)

⇐⇒ p ≥
(
1−

1
R0

)
−RV

(
1

R0
−
1

R2
0

)
(83c)

⇐⇒ p ≥
(
1−

1
R0

)(
1−

RV

R0

)
. (83d)

Appendix D. Pulse vaccination and existence of periodic solu-
tions

We establish the existence of a T -periodic DFS for the system
(51), by analyzing the disease free subsystem (52). We begin by
summarizing the necessary theorems from the theory of impulsive
differential equations.

D.1. Theory of impulsive differential equations

Weutilize the following results proved in Bainov and Simeonov
(1993). Consider a system

dx
dt
= f (t, x), t 6= τk (84)

∆x = Lk(x), t = τk
where∆x = x(τ+k )− x(τ

−

k ) , and t ∈ R , k ∈ Z , x ∈ Ω ⊂ Rn.
The following conditions are also imposed:

1. f (t + T , x) = f (t, x), Lk+q(x) = Lk(x), τk+q = τk + T , ∃q
for some N

2. The function f : R×Ω → Rn is continuous.
3. The functions Lk(x) are continuous for x ∈ Ω

Furthermore a set D ⊂ Ω is defined to be canonical if it
satisfies the following three properties:

4. the domainD is a bounded convex set
5. the closure of D can be expressed by a finite number of
inequalities

Φi(x) ≤ 0 (85)

whereΦi : Rn → R are smooth functions.
6. if both x ∈ ∂D and Φi(x) = 0 then the Jacobian matrix

∂Φi
∂x (x) 6= 0.

The primary result we apply may be stated as follows (Bainov
and Simeonov, 1993):

Theorem 1. Suppose conditions 1–3 are satisfied, the set D is
canonical, Φi(x + Lk(x)) ≤ 0 ,∀i ,∀x ∈ D and the directional
derivative of Φ along the flow at the boundary satisfies

∂Φi

∂x
(x)f (t, x) ≤ 0 (t ∈ R , x ∈ ∂D , i ∈ α(x)) , (86)

whereα(x) = {i : Φi(x) = 0}. Then Eq. (84) has a T-periodic solution
y(t) which is contained inD for all t ∈ R.
It should be noted that conditions (86) combined with the con-
dition Φi(x + Lk(x)) ≤ 0 ,∀i ,∀x ∈ D , are equivalent to the
property that the set D is positively invariant with respect to the
system (84).

D.1.1. Existence of a T-periodic DFS
The system (52) can be rewritten in the form of Eq. (84) in

Section D.1 as

dS
dt
= ν − βV(t)VS − νS

dV
dt
= βV(t)VS − (ν + γ V)V

 = g(t, x), t 6= kT (87)

(
∆S
∆V

)
= (P − I)

(
S
V

)
, t = kT

where∆X ≡ X(kT+)− X(kT−), I is the identity matrix and

P =
(
1− ppulse 0
ppulse 1

)
. (88)

As we are dealing with proportions of the population, the biologi-
cally meaningful set isB = {(S, V ) : S ≥ 0 , V ≥ 0 , S + V ≤ 1}.
By assumption, βV(t) in (87) is continuous. In addition, condi-

tions 1 and 3 of Section D.1 are satisfied directly by Eqs. (87) and
(88) with Ω = B. The set B is canonical in the sense of Section
D.1: Firstly, B is compact (closed and bounded) and convex. Sec-
ondly, B is specified by three inequalities, which – together with
their respective Jacobians – are

Φ1(x) = −S ≤ 0
∂Φ1

∂(S, V )
=
[
−1, 0

]
(89a)

Φ2(x) = −V ≤ 0
∂Φ2

∂(S, V )
=
[
0, −1

]
(89b)

Φ3(x) = S + V − 1 ≤ 0
∂Φ3

∂(S, V )
=
[
1, 1

]
. (89c)

We next note that for x ∈ ∂B

1 ∈ α(x) if S = 0 (90a)
2 ∈ α(x) if V = 0 (90b)
3 ∈ α(x) if S + V = 1 (90c)

where α(x) = {i : Φi(x) = 0}, as defined in Section D.1. This im-
plies that for i ∈ α(x) and x ∈ ∂B

∂Φ1

∂x
(x)g(t, x) = −ν (91a)

∂Φ2

∂x
(x)g(t, x) = 0 (91b)

∂Φ3

∂x
(x)g(t, x) = −γ VV ≤ 0. (91c)

Additionally

Φi

(
P
(
S
V

))
≤ 0 (92)

since P is a linear function whose matrix representation has non-
negative entries and column sums equal to one (88) (hence P maps
B to B). From a biological perspective, P moves individuals from
the susceptible to the vaccinated class but does not result in a net
change in the number of individuals, hence maintaining the posi-
tive invariance ofB.
Therefore, by Theorem 1 of Section D.1, the system (52) –

and hence the original pulse vaccination system given by (51) –
possesses a biologically meaningful T -periodic DFS.
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Table 1
Table of notation.

Symbol Definition Place defined

p (Continuous) vaccination proportion Section 2
β I Wild-type virus transmission rate Section 2.1
βV Vaccine virus transmission rate Section 2.1
γ I Wild-type virus recovery rate Section 2.1
γ V Vaccine virus recovery rate Section 2.1
εI Wild-type virus specific death rate Section 2.3
εV Vaccine virus specific death rate Section 2.3
B Total birth rate Section 2.3
R0 Wild-type virus basic reproduction number Sections 2 and 2.1.2
RV Vaccine virus basic reproduction number Sections 2 and 2.1.2
pcrit Critical (continuous) vaccination proportionRV = 0 Section 2
S Susceptible class Section 2
EV Vaccine virus latent class Section 2
EI Wild-type virus latent class Section 2
V Vaccine virus latent or infectious class Section 2.1
I Wild-type virus latent or infectious class Section 2
R Immune class Section 2.1
N Total population size Section 2.1
B Biologically meaningful region of parameter space Section 2.1.3
LDFE Lyapunov function for the disease free equilibrium Section 2.2.1
LEE Lyapunov function for the endemic equilibrium Section 2.2.1
ν Per capita birth rate Section 3
µ Per capita natural death rate Section 2
ppulse Pulse vaccination proportion Section 3
T Time interval between vaccination pulses Section 3
Ψ (t) Fundamental matrix solution Section 3.2
peff Effective vaccination proportion Section 4.1.2
peff,crit Critical effective vaccination proportion Section 4.1.2
p̂eff,crit Normalized critical effective vaccination proportion Section 4.1.2
S(T−) Proportion of susceptibles immediately before vaccination pulse Section 4.1.2
ppulse,crit Critical pulse vaccination proportion Section 4.2.1
p̂pulse,crit Normalized critical pulse vaccination proportion Section 4.2.1
D Open set Appendix D
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