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Abstract

We construct a non-abelian extension � of S1 by Z/3 × Z/3, and prove that � acts freely and
smoothly on S5 × S5. This gives new actions on S5 × S5 for an infinite family P of finite
3-groups. We also show that any finite odd-order subgroup of the exceptional Lie group G2 admits
a free smooth action on S11 × S11. This gives new actions on S11 × S11 for an infinite family E of
finite groups. We explain the significance of these families P, E for the general existence problem,
and correct some mistakes in the literature.

Introduction

In this paper, we construct some new examples of smooth, free, finite group actions on a product of
two spheres of the same dimension. A necessary condition discovered by Conner [13] is that G has
rank at most two, meaning that G does not contain an elementary abelian subgroup of order p3, for
any prime p.

QUESTION What group theoretic conditions characterize the rank two finite groups which can act
freely and smoothly on Sn × Sn, for some n � 1?

It was shown by Oliver [20] that the alternating group A4 of order 12 has rank 2, but does not
admit such an action, so the rank 2 condition is not sufficient. It was also observed by Adem–Smith
[2, p. 423] that A4 is a subgroup of every rank 2 non-abelian simple group, so all these are ruled
out too.

In order to answer this question, it is useful to have more examples. In this note, we present two
new infinite families of such actions. Let � be the Lie group given by the following presentation

� = 〈
a, b, z | z ∈ S1, a3 = b3 = [a, z] = [b, z] = 1, [a, b] = ω

〉
,

where [x, y] = x−1y−1xy and ω = e2πi/3 in S1 ⊆ C. We make an explicit equivariant glueing
construction to prove our first result.

THEOREM A The group � acts freely and smoothly on S5 × S5.
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462 I. HAMBLETON AND Ö. ÜNLÜ

For a positive integer k ≥ 3, let P(k) be the group of order 3k given by the following presentation

P(k) =
〈
a, b, c | a3 = b3 = c3k−2 = [a, c] = [b, c] = 1, [a, b] = c3k−3

〉
.

We will write
P = {P(k) | k ≥ 3}

and note that P is a collection of subgroups of � (take c = e2πi/3k−2 ∈ S1). Therefore, Theorem A
constructs free smooth P(k)-actions on S5 × S5 for all k ≥ 3. Note that P(3) ∼= (Z/3 × Z/3) � Z/3
is the extraspecial 3-group of order 27 and exponent 3.

We prove our second result by using equivariant surgery theory to modify a construction based
on the exceptional Lie group G2 of dimension 14.

THEOREM B All odd-order finite subgroups of G2 act freely and smoothly on S11 × S11.

Information about the finite subgroups of G2 can be found in [12]. Here is a specific family
of examples. For a prime number p, let E(p) be the group of order 3p2 given by the following
presentation

E(p) = 〈
u, v, w | up = vp = w3 = [u, v] = 1, [u, w] = u−2v−1, [v, w] = uv−1

〉
.

We will write
E = {E(p) | p is an odd prime}.

The group E(2) is isomorphic to the alternating group A4 of order 12, and the group E(3) is another
presentation for the extraspecial group P(3). An explicit isomorphism P(3) ∼= E(3) is given by
the map

a �→ w, b �→ vu and c �→ v−1u.

The groups E(p) are all subgroups of SU(3), and hence contained in the exceptional Lie group G2.
For p = 3, let ω = e2πi/3 and consider the representation of P(3) as follows:

a =
⎡
⎣0 1 0

0 0 1
1 0 0

⎤
⎦ , b =

⎡
⎣1 0 0

0 ω 0
0 0 ω2

⎤
⎦ and c =

⎡
⎣ω 0 0

0 ω 0
0 0 ω

⎤
⎦ .

For p �= 3, define α = e2πi/p and β = e2πi(p−2)/p and consider a representation of E(p) as follows:

u =
⎡
⎣α 0 0

0 α 0
0 0 β

⎤
⎦ , v =

⎡
⎣α 0 0

0 β 0
0 0 α

⎤
⎦ and w =

⎡
⎣0 1 0

0 0 1
1 0 0

⎤
⎦ .

