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Abstract. We show that standard cyclic actions on Brieskorn homology 3-spheres
with non-empty fixed set do not extend smoothly to any contractible smooth 4-manifold
it may bound. The quotient of any such extension would be an acyclic 4-manifold with
boundary a related Brieskorn homology sphere. We briefly discuss well-known invariants
of homology spheres that obstruct acyclic bounding 4-manifolds and then use a method
based on equivariant Yang–Mills moduli spaces to rule out extensions of the actions.
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1. Introduction. In previous work [3], we proved that free periodic actions on
Brieskorn spheres do not extend smoothly to any bounding contractible 4-manifold. In
this paper, we extend these results to the case when the periodic actions have non-empty
fixed-point set. This completes the solution of a problem posed by Allan Edmonds at
Oberwolfach in 1988.

Let �(a, b, c) denote a Brieskorn homology 3-sphere which can be realized as the
boundary of a smooth contractible 4-manifold. There are infinitely many known examples
(see Casson and Harer [6], Stern [33], Fintushel and Stern [9], and Fickle [8]).

As a Seifert fibered space, �(a, b, c) admits a fixed-point free circle action having
three orbits of finite isotropy with relatively prime orders a, b, c. If we restrict to a cyclic
group Z/p ⊂ S1, the action is called standard. A standard action is free if and only if the
integer p is relatively prime to abc.

In addition to the circle action, there is also a natural complex conjugation action
when �(a, b, c) is considered as a link of a complex surface singularity. Combined with
the circle action, we obtain a canonical O(2)-action. It is known that any free action of
a finite group on �(a, b, c) is necessarily cyclic and standard [23]; more generally, as a
consequence of geometrization for 3-manifolds:

THEOREM (Meeks and Scott [24], Perelman and Boileau et al. [4], and Dinkelbach
and Leeb [7]). Any finite group action on a Brieskorn homology 3-sphere is conjugate to a
subgroup of the canonical O(2)-action.

In this paper, we extend the results of [3] to include the non-free standard actions of
cyclic groups, by applying our techniques to branched cyclic coverings. The main result is
the following.

THEOREM A. The standard finite cyclic group actions on � = �(a, b, c) do not extend
smoothly to any contractible 4-manifold it may bound.
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REMARK 1.1. For free standard actions, it is known in many cases that they extend
locally linearly with one fixed point but not smoothly (see [19, Section 4] and [3,
Theorem B]). In [3, Theorem A], we showed that such locally linear extensions are never
smoothable, using an argument based on the orientation of equivariant Yang–Mills moduli
spaces. We expect that similar results hold for families of non-free standard actions, and
that locally linear extensions exist for families of O(2)-actions.

We discuss the interesting relationship between complex conjugation and Montesinos
knots in Section 5 and show that there exist infinitely many examples for which the com-
plex conjugation involution on �(a, b, c) does extend smoothly to a smooth cobounding
contractible 4-manifold.

THEOREM B. The complex conjugation involution on the Casson–Harer families
of Brieskorn homology spheres extends smoothly to the associated contractible Mazur
4-manifolds that they bound.

For any Brieskorn homology 3-sphere �(a, b, c), the fixed point set of complex con-
jugation τ is a knot which projects to a Montesinos knot in S3 = �(a, b, c)/〈τ 〉 (see [29,
Section 7.2]). For the Casson–Harer examples, the associated Montesinos knots are actu-
ally ribbon knots. The proof of Theorem B is based on the explicit construction of Casson
and Harer [6], in which the cobounding Mazur manifold is a double-branched cover of the
4-ball over a ribbon disk, with boundary the associated Montesinos knot.

REMARK 1.2. In general, we do not know when the double-branched coverings of
Montesinos knots bound smooth contractible (or even acyclic) 4-manfiolds, or when the
complex conjugation involution on �(a, b, c) extends over a smooth contractible cobound-
ing 4-manifold, if one exists. However, we observe that the answer to the extension question
is not uniform. In particular, the families discovered by Stern [33] have a different charac-
ter (see [8, Section III] for a detailed description). In Example 5.5, we show that complex
conjugation on �(3, 5, 34) from Stern’s list does not extend over any smooth Z-acyclic
cobounding 4-manifold.

