
TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 368, Number 8, August 2016, Pages 5951–5977
http://dx.doi.org/10.1090/tran/6567

Article electronically published on October 20, 2015

GROUP ACTIONS ON SPHERES WITH RANK ONE ISOTROPY

IAN HAMBLETON AND ERGÜN YALÇIN

Abstract. Let G be a rank two finite group, and let H denote the family of
all rank one p-subgroups of G for which rankp(G) = 2. We show that a rank
two finite group G which satisfies certain explicit group-theoretic conditions
admits a finite G-CW-complex X � Sn with isotropy in H, whose fixed sets
are homotopy spheres. Our construction provides an infinite family of new
non-linear G-CW-complex examples.

1. Introduction

Let G be a finite group. The unit spheres S(V ) in finite-dimensional orthog-
onal representations of G provide the basic examples of smooth linear G-actions
on spheres. These linear actions satisfy a number of special constraints on the
dimensions of fixed sets and the structure of the isotropy subgroups, arising from
character theory. However, such constraints do not hold in general for smooth G-
actions on spheres, unless G has prime power order (see [8]). Our goal in this series
of papers is to construct new examples of smooth non-linear finite group actions
on spheres, with prescribed isotropy.

In the first paper of this series [12], we studied group actions on spheres in the
setting of G-homotopy representations, introduced by tom Dieck (see [25, Definition
10.1]). These are finite (or more generally finite dimensional) G-CW-complexes X
satisfying the property that for each H ≤ G, the fixed point set XH is homotopy
equivalent to a sphere Sn(H) where n(H) = dimXH . We introduced algebraic
homotopy representations as suitable chain complexes over the orbit category and
proved a realization theorem for these algebraic models.

We say that G has rank k if it contains a subgroup isomorphic to (Z/p)k, for
some prime p, but no subgroup (Z/p)k+1, for any prime p. In this paper, we use
chain complex methods to study the following problem, as the next step towards
smooth actions.

Question. For which finite groups G, does there exist a finite G-CW-complex
X � Sn with all isotropy subgroups of rank one?

The isotropy assumption implies that G must have rank ≤ 2, by P. A. Smith
theory (see Corollary 6.3). Since every rank one finite group can act freely on
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5952 IAN HAMBLETON AND ERGÜN YALÇIN

a finite complex homotopy equivalent to a sphere (Swan [22]), we will restrict to
groups of rank two.

There is another group theoretical necessary condition related to fusion prop-
erties of the Sylow subgroups. This condition involves the rank two finite group
Qd(p) which is the group defined as the semidirect product

Qd(p) = (Z/p× Z/p)� SL2(p)

with the obvious action of SL2(p) on Z/p× Z/p. In his thesis, Ünlü [26, Theorem
3.3] showed that Qd(p) does not act on a finite CW-complex X � Sn with rank
one isotropy. This means that any rank two finite group which includes Qd(p) as a
subgroup cannot admit such actions.

More generally, we say Qd(p) is p′-involved in G if there exists a subgroupK ≤ G,
of order prime to p, such that NG(K)/K contains a subgroup isomorphic to Qd(p).

The argument given by Ünlü in [26, Theorem 3.3] can be extended easily to obtain
the stronger necessary condition (see Proposition 5.4):

(�). Suppose that there exists a finite G-CW-complex X � Sn with rank one
isotropy. Then Qd(p) is not p′-involved in G, for any odd prime p.

In the other direction, the Sylow subgroups of rank two finite groups which do
not p′-involve Qd(p), for p odd (sometimes called Qd(p)-free groups), have some
interesting complex representations.

Definition. A finite group G has a p-effective character if each p-Sylow subgroup
Gp of G has a character χ : Gp → C which (i) respects fusion in G, meaning
that χ(gxg−1) = χ(x) whenever gxg−1 ∈ Gp for some g ∈ G and x ∈ Gp, and
(ii) satisfies 〈χ|E, 1E〉 = 0 for each elementary abelian p-subgroup E of G with
rankE = rankp G.

Jackson [16, Theorem 47] proved that a rank two group G has a p-effective
character if and only if p = 2, or p is odd and G is Qd(p)-free. We will use these
characters to obtain finite G-homotopy representations with rank one prime power
isotropy, assuming an additional closure property at the prime p = 2.

Definition. A finite group G has the rank one intersection property if for every
pair H,K ≤ G of rank one 2-subgroups such that H ∩K 	= 1, the subgroup 〈H,K〉
generated by H and K is a 2-group. We say that G is 2-regular if (i) Ω1(Z(G2))
is strongly closed in G2 with respect to G, or (ii) G has the rank one intersection
property.

Let F be a family of subgroups of G closed under conjugation and taking sub-
groups. For constructing group actions on CW-complexes with isotropy in the
family F, a good algebraic approach is to consider projective chain complexes over
the orbit category relative to the family F (see [11], [12]).

Let SG denote the set of primes p such that rankp(G) = 2. Let Hp denote the
family of all rank one p-subgroups H ≤ G, for p ∈ SG, and let H =

⋃
{H ∈ Hp | p ∈

SG}. Our main result is the following.

Theorem A. Let G be rank two finite group satisfying the following two conditions:

(i) G is 2-regular if 2 ∈ SG, and G is Qd(p)-free for all p ∈ SG with p > 2;
(ii) if 1 	= H ∈ Hp, then rankq(NG(H)/H) ≤ 1 for every prime q 	= p.

Then there exists a finite G-homotopy representation X with isotropy in H.
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Theorem A is an extension of our earlier joint work with Semra Pamuk [11] where
we have shown that the first non-linear example, the permutation group G = S5 of
order 120, admits a finite G-CW-complex X � Sn with rank one isotropy. Theorem
A gives a new proof of this earlier result, by a more systematic method: for G = S5,
the set SG includes only the prime 2 and it can be easily seen that G satisfies the
rank one intersection property. The second condition above also holds since all
p-Sylow subgroups of S5 for odd primes are cyclic. More generally, we have:

Corollary B. Let p be a fixed prime and G be a finite group such that rankp(G) = 2,
and rankq(G) = 1 for every prime q 	= p. If G is Qd(p)-free when p > 2, and G is
2-regular when p = 2, then there exists a finite G-homotopy representation X with
rank one p-group isotropy.

As a consequence of Corollary B, we show that G = PSL2(q), where q ≥ 5 is a
prime, admits a G-homotopy representation with cyclic 2-subgroup isotropy. Note
that none of the simple groups PSL2(q), q > 7, admit orthogonal representation
spheres with rank one isotropy (see Section 7), so the actions we construct provide
an infinite family of new examples of non-linear actions.

More generally, using Theorem A, we obtain many new non-linear G-CW-
complex examples. In particular, we show that the alternating group A6 admits
finite G-CW-complexes X � Sn with rank one isotropy (see Example 6.5). We also
discuss why G = A7 cannot admit such actions if we require X to be a G-homotopy
representation with rank one prime power isotropy (see Example 6.7). In fact we
show exactly which of the rank two simple groups (see the list in [3, p.423]) can
admit such actions.

Theorem C. Let G be a finite simple group of rank two. Then there exists a
finite G-homotopy representation with rank one isotropy of prime power order if
and only if G is one of the following: (i) PSL2(q), q ≥ 5, (ii) PSL2(q

2), q ≥ 3,
(iii) PSU3(3), or (iv) PSU3(4).

We remark that G = PSL3(q), q odd, and G = PSU3(q), with 9 | (q+1), are the
rank two simple groups that are not Qd(p)-free1 at some odd prime. The remaining
simple groups G = PSU3(q), q ≥ 5, are eliminated by the Borel-Smith conditions
(see Section 7). The groups PSU3(3) and PSU3(4) have a linear action on spheres
with rank one prime power isotropy. We note that the group G = PSU3(3) does
not satisfy the rank one intersection property (see Example 6.8).

In Section 6, we give the motivation for condition (ii) in Theorem A on the q-rank
of the normalizer quotients NG(H)/H for all the subgroups H ∈ H. It is used in
a crucial way (at the algebraic level) in the construction of a finite G-CW-complex
X � Sn with rank one isotropy in H, which is a G-homotopy representation.
However, condition (ii) in Theorem A is actually necessary only for the subgroups
H ∈ H such that XH 	= ∅ (see Remark 6.4), but not, in general, for all rank
one p-subgroups (see Example 6.7). Determining the precise list of necessary and
sufficient conditions is still an open problem.

We will obtain Theorem A from a more general technical result, Theorem 5.1,
which accepts as input a compatible collection of representations defined on all

1This case seems to have been overlooked in [3, p.430]
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p-subgroups of G, for a given set of primes (see Definition 3.1), and produces a
finite G-CW complex. In principle, Theorem 5.1 can be used to construct other
interesting non-linear examples for finite groups with specified p-group isotropy.

Here is a brief outline of the paper. We denote the orbit category relative to a
family F by ΓG = OrF G, and construct projective chain complexes over RΓG for
various p-local coefficient rings R = Z(p). To prove Theorem 5.1, we first intro-
duce algebraic homotopy representations (see Definition 2.3), as chain complexes
over RΓG satisfying algebraic versions of the conditions found in tom Dieck’s G-
homotopy representations (see [25, II.10.1], [8], and Remark 2.7). In Section 2 we
summarize the results of [12] which show that the conditions in Definition 2.3 lead
to necessary and sufficient conditions for a chain complex over RΓG to be homotopy
equivalent to a chain complex of a G-homotopy representation (see Theorem 2.6).