Therefore, Theorem B proves the existence of free smooth E(p)-actions on S11 × S11, for all odd
primes p.
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FREE ACTIONS ON PRODUCTS OF SPHERES 463

We introduce one more family of 3-groups

B(k, ε) =
〈
a, b, c | a3 = b3 = c3k−2 = [b, c] = 1, [a, c] = b, [a, b] = cε3k−3

〉
,

where k ≥ 4, and ε is 1 or −1. One can check that B(k, ε) is not a subgroup of SU(3) for k > 4 or
ε = 1. However, the group B(4, −1) is a subgroup of SU(3) by the following representation

a =
⎡
⎣0 1 0

0 0 1
1 0 0

⎤
⎦ , b =

⎡
⎣1 0 0

0 γ 3 0
0 0 γ 6

⎤
⎦ , c =

⎡
⎣γ 5 0 0

0 γ 8 0
0 0 γ 5

⎤
⎦

where γ = e2πi/9. Therefore, Theorem B shows that B(4, −1) acts freely and smoothly on S11 × S11.
In section 3, we make some concluding remarks about finite 3-groups and the role of the families

P and E in the general existence problem.

1. An explicit construction

The idea of the construction is to start with a non-free action of � on S5 × S5 and do an equivariant
‘cut-and-paste’operation on it to get rid of the fixed points. This is an equivariant surgery construction,
but none of the theory of equivariant surgery is needed: the proof of Theorem A just involves checking
some explicit formulas.

For the initial action on S5 × S5, the singular set is contained in a �-invariant disjoint union U of
six copies of S1 × D4 × S5. We replace this part by a new free action on U , which is �-equivariantly
diffeomorphic to the original one on its boundary. We will use the following four representations of
� in our construction.

(1) An irreducible representation ϕ : � → U(3):

a �−→
⎡
⎣0 1 0

0 0 1
1 0 0

⎤
⎦ , b �−→

⎡
⎣1 0 0

0 ω 0
0 0 ω2

⎤
⎦ , z �−→

⎡
⎣z 0 0

0 z 0
0 0 z

⎤
⎦ .

(2) Three representations that pullback from representations of �/S1:
(a) ψ0 : � → U(3) given by:

a �−→
⎡
⎣ω 0 0

0 ω 0
0 0 ω

⎤
⎦ , b �−→

⎡
⎣ω 0 0

0 ω 0
0 0 1

⎤
⎦ , z �−→

⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦ .

(b) ψ1 : � → U(3) given by:

a �−→
⎡
⎣ω 0 0

0 ω 0
0 0 ω

⎤
⎦ , b �−→

⎡
⎣ω 0 0

0 ω2 0
0 0 ω2

⎤
⎦ , z �−→

⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦ .
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464 I. HAMBLETON AND Ö. ÜNLÜ

(c) ψ2 : � → U(3) given by:

a �−→
⎡
⎣ω 0 0

0 ω 0
0 0 ω

⎤
⎦ , b �−→

⎡
⎣ω2 0 0

0 1 0
0 0 1

⎤
⎦ , z �−→

⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦ .

These representations give an action � : � × Y → Y on Y = S5 given by

�(g, z) = ϕ(g)z,

where z = (z1, z2, z3) ∈ S5, with zi ∈ C and ‖z‖ = 1.

DEFINITION 1.1 (Model actions on S5 × S5) For i = 0, 1 or 2, we obtain an action �i : � × Xi → Xi

on Xi = S5 × S5 given by:
�i(g, (z, w)) = (ϕ(g)z, ψi(g)w),

where z, w ∈ S5.

To simplify our notations, we let �(g, z) = g · z and �i(g, (z, w)) = g · (z, w), for any z ∈ Y and
(z, w) ∈ Xi .

REMARK 1.2 We will modify the initial action (X0, �0) by ‘equivariant Dehn surgery’ to obtain a
free �-action on S5 × S5, with replacement pieces coming from (X1, �1) and (X2, �2).

For i = 0, 1 or 2, we define a �-equivariant map

pi : Xi → Y given by pi(z, w) = z.