Here is a short outline of the rest of the paper. To prove Theorem A, it suffices to con-
sider the standard Z/p-action on Brieskorn 3-manifolds of the form �(pa, b, c). Since p is
relatively prime to b and c, this action is semi-free with fixed set, a knot in the Brieskorn
manifold. If W is a smooth contractible 4-manifold with ∂W = �(pa, b, c), then the quo-
tient of the pair (W , �) by any smooth extension of the standard Z/p-action is a smooth
acyclic 4-manifold whose boundary is the Brieskorn sphere �(a, b, c).

There are many well-known invariants that obstruct Brieskorn homology spheres
bounding smooth acyclic 4-manifolds, such as the Rokhlin invariant μ, Neumann–
Siebenmann invariant μ (see [25, 30, 32] and [34, Theorem 1]), and the Fintushel–Stern
R-invariant [10, Theorem 1.2], to name a few. In Section 2, we show how these invariants
can rule out smooth extensions for an infinite family of examples.

In Section 3, we state some of the main results about equivariant Yang–Mills moduli
spaces, and in Section 4, we prove a more general result which implies Theorem A (see
Theorem 4.3). Our approach (as in our previous paper) is to use equivariant Yang–Mills
gauge theory (see [15, 16]). The idea is that each �(pa, b, c) bounds a smooth negative
definite 4-manifold M(�) obtained by plumbing along a configuration � of 2-spheres.
Since the Z/p-action is contained in the circle action on �(pa, b, c), we can extend it to
an action on M(�) via equivariant plumbing. By combining this action together with the
action on W , we obtain a smooth, closed, negative definite 4-manifold X := M(�) ∪ −W
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with a smooth, homologically trivial Z/p-action. The linear plumbing action contributes
both fixed and invariant 2-spheres which introduce constraints derived from the global
orientation of the Yang–Mills moduli spaces. These constraints lead to a contradiction to
the extension of the action over W .

REMARK 1.3. Apart from actions on Brieskorn 3-manifolds, there are infinitely many
examples of homology 3-spheres Q with free Z/k-actions which extend to smooth actions
on contractible 4-manifolds they bound with an isolated fixed point [14]. These examples
are constructed by gluing knot exteriors of k-fold branched covers of certain slice knots
in the 3-sphere. The free Z/k-actions in these examples are not isotopic to the identity, in
particular, they are not contained in any circle action.

A related notion is that of a p-periodic 3-manifold. A 3-manifold M is p-periodic if
it admits a smooth, orientation preserving, semi-free Z/p-action with a circle as fixed-
point set. Even before geometrization, it was known that if a Brieskorn homology sphere
�(2, n, 2n − 1), n > 2, is p-periodic for p, an odd prime, then p|n(2n − 1) (see [13]).

2. Background. Consider the Brieskorn sphere �(a, b, c) as the link of a complex
surface singularity with its canonical orientation:

�(a, b, c) = {(z1, z2, z3) ∈ C3|za
1 + zb

2 + zc
3 = 0} ∩ S5.

The fixed-point free circle action giving �(a, b, c) the structure of a Seifert fiber space is
given by

t · (z1, z2, z3) = (tbcz1, tacz2, tabz3)

with the standard action being the restriction of this action to Z/p ⊂ S1.

(i) The standard action is free if and only if p is relatively prime to abc, and every free
action is conjugate to the standard action [23].

(ii) The quotient by the semi-free standard Z/p-action on �(pa, b, c) is �(a, b, c) [27,
p. 143]. In the case a = 1, we obtain S3 as the quotient, and the branch set is the right-
handed (b, c) torus knot. In particular, the standard Z/2-action on �(2, b, c) is given
by τ(z1, z2, z3) = (−z1, z2, z3) making it the double-branched cover of the (b, c) torus
knot.

(iii) In general, there are topological obstructions to non-free standard actions extending
locally linearly to a smooth contractible 4-manifold W that it may bound. For example,
if the standard Z/2-action on �(2, b, c) extends to W , the fixed set is a 2-disk that
projects to a locally flat 2-disk in W/τ cobounding the (b, c)-torus knot. However,
the nontrivial (b, c) torus knots are never topologically (locally flat) slice since they
have nontrivial signatures (see Rolfsen [28, p. 218, Theorem 10] and Litherland [22,
Theorem 1]).

In the remainder of the paper, we focus on smooth extensions. We conclude this section
with some observations communicated to us by Nikolai Saveliev.