In Section 3, we construct p-local chain complexes where the isotropy subgroups
are p-groups. In Section 4, we add homology to these local models so that these
modified local complexesC(p) all have exactly the same dimension function. Results
established in [11] are used to glue these algebraic complexes together over ZΓG,
and then to eliminate a finiteness obstruction. In Section 5 we combine these
ingredients to give a complete proof for Theorem 5.1 and Theorem A. In Section 6,
we discuss the necessity of the conditions in Theorem A and provide a non-linear
action for the group G = A6. We study the rank two simple groups and prove
Theorem C in Section 7.

Remark. One motivation for this project is the work of Adem-Smith [3] and Jackson
[16] on the existence of free actions of finite groups on a product of two spheres.
There is an interesting set of conditions related to this problem. In the following
statements, G denotes a finite group of rank two:

(i) G acts on a finite complex X homotopy equivalent to a sphere, with rank
one isotropy.

(ii) G acts with rank one isotropy on a finite-dimensional complex X which
has a mod p homology of a sphere.

(iii) G does not p′-involve Qd(p), for p an odd prime.

(iv) G has a p-effective character χ : Gp → C.

(v) There exists a spherical fibration Y → BG, such that the total space Y
has periodic cohomology.

(vi) G acts freely on a finite complex homotopy equivalent to a product of two
spheres.

The implications (i) ⇒ (i + 1) hold for this list (suitably interpreted), where
(i) ⇒ (ii) is clear (for each prime p), and (ii) ⇒ (iii) is our Proposition 5.4. The
implication (iii) ⇔ (iv) is due to Jackson [16, Theorem 47], using [16, Theorem 44]
to show that G always has a 2-effective character.

If condition (iv) holds for all the primes dividing the order of G, then con-
dition (v) holds. This needs some explanation. First, the existence of a spher-
ical fibration Y → BG classified by ϕ : BG → BU(n), with p-effective Euler
class β(ϕ) ∈ Hn(G;Z) for all primes p, was proved by Jackson [15], [16, Theo-
rem 16]. By construction, for each elementary abelian p-subgroup E of G with
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rankE = rankp G, there exists a unitary representation λ : E → U(n) such that
ϕE = Bλ and 〈λ, 1E〉 = 0 (see [16, Definition 11]). Adem and Smith [3, Definition
4.3] give an equivalent definition of a p-effective cohomology class β ∈ Hn(G;Z) as
a class for which the complexity cxG(Lβ ⊗ Fp) = 1 (see Benson [5, Chap. 5]). It
follows from [5, 5.10.4] that Lβ(ϕ)⊗Fp is a periodic module, and hence cup product
with a periodicity generator α for this module gives the periodicity of H∗(Y ;Fp) in
high dimensions. Therefore Y has periodic cohomology in the sense of Adem-Smith
[3, Definition 1.1]. Finally, (v) ⇒ (vi) follows from the main results of Adem-Smith
[3, Theorems 1.2, 3.6].

The reverse implications are mostly unknown. For example, it is not known
whether Qd(p) itself can act freely on a product of two spheres. In [16, Theorem
47] it was claimed that (iii) ⇒ (i), but the “proof” seems to confuse homotopy
actions with finite G-CW complexes. However, we show in Corollary 3.11 that
(iii) ⇒ (ii). Finding new criteria for the implication (iii) ⇒ (i) is the subject of
this paper.

2. Algebraic homotopy representations

In transformation group theory, a G-CW-complex X is called a G-homotopy
representation if it has the property that XH is homotopy equivalent to the sphere
Sn(H) where n(H) = dimXH , for every H ≤ G (see tom Dieck [25, Section II.10]).

In this section we summarize the results of [12] which gives the definition and
main properties of a suitable algebraic analogue, called algebraic homotopy repre-
sentations.

Let G be a finite group and F be a family of subgroups of G which is closed
under conjugations and taking subgroups. The orbit category OrF G is defined as
the category whose objects are orbits of type G/K, with K ∈ F, and where the
morphisms from G/K to G/L are given by G-maps:

MorOrF G(G/K,G/L) = MapG(G/K,G/L).

The category ΓG = OrF G is a small category, and we can consider the module
category over ΓG. Let R be a commutative ring with unity. A (right) RΓG-module
M is a contravariant functor from ΓG to the category of R-modules. We denote
the R-module M(G/K) simply by M(K) and write M(f) : M(L) → M(K) for a
G-map f : G/K → G/L. Further details about the properties of modules over the
orbit category, such as the definitions of free and projective modules, can be found
in [11] (see also Lück [17, §9,§17] and tom Dieck [25, §10-11]).

We will consider chain complexes C of RΓG-modules, such that Ci = 0 for i < 0.
We call a chain complex C projective (resp. free) if for all i ≥ 0, the modules Ci

are projective (resp. free). We say that a chain complex C is finite if Ci = 0 for
i > n, and the chain modules Ci are all finitely-generated RΓG-modules.

Given a G-CW-complex X, associated to it, there is a chain complex of RΓG-
modules

C(X?;R) : · · · → R[Xn
? ]

∂n−→ R[Xn−1
? ] → · · · ∂1−→ R[X0

? ] → 0

where Xi denotes the set of i-dimensional cells in X and R[Xi
? ] is the RΓG-

module defined by R[Xi
? ](H) = R[XH

i ]. We denote the homology of this complex
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5956 IAN HAMBLETON AND ERGÜN YALÇIN

by H∗(X
?;R). If the family F includes the isotropy subgroups of X, then the

complex C(X?;R) is a chain complex of free RΓG-modules.
The dimension function of a finite-dimensional chain complex C over RΓG is

defined as the function DimC : S(G) → Z, where S(G) denotes the family of all
subgroups of G, given by

(DimC)(H) = dimC(H)

for all H ∈ F. If C(H) is the zero complex or if H is a subgroup such that H 	∈ F,
then we define (DimC)(H) = −1. The dimension function DimC is constant on
conjugacy classes (a super class function). In a similar way, we can define the
homological dimension function hDimC : S(G) → Z of a chain complex C of RΓG-
modules.

We call a function n : S(G) → Zmonotone if it satisfies the property that n(K) �
n(H) whenever (H) ≤ (K). We say that a monotone function n is strictly monotone
if n(K) < n(H), whenever (H) < (K). We have the following:

Lemma 2.1 ([12, Lemma 2.6]). The dimension function of a projective chain com-
plex of RΓG-modules is a monotone function.

Definition 2.2. We say a chain complex C of RΓG-modules is tight at H ∈ F if

DimC(H) = hdimC(H).

We call a chain complex of RΓG-modules tight if it is tight at every H ∈ F.

We are particularly interested in chain complexes which have the homology of a
sphere when evaluated at every K ∈ F. Let n be a super class function supported
on F, meaning that n(H) = −1 for H /∈ F, and let C be a chain complex over RΓG.
We say that C is an R-homology n-sphere (see [12, Definition 2.7]) if the reduced
homology of C(K) is the same as the reduced homology of an n(K)-sphere (with
coefficients in R) for all K ∈ F. Here the reduced homology is the homology of an
augmented chain complex ε : C → R, with ε(H) surjective for all H ∈ F such that
C(H) 	= 0.

In [25, II.10], there is a list of properties that are satisfied by G-homotopy repre-
sentations. We will use algebraic versions of these properties to define an analogous
notion for chain complexes.

Definition 2.3 ([12, Definition 2.8]). Let C be a finite projective chain complex
over RΓG, which is an R-homology n-sphere. We say C is an algebraic homotopy
representation (over R) if

(i) The function n is a monotone function.
(ii) If H,K ∈ F are such that n = n(K) = n(H), then for every G-map

f : G/H → G/K the induced mapC(f) : C(K) → C(H) is an R-homology
isomorphism.

(iii) Suppose H,K,L ∈ F are such that H ≤ K,L and let M = 〈K,L〉 be the
subgroup of G generated by K and L. If n = n(H) = n(K) = n(L) > −1,
then M ∈ F and n = n(M).

If a dimension function n satisfies condition (iii) of Definition 2.3, then we say it
has the closure property. Such dimension functions have an important maximality
property.
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Proposition 2.4 ([12, Proposition 2.9]). Let C be a projective chain complex of
RΓG-modules, which is an R-homology n-sphere. If n satisfies the closure property,
then the set of subgroups FH = {K ∈ F | (H) ≤ (K), n(K) = n(H) > −1} has a
unique maximal element, up to conjugation.

In the remainder of this section we will assume that R is a principal ideal domain.
The main examples for us are R = Z(p) or R = Z.

Theorem 2.5 ([12, Theorem A]). Let C be a finite free chain complex of RΓG-
modules which is an R-homology n-sphere. Then C is chain homotopy equivalent
to a finite free chain complex D which is tight if and only if C is an algebraic
homotopy representation.

When these conditions hold for R = Z, then we apply [11, Theorem 8.10], [20]
to obtain a geometric realization result.

Theorem 2.6 ([12, Corollary B]). Let C be a finite free chain complex of ZΓG-
modules which is a homology n-sphere. If C is an algebraic homotopy representa-
tion, and n(K) ≥ 3 for all K ∈ F, then there is a finite G-CW-complex X such that
C(X?;Z) is chain homotopy equivalent to C as chain complexes of ZΓG-modules.