Note that pi is in fact a �-equivariant sphere bundle map. Fix 0 < ε < 1/9, and define three subspaces
V1, V2 and V0 of Y as follows:

V1 = {ak · z ∈ Y | 0 ≤ k ≤ 2, |z2|2 + |z3|2 ≤ ε}, V2 = PV1,

where

P = 1√
3

⎡
⎣1 ω 1

1 1 ω

ω 1 1

⎤
⎦ ∈ U(3).

Note that Pϕ(a)P −1 = ϕ(a) and Pϕ(b)P −1 = ϕ(a2b), and let V0 be the closure of Y − V1 ∪ V2.

LEMMA 1.3 V1 ∩ V2 = ∅.

Proof . Suppose z ∈ V1 ∩ V2. Then there exists z′ ∈ V1 such that z = P z′, since z ∈ V2. So there
exists i �= j ∈ {1, 2, 3} such that |z′

i |2 + |z′
j |2 ≤ ε, since z′ ∈ V1. Let {k} = {1, 2, 3} − {i, j}. Then

for any q in {1, 2, 3}, we have |zq |2 ≥ 1/3(|z′
k|2 − |z′

i |2 − |z′
j |2) ≥ (1/3) − ε. Therefore, any sum

|zq |2 + |zr |2 ≥ (2/3) − 2ε > ε, in contradiction to the condition z ∈ V1.
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FREE ACTIONS ON PRODUCTS OF SPHERES 465

LEMMA 1.4 The inclusions ti : Vi → Y give �-equivariant subspaces of Y .

Proof . Assume 1 ≤ i ≤ 2. Take any w in Vi , there exists unique k ∈ {0, 1, 2} and z in V1 with
|z2|2 + |z3|2 ≤ ε such that

w = P i−1ϕ(ak)z.

Hence, ϕ(a)w = P i−1ϕ(ak+1)z is in Vi and for λ ∈ S1, ϕ(λ)w = P i−1ϕ(ak)ϕ(λ)z is in Vi as
|λz2|2 + |λz3|2 ≤ ε. We have

ϕ(b)P i−1ϕ(ak) = P i−1ϕ(a−2(i−1))ϕ(b)ϕ(ak) = P i−1ϕ(ak+i−1)ϕ(b)ϕ(ω−k). (1)

Hence for i = 1, ϕ(b)w = ϕ(ak)ϕ(b)ϕ(ω−k)z is in Vi as |ω−k+1z2|2 + |ω−k+2z3|2 ≤ ε. For i = 2,
ϕ(b)w = Pϕ(ak+1)ϕ(b)ϕ(ω−k)z is in Vi as above. Hence the lemma is proved for i = 1 and i = 2.
For i = 0, it follows from the definition of V0.

REMARK 1.5 Observe that each of the subspaces V1 or V2 is diffeomorphic to the disjoint union of
three copies of S1 × D4, since the subset {z ∈ S5 : |z2|2 + |z3|2 ≤ ε} = S1 × D4.

Now define a subspace Ui ⊂ Xi for i = 0, 1 or 2 by the following �-equivariant pullback diagram:

Ui
��

��

Xi

pi

��
Vi

ti �� Y

LEMMA 1.6 The �-action on Ui is free for i ∈ {0, 1, 2}.

Proof . Take two subsets of � as follows:

A1 = {
bkz | 1 ≤ k ≤ 2, z ∈ S1

}
,

A2 = {
akb−kz | 1 ≤ k ≤ 2, z ∈ S1

}
.

All elements of � except A1 ∪ A2 act freely on X0. But all the fixed point sets of elements of Ai are
in p−1

0 (Vi − ∂Vi) for i ∈ {1, 2}. Hence � acts freely on U0. Now for any i ∈ {1, 2}, all elements of �

except Ai act freely on Vi , but all the elements of Ai act freely on Xi . Hence � acts freely on Ui .

REMARK 1.7 Since Ui is an S5-bundle over Vi , the subspace U = U1 ∪ U2 is diffeomorphic to a
disjoint union of six copies of S1 × D4 × S5.