EXAMPLE 2.1. The Brieskorn sphere � = �(3, 4, 5) bounds a smooth contractible
4-manifold W . The standard involution Z/2-action, acting via τ : � → �, fixes a circle
corresponding to the singular fiber of order 4, and the quotient �/τ = �(3, 2, 5) is the
Poincaré homology sphere with branching locus, the singular fiber of order 2. We claim
that the involution τ acting on � cannot extend to a smooth action on W .
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For if the action extends, the orbit map W → W/τ would induce an isomorphism
H∗(W ; Q)〈τ 〉 ≈ H∗(W/τ ; Q), and the quotient W/τ would be a rational homology ball
whose boundary is the Poincaré homology sphere. By results of Smith theory, it can be
shown that W/τ is in fact acyclic over the integers [5, Theorem 5.4, p.131]. As is well
known, this provides a contradiction. For example, the Rokhlin invariant μ(�(2, 3, 5)) ≡ 1
(mod 2) and obstructs the existence of such an acyclic 4-manifold.

The above observation can be extended to an infinite family without much difficulty.
Consider the family of Brieskorn homology 3-spheres

�m = �(2m − 1, 2m, 2m + 1) for m ≥ 2.

They are part of the Casson–Harer family �(r, rs − 1, rs + 1) with r = 2m and s = 1 which
bound smooth contractible 4-manifolds Wm (see Casson and Harer [6]). The standard invo-
lution τ fixes the singular fiber of order 2m. If the involution extends to a smooth involution
on Wm, the quotient of (Wm, �m) by τ is another pair (W ′

m, �′
m) with W ′

m acyclic and
�′

m = �(2m − 1, m, 2m + 1). The Seifert invariants of �′
m are given by

�′
m(b = 0; (2m − 1, 1), (m, −1), (2m + 1, 1)),

which corresponds to the plumbing diagram:

P(�′
m) = •2m−1 • 0 •2m+1

•−m

The intersection form of the plumbed 4-manifold P(�′
m)

Q(�′
m) =

⎛
⎜⎜⎜⎜⎜⎝

0 1 1 1

1 2m − 1 0 0

1 0 −m 0

1 0 0 2m + 1

⎞
⎟⎟⎟⎟⎟⎠

is indefinite and has vanishing signature. When m is even, the Wu class is given
by ω = F1 + F2, where F2

1 = 2m − 1 and F2
2 = 2m + 1. The Neumann–Siebenmann

μ-invariant provides an obstruction for Brieskorn homology spheres bounding smooth
acyclic 4-manifolds and is computed as

μ(�′
m) = σ(M(�)) − ω2

8
= −m

2
.

It follows that in this case, �′
m cannot have finite order in the cobordism group. In

particular, it cannot bound a smooth acyclic 4-manifold.
In the case when m is odd, the Wu class is given by the central node in the plumbing

graph �′
m with ω2 = 0. It follows that both μ and the Rokhlin invariant vanish and pro-

vide no information. On the other hand, the negative-definite plumbing diagram for �′
m

is obtained from �′
m by a sequence of blow-down operations on the branches with posi-

tive weights. This produces the weight δ = −2 on the central node. However, this implies
that the Fintushel–Stern invariant R(�′

m) = −2δ − 3 = 1 by the the Neumann–Zagier for-
mula [26, p. 242], and again it follows that �′

m cannot bound a smooth acyclic 4-manifold.
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We conclude that the standard involution τ on �(2m − 1, 2m, 2m + 1) cannot extend to
a smooth action on the contractible 4-manifold Wm for any m ≥ 2. In the next section, we
provide a general argument using equivariant gauge theory based on our previous result [3].

3. Equivariant Yang-Mills moduli spaces. In this section, we discuss the theory of
equivariant Yang–Mills moduli spaces. We first briefly summarize the results we need and
refer the reader to references, see [15, 16, 3] for further details.

Let P → X denote a principal SU(2)-bundle over a closed, negative definite, smooth,
and simply connected 4-manifold X with c2(P) = 1. Suppose that π = Z/p acts smoothly
on X inducing the identity on homology. With respect to a fixed π -invariant Riemannian
metric on X , the Yang–Mills moduli space consists of connections modulo gauge with
anti-self-dual (ASD) curvature:

M(X ) = {[A] ∈B(P) | F+
A = 0}

and inherits a natural π -action. Our equivariant Yang–Mills moduli space (M(X ), π) is
then obtained by performing an equivariant general position perturbation of the ASD
equations (see [15, Section 2]).