Remark 2.7. The construction actually produces a finite G-CW-complex X such
that all the non-empty fixed sets XH are simply-connected, and with trivial action
of WG(H) = NG(H)/H on the homology of XH . Therefore X will be an oriented
G-homotopy representation (in the sense of tom Dieck).

3. Construction of the preliminary local models

Our main technical tool is provided by Theorem 5.1, which gives a method for
constructing finite G-CW-complexes, with isotropy in a given family. This theorem
will be proved by applying the realization statement of Theorem 2.6. To construct
a suitable finite free chain complex C over ZΓG, we work one prime at a time to
construct local models C(p), and then apply the glueing method for chain complexes
developed in [11, Theorem 6.7].

The main input of Theorem 5.1 is a compatible collection of unitary represen-
tations for the p-subgroups of G. We give the precise definition in a more general
setting.

Definition 3.1. Let F be a family of subgroups of G and n be a fixed inte-
ger. We say that V(F) is an F-representation for G of dimension n, if V(F) =
{VH ∈ Rep(H,U(n)) |H ∈ F} is a compatible collection of (non-zero) unitary H-
representations. The collection is compatible if f∗(VK) ∼= VH for every G-map
f : G/H → G/K.

For any finite G-CW-complex X, we let Iso(X) = {K ≤ G |XK 	= ∅} denote the
isotropy family of the G-action on X. Note that this is the smallest family closed
under conjugation and taking subgroups, which includes all the isotropy subgroups
of X. This suggests the following notation:

Definition 3.2. Let V(F) be an F-representation for G. We let

Iso(V(F)) = {L ≤ H |S(VH)L 	= ∅, for some VH ∈ V(F)}
denote the isotropy family of V(F). We note that Iso(V(F)) is a sub-family of F.
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5958 IAN HAMBLETON AND ERGÜN YALÇIN

Example 3.3. Our first example for these definitions will be a compatible collection
of representations for the family Fp of all p-subgroups, with p a fixed prime dividing
the order of G. In this case, an Fp-representation V(Fp) can be constructed from
a suitable representation Vp ∈ Rep(P,U(n)), where P denotes a p-Sylow subgroup
of G. The representations VH can be constructed for all H ∈ Fp, by extending
Vp to conjugate p-Sylow subgroups and by restriction to subgroups. To ensure a
compatible collection {VH}, we assume that Vp respects fusion in G, meaning that
χp(gxg

−1) = χp(x) for the corresponding character χp, whenever gxg−1 ∈ P for
some g ∈ G and x ∈ P .

We will now specify an isotropy family J that will be used in the rest of the
paper.

Definition 3.4. Let {V(Fp) | p ∈ SG} be a collection of Fp-representations, for a set
SG of primes dividing the order of G. Let Jp = Iso(V(Fp)) and J =

⋃
{Jp | p ∈ SG}

denote the isotropy families.

We note that J contains no isotropy subgroups of composite order, since each
Jp is a family of p-subgroups. Let ΓG = OrJ G and ΓG(p) denote the orbit cate-
gory OrJp

G over the family Jp. A chain complex C over RΓG(p) can always be
considered as a complex of RΓG-modules, by taking the values C(H) at subgroups
H 	∈ Jp as zero complexes.

In this section we construct a p-local chain complex C(p)(0) over RΓG(p), for
R = Z(p), which we call a preliminary local model (see Definition 3.9). From this

construction we will obtain a dimension function n(p) : Jp → Z. By taking joins
we can assume that these dimension functions have common value at H = 1. In
the next section, these preliminary local models will be “improved” at each prime
p by adding homology as specified by the dimension functions n(q) : Jq → Z, for all

q ∈ SG with q 	= p. The resulting complexes C(p) over the orbit category RΓG will
all have the same dimension function

n =
⋃

{n(p) | p ∈ SG} : J → Z,

and satisfy conditions needed for the glueing method.

Proposition 3.5. Let G be a finite group, and let V(Fp) be an Fp-representation
for G for some p ∈ SG. Then there exists a finite-dimensional G-CW-complex E,
with isotropy family equal to Jp = Iso(V(Fp)), such that for each H ∈ Jp the fixed
set EH is simply-connected and p-locally homotopy equivalent to a sphere S(W )H ,

where W = V ⊕k
H for some integer k and for some VH ∈ V(Fp).

Proof. We recall a result of Jackowski, McClure and Oliver [14, Proposition 2.2]:
there exists a simply-connected, finite-dimensional G-CW-complex B which is Fp-
acyclic and has finitely many orbit types with isotropy in the family of p-subgroups
Fp in G. The quoted result applies more generally to all compact Lie groups and
produces a complex with p-toral isotropy (meaning a compact Lie group P whose
identity component P0 is a torus, and P/P0 is a finite p-group). For G finite, the
p-toral subgroups are just the p-subgroups. A direct construction for B can also
be given using [11, Corollary 3.15, Theorem 8.10] to ensure that all the fixed sets
BH have finitely-generated Z(p)-homology. The property that all fixed sets BH are
simply-connected is established in the proof.
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We now apply [27, Proposition 4.3] to this G-CW-complex B and to the given
Fp-representation V(Fp), to obtain a G-equivariant spherical fibration E → B
with fiber type S(V(Fp)

⊕k) for some k, such that E is finite dimensional (see
[27, Section 2] for necessary definitions). The resulting G-CW-complex E has the
required properties. In particular, since B is Fp-acyclic, then for each p-subgroup
H, the fixed point set BH will be also Fp-acyclic (and BH 	= ∅). This means that
the (extended) isotropy family of E is Jp = Iso(V(Fp)) and for every H ∈ Jp,

the mod-p homology of EH is isomorphic to the mod-p homology of S(V ⊕k
H )H

for some k. By taking further fiber joins if necessary, we can assume that EH is
simply connected for all H ∈ Jp. Hence EH is p-locally homotopy equivalent to a
sphere. �

We now letR = Z(p), and consider the finite-dimensional chain complexC(E?;R)
of free RΓG(p)-modules. By taking joins, we may assume that this complex has
“homology gaps” of length > l(ΓG) as required for [11, Theorem 6.7], and that
all the non-empty fixed sets EH have n(H) ≥ 3 and trivial action of WG(H) on
homology. Let n(p) : Jp → Z denote the dimension function hDimC(E?;R).

The following result applies to chain complexes over RΓG with respect to any
family F of subgroups.

Lemma 3.6. Let R be a noetherian ring and G be a finite group. Suppose that C is
an n-dimensional chain complex of projective RΓG-modules with finitely-generated
homology groups. Then C is chain homotopy equivalent to a finitely-generated
projective n-dimensional chain complex over RΓG.

Proof. Note that the chain modules of C are not assumed to be finitely-generated,
but Hi(C) = 0 for i > n. We first apply Dold’s “algebraic Postnikov system”
technique [7, §7], to chain complexes over the orbit category (see [11, §6]).

According to this theory, given a positive projective chain complex C, there is
a sequence of positive projective chain complexes C(i) indexed by positive inte-
gers such that f : C → C(i) induces a homology isomorphism for dimensions ≤ i.
Moreover, there is a tower of maps

C(i)

��

C(i− 1)

��
�
�
�

αi �� Σi+1P(Hi)

C

���
��

��
��

��

�����������

������������������
�� C(1)

��

α2 �� Σ3P(H2)

C(0)
α1 �� Σ2P(H1)

such that C(i) = Σ−1C(αi), where C(αi) denotes the algebraic mapping cone of
αi, and P(Hi) denotes a projective resolution of the homology module Hi = Hi(C).

By assumption, since the homology modules Hi are finitely-generated and R is
noetherian, we can choose the projective resolutions P(Hi) to be finitely-generated
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in each degree. Therefore, at each step the chain complex C(i) consists of finitely-
generated projective RΓG-modules, and C(n) � C has homological dimension ≤
n. Now, since Hn+1(C(n);M) = Hn+1(C;M) = 0, for any RΓG-module M ,
we conclude that C(n) is chain homotopy equivalent to an n-dimensional finitely-
generated projective chain complex by [17, Prop. 11.10]. �
Remark 3.7. See [17, 11.31:ex. 2] or [23, Satz 9] for related background and previous
results.

Recall that a dimension function n has the closure property if it satisfies condition
(iii) of Definition 2.3.

Lemma 3.8. If n(p) has the closure property, then the chain complex C(E?;R) is
chain homotopy equivalent to an oriented R-homology n(p)-sphere C(p)(0), which is
an algebraic homotopy representation.

Proof. The chain complex C(E?;R) is finite dimensional and free over RΓG, but
may not be finitely-generated. However, by the conclusion of Proposition 3.5,
the homology groups H∗(C(E?;R)) are finitely-generated since C(E?;R) is an R-
homology n-sphere. The result now follows from Lemma 3.6, which produces a fi-
nite length projective chain complex C(p)(0) of finitely-generated RΓG(p)-modules.
Note that C(E?;R) satisfies the conditions (i)-(iii) in Definition 2.3, so C(p)(0) also
satisfies these conditions (which are chain homotopy invariant), hence C(p)(0) is an
algebraic homotopy representation. �

Note that if n(p) satisfies the closure property, then C(p)(0) is an algebraic ho-
motopy representation, meaning that it satisfies the conditions (i), (ii), and (iii) in
Definition 2.3, even though DimC(p)(0) may not be equal to n(p) = hDimC(p)(0).