LEMMA 1.8 There is a �-equivariant isomorphism α : ∂U0 → ∂U1 ∪ ∂U2 as �-equivariant
5-dimensional sphere bundles over ∂V0 = ∂V1 ∪ ∂V2 with structure group U(3).
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466 I. HAMBLETON AND Ö. ÜNLÜ

Proof . For m = 1 and 2, we have

∂Vm = {P m−1ϕ(ak)z ∈ Y | 0 ≤ k ≤ 2, |z2|2 + |z3|2 = ε},

and ∂V0 = ∂V1 ∪ ∂V2. This means that there is a unique way to write every element of ∂U0 in the
following standard form

(P m−1ϕ(ak)z, w),

where m ∈ {1, 2}, k ∈ {0, 1, 2} and |z2|2 + |z3|2 = ε. In addition, ∂Un = ∂Vn × S5, for n = 0, 1 and
2, with �-action given by g · (z, w) = (ϕ(g)z, ψi(g)w). We define an isomorphism

α : ∂U0 → ∂U1 ∪ ∂U2

given by
α(P m−1ϕ(ak)z, w) = (

P m−1ϕ(ak)z, �m(z)w
)
,

where

�1(z) = 1√
ε(1 − ε)

⎡
⎣1 0 0

0 z̄1z2 −z̄1z3

0 z1z̄3 z1z̄2

⎤
⎦ ∈ SU(3),

�2(z) = 1√
ε(1 − ε)

⎡
⎣z̄1z2 −z1z̄3 0

z̄1z3 z1z̄2 0
0 0 1

⎤
⎦ ∈ SU(3).

Now it is clear that α is an isomorphism. We just have to check that it is �-equivariant.
First, check that α is equivariant under a:

α
(
a · (

P m−1ϕ(ak)z, w
)) = α

(
ϕ(a)P m−1ϕ(ak)z, ψ0(a)w

)
= α

(
P m−1ϕ(ak+1)z, ψ0(a)w

) = (
P m−1ϕ(ak+1)z, �m(z)ψ0(a)w

)
= (

ϕ(a)P m−1ϕ(ak)z, ψm(a)�m(z)w
) = a · α

(
P m−1ϕ(ak)z, w

)
.

Secondly, check that α is equivariant under b:

α
(
b · (

P m−1ϕ(ak)z, w
)) = α

(
ϕ(b)P m−1ϕ(ak)z, ψ0(b)w

)
= α

(
P m−1ϕ(ak+m−1)ϕ(b)ϕ(ω−k)z, ψ0(b)w

)
, by formula (1),

= α

⎛
⎝P m−1ϕ(ak+m−1)

⎡
⎣ ω−kz1

ω−k+1z2

ω−k+2z3

⎤
⎦ , ψ0(b)w

⎞
⎠ = (�).
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FREE ACTIONS ON PRODUCTS OF SPHERES 467

For m = 1, we have

(�) =
⎛
⎝ϕ(ak)

⎡
⎣ ω−kz1

ω−k+1z2

ω−k+2z3

⎤
⎦ ,

1√
ε(1 − ε)

⎡
⎣1 0 0

0 z̄1ωz2 −z̄1ω
2z3

0 z1ωz̄3 z1ω
2z̄2

⎤
⎦ ψ0(b)w

⎞
⎠

=
⎛
⎝ϕ(b)ϕ(ak)z, �1(z)

⎡
⎣1 0 0

0 ω 0
0 0 ω2

⎤
⎦ ψ0(b)w

⎞
⎠ = (

ϕ(b)ϕ(ak)z, �1(z)ψ1(b)w
)

= (
ϕ(b)ϕ(ak)z, ψ1(b)�1(z)w

) = b · α
(
ϕ(ak)z, w

)
.

