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2188 D. L. Duncan and I. Hambleton

1. Introduction

The results of Taubes [19, 20] on “gluing” establish the existence of non-
trivial anti-self dual (ASD) connections on closed, oriented 4-manifolds, pro-
vided one works with an SU(2)-bundle with sufficiently high second Chern
class. This was extended by Donaldson [3] to a general gluing theorem for
connected sums; see also [2, 9]. These gluing results have direct extensions
to cylindrical end 4-manifolds, provided one works with ASD connections
having a non-degenerate flat connection as an asymptotic limit [4]. However,
in the absence of such non-degeneracy assumptions, the space of ASD con-
nections on a cylindrical end 4-manifold is generally not well-controlled (e.g.,
the ASD operator is not Fredholm) and this now-standard gluing formalism
breaks down. Nevertheless, the question of existence for ASD connections in
this degenerate cylindrical end setting remains well-posed. One of our main
results, Theorem A below, establishes one such ASD-existence result in the
degenerate setting.

To state this, suppose X is a connected, oriented 4-manifold with cylin-
drical ends. Thus, we can write X = X0 ∪ EndX, where X0 is a compact
4-manifold with boundary N , and EndX ∼= [0,∞)×N is diffeomorphic to a
cylinder. We refer to X0 as the compact part and to EndX as the cylindrical
ends. Unless otherwise stated, we allow the case where N has multiple com-
ponents, or is empty. Fix a metric g on X that is asymptotically cylindrical
in the sense described in Section 2A.

Theorem A. Assume b+(X) ≤ 1. Assume further that the 3-manifold N
is connected and satisfies one of the following:

(i) N is a circle bundle over a surface with positive Euler class: e(N) > 0;
or

(ii) N has first Betti number at most one: b1(N) ≤ 1.

Then, for any integer ℓ ≥ b+(X) + 1, the manifold X admits an irreducible
ASD-connection A on a principal SU(2)-bundle over X, and A satisfies

∫

X
|FA|

2 dvol = 8π2ℓ.

We prove this in Section 6D. As a concrete example, the hypotheses of
Theorem A hold when X0 is diffeomorphic to the total space of a positive
Euler class disk bundle over a surface. To the authors’ knowledge, Theorem A
(and its extension, Theorem 6.9) is the first general ASD existence result
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Existence of mASD connections 2189

for cylindrical end manifolds that allows for a degenerate flat limit down the
end.

Our approach to Theorem A is to (locally) embed the space of ASD
connections into the larger space of modified ASD (mASD) connections of
Morgan, Mrowka, and Ruberman [17]. This larger space is obtained by mod-
ifying the ASD operator in such a way that one obtains a Fredholm operator
whose zero set contains an open set in the space of finite-energy ASD con-
nections; it may also contain some new solutions. It is shown in [17] that, by
allowing the auxiliary choices in this construction to vary, every finite-energy
ASD connection belongs to some mASD space of connections defined in this
way. The other main results of the present paper, stated below, show that
the gluing results of Taubes and Donaldson for connected sums have exten-
sions to this mASD setting. We then arrive at Theorem A as a consequence
of these mASD-gluing results; the topological hypotheses on N imply that
the mASD connections thus obtained are in fact ASD.

Before stating these mASD-gluing results, we give several remarks to
help provide further context for this mASD setting.

Remark 1.1. (a) Our primary motivation for developing these gluing re-
sults was to use the Morgan–Mrowka–Ruberman “moduli space” of mASD
connections to study the action on X of a finite group π. Even in the ASD
setting, generic perturbations are usually not π-equivariant, so the standard
transversality arguments are not available, and one must appeal to some
other approach to handle singularities in the moduli space. As a sequel to
this paper, we planned to study the π-equivariant compactification of the
“mASD moduli space” as was done in [11], [12], and [13] for the ASD moduli
space.

Unfortunately, the mASD operator fails to be gauge equivariant in any
reasonable sense (see Remark 2.12). This appears to be an oversight in the
original text [17] (e.g., see [17, p. 125]), and at present we do not know how to
define a suitable gauge quotient of the space of mASD connections that one
might call the “mASD moduli space”. It is a fundamental and interesting
open problem to construct an appropriate mASD-replacement for the ASD
moduli space. See Section 2B.5 for more information about this issue.