By taking joins, we may assume that there exists a common dimension N =
n(p)(1), at H = 1, for all p ∈ SG. Moreover, we may assume that N + 1 is a
multiple of any given integer mG (to be chosen below). We now obtain the “global”
dimension function

n =
⋃

{n(p) | p ∈ SG} : J → Z,

where n(p) = hDimC(p)(0), for all p ∈ SG, and n(1) = N .

Definition 3.9 (Preliminary local models). Let SG = {p | rankp G ≥ 2}, and let
mG denote the least common multiple of the q-periods for G (as defined in [22,
p. 267]), over all primes q for which rankq G = 1. We assume that n(1) + 1 is a
multiple of mG.

(i) We will take the chain complex C(p)(0) constructed in Lemma 3.8 for our
preliminary model at each prime p ∈ SG.

(ii) If rankq G = 1, we take Jq = {1} and C(q)(0) as the RΓG-chain complex
E1P where P is a periodic resolution of R as an RG-module with period
n(1) + 1 (for more details, see the proof of Theorem 4.1 below, or [11,
Section 9B]).

This completes the construction of the preliminary local models at each prime
dividing the order of G, for a given family of Fp-representations. In the next section

we will modify these preliminary models to get p-local chain complexes C(p) over
RΓG which are R-homology n-spheres for the dimension function n described above.
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Example 3.10. In the proof of Theorem A we will be using the setting of Example
3.3. Suppose that G is a rank two finite group which does not p′-involve Qd(p), for
any odd prime p. We let SG be the set of primes p where rankp G = 2. Under this
condition, a result of Jackson [16, Theorem 47] asserts that G admits a p-effective
character Vp. Recall that “p-effective” means that the restriction ResE Vp to a rank
two elementary abelian p-subgroup E has no trivial summand. This guarantees that
the set of isotropy subgroups Jp = Iso(S(Vp)) consists of the rank one p-subgroups.
In this setting, our preliminary local models arise from the following special case
when p is odd:

Corollary 3.11. Let p be an odd prime and G be a finite rank two group with
rankp G = 2. If G does not p′-involve Qd(p), then there exists a simply-connected,
finite-dimensional G-CW-complex E with rank one p-group isotropy, which is p-
locally homotopy equivalent to a sphere.

Note that whenG is a p-group of rank two, then it has a central element c of order
p in G. Using the subgroup generated by c, we can define the induced representation
V = IndG〈c〉 χ where χ is a non-trivial one-dimensional complex representation of

〈c〉. Then, the G-action on S(V ) will satisfy the conclusion of the above corollary.
It is proved by Dotzel-Hamrick [8] that all p-group actions on mod-p homology
spheres resemble linear actions on spheres.

4. Construction of the local models: Adding homology

Let G be a finite group and let SG = {p | rankp G ≥ 2}. We recall the notation
Jp = Iso(V(Fp)), for p ∈ SG, from Definition 3.4. For p 	∈ SG set Jp = {1}. We will
continue to work over the orbit category ΓG = OrJ G where J =

⋃
{Jp | p ∈ SG},

or over its full subcategory ΓG(p) with respect to the family Jp. For each prime

p dividing the order of G, let C(p)(0) denote the preliminary p-local model given
in Definition 3.9, and denote the homological dimension function of C(p)(0) by
n(p) : Jp → Z for all primes dividing the order of G. In order to carry out this

construction, we need to assume that each dimension function n(p) has the closure
property.

We now fix a prime q dividing the order of G, and let R = Z(q). In Theorem

4.1, we will show how to add homology to the preliminary local model C(q)(0), to
obtain an algebraic homotopy representation with dimension function n(p)∪n(q) for
any prime p ∈ SG such that p 	= q. After finitely many such steps, we will obtain
our local model C(q) over RΓG with dimension function

hDimC(q) = n =
⋃

{n(p) | p ∈ SG}.
The main result of this section is the following:

Theorem 4.1. Let G be a finite group and let R = Z(q). Suppose that C is an
algebraic homotopy representation over R, such that:

(i) C is an (oriented) R-homology n(q)-sphere of projective RΓG(q)-modules;
(ii) if 1 	= H ∈ Jp, then rankq(NG(H)/H) ≤ 1, for every prime p 	= q;
(iii) the dimension function n has the closure property.

Then there exists an algebraic homotopy representation C(q) over R, which is an
(oriented) R-homology n-sphere over RΓG.
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Remark 4.2. Note that if there exists a q-local model C(q) with isotropy in Jp ∪ Jq,
where p ∈ SG, then for every p-subgroup 1 	= H ∈ Jp, the RNG(H)/H complex

C(q)(H) is a finite length chain complex of finitely-generated modules which has
the R-homology of an n(H)-sphere.

Since R = Z(q), if we take a q-subgroup Q ≤ NG(H)/H with H 	= 1, and

restrict C(q)(H) to Q, we obtain a finite-dimensional projective RQ-complex (see
[11, Lemma 3.6]). This means Q has periodic group cohomology and therefore it is
a rank one subgroup. So, the condition (ii) in Theorem 4.1 is a necessary condition.

In order to carry out the construction in Theorem 4.1, we also assume that
n(H) + 1 is a multiple of the q-period of WG(H), for every 1 	= H ∈ Jp, and that
the gaps between non-zero homology dimensions are large enough: more precisely,
for all K,L ∈ J with n(K) > n(L), we have n(K) − n(L) ≥ l(ΓG), where l(ΓG)
denotes the length of the longest chain of maps in the category ΓG. We can easily
guarantee both of these conditions by taking joins of the preliminary local models
we have constructed.

The proof of Theorem 4.1. We obtain the complex C(q) by adding homology spec-
ified by the dimension function n(p) step-by-step for each prime p ∈ SG with p 	= q.
Let p be a fixed prime with p 	= q. Assume that we have already added homology
to the preliminary model and obtained a complex C such that

hDimC = n(q) ∪
⋃

{n(r) | r < p and r ∈ SG}.

Now we will add more homology to C specified by the dimension function n(p) at
the prime p. We will add these homologies by an inductive construction using the
number of non-zero homology dimensions. Here is an outline of the argument:

(i) The starting point of the induction is the given complex C. Let n1 > n2 >
· · · > ns denote the set of dimensions n(H), over all H ∈ Jp. Note that,
since the dimension function n comes from a unitary representation, we
have ns ≥ 1. Let us denote by Fi, the collection of subgroups 1 	= H ∈ Jp
such that n(H) = ni.

(ii) Suppose that we have already added some homology to the given complex
so that at this stage we have a finite projective chain complex C over RΓG,
satisfying the conditions (i)-(iii) of Definition 2.3, which has the property
that hDimC(H) = n(H) for all H ∈ F≤k where F≤k =

⋃
i≤k Fi. Our goal

is to construct a new finite-dimensional projective complex D which also
satisfies the conditions (i)-(iii) of Definition 2.3, and has the property that
hDimD(H) = n(H) for all H ∈ Fi with i ≤ k + 1.

(iii) We will construct the complex D as an extension of C by a finite projective
chain complex, whose homology is isomorphic to the homology that we
need to add. Note that since the constructed chain complex D must satisfy
the conditions (i)-(iii), the homology we need to add should satisfy the
condition that for every H ≤ K with H,K ∈ Fk+1, the restriction map on
the added homology module is an R-homology isomorphism.

We will now begin the actual argument with the following useful notation.

Definition 4.3. Let Ji denote the RΓG-module which has the values Ji(H) = R for
all H ∈ Fi, and otherwise Ji(H) = 0. The restriction maps rKH : Ji(K) → Ji(H) for
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every H,K ∈ Fi such that H ≤ K, and the conjugation maps cg : Ji(K) → Ji(
gK)

for every K ∈ F and g ∈ G, are assumed to be the identity maps (see [12, §2] for
more details on these maps).

In this notation, the chain complex D must have homology isomorphic to Ji in
dimension ni for all i ≤ k + 1, and in dimension zero the homology of D should
be isomorphic to R restricted to Fk+1. It is in general a difficult problem to find
projective chain complexes whose homology is given by a block of R-modules with
prescribed restriction maps. But in our situation we will be able to do this using
some special properties of the poset of subgroups in Fi coming from the closure
property of n. Observe that we have the following property by Proposition 2.4:

Lemma 4.4. For 1 ≤ i ≤ s, each poset Fi is a disjoint union of components where
each component has a unique maximal subgroup up to conjugacy.

Proof. Follows from Proposition 2.4. �
For every K ∈ Jp, the q-Sylow subgroup of the normalizer quotient WG(K) =

NG(K)/K has q-rank equal to one, hence it is q-periodic. By our starting assump-
tion, the q-period of WG(K) divides n(K) + 1. So by Swan [22], there exists a
periodic projective resolution P with

0 → R → Pn → · · · → P1 → P0 → R → 0

over the group ring RWG(K) where n = n(K). Note that this statement includes
the possibility that q-Sylow subgroup of WG(K) is trivial since in that case R would
be projective as an RWG(K)-module, and we can easily find a chain complex of
the above form by adding a split projective chain complex.

Now suppose that K ∈ Jp is such that (K) is a maximal conjugacy class in Fk+1.
Consider the RΓG-complex EKP where EK denotes the extension functor defined
in [11, Sect. 2C]. By definition

EK(P)(H) = P⊗R[WG(K)] R[(G/K)H ]

for every H ∈ F. We define the chain complex Ek+1P as the direct sum of the chain
complexes EKP over all representatives of isomorphism classes of maximal elements
in Fk+1. Let N denote the subcomplex of Ek+1(P) obtained by restricting EK(P)
to subgroups H ∈ F≤k. Let Ik+1P denote the quotient complex Ek+1(P)/N. We
have the following:

Lemma 4.5. The homology of Ik+1P is isomorphic to Jk+1 at dimensions zero
and nk+1 and zero everywhere else.