For m = 2, we have

(�) =
⎛
⎝Pϕ(ak+1)

⎡
⎣ ω−kz1

ω−k+1z2

ω−k+2z3

⎤
⎦ ,

1√
ε(1 − ε)

⎡
⎣ z̄1ωz2 −z1ωz̄3 0

z̄1ω
2z3 z1ω

2z̄2 0
0 0 1

⎤
⎦ ψ0(b)w

⎞
⎠

=
⎛
⎝ϕ(b)Pϕ(ak)z,

⎡
⎣ω 0 0

0 ω2 0
0 0 1

⎤
⎦ �2(z)ψ0(b)w

⎞
⎠

=
⎛
⎝ϕ(b)Pϕ(ak)z,

⎡
⎣ω 0 0

0 ω2 0
0 0 1

⎤
⎦ ψ0(b)�2(z)w

⎞
⎠

= (
ϕ(b)Pϕ(ak)z, ψ2(b)�2(z)w

) = b · α
(
Pϕ(ak)z, w

)
.

Thirdly, check that α is equivariant under λ ∈ S1:

α
(
λ · (

P m−1ϕ(ak)z, w
)) = α

(
ϕ(λ)P m−1ϕ(ak)z, ψ0(λ)w

)
= α

(
P m−1ϕ(ak)λz, w

) = (
P m−1ϕ(ak)λz, �m(z)w

)
= (

ϕ(λ)P m−1ϕ(ak)z, ψm(λ)�m(z)w
) = λ · α

(
P m−1ϕ(ak)z, w

)
.

Proof of Theorem A. Define a new space X by the following pushout diagram:

∂U0
∼= ∂U1 ∪ ∂U2

��

��

U1 ∪ U2

��
U0

�� X

where the isomorphism α from Lemma 1.8 is used to make the identification ∂U0
∼= ∂U1 ∪ ∂U2.

The above pushout diagram can be considered in the category of �-equivariant 5-dimensional sphere
bundles with the structure group U(3). Hence we see that � acts freely on X because the action of
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468 I. HAMBLETON AND Ö. ÜNLÜ

� on U1 ∪ U2 and on U0 are both free. In addition, the base spaces of these bundles are given by the
following pushout diagram:

∂V0 = ∂V1 ∪ ∂V2
��

��

V1 ∪ V2

��
V0

�� Y

Hence X is a 5-dimensional sphere bundle over Y = S5 with structure group U(3). But π4(U(3)) = 0.
Hence X = S5 × S5.

2. Proof of Theorem B

Let E denote any finite odd-order subgroup of the exceptional Lie group G2. To construct a free
E-action on S11 × S11, we start with the free E-action on G2 given by left multiplication. Now
consider the principal fibre bundle

S3 = SU(2) → G2 → G2/SU(2) = V2(R
7)

with structure group SU(2) over the Stiefel manifold V2(R
7). This fibre bundle can be identified with

the sphere bundle of an associated 2-dimensional complex vector bundle ξ . By construction, the space

Z(ξ) = G2 ×SU(2) C
2

is the total space of the vector bundle ξ , where SU(2) acts on C
2 via the standard representation, and

freely off the zero section. It follows that the group G2 acts on Z(ξ) through left multiplication, and
freely off the zero section. We therefore obtain a free smooth G2-action on the total space Y of the
sphere bundle

S11 → Y → V2(R
7)

of the complex vector bundle ξ ⊕ ξ ⊕ ξ . This action can be restricted to any finite subgroup of G2,
but the equivariant surgery construction given below to obtain a free action on S11 × S11 is valid only
for the odd order subgroups E of G2.

LEMMA 2.1 Y is a smooth, closed, parallelizable manifold diffeomorphic to S11 × V2(R
7).

Proof . Consider the fibre bundle

SU(3)/SU(2) → G2/SU(2) → G2/SU(3)

which is equivalent to
S5 → V2(R

7) → S6.

By [8, Prop. 7.5], the tangent bundle along the fibers of the total space V2(R
7) is equivalent to ξ after

adding a trivial line bundle. It is known that the total space V2(R
7) is parallelizable [9, Corollary],
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FREE ACTIONS ON PRODUCTS OF SPHERES 469

and the tangent bundle of the base S6 is stably trivial. Therefore, ξ is stably trivial over V2(R
7), which

means that the 12-plane bundle ξ ⊕ ξ ⊕ ξ is trivial over V2(R
7) as the dimension of V2(R

7) is 11.
This proves Y is diffeomorphic to S11 × V2(R

7). We also know that the tangent bundle of S11 is stably
trivial, hence Y parallelizable.