(b) The foundational work of Mrowka [18], Morgan–Mrowka–Ruberman
[17], and Taubes [21, 22] concerning instantons on cylindrical end 4-
manifolds was done shortly before the Seiberg–Witten revolution in gauge
theory. One of their striking results in this setting is that a finite-energy ASD
connection has a well-defined limiting flat connection on the 3-manifold N
“at infinity”.
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2190 D. L. Duncan and I. Hambleton

At that time, a central problem was to understand the behaviour of ASD
connections under neck-stretching within a closed 4-manifold, as well as the
reverse operation in which ASD connections on non-compact 4-manifolds
with matching data on their cylindrical ends could be glued together. In-
deed, the authors of [17, p. 12] state: “The [mASD] moduli space seems
to provide the correct geometric context for a general gluing theorem for
ASD connections, although we do not treat this topic in this book” (see Re-
mark 7.2). This point of view was a main ingredient in a paper of Fintushel
and Stern [7] (and in unpublished work of Morgan and Mrowka [16]). An
account of gluing along cylindrical ends from the perspective of Floer homol-
ogy was later provided by Donaldson [4], simplified by assuming the presence
of a perturbation to avoid degeneracies (see (c), below). We note, however,
that the gluing results of the present paper take place on the compact part
X0, and not on the ends.

(c) Researchers have worked around the technical issues involved in glu-
ing in the degenerate setting by various methods. Of these methods, one
of the most popular is to perturb the ASD equation on the ends in such a
way that all perturbed-ASD connections are asymptotic to non-degenerate
perturbed-flat connections [8], [4]. However, this approach has several draw-
backs. For one, ASD connections are generally not solutions of perturbed-
ASD equations of this type; this can obscure the geometric information one
can infer from an abstract existence result for perturbed-ASD connections
(e.g., to what extent do these connections depend on the perturbation?).
Another drawback is that these perturbation schemes are not well-behaved
in the presence of reducible flat connections (e.g., the trivial flat connec-
tion), and this limits the applicability of such approaches. For example, a
full SU(2)-instanton Floer theory for 3-manifolds N with b1(N) ≥ 1 is still
lacking, and even the existing instanton Floer theory for integer homology
spheres handles the trivial flat connection separately. In summary, a more in-
depth understanding of ASD connections with degenerate limits is desired,
and we view the results of this paper as being a step in that direction.

To state our gluing results for mASD connections, let G be a compact Lie
group and fix a principal G-bundle E → X. We assume that E is translation-
invariant on the end; that is, we assume the diffeomorphism EndX ∼=
[0,∞)×N is covered by a bundle isomorphism E|EndX

∼= [0,∞)×Q for
some principal G-bundle Q → N . We also fix a flat connection Γ on Q.
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Existence of mASD connections 2191

Given a connection A on E that converges sufficiently fast down the end,
one can define a quantity

κ(E,A|EndX) := −
1

8π2

∫

X
⟨FA ∧ FA⟩ ∈ R

that we call the relative characteristic number of the adapted bun-
dle (E,A|EndX); see Section 6A for more details. If A is ASD, then
κ(E,A|EndX) = (8π2)−1

∫
X |FA|

2 equals the usual energy of the connection
A. The upshot for us is that the quantity κ(E,A|EndX) is well-defined for a
much larger class of connections than those with finite energy. Indeed, this
relative characteristic number depends only on the topological type of the
adapted bundle (E,A|EndX), and it is a lift of the Chern–Simons value of the
connection on Q to which A is asymptotic. Note that if κ(E,A|EndX) ̸= 0,
then A is not flat. When X is closed, then this relative characteristic number
is actually an integer that depends only on E, and we will simply write it as
κ(E) (e.g., if G = SU(r), then κ(E) = c2(E) [X] is the second Chern num-
ber). We will primarily use κ(E,A|EndX) to keep track of the topological
data in our gluing operations, just as the second Chern class keeps track of
the underlying bundle type when gluing in the standard SU(2)-setting for
ASD connections on closed 4-manifolds.

By making several auxiliary choices, collectively called thickening data,
one can define the modified ASD (mASD) operator, which is a non-linear
Fredholm map s defined on a suitable space of connections on E (see Sec-
tion 2 for definitions). In particular, we note that this space of connections
is defined so that all elements are asymptotic to connections close to the flat
connection Γ fixed above. By definition, the mASD connections are those in
the zero set of s, and we say that an mASD connection A is regular if the
linearization of s at A is surjective when restricted to a Coulomb slice.

For k = 1, 2, suppose Xk is an oriented, cylindrical end 4-manifold
equipped with a principal G-bundle Ek → Xk and thickening data, as above.
Let X = X1#X2 be a connected sum of these manifolds, taken at points in
the compact parts of the Xk. Then the Ek can be used to form a connected
sum bundle E → X, and we equip this with the thickening data induced
from those of the Ek; see Section 3A. Our basic gluing result can be stated
as follows.

Theorem B. For k = 1, 2, suppose Ak is a regular mASD connection on
Ek. Then for any ϵ > 0, the bundle E = E1#E2 admits an mASD connection
A with the property that the distance between A|Xk∩X and Ak|Xk∩X is less
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than ϵ for k = 1, 2. Moreover,

(1.2)
∣∣∣κ(E,A|EndX)−

2∑

k=1

κ(Ek, Ak|EndX)
∣∣∣ < ϵ.