Proof. The homology of Ik+1P at H ∈ Fk+1 is isomorphic to⊕
{R⊗R[WG(K)] R[(G/K)H ] : (K) maximal in Fk+1}

at dimensions zero and nk+1 and zero everywhere else (since N(H) = 0 for H ∈
Fk+1). Note that (G/K)H = {gK : Hg ≤ K}. If gK is such that Hg ≤ K, then
H ≤ gK. Now by condition (iii), we must have 〈K, gK〉 ∈ Fk+1. But (K) was a
maximal conjugacy class in Fk+1, so we must have K = gK, hence g ∈ NG(K).
This gives 1⊗ gK = 1⊗ 1 in R⊗R[WG(K)] R[(G/K)H ]. Therefore

R⊗R[WG(K)] R[(G/K)H ] ∼= R
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for every H ∈ Fk+1. In addition, H cannot be included in two non-conjugate
maximal subgroups in Fk+1, and therefore Ik+1(P)(H) ∼= R for all H ∈ Fk+1. Since
the restriction maps are given by the inclusion map of fixed point sets (G/H)U ↪→
(G/H)V for every U, V ∈ Fk+1 with V ≤ U , we can conclude that all restriction
maps are identity maps. This completes the proof of the lemma. �

The above lemma shows that the homology of Ik+1P is exactly the RΓG-module
Jk+1 that we would like to add to the homology of C. To construct D we use an
idea similar to the idea used in [11, Section 9B]. Observe that for every RΓG-chain
map f : N → C, there is a push-out diagram of chain complexes

0 �� N

f

��

�� Ek+1P

��

�� Ik+1P �� 0

0 �� C �� Cf
�� Ik+1P �� 0 .

The homology of N is only non-zero at dimensions zero and nk+1 and at these
dimensions the homology is only non-zero at subgroups H ∈ F≤k. At these sub-
groups the homology ofN(H) is isomorphic to the direct sum of modules of the form
R ⊗RWG(K) R[(G/K)H ], over (K) maximal in Fk. Note that for every H ∈ F≤k,
there is an augmentation map

εHK : R⊗RWG(K) R[(G/K)H ] → R

which takes r ⊗ gK to r for every r ∈ R. The collection of these maps over all
H ∈ F≤k gives a map of RΓG-modules denoted

εK : (EKR)≤k → R≤k

where the subscript ≤ k means the modules in question are restricted to F≤k.
Taking the sum over all conjugacy classes of maximal subgroups, we get a map

εk+1 :=
∑
K

εK :
⊕
K

(EKR)≤k → R≤k.

In this notation, we have isomorphisms H0(N) ∼=
⊕

K (EKR)≤k and H0(C) ∼=
R≤k which we will use to identify the homology groups in dimension zero.

Lemma 4.6. If f : N → C is a chain map such that the induced map f∗ : H0(N) →
H0(C) agrees with the map εk+1 after the identifications above, then H0(Cf ) ∼=
R≤k+1.

Proof. This follows from a commuting diagram argument which was also used in
[11, Section 9B] for a similar result. Applying the zero-th homology functor, we
obtain

0 �� H0(N)

f

��

�� H0(Ek+1P)

��

�� H0(Ik+1P) �� 0

0 �� H0(C) �� H0(Cf ) �� H0(Ik+1P) �� 0 .

The rows are still exact because H1(Ik+1P)(H) is non-zero only when H ∈ Fk+1,
and both H0(N)(H) and H0(C)(H) are zero for H 	∈ F≤k. So the connecting
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homomorphisms on the long exact homology sequences are zero maps. Putting the
modules we calculated before, we obtain

ker εk+1

��

ker εk+1

��

0 ��
⊕

K(EKR)≤k

εk+1

��

��
⊕

K EKR

��

�� Jk+1
�� 0

0 �� R≤k
�� H0(Cf ) �� Jk+1

�� 0 .

Now consider the RΓG-modules in the middle vertical sequence. We claim that
the restriction map rLH from a subgroup L ∈ Fk+1 to a subgroup H ∈ F≤k is the
identity map in the module H0(Cf ). Note that the restriction maps rLH in the
modules appearing in the middle vertical sequence are given as follows (for each
summand K of maximal subgroups in Fk+1):

0 �� 0

rLH
��

�� R⊗RWG(K) R[(G/K)L]

rLH
��

∼= �� R

rLH

��

�� 0

0 �� ker εHK
�� R⊗RWG(K) R[(G/K)H ]

εHK �� R �� 0 .

It is easy to see from this diagram that the restriction map on the rightmost vertical
line is the identity map because the restriction map in the middle is the linearization
of the inclusion map (G/K)L ⊂ (G/K)H of fixed sets. �

The above lemma shows that the complex Cf has the correct homology if we
take f : N → C as the chain map inducing εk+1 on H0. Unfortunately, we cannot
takeD as Cf since the complex Ik+1P is not projective in general, and neither is N.
We note that finding a chain map f : N → C satisfying the given condition is not
an easy task without projectivity (compare [11, Section 9B], where this complex
was projective). So we first need to replace the sequence 0 → N → Ek+1P →
Ik+1P → 0 with a sequence of projective chain complexes.

Lemma 4.7. There is a diagram of chain complexes where all the complexes
P′,P′′,P′′′ are finite projective chain complexes over RΓG and all the vertical maps
induce isomorphisms on homology:

0 �� P′

��

�� P′′

��

�� P′′′

��

�� 0

0 �� N �� Ek+1P �� Ik+1P �� 0 .

Proof. Since EKP is a projective chain complex of length n, Ek+1P is a finite
projective chain complex. So, by [17, Lemma 11.6], it is enough to show that
N is weakly equivalent to a finite projective complex. For this first note that
N =

⊕
NK is a direct sum of chain complexes NK where NK is the restriction of

EKP to subgroups H ∈ F≤k. So it is enough to show that NK is weakly equivalent
to a finite projective chain complex. To prove this, we will show that for each i,
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the RΓG-module Ni := (NK)i has a finite projective resolution. The module Ni is
non-zero only at subgroups H ∈ F≤k and at each such a subgroup, we have

Ni(H) = (EKPi)(H) = Pi ⊗RWG(K) R[(G/K)H ].

So, as an RWG(H)-module Ni(H) is a direct summand of R[(G/K)H ] which is
isomorphic to

⊕
{R

[
WG(H)/WgK(H)

]
: K-conjugacy classes of subgroups Hg ≤ K}

as an RWG(H)-module. Since K is a p-group, these modules are projective over the
ground ring R because R is q-local. So, for each H ∈ F≤k, the RWG(H)-module
Ni(H) is projective. Now consider the map

π :
⊕
H

EHNi(H) → Ni

induced by maps adjoint to the identity maps at eachH. We can take
⊕

H EHNi(H)
as the first projective module of the resolution, and consider the kernel Z0 of
π : ⊕H EHNi(H) → Ni. Note that Z0 has smaller length and it also has the
property that at each L, the WG(L) modules Z0(L) are projective. This follows
from the fact that R[(G/H)L] is projective as a WG(L)-module by the same argu-
ment we used above. Continuing this way, we can find a finite projective resolution
for Ni of length ≤ l(Γ ). �

Now it remains to show that there is a chain map f : P′ → C, such that the
induced map f∗ : H0(P

′) ∼= H0(N) → H0(C) is given by εk+1. Recall that εk+1 =∑
K εK is the sum of augmentation maps over the conjugacy classes of maximal

subgroups K in Fk+1. Then the complex D will be defined as the push-out complex
that fits into the diagram

0 �� P′

f

��

�� P′′

��

�� P′′′ �� 0

0 �� C �� D �� P′′′ �� 0 .

Since both C and P′′′ are finite projective chain complexes, D will also be a finite
projective complex. The fact that D has the right homology follows from Lemma
4.6.

To construct f : P′ → C, first note that the reduced homology of the chain
complex C is zero below dimension nk. By assumption on the gaps between non-
zero homology dimensions, we have nk ≥ nk+1 + l(ΓG) ≥ l(P′). So, starting with
the map εk+1 at H0, we can obtain a chain map as follows:

�� 0 �� P ′
m

fm

��

∂P ′
m �� · · · �� P ′

0

f0

��

�� H0(N)

εk+1

��

�� 0

�� Cm+1
�� Cm

∂C
m �� · · · �� C0

�� H0(C) �� 0

where m = l(P′). This completes the proof of Theorem 4.1. �
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5. The proof of Theorem A

In this section we establish our main technique for constructing actions on ho-
motopy spheres, based on a given collection of Fp-representations, for the primes
p ∈ SG, where Fp denotes the family of all p-power order subgroups of G (see
Definitions 3.1 and 3.4). Theorem A stated in the introduction will follow from
this theorem almost immediately once we use the family of p-effective characters
constructed by M. A. Jackson [16]. The main technical theorem is the following:

Theorem 5.1. Let G be a finite group and let SG = {p | rankp G ≥ 2}. Suppose that
V(Fp) is an Fp-representation for G, with Iso(V(Fp)) = Jp, for each p ∈ SG. Then
there exists a finite G-homotopy representation X with isotropy in J =

⋃
{Jp | p ∈

SG} if and only if the following two conditions hold:

(i) If p ∈ SG and 1 	= H ∈ Jp, then we have rankq(NG(H)/H) ≤ 1 for every
q 	= p.