The main properties we need are summarized as follows:

� The equivariant moduli space (M(X ), π) is a Whitney stratified space with open
manifold strata parametrized by isotropy subgroups. The strata have topologically
locally trivial equivariant cone bundle neighborhoods, and the free stratum is a non-
empty, smooth noncompact five-dimensional manifold consisting of irreducible ASD
connections.

� There is a π -equivariant Uhlenbeck–Taubes compactification

M(X ) =M(X ) ∪ X

consisting of highly concentrated ASD connections parametrized by a copy of (X , π)

in the ideal boundary with a π -equivariant collar neighborhood diffeomorphic to X ×
(0, λ) for small λ and trivial action on (0, λ).

� There is a one-to-one correspondence between reducible ASD connections and coho-
mology classes ±u ∈ H2(X ; Z) with u2 = −1. Moreover, each reducible connection has
a π -invariant neighborhood which is equivariantly diffeomorphic to a cone over some
linear action on complex projective space CP2.

The moduli space (M(X ), π) admits a canonical orientation which induces the given ori-
entation on X as a negative definite 4-manifold in the ideal boundary and agrees with
the orientation of CP2 near the link of each reducible. We define an action (X , π) with
π = Z/p to be oriented by fixing the negative definite orientation on X and a π -equivariant
Spinc-structure on X for p = 2. Additionally,

� the fixed set Fix(M(X ), π) is path connected and inherits a preferred orientation from
the π -action on the moduli space.

� There exists an equivariant connected sum of linear actions on CP
2

with the same fixed-
point data and tangential isotropy representations [16].

� There is a preferred choice of basis {ei} for H2(X ; Z) such that ei · ej = δij, which we
call the standard diagonal basis [3, Definition 3.5].
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There are restrictions on the representations of π -fixed and π -invariant spheres in terms of
the standard diagonal basis. The standard orientation on a π -invariant surface containing
fixed points is the orientation induced by the action if p is odd, or the orientation induced
by a Spinc-structure if p = 2.

Our assumptions imply that X is homotopy equivalent to a connected sum of complex

projective planes (each with the negative definite orientation). We write X � #n
1CP

2
.

THEOREM 3.1. Let π = Z/p, p a prime, and (X , π) be an oriented smooth, homologi-

cally trivial action on a smooth 4-manifold X � #n
1CP

2
. Then,

(1) each π -fixed 2-sphere F ⊂ X with standard orientation has an integral homology class
representation given by the expression

[F] =
∑

i

aiei,

where each ai ∈ {0, 1}.
(2) each smoothly embedded π -invariant 2-sphere with standard orientation has integral

homology class representation given by the expression

[F] =
∑

i

aiei,

where ai ≥ 0, and {ei} is the standard diagonal basis.

Proof. The first part is proved in [16, Theorem B] and the second in
[3, Theorem 3.9].

The following application of Theorem 3.1 is the key step in proving Theorem A.
We will show that the stated assumptions on �(pa, b, c) would allow the construction
of (X , π) containing a certain configuration of π -invariant 2-spheres, whose standard
orientation is inconsistent with the preferred orientation on Fix(M(X ), π), and hence a
contradiction.

COROLLARY 3.2. Let π = Z/p, p a prime, and (X , π) be an oriented smooth, ori-

entation preserving, homologically trivial action on a smooth 4-manifold X � #n
1CP

2
.

Then, there does not exist a configuration of smoothly embedded homologically nontrivial
2-spheres � = {F1, F2, F3} in (X , π), such that F1 is π -fixed, and F2 and F3 are
π -invariant, satisfying the following conditions:

(1) [F1]2 = −1,
(2) [F2] · [F3] = 0, and
(3) [F1] · [Fi] = 1 for i = 2, 3.

Proof. The argument is essentially contained in [3, Theorem 4.4].

4. The proof of Theorem A. We now prepare for the proof of Theorem A. If p is
a prime not dividing abc, then the standard Z/p-action on �(pa, b, c) is semi-free with
fixed set, a knot K in the Brieskorn manifold. We suppose that this action extend to some
smooth contractible 4-manifold W with ∂W = �(pa, b, c). By Smith theory, the fixed set
Fix(W , Z/p) is a 2-disk D smoothly embedded in W with ∂D = D ∩ �(pa, b, c) = K.
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Figure 1. Minimal negative definite resolution of �.