LEMMA 2.2 Y is 4-connected and has the integral homology of S11 × S11, except for the groups
H5(Y ; Z) = H16(Y ; Z) = Z/2.

Proof . The proof is easy using Lemma 2.1 and the fact that V2(R
7) is 4-connected, with integral

homology given as follows

Hq(V2(R
7)) =

⎧⎪⎨
⎪⎩

Z if q = 0 or q = 11

Z/2 if q = 5

0 otherwise

.

We will now show how to perform E-equivariant framed surgery on Y to obtain a free E-action
on S11 × S11. In the successive steps, we remove the interior of an equivariant framed embedding of
E × Sk × D22−k and attach E × Dk+1 × S22−k−1 along their common boundaries.

This is an equivariant version of the original spherical modification construction of Milnor [16, 19]
which formed the starting point for surgery theory, as developed by Browder, Novikov, Sullivan and
Wall (see [27] or the short overview in [14, §7]). We remark that non-simply connected surgery
is carried out equivariantly in the universal covering of a manifold, where the equivariance is with
respect to the action of the fundamental group as deck transformations.

In order to carry out E-equivariant framed surgery on Y , we will need a partial equivariant trivi-
alization of the normal bundle of Y to produce the framings. Let X = Y/E and νX be the classifying
map of the stable normal bundle of X. Since Y is 4-connected by Lemma 2.2, we can construct the
classifying space BE by adding k-cells to X for k > 5. Let B = BE(12) ∪ X, where BE(12) denotes
the 12-skeleton of BE. We have a pullback diagram

Y � � ��

��

B̃

��
X � � �� B

of universal coverings. The assumption that E has odd order will now be used for the first time.

LEMMA 2.3 Since E has odd order, the normal bundle νX : X → BSO is the restriction of a bundle
ν : B → BSO.

Proof . The successive obstructions to extending the classifying map νX : X → BSO of the stable
normal bundle of X to a map from B to BSO lie in the groups

Hk(B, X; πk−1(BSO))

for k ≥ 6. We claim that these obstructions vanish since E has odd order. For 6 ≤ k ≤ 7, we
have πk−1(BSO) = 0. For 8 ≤ k ≤ 11, by considering Lemma 2.2 and the cohomology long exact
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470 I. HAMBLETON AND Ö. ÜNLÜ

sequence of the pair (B, X) with coefficients in any abelian group A, we get Hk(B, X; A) = 0.
Finally for k = 12, we have π11(BSO) = 0, so we may extend νX over B.

Let B ′ = BE(11) ∪ X ⊆ B, and still denote the restriction of ν to B ′ by ν.

LEMMA 2.4 The pullback ν̃ of ν by the map B̃ ′ → B ′ is trivial.

Proof . The normal bundle νY of Y is trivial, hence it is enough to extend a null homotopy of the map
νY to a null homotopy of ν̃. The successive obstructions for this extension problem lie in the groups

Hk(B̃ ′, Y ; πk(BSO))

for k ≥ 6. We claim that these obstructions also vanish. For 6 ≤ k ≤ 7, we have πk(BSO)) = 0.
For 8 ≤ k ≤ 10, by considering Lemma 2.2 and the cohomology long exact sequence of the pair
(B̃ ′, Y ) with coefficients in any abelian group A, we get Hk(B̃ ′, Y ; A) = 0. Since π11(BSO) = 0,
we are done.

Let H(L) denote the standard skew-hermitian hyperbolic form on the module L ⊕ L∗. The
following uses surgery below the middle dimension, a standard procedure in surgery theory
[16, §5; 27, Chap. 1].

LEMMA 2.5 After preliminary surgeries on X, we can obtain a smooth manifold M with the following
properties:

(1) M̃ is stably parallelizable.
(2) The classifying map c : M → BE induces an isomorphism π1(M) ∼= E.
(3) πi(M) = 0 for 1 < i < 11.
(4) The intersection form

(π11(M), sM) ∼= H(Z) ⊥ (F, λ)

for some non-singular skew-hermitian form λ on a finitely generated free ZE-module F .