(ii) The dimension function n has the closure property.

Remark 5.2. The construction we give in the proof of Theorem 5.1 gives a simply-
connected G-homotopy representation X, with dimXH ≥ 3, for all H ∈ J, when-
ever XH 	= ∅. It also relates the dimension function of X to the linear dimension
functions DimS(VH), for VH ∈

⋃
{V(Fp) | p ∈ SG} in the following way: for every

prime p ∈ SG, there exists an integer kp > 0 such that for every H ∈ Fp, the

equality dimXH = dimS(V
⊕kp

H )H holds.

The proof of Theorem 5.1. The closure property for the dimension function n is a
necessary condition to construct a G-homotopy representation [25, II.10]. As we
discussed in the previous section (see Remark 4.2), the condition on the q-rank
of NG(H)/H is also a necessary condition for the existence of such actions (see
Lemma 6.1). Recall that this condition is used in an essential way in the proof of
Theorem 4.1.

By the realization theorem (Theorem 2.6), we only need to construct a finite
free chain complex of ZΓG-modules satisfying the conditions (i), (ii) and (iii) of
Definition 2.3. If we apply Theorem 4.1 to the preliminary local model constructed
in Section 3, we obtain a finite projective complex C(p), over the orbit category
Z(p)ΓG with respect to the family J, for each prime p dividing the order of G.

In addition, C(p) is an oriented Z(p)-homology n-sphere, with the same dimension

function n = hDimC(p)(0) coming from the preliminary local models. By construc-
tion, the complex C(p) satisfies the conditions (i), (ii) and (iii) of Definition 2.3 for
R = Z(p).

We may also assume that n(H) ≥ 3 for every H ∈ J, and that the gaps between
non-zero homology dimensions have the following property: for all K,L ∈ J with
n(K) > n(L), we have n(K)− n(L) ≥ l(ΓG) where l(ΓG) denotes the length of the
longest chain of maps in the category ΓG.

To complete the proof of Theorem 5.1, we first need to glue these complexes C(p)

together to obtain an algebraic n-sphere over ZΓG. By [11, Theorem 6.7], there
exists a finite projective chain complex C of ZΓG-modules, which is a Z-homology
n-sphere, such that Z(p) ⊗C is chain homotopy equivalent to the local model C(p),
for each prime p dividing the order of G. The complex C has a (possibly non-zero)
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finiteness obstruction (see Lüeck [17, §10-11]), but this can be eliminated by joins
(see [11, §7]).

After applying [11, Theorem 7.6], we may assume that C is a finite free chain
complex of ZΓG-modules which is a Z-homology n-sphere. Moreover, C is an
algebraic homotopy representation: it satisfies the conditions (i), (ii) and (iii) of
Definition 2.3 for R = Z, since these conditions hold locally at each prime.

We have now established all the requirements for Theorem 2.6. For the family
F used in its statement, we use F = J. For all H ∈ F, we have the condition
n(H) ≥ 3. Now Theorem 2.6 gives a finite G-CW-complex X � Sn with isotropy
J such that XH is a homotopy n(H)-sphere for every H ∈ J. �

Now we are ready to prove Theorem A.

The proof of Theorem A. Let G be a rank two finite group and let SG denote the
set of primes with rankp G = 2. Since it is assumed that G does not p′-involve
Qd(p) for any odd prime p, we can apply [16, Theorem 47] and obtain a p-effective
representation Vp, for every prime p ∈ SG. If the dimension function satisfies
the closure property, we will apply Theorem 5.1 to the Fp-representations V(Fp)
given by this collection {Vp} (see Example 3.3). Since Vp is p-effective means that
all isotropy subgroups in Hp are rank one p-subgroups (see Example 3.10), the
isotropy is contained in the family H of rank one p-subgroups of G, for all p ∈ SG.
We therefore obtain a G-homotopy representation with rank one isotropy in H.

The only thing we need to show is that for every prime p ∈ SG, the dimension
function n(p) of the Fp-representation V(Fp) satisfies the closure property.

Lemma 5.3. If Vp is the induced representation Ind
Gp

E W , where E = Ω1(Z(Gp))

and W is the reduced regular representation of E, then n(p) has the closure property.

Proof. Using the Mackey formula, it is easy to see that for every p-subgroup K ≤
Gp, the dimension of a fixed subspace in Res

Gp

K Vp depends only on the index of
K in Gp, provided that the dimension is non-zero. This implies that for any two
distinct p-subgroups L < K in G, with non-empty fixed points on V(Fp), we have

n(p)(L) 	= n(p)(K). Therefore the closure property for n(p) is automatic. �

Lemma 5.3 takes care of all the odd prime cases (see the construction in [16,
Proposition 27] and [16, Theorem 35]). The only remaining cases occur when
p = 2 and the Sylow 2-subgroup is either dihedral, semi-dihedral, or wreathed (see
[16, Proposition 39]).

As we show in Example 6.7, it is possible that in these cases, the dimension
function may fail to satisfy the closure property. However, this can only happen
if there are two rank one 2-subgroups H,K with H ∩ K 	= 1 such that 〈H,K〉 is
not a 2-group. Because if 〈H,K〉 is a 2-group, then all these subgroups must lie
in a Sylow 2-subgroup and the closure property will follow from the fact that the
restriction of n(2) to G2 is the dimension function of a linear representation V2.
Since we assumed that G has the rank one intersection property when Ω1(Z(G2))
is not strongly closed, the proof of Theorem A is complete. �

The proof of Corollary B. If rankq(G) ≤ 1, then for every p-group H, we must have
rankq(NG(H)/H) ≤ 1. So we can apply Theorem A to obtain Corollary B. �
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Note that the condition about Qd(p) being not p′-involved in G is a necessary
condition for the existence of actions of rank two groups on finite CW-complexes
X � Sn with rank one isotropy. The following argument is an easy extension of
the one given by Ünlü in [26, Theorem 3.3].

Proposition 5.4. Let p be an odd prime. If G acts with rank one isotropy on a
finite-dimensional complex X with the mod p homology of a sphere, then G cannot
p′-involve Qd(p).

Proof. Suppose that G has a normal p′-subgroup K such that Qd(p) is isomorphic
to a subgroup in NG(K)/K. Let L be a subgroup of G such that K � L ≤ NG(K)
and L/K ∼= Qd(p). The quotient group Q = L/K acts on the orbit space Y = X/K
via the action defined by (gK)(Kx) = Kgx for every g ∈ L and x ∈ X.

We observe two things about this action. First, by a transfer argument [6,
Theorem 2.4, p. 120], the space Y has the mod p homology of a sphere. Second, all
the isotropy subgroups of the Q-action on Y have p-rank ≤ 1. To see this, let Qy

denote the isotropy subgroup at y ∈ Y and let x ∈ X be such that y = Kx. It is
easy to see that Qy = LxK/K ∼= Lx/(Lx ∩K). Since K is a p′-group, this shows
that p-subgroups of Qy are isomorphic to p-subgroups of the isotropy subgroup Lx.
Since L acts on X with rank one isotropy, we conclude that rankp(Qy) ≤ 1 for
every y ∈ Y .

Now the rest of the proof follows from the argument given in Ünlü [26, Theorem
3.3]. Let P be a p-Sylow subgroup ofQ ∼= Qd(p). Then P is an extra-special p-group
of order p3 with exponent p (since p is odd). Let c denote a central element and a a
non-central element in P . Since the P -action on Y has rank one isotropy subgroups,
we have Y E = ∅ for every rank two p-subgroup E ≤ P . Therefore Y 〈c〉 = ∅ by
Smith theory, since otherwise P/〈c〉 ∼= Z/p × Z/p would act freely on Y 〈c〉 which
is a mod p homology sphere. Now consider the subgroup E = 〈a, c〉. Since 〈a〉 and
〈c〉 are conjugate in Q, all cyclic subgroups of E are conjugate. In particular, we
have Y H = ∅ for every cyclic subgroup H in E. This is a contradiction, since E
cannot act freely on Y . �

Remark 5.5. A shorter proof can be given using more group theory. For a finite
group L, and a normal p′-subgroup K of L, there is an isomorphism2 between the
p-fusion systems FL(S) and FL/K(SK/K), where S is a p-Sylow subgroup of L. So

if L/K ∼= Qd(p), then L has an extra-special p-group P of order p3 with exponent
p such that a central element c ∈ P is conjugate to a non-central element a ∈ P .
This leads to a contradiction in the same way as above.

6. Discussion and examples

We first discuss the rank conditions in the statement of Theorem A. Suppose that
X is a finite G-CW-complex. Recall that Iso(X) = {H |H ≤ Gx for some x ∈ X}
denotes the minimal family containing all the isotropy subgroups of the G-action on
X. We call this the isotropy family. Note that H ∈ Iso(X) if and only if XH 	= ∅.
We say that X has rank k isotropy if rankGx ≤ k for all x ∈ X and there exists a
subgroup H with rankH = k and XH 	= ∅.

2We thank Radha Kessar for this information.
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Lemma 6.1. Let G be a finite group, and let X be a finite G-CW-complex with
X � Sn.

(i) If H is a maximal p-subgroup in Iso(X), then rankp(NG(H)/H) ≤ 1.
(ii) If X has prime power isotropy and 1 	= H ∈ Iso(X) is a p-subgroup,

with XH an integral homology sphere, then rankq(NG(H)/H) ≤ 1, for all
primes q 	= p.