Recall that �(pa, b, c) bounds a smooth negative definite 4-manifold M(�) obtained
by plumbing according to a weighted graph �. The nodes produce a configuration of
2-spheres, with intersections given by the edges of �, and normal bundles defined by the
weights (see [27, Section 2]). Since the Z/p-action is contained in the circle action on
�(pa, b, c), we can extend it to an action on M(�) via equivariant plumbing. By combin-
ing this action together with the action on W , we obtain a smooth, closed, negative definite
4-manifold X := M(�) ∪ −W with a smooth, homologically trivial Z/p-action.

REMARK 4.1. We recall that the weight at the central node will always be δ = −1
whenever �(pa, b, c) bounds an acyclic 4-manifold (see Neumann and Zagier [26] and
Issa and McCoy [17, Theorem 8]).

The linear plumbing action on M(�) contributes both fixed and invariant 2-spheres
which introduce constraints derived from the global orientation of the Yang–Mills moduli
spaces. In particular, the central node is always a fixed 2-sphere. These constraints and
Corollary 3.2 lead to a contradiction to the extension of the action over W .

We need some information about the fixed-point set of the equivariant plumbing action
of Z/p ⊂ S1 on M(�). The following proposition highlights the key feature of the non-free
case and provides additional details which have some independent interest.

PROPOSITION 4.2. The fixed-point set of Z/p ⊂ S1 on M(�) contains a fixed 2-disk,
which intersects the boundary �(pa, b, c) along the singular fiber of order pa.

Proof. Denote the Seifert invariants of the minimal negative definite resolution by

�(b = −1, (pa, q1), (b, q2), (c, q3))

and let

pa

q1
= [w1, ..., wn] = w1 − 1

w2 − 1

w3 − · · ·
be the continued fraction decomposition for the singular fiber of order pa in �(pa, b, c).
Then, the resolution graph has one branch where the weights are given as in Figure 1.

Each node is an equivariant D2-bundle over a 2-sphere with the weights denoting the
Euler number. Such a bundle is constructed by gluing two copies of D2 × D2:

(
D2

+(a1) × D2(b1)
) � (

D2
−(a2) × D2(b2)

)
,

which we denote by (a1, b1) and (a2, b2) in base and fiber coordinates. Here, D2(m) denotes
a 2-disk with action given by ζ m with ζ = e2π i/p the generator of the cyclic action. The
rotation data are related by the linear transformation:
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⎝a2

b2

⎞
⎠ = T(w)

⎛
⎝a1

b1

⎞
⎠ , where T(w) =

⎛
⎝−1 0

−w 1

⎞
⎠

with w the Euler number. Equivariant plumbing begins with the fixed, central −1-sphere
with rotation numbers (0, 1), (0, 1) for the two copies of D2 × D2 and extends to each of
the branches, so that at the kth node, the rotation numbers are

T−1
k Lkv and Lkv with v =

⎛
⎝1

0

⎞
⎠ , Tk = T(wk),

and where Lk = TkATk−1 · · · T2AT1 with

A =
⎛
⎝0 1

1 0

⎞
⎠ ,

which arises from interchanging fiber and base coordinates in the plumbing as we move
from one node to the next. It follows that the first node at w1 adjacent to the fixed cen-
tral node has rotation numbers v = (1, 0), T1v = (−1, −w1), and in particular, the base is
always an invariant 2-sphere. Moreover, by induction, it can be shown that at the last node
Ln has the form:

Ln =
⎛
⎝ r s

±pa ±q1

⎞
⎠ for some r, s

with the signs depending on whether n is even or odd. In particular, Lnv = (r, ±pa) and
since det(Ln) = ±1, r �= 0 (mod p), and the last node contributes the required fixed 2-disk
which intersects the boundary �(pa, b, c) along the singular fiber of order pa. Intermediate
nodes on this branch may be either fixed or invariant 2-spheres, but the first and last nodes
are always π -invariant (and not π -fixed).

Theorem A now follows from the following more general statement.

THEOREM 4.3. Let p be a prime not dividing abc. Suppose, the Brieskorn homology
sphere �(pa, b, c) bounds a smooth acyclic 4-manifold W such that π1(W) is the nor-
mal closure of the image of π1(�(pa, b, c)). Then, the standard π = Z/p ⊂ S1-action on
�(pa, b, c) does not extend to a smooth action on W.