Proof . Lemma 2.3 gives a bundle ν : B ′ → BSO. We will perform a sequence of surgeries over
(B ′, ν), so that in particular the bundle ν pulls back to the stable normal bundle of the trace of the
surgeries. By Lemma 2.4, the resulting manifold M at any stage of these surgeries has universal
covering M̃ stably parallelizable.

The first step is surgery to kill a generator of π5(X) = Z/2. We use the short exact sequence

0 → 〈2, I 〉 → ZE → Z/2 → 0

of ZE-modules, where I denotes the augmentation ideal of ZE, to keep track of the effect of the first
step of the E-equivariant framed surgery on Y . The result of the first step is a manifold M such that
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FREE ACTIONS ON PRODUCTS OF SPHERES 471

π6(M) = 〈2, I 〉. We have a short exact sequence

0 → ZE → 〈2, N〉 → Z/2 → 0,

where the module 〈2, N〉 is projective over ZE since E has odd order [24, §6]. Now Schanuel’s
lemma shows that

〈2, N〉 ⊕ 〈2, I 〉 = ZE ⊕ ZE

is free over ZE, so 〈2, I 〉 is a finitely generated projective ZE-module with stable inverse 〈2, N〉. The
effect of the subsequent surgeries to make M̃ highly connected is just to replace a projective module
πi(M) = Q at each step with its stable inverse πi+1(M

′) = Q′, for i < 10. At the last of these steps,
where we eliminate π10(M), the result is an expression

(π11(M), sM) ∼= H(Z) ⊥ (P, λ′),

where (P, λ′) is a non-singular skew-hermitian form on P = Q ⊕ Q∗, and Q ∼= 〈2, N〉. The pro-
jective modules 〈r, N〉, for r prime to |E|, generate the Swan subgroup T (ZE) ⊆ K̃0(ZE) of the
projective class group. Now Swan [24, Lemma 6.1] proved that

Z ⊕ 〈r, N〉 ∼= Z ⊕ ZE

for any r prime to |E| and that

〈2, N〉 ⊕ 〈r, N〉 ∼= ZE ⊕ ZE

if 2r ≡ 1 (mod |E|). After surgery on a null-homotopic 10-sphere in M , we obtain M ′ = M#
(S11 × S11), whose equivariant intersection form is

(π11(M
′), sM ′) ∼= H(Z) ⊥ (P, λ′) ⊥ H(ZE).

However, note that

H(Z) ⊥ H(ZE) = H(Z ⊕ ZE) ∼= H(Z ⊕ 〈r, N〉) = H(Z) ⊥ H(〈r, N〉).

Now (F, λ) := H(〈r, N〉) ⊥ (P, λ′) is a non-singular skew-hermitian form on a finitely generated
free ZE-module.

We next observe that the equivariant intersection form (π11(M), sM) has a quadratic refinement
μ : π11(M) → ZE/{ν + ν̄}, in the sense of [27, Theorem 5.2]. Since E has odd order, this follows
because the universal covering M̃ has stably trivial normal bundle. We therefore obtain an element
(F, λ, μ) of the surgery obstruction group (see [27, p. 49] for the essential definitions). In the splitting
(π11(M), sM, μ) = H(Z) ⊥ (F, λ, μ), we may assume that the Arf invariant of the summand H(Z)

is zero. This follows by construction, since the preliminary surgeries can be done away from an
embedded sphere

S11 × ∗ ⊂ S11 × V2(R
7) = Y

with trivial normal bundle. We need to check the discriminant of the form (F, λ, μ).
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472 I. HAMBLETON AND Ö. ÜNLÜ

LEMMA 2.6 We obtain an element
(F, λ, μ) ∈ L′

2(ZE)

of the weakly simple surgery obstruction group.