Proof. This follows from two basic results of P. A. Smith theory [6, III.8.1]), which
state (i) that the fixed set of a p-group action on a finite-dimensional mod p ho-
mology sphere is again a mod p homology sphere (or the empty set), and (ii) that
Z/p×Z/p cannot act freely on a finite G-CW-complex X with the mod p homology
of a sphere.

For any prime p dividing the order of G, let H ∈ Iso(X) denote a maximal
p-subgroup with XH 	= ∅. For any x ∈ XH , we have H ≤ Gx and if g · x = x, for
some g ∈ NG(H) of p-power order, it follows that the subgroup 〈H, g〉 ≤ Gx. Since
H was a maximal p-subgroup in Iso(X), we conclude that g ∈ H. Therefore the
p-Sylow subgroup of NG(H)/H acts freely on the fixed set XH , which is a mod p
homology sphere, and hence rankp(NG(H)/H) ≤ 1.

If q 	= p and H is a p-subgroup in Iso(X), then any q-subgroup Q of NG(H)/H
must act freely onXH (since x ∈ XH impliesGx is a p-group). SinceXH is assumed
to be an integral homology sphere, Smith theory implies that rankq(Q) ≤ 1. �
Example 6.2. If G is the extra-special p-group of order p3, then the center Z(G) =
Z/p cannot be a maximal isotropy subgroup in Iso(X). On the other hand, we
know that G acts on a finite complex X � Sn with rank one isotropy: just take the
linear sphere S(IndGZ(G) W ) for some non-trivial one-dimensional representation W

of Z(G). So we cannot require that G acts on X � Sn with Iso(X) containing all
rank one subgroups.

For any prime p, we can restrict the G-action on X to a p-subgroup of maximal
rank. This gives the following well-known conclusion.

Corollary 6.3. If X is a finite G-CW-complex with X � Sn and rank k isotropy,
then rankp G ≤ k + 1, for all primes p.

Remark 6.4. These results help to explain the rank conditions in Theorem A. First,
if we have rank one isotropy, then we must assume that G has rank two. However,
condition (ii) on the q-ranks of normalizer quotients is not necessary in general for
the existence of a finite G-CW complex homotopy equivalent to a sphere with rank
one prime power isotropy (see Example 6.7 for G = A7).

In contrast, Lemma 6.1(ii) shows that in order to construct a G-homotopy rep-
resentation (with prime power isotropy) the normalizer quotients must satisfy the
q-rank conditions at all p-subgroups H, with q 	= p, for which XH 	= ∅. It follows
that the corresponding condition (ii) in the setting of Theorem 5.1 is in fact a nec-
essary condition. Example 6.2 shows that not every rank one p-subgroup H must
fix a point on X even when X is assumed to be a G-homotopy representation.

In order to get a complete list of necessary conditions, we must have more precise
control of the structure of the isotropy subgroups. It might also be possible to
construct finite G-CW complexes X � Sn with rank one prime power isotropy, for
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which the fixed setsXH are not homotopy spheres. The work of Petrie [21, Theorem
C] and tom Dieck [24, Theorem 1.7] explores this direction, but it is not clear to
us that their results answer our question.

An attractive open problem is the case of finite rank two groups of odd order.
Such groups admit G-representation spheres S(Wp) for each prime p ∈ SG, whose
isotropy groups have p-rank one (see Adem [1, 5.29]). These spheres S(Wp) could
be used as the preliminary p-local models, instead of the construction given in
Section 3, but one would still need to add and subtract homology to obtain the
same homological dimension function at all primes. At present, we only know how
to complete this step (as in Section 4) under conditions (i) and (ii) of Theorem 5.1.
The problem is that these conditions may not always hold for the representation
spheres {S(Wp) : p ∈ SG}.

Now we discuss an application of Theorem A.

Example 6.5. The alternating group G = A6 admits a finite G-homotopy repre-
sentation X with rank one prime power isotropy. This follows from Theorem A
once we verify that G satisfies the necessary conditions. Note that A6 has order
23 · 32 · 5 = 360 so it automatically satisfies the condition about Qd(p), since it
cannot include an extra-special p-group of order p3 for an odd prime p. For the
q-rank condition, note that SG = {2, 3}, so we need to check this condition only for
primes p = 2 and 3. Here are some easily verified facts:

• A 2-Sylow subgroup P ≤ G is isomorphic to the dihedral group D8, so all
rank one 2-subgroups are cyclic, and H2 = {1, C2, C4}.

• NG(C2) = P , and rank3(NG(C2)/C2) = 0.

• NG(C4) = P and rank3(NG(C4)/C4) = 0.

Now, let Q be a 3-Sylow subgroup in G. Then Q ∼= C3 × C3.

• Any subgroup of order 3 in G is conjugate to CA
3 = 〈(123)〉 or CB

3 =
〈(123)(456)〉.

• |NG(C
A
3 )/CA

3 | = 6 and rank2(NG(C
A
3 )/CA

3 ) = 1.

• |NG(C
B
3 )/CB

3 | = 6 and rank2(NG(C
B
3 )/CB

3 ) = 1.

We conclude that condition (ii) of Theorem A holds for this group. Note that
the rank one intersection property also holds since in A6 the intersection of any two
distinct C4’s is trivial.

Remark 6.6. Note that by the criteria given in [3, Lemma 5.2], the group A6 does
not have a character which is effective on elementary abelian 2-subgroups. On the
other hand, the triple cover of A6 is a subgroup of SU(3), and hence acts linearly

on a sphere with rank one isotropy by results of Adem, Davis and Ünlü [2, 2.6,
2.9] on the fixity of faithful unitary representations. More generally, they show
that if G ⊂ U(n) has fixity f , then G acts linearly with rank one isotropy on
U(n)/U(n− f). If G ⊂ SU(n), then G has fixity at most n− 2.

We now give an example which does not admit a G-homotopy representation
with rank one isotropy of prime power order.

Example 6.7. The alternating group G = A7 does not admit a finite G-homotopy
representation with rank one prime power isotropy. The order of G is 23 · 32 · 5 · 7,
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so this group also automatically satisfies the Qd(p) condition. Here is a summary
of the main structural facts:

• The 3-Sylow subgroup Q ≤ G is isomorphic to C3 × C3.

• Any subgroup of order 3 in G is conjugate to CA
3 = 〈(123)〉 or CB

3 =
〈(123)(456)〉.

• The 2-Sylow subgroup of NG(C
A
3 ) is isomorphic to D8.

• |NG(C
A
3 )/CA

3 | = 24 and rank2(NG(C
A
3 )/CA

3 ) = 2.

• NG(C
B
3 ) ∼= (C3 × C3)� C2 and rank2(NG(C

B
3 )/CB

3 ) = 1.

• |NG(C2)| = 24, and rank3(NG(C2)/C2) = 1.

• NG(C4) ∼= D8 and rank3(NG(C4)/C4) = 0.

We see that SG = {2, 3}, and the rank condition in Theorem A fails for 3-subgroups,
since there is a cyclic 3-subgroup H = CA

3 with rank2(NG(H)/H) = 2. Instead
we can try to apply Theorem 5.1 directly by choosing 2-effective and 3-effective
characters whose dimension functions have the closure property. A suitable 3-
effective character does exist, but it is not possible to find a 2-effective character
whose dimension function has the closure property.

Since all involutions in G = A7 are conjugate, the subgroup Ω1(Z(G2)) is not
strongly closed. To see that A7 does not satisfy the rank one intersection property
either, take H = 〈(1234)(56)〉 ∼= C4 and K = 〈(1234)(57)〉 ∼= C4. The intersection
of these cyclic subgroups is H∩K = 〈(13)(24)〉 ∼= C2. But the subgroups generated
by H and K is not a 2-group.

By applying the Borel-Smith conditions, we can easily show that if there existed
a G-homotopy representation X with rank one isotropy, then its dimension function
n would satisfy n(H) = n(K) = n(H ∩K) 	= −1, where H and K are given above.
But then 〈H,K〉 will also fix a point, contradicting our requirement that X have
prime power isotropy.

Example 6.8. The group G = PSU3(3) is not 2-regular, but admits an orthogonal
linear action with rank one prime power isotropy. The order of G is 25 · 33 · 7. Here
is a summary of the main structural facts:

• The 3-Sylow subgroup G3 is isomorphic to the extra-special 3-group of
order 27 and exponent 3.

• There are two conjugacy classes of subgroups CA
3 and CB

3 of order 3.

• NG(C
A
3 ) is isomorphic to G3 �C8, and NG(C

B
3 ) ∼= C3 ×S3. In particular,

rank2(NG(H)/H) = 1 for every cyclic subgroup H ≤ G of order 3.

• Sylow 2 subgroup of G is the wreathed group (C4 × C4)� C2.

• All involutions in G are conjugate (so Ω1(Z(G2)) is not strongly closed).

• If t is an involution inG, then CG(t)∼=GU2(3) of order 96, so rank3(NG(H))
≤ 1 for every rank one 2-subgroup H ≤ G.

The facts listed above show that G satisfies the normalizer rank condition of The-
orem A. Note that G also satisfies the Qd(p) condition since it has two conjugacy
classes of subgroups of order 3 and the Sylow 7-subgroup is cyclic.