Proof. Assume the standard Z/p-action on �(pa, b, c) extends to W . The fixed point
set is an embedded 2-disk in W with non-empty intersection with boundary �(pa, b, c)
along the singular fiber of order pa. Let � denotes the negative definite resolution graph
for �(pa, b, c). By Proposition 4.2, the equivariant plumbing action on the plumbed
4-manifold M(�) when restricted to Z/p ⊂ S1 has a fixed 2-disk which intersects the
boundary �(pa, b, c) along the singular fiber of order pa, and the remaining fixed-point
set in M(�) consists of either isolated fixed points or fixed 2-spheres.

We form the simply connected smooth 4-manifold X = M(�) ∪�(pa,b,c) (−W) which
by construction admits a smooth, homologically trivial Z/p-action. To prove the theorem,
it is enough to show that X always admits a configuration of spheres as in the statement of
the above lemma. In fact, as in the proof of [3, Theorem A] for the case of free actions,
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Figure 2. The plumbing diagram for �(3, 4, 5).

the central node F1 is π -fixed and its two adjacent nodes in the plumbing diagram for
M(�) provide the π -invariant 2-spheres F2 and F3 needed to apply Corollary 3.2 to get a
contradiction.

EXAMPLE 4.4. We demonstrate our argument with an explicit example. Let � =
�(3, 4, 5) = {x3 + y4 + z5 = 0} ∩ S5 and W a smooth contractible 4-manifold with ∂W =
�. If π = 〈t〉 ⊂ S1 denotes the involution generated by t, the action is given by

t · (x, yz) = (t20x, t15y, t12z)

= (x, −y, z)

with a one-dimensional fixed point set {y = 0} in � corresponding to the singular fiber of
order 4. The plumbing diagram for the negative definite resolution 4-manifold M(�) with
boundary � is given in Figure 2. Equivariant plumbing along � produces a fixed 2-sphere
F1 corresponding to the central node with square −1 and three isolated fixed points with
rotation numbers (1, −1). All the other spheres in the graph � are π -invariant 2-spheres. In
particular, the π -equivariant normal D2-bundle over F3 = D2+ ∪ D2− is obtained by gluing
two copies of D2± × D2, one with rotation data (1, 0) and the other with (−1, 4).

The former has a fixed 2-disk which is one hemisphere of the fixed central node
2-sphere. The latter contributes a fixed 2-disk with non-empty intersection with the bound-
ary � corresponding to the singular fiber of order 4. So, the fixed point set in M(�) has
three isolated fixed points, one fixed 2-sphere with square −1, and a fixed 2-disk with
non-empty intersection in �.

Suppose, the involution on � extends to a smooth involution on W . We combine this
action with the action on M(�) to obtain a smooth involution π on X = −W ∪ M(�).
Since this action is homologically trivial, all two-dimensional fixed sets must be 2-spheres.
In particular, the fixed set in W must be another 2-disk which combines with the fixed
2-disk in M(�) to contribute an additional fixed 2-sphere F in X . To summarize, we have

Fix(X , π) = {F1, F, and three isolated fixed points with rotation numbers (1, −1)}.

Alternatively, the Lefschetz fixed-point formula χ(Fix(X , π)) = χ(X ) = b2(X ) + 2 = 7
can be used to show F must be a 2-sphere. By the G-signature theorem:

Sign(X ) = −3 cot
(π

2

)
cot

(−π

2

)
− csc2

(π

2

)
+ [F]2 csc2

(π

2

)
,

we obtain the self-intersection of the fixed 2-sphere [F]2 = −4.
Finding the representation of [F] in terms of the canonical plumbing basis leads to a

system of linear equations over integers Qx = b with b = (0, 0, ±1, 0, 0) using the inter-
section number [F] · [Fi] = ±1 for i = 3 and zero otherwise, where Q is the intersection
matrix of M(�) in the plumbing basis:
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Q(�) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 1 1 1 0

1 −3 0 0 0

1 0 −4 0 0

1 0 0 −3 1

0 0 0 1 −2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Depending on the orientation of F, we obtain the representation

[F] = ±(15F1 + 5F2 + 4F3 + 6F4 + 3F5) ∈ H2(X ; Z).