Proof . A non-singular, skew-hermitian quadratic form (F, λ, μ) represents an element in L′
2(ZE)

provided that its discriminant lies in ker(Wh(ZE) → Wh(QE)). But the equivariant symmetric
Poincaré chain complex (C(M), ϕ0) is chain equivalent, after tensoring with the rationals Q, to its
rational homology complex [21, §4]. Therefore, the image of the discriminant of (π11(M) ⊗ Q, sM)

equals the image of the torsion of ϕ0, which vanishes in Wh(QE) because closed manifolds have
simple Poincaré duality [27, Theorem 2.1].

Proof of Theorem B. We now have a smooth closed manifold [M, c] whose equivariant intersection
form (π11(M), sM) contains (F, λ, μ), as described above. However, since E has odd order, an
element in the surgery obstruction group L′

2(ZE) is zero provided that its multisignature and ordinary
Arf invariant both vanish (this is a result of Bak and Wall, see [26, Cor. 2.4.3]). The multisignature
invariant is trivial since M is a closed manifold [27, 13B]. The ordinary Arf invariant of (F, λ, μ)

equals the Arf invariant of M̃ , which vanishes since 22 is not of the form 2k − 2 (a famous result of
Browder [10]). We can now do surgery to obtain a representative [M, c] which has M̃ = S11 × S11#�,
where � is a homotopy 22-sphere. Note that the p-component of πS

22 is zero for p ≥ 3 [22, p. 5], so
we can get the standard smooth structure on S11 × S11.

3. Concluding remarks

In this final section, we will make some additional remarks about the group theory, and explain
the significance of constructing actions for our families P and E of finite groups, as a step towards
answering our original question.

(1) Blackburn has given a classification of p-groups of rank 2. Here we restate his result for
3-groups (see Theorem 4.1 in [7] and Theorem 3.1 in [17]). If G is a rank 2 3-group of order
3k , then one of the following holds:
(a) G is a metacyclic 3-group;
(b) G = P(k), k ≥ 3, a group in P;
(c) G = B(k, ε), k ≥ 4;
(d) G is a 3-group of maximal class.
The 3-groups listed in the first item all act freely and smoothly on a product of two equi-
dimensional spheres [18, p. 538]. An explicit construction and the proof of Theorem A show
that the groups in the second item on this list act freely on S5 × S5. Theorem B shows that
the group B(4, −1) in the third item also acts freely on a product of two equidimensional
spheres, but of dimension S11 × S11.

(2) It was shown by Benson and Carlson [6, Theorem 4.4] that free actions of a rank 2 group on
a product of two equidimensional spheres could not be ruled out by cohomological methods
alone. Hence the arguments given for certain non-existence claims in [3, 4, 25, 28] about
extraspecial p-groups are not valid. In fact, Theorems A and B applied to the extraspecial
3-group E(3) of order 27 and exponent 3 give specific counterexamples to the results claimed
in these papers. The possible sphere dimensions for this group E(3), not previously ruled out
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by cohomological methods, are of the form S6r−1 × S6r−1, and our examples show existence
in the first two cases (r = 1, 2).

(3) For any prime number p, the group E(p) is a subgroup of G2, but E(2) ∼= A4. Since A4 is
ruled out by [20], Theorem B shows that the group E(p) can act freely and smoothly on a
product of two equidimensional spheres if and only if p > 2. More information about the
odd-order subgroups of G2 can be found in [12] (the finite subgroups are not all contained in
SU(3), but we do not know if this is true for the odd-order subgroups). The result of Oliver
[20] was also proved and extended by Carlsson [11] and Silverman [23].

(4) Let G be a group in P or E . Let axe(G) be the minimum number of linear representations of G

required for G to act freely on a product of spheres where the action on each sphere is induced
from one of these representations. By [5, Proposition 3.3], it easy to see that axe(G) ≥ 3.
Hence G cannot act freely on a product of two spheres, with a linear action on each sphere.
Moreover G is not a subgroup of Sp(2), hence the free actions constructed in [1] will not be
on a product of two equidimensional spheres. We also remark that G cannot be written as a
product of two groups with periodic cohomology, while all the subgroups of G can. So the
families P and E are two infinite families of minimal new examples not included in [15].
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