By direct calculations in the group GU2(3) it is possible to show that G does
not satisfy the rank one intersection property. To see this note that G includes a
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subgroupH ∼= GU2(3) as centralizer of an involution t ∈ G. Since SU2(3) = SL2(3),
H has a normal subgroup S isomorphic to SL2(3) ∼= Q8 � C3 with quotient group
C4. In fact we can choose an element u of order 8 in GU2(3) such that t ∈ 〈u〉
and GU2(3) = S · 〈u〉. The group H has another normal subgroup K of order 16
with quotient group S3. So it is possible to find two cyclic subgroups T = 〈u〉,
T ′ = 〈u′〉 isomorphic to C8 such that KT/K and KT ′/K corresponds to different
cyclic 2-subgroups in S3. This means 〈T, T ′〉 is not a 2-group, but T ∩ T ′ 	= 1 since
t ∈ T ∩ T ′. Hence the rank one intersection property does not hold for G (this
argument was provided by Ron Solomon).

However G = PSU3(3) does admit an orthogonal linear action with rank one
isotropy (see [3, Theorem 1.7]). By direct calculations using the character table
one can show that all the non-trivial isotropy subgroups are isomorphic to one of
the groups in {C2, C3, C4, Q8}, which are all rank one groups of prime power.

7. The proof of Theorem C

The finite simple groups of rank two are listed in Adem-Smith [3, p.423] as
follows:

PSL2(q), q ≥ 5; PSL2(q
2), q odd ; PSL3(q), q odd ;

PSU3(q), q odd ; PSU3(4); A7 and M11

where q denotes a prime. Extensive information about the maximal subgroups of
these simple groups is provided in [18], [9]. To prove Theorem C we will consider
separate cases. Note that G = A7 is done in Example 6.7.

Case 1: G = PSL2(q), q ≥ 5. The order of G is q(q2 − 1)/2 and the maximal
subgroups of G are listed in [9, 6.5.1]. From this list it is easy to see that the
2-Sylow subgroup of G is a dihedral group and for odd primes the Sylow subgroups
are cyclic (see also [9, 4.10.5]). It follows that SG = {2} and G is Qd(p)-free at odd
primes, so Corollary B applies. We only need to show that G satisfies the rank one
intersection property. This follows from the fact that the centralizer CG(z) of an
involution z ∈ G is a dihedral group of order Dq−δ where δ = ∓1 and δ ≡ q mod 4
(see [10, Lemma 3.1]). This implies that CG(z) has a cyclic subgroup of index 2
which contains every element of CG(z) of order greater than 2. Hence we cannot
have two distinct cyclic 2-subgroups in G with non-trivial intersection unless they
include each other.

By inspecting the character table of G, and applying the criterion [3, Lemma
5.2], we see that PSL2(q), q > 7, does not admit an orthogonal representation V
with rank one isotropy on S(V ).

Case 2: G = PSL2(q
2), q ≥ 3. We did PSL2(9) = A6 explicitly in Example 6.5.

In general, the order of G is q2(q4 − 1)/2 and the maximal subgroups are again
listed in [9, 6.5.1]. The conditions on the normalizer quotients needed for Theorem
A can be checked at the primes SG = {2, q} using the information in [9], and
[13, Chap. II]. The 2-Sylow subgroups are dihedral [9, 4.10.5], and the q-Sylow
subgroup Q is elementary abelian of rank two [9, 6.5.1] (with normalizer NG(Q)
represented by the parabolic subgroup of upper triangular matrices). At the other
primes p 	= 2, q, any p-Sylow subgroup is contained in a dihedral group, and hence
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cyclic (see [13, II.8.27]). The rank one intersection property can be checked in a
similar way as in Case 1.

Case 3: PSL3(q), q ≥ 3. We refer to [18, §15] or [9, 6.5.3] for the maximal sub-
groups. Since G contains Qd(p) for p = q, this series of groups is ruled out. An
explicit embedding is given by the matrices:

Qd(p) =

⎧⎨
⎩

⎡
⎣
a b e

c d f

0 0 1

⎤
⎦ : ad− bc = 1

⎫⎬
⎭

with entries in Fq.

Case 4: G = PSU3(q), q ≥ 3. The order of G is (q3 + 1)q3(q2 − 1)/d, where
d = (3, q + 1), and the maximal subgroups are given in [18, §16] or [9, 6.5.3]. In
particular, G contains an abelian subgroup of order (q + 1)2/d. If 9 | (q + 1), then
G contains Qd(3), hence is ruled out, so we assume that 9 � (q + 1).

If 3 | (q + 1), then the 3-Sylow subgroup of G is elementary abelian of order
9. If r > 3 is an odd prime dividing q + 1, then the r-Sylow subgroup is abelian
of rank two, and order equal to the r-primary part of (q + 1)2. Finally, if r is
an odd prime not dividing q + 1, then r divides (q2 − q + 1) or r divides q − 1,
and the r-Sylow subgroup of G is cyclic (see [9, 6.5.3(c)], [18, pp. 228, 241] for the
list of subgroups, and [13, II.10.12], and [19, §1] for additional details about the
structure). In summary, SG = {2, q} ∪ {r | (q + 1) : r an odd prime}.

It is easy to see that the normalizer rank condition fails if an odd prime r divides
(q+1), since 2 | (q+1)2/d. Note that this failure cannot be avoided by choosing a
different representation since there is only one conjugacy class of order 2 and order 3
elements. The reason that there is only one conjugacy class of subgroups of order 3
follows from the fact that when 3 | (q+1), thenG includes PSU3(2) = (C3×C3)�Q8

as a subgroup (see [9, 6.5.3(d)], [18, p. 241]) and in this group there is only one
conjugacy class of subgroups of order 3. Hence G = PSU3(q) does not admit a
finite G-homotopy representation with rank one prime power isotropy if an odd
prime r divides (q + 1).

In the only remaining case we have q + 1 = 2n. The 2-Sylow subgroup G2 of G
is the wreathed group (C2n × C2n) � C2 and all involutions in G are conjugate (a
good reference for the facts we need is [4, Chap. I]). The case q = 3 was discussed
in Example 6.8, so we will assume q + 1 = 2n with n ≥ 3. By direct calculation it
can be shown that in this case SG = {2, q} and the normalizer rank condition holds
for these primes. However, it turns out that the rank one intersection property fails
in this case. It is possible to find a pair of cyclic 2-subgroups, one of which is a C4

which intersect non-trivially and the subgroup that generate is not a 2-group. In
fact, the rank one intersection property fails in general for G = PSU3(q), q ≥ 3.
Again this failure cannot be avoided.

Proposition 7.1. The group G = PSU3(q) does not admit a finite G-homotopy
representation with rank one prime power isotropy, for q + 1 = 2n with n ≥ 3.

Proof. Suppose that G admits a finite G-homotopy representation X with dimen-
sion functions n such that only isotropy subgroups are rank one prime power sub-
groups. Let G2 be generated by x, y, z satisfying the relations x2n = y2

n

= z2 = 1
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and zxz = y. We apply the Borel-Smith conditions to the subgroup lattice of G2,

starting with the quotient group U/V = C2 × C2 with U = 〈xy−1, x2n−1

, z〉 and

V = 〈xy−1〉. This gives n(V ) = n(Q) where Q = 〈xy−1, x2n−1

z〉 is a generalized
quaternion subgroup of U that includes V . Applying the Borel-Smith conditions
to the subquotients of the dihedral subgroup of U that includes V , we can obtain
further that n(Q) = n(H) = n(〈t〉) 	= −1 where H is any non-trivial subgroup of
V .

To reach a contradiction, we choose an involution t ∈ G and consider its central-
izer CG(t), which is isomorphic to the group GU2(q) (see [4, Proposition 4, p. 21]).
This group has SU2(q) ∼= SL2(q) as a subgroup, so in CG(t) there is a subgroup S
isomorphic to SL2(q). When q > 3, the Sylow 2-subgroup of SL2(q) is not normal,
hence in S it is possible to find two conjugate quaternion subgroups Q and Q′ such
that t ∈ Q∩Q′. Note that by monotonicity of the dimension function, the equalities
n(Q) = n(Q′) = n(〈t〉) imply that n(Q) = n(Q′) = n(Q ∩Q′).

We claim that 〈Q,Q′〉 is not a 2-group. This will prove that n does not have
the closure property, hence it will give a contradiction to the existence of the G-
homotopy representation with rank one prime power isotropy. Suppose to the
contrary that 〈Q,Q′〉 is a 2-group. Then both Q and Q′ will lie, as distinct sub-
groups, in a Sylow 2-subgroup G2 of G = PSU3(q). But the wreathed group
(C2n × C2n)� C2 has a unique quaternion subgroup of order 2n+1 (see [4, Lemma
2(v), p. 9]). This is a contradiction. �

Case 5: G = M11. The order of G is 7920 = 24 · 32 · 5 · 11 and SG = {2, 3}. This
group is Qd(p)-free, but the 2-rank rank2(NG(H)/H) = 2, for H a subgroup of
order three (see [9, p. 262]). Since all the subgroups of order three are conjugate,
G does not admit a finite G-homotopy representation with rank one prime power
isotropy.

Case 6: G = PSU3(4). The order of G is 65280 = 26 ·3·52 ·13 and SG = {2, 5}. This
group has a linear representation V such that the G-action on S(V ) has rank one
isotropy (see [3, p. 425]). One can check that all the non-trivial isotropy subgroups
are in the set {C2, C3, C4, C5}.
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