By Donaldson’s theorem, Q(�) must be diagonalizable to the identity matrix over Z:

−I = CtQC

with C the change of basis matrix. The inverse gives the representation of the plumbing
basis in terms of the diagonal basis.

C−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 −1 −1 0

0 0 1 0 −1

0 1 −1 0 0

0 1 0 −1 0

0 0 1 −1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

This in turn gives the representation [F] = ±(e2 + e3 − e4 + e5) in terms of the diagonal
basis. The orientation argument implies that after applying an automorphism of the stan-
dard diagonal form if necessary (to obtain the standard diagonal basis), the columns of
C−1 should have a consistent sign. However, the automorphisms of the diagonal form are
given by permutations (row interchanges) or sign interchanges (multiplying a row by −1).
It is enough to observe that such a consistency cannot be obtained just examining the first
three columns.

Alternatively, the first three columns are representations of the surfaces F1, F2, and F3

satisfying the conditions of the above lemma, again giving a contradiction.

It is not easy to decide whether a given Seifert fibered homology 3-sphere � bounds
a smooth or contractible (or even acyclic) 4-manifold. One can compute the unimodular
intersection form Q(�) of the minimal negative definite resolution via the plumbing dia-
gram. The first necessary condition for � to bound a smooth acyclic 4-manifold is that
Q(�) must be equivalent to the standard diagonal form.

QUESTION. If � = ∂M(�) admits a smooth acyclic cobounding 4-manifold, must the
diagonalizing matrix C−1 for Q(�) contain only entries 0 and ±1 ?

This holds in the case of fixed 2-spheres in the equivariant setting of Theorem 3.1. At
present, there are no known examples cobounding smooth acyclic 4-manifolds among the
Seifert fibered homology 3-spheres with more than three exceptional fibers. Indeed, any
example of this type would provide a negative answer to the Montgomery–Yang problem
(see [11] for the statement).
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EXAMPLE 4.5. We do not know whether �(3, 5, 8) bounds a smooth contractible
4-manifold, or even an acyclic 4-manifold. However, the intersection form of the associated
M(�) has a new feature. The plumbing graph is given as follows:

� = •−8

F5
•−1

F1
•−2

F2
•−2

F3

•
F4, −5

and the intersection matrix is

Q(�) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 1 0 1 1

1 −2 1 0 0

0 1 −2 0 0

1 0 0 −5 0

1 0 0 0 −8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

After diagonalizing, so that CtQ(�)C = −I , we have

C−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 0 −1 −1

0 1 −1 −1 −1

0 0 1 −1 −1

0 0 0 −1 2

0 0 0 −1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

In previously computed examples with three exceptional fibers, the diagonalizing matrix
C−1 expressing the plumbing basis in terms of a standard basis only had entries 0 and ±1.
The new feature in this case is the presence of the off-diagonal entry 2. The analogous
calculation for lens spaces bounding rational homology balls was studied by Lisca (see
[21, Proposition 3.3 and Proposition 5.2]).

5. Complex conjugation and Montesinos knots. Apart from the standard finite
cyclic group actions on �(a, b, c), we also have the complex conjugation involution, given
by the formula τ(z1, z2, z3) = (z̄1, z̄2, z̄3). Then, K := Fix(τ ) is an embedded circle, and
�/〈τ 〉 = S3. The image of K ⊂ S3 under the quotient map is a Montesinos knot (see
Saveliev [29, Section 7.2, p. 79] and Lecuona [20, Section 2]). By combining the stan-
dard circle action with 〈τ 〉, we obtain a canonical O(2)-action and one consequence of
geometrization.

THEOREM (Meeks and Scott [24], Boileau et al. [4], and Dinkelbach and Leeb [7]).
Any finite group action on a Brieskorn homology 3-sphere is conjugate to a subgroup of
the canonical O(2)-action.

Since the actions contained in the circle subgroup are handled by Theorem A, it
remains to discuss the complex conjugation involution.
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EXAMPLE 5.1. Akbulut and Kirby [1, 2] showed that �(2, 5, 7) = ∂W , where W is a
certain contractible, smooth 4-manifold (a Mazur manifold). In fact, the Mazur manifold
could be defined as the double-branched cover over a ribbon disk.

EXAMPLE 5.2 (Saveliev). The complex conjugation involution on �(2, 5, 7) extends
smoothly to the Mazur manifold W that it bounds.

Proof. (Sketch, based on correspondence from Nikolai Saveliev). The Mazur manifold
bounding �(2, 5, 7) can be obtained by surgery on a strongly invertible two-component
link (see [1]). One can check that the corresponding involution makes �(2, 5, 7) into a
double-branched cover of S3 with branch set a ribbon knot, and the Mazur manifold into
a double-branched cover of D4 with branch set the ribbon disk. That this involution is in
fact the complex conjugation involution on �(2, 5, 7) follows by matching the two branch
sets, the ribbon knot and the Montesinos knot. The latter can be done using SnapPea.

REMARK 5.3. The identification of the involution in this argument as complex conju-
gation is also a consequence of geometrization, since the fixed set of the standard involution
on �(2, 5, 7) is the torus knot (5, 7).

EXAMPLE 5.4. The example of �(2, 5, 7) is obtained using a cancelling pair of 1 and 2
handles with the 2-handle attached along a strongly invertible knot in S1 × S2. Additional
examples can be constructed as follows. Take the same handle diagram for the Mazur
manifold that gives �(2, 5, 7) as the boundary but change the framing of the 2-handle
from p = 3 to p = 2, 4 to get Mazur manifolds with boundary �(2, 3, 13) and �(3, 4, 5),

respectively (see the comment by Saveliev [31, p. 190, Example 7.11]). The link is still
strongly invertible, and the proof above for extending the complex conjugation should go
through as before. To determine the framings, we can use the diffeomorphism formulas in
Akbulut and Kirby [1, Proposition 1, p. 261]. For example, in the notation of [1],

∂W−(0, 2) = ∂W+(2, −1) = ∂W+(1, 0) = �(2, 3, 13).

The Kirby diagram for W−(0, 2) is the same for the Mazur manifold with boundary
�(2, 5, 7) except the framing is p = 2 instead of 3.

Analyzing the construction of Casson and Harer [6, 8], combined with geometrization,
shows that the complex conjugation action on the infinite families of Brieskorn spheres

(i) �(p, ps − 1, ps + 1), with p even, s odd and
(ii) �(p, ps ± 1, ps ± 2), with p odd, s arbitrary

extends to their associated cobounding Mazur manifolds. The example �(2, 5, 7) above is
the case p = 2 and s = 3.

THEOREM B. The complex conjugation involution on the Casson–Harer families (i)
and (ii) of Brieskorn homology spheres extends smoothly to the associated contractible
Mazur 4-manifolds that they bound.

Proof. Let C denotes the class of Montesinos knots whose double-branched covers
are Brieskorn homology 3-spheres �(a, b, c) and satisfies the property that a single band
or ribbon move converts it to a two-component unlink. If K is a knot in this class, then
such a ribbon move gives a cobordism between K and the two-component unlink in
S3 × [0, 1]. Capping off the unlink components with 2-disks gives an embedded ribbon
disk whose double-branched cover is a 4-manifold W diffeomorphic to S1 × B3 with a
2-handle attached (see the construction in [6, p. 30]). Turning the handle decomposition of
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W upside down gives a Mazur manifold cobounding �(a, b, c). The restriction of the invo-
lution on W to the boundary �(a, b, c) must be complex conjugation by geometrization,
and the Brieskorn homology spheres that arise from the class C include the Casson–Harer
families (i) and (ii) listed above.

The following example shows that complex conjugation on �(a, b, c) does not always
extend to a cobounding contractible 4-manifold when one exists.

EXAMPLE 5.5. The Brieskorn homology 3-sphere �(3, 5, 34) in Stern’s list

�(r, rs ± 2, 2r(rs ± 2) + rs ± 1)

with r = 3 and s = 1 bounds a smooth contractible 4-manifold W , but the projection in S3

of the fixed point set of the complex conjugation involution τ in this case is a Montesinos
knot K which is not slice since it does not satisfy the Fox–Milnor condition on its Alexander
polynomial

K(t) = 2 − 5t − 2t2 + 11t3 − 2t4 − 5t5 + 2t6

(see the remark [18, p. 4]). If the involution τ were to extend over W , then K ⊂ S3 would
bound an embedded 2-disk in the the acyclic smooth 4-manifold W/〈τ 〉, contradicting the
Fox–Milnor theorem [12].
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