In the statement of Theorem B, the distance is relative to a L2
2(N)×

Lp∗

δ (X)-metric on the space of connections; see (3.6) for a precise statement
(the connection A of Theorem B is what is called J (A1, A2) in (3.6)). The-
orem B is a special case of Theorem 3.3, which works in the broader setting
where the Ak are not necessarily regular. In this broader setting, the connec-
tion A need not be mASD, but its failure to be mASD is expressed through
an obstruction map. In Theorem 5.1, we extend Theorem B to a gluing
result for families of regular mASD connections. These results are mASD-
extensions of results familiar from the ASD setting; see [5, Section 7.2].

As an application of Theorems B and 5.1, we establish the following
existence result, extending that of Taubes [19, 20] to the present cylindrical
end mASD situation.

Theorem C. Assume G = SU(2) and b+(X) ≤ 1, and fix an integer ℓ ≥
b+(X) + 1. Then for every ϵ > 0, there is a principal SU(2)-bundle E → X
and an mASD connection A on E that is irreducible, and satisfies

(1.3) |κ(E,A|EndX)− ℓ| < ϵ.

If b+(X) = 0, then the connection A is regular.

The cases b+(X) = 0 and b+(X) = 1 are special cases of Theorem 6.2
and Theorem 6.3, respectively. Structurally, our proof strategies for these
are very similar to the analogous statements in the closed case [19, 20] by
realizing X as a trivial connected sum X ∼= X#S4. Under the assumption
that b+(X) = 0, it follows that the trivial flat connection on X is regular as
an mASD connection (see Remark 2.19). It is well-known that the 4-sphere
admits irreducible ASD connections of every positive second Chern class, and
these are necessarily regular for topological reasons. Then Theorem C for
b+(X) = 0 follows from the general gluing result of Theorem B and adjacent
results designed to handle gauge transformations (more below). We note also
that Theorem 6.2 (the more general version of Theorem C) is proved for an
arbitrary compact Lie group G, under mild hypotheses on ℓ and G.

Remark 1.4. If X is simply-connected and b+(X) = 0, we expect that
a modified gluing construction will produce an open subset of the space
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of mASD connections that are in Coulomb gauge relative to some fixed
connection. The issues involved in carrying out this improvement are briefly
indicated in Remark 5.3(b).

The strategy for our proof of Theorem C when b+(X) = 1 is similar, al-
beit more involved since the trivial flat connection on X is no longer regular.
Thus a careful analysis of the obstruction map of Theorem 3.3 is required.
Just as in [20], we glue ASD connections on S4 at several sites instead of
one, and this is sufficient to show that the obstruction vanishes for some
choice of gluing parameters. In this analysis, we use the assumption that
G = SU(2). As Taubes mentions [20, p. 518], it is likely that the restriction
to G = SU(2) can be removed, but that would call for a different approach.

We prove our general existence results only for b+ ≤ 1 because (i) these
are the cases of interest for our applications, and (ii) extending the discussion
to higher values of b+ would add considerable length to the paper (this can
already be seen in [20]). For similar reasons we also carry out our analysis
with connections that are locally in Sobolev class Lp

1 as opposed to, say, Lp
k

for k ≥ 1. We do not see any inherent obstruction to extending our results
to higher Sobolev spaces and presumably such extensions would recover our
Lp
1-results by elliptic regularity. We leave the details of such extensions to

interested parties.
The appearance of ϵ > 0 in the statements of Theorems B and C is new

to this mASD setting. To explain it, we note that in the standard set-up of
gluing ASD connections on a closed 4-manifold, the inequality (1.2) would be
replaced by the equality κ(E1#E2) = κ(E1) + κ(E2); likewise (1.3) would be
replaced by κ(E) = ℓ. The presence of an inequality for us reflects a need to
freely vary the asymptotic values in order to obtain the mASD connection
A. Indeed, as discussed further in Remark 2.19, the ability to freely vary
these asymptotic values is at the heart of what makes the mASD set-up
a viable candidate for the type of existence statement in Theorem C and
thus Theorem A. For example, when b+(X) = 0, the trivial flat connection
is regular only because the mASD operator allows for this variation in the
asymptotic values.

In Section 7, we have included a discussion of how Theorem C for
b+(X) = 0 provides a “partial compactification” of the space of mASD con-
nections. We also discuss why this compactification is only partial, and what
a more complete compactification would require.

As mentioned above, the lack of gauge-equivariance for the mASD op-
erator means that we are not free to pass to the quotient modulo gauge.
Indeed, to obtain a Fredholm problem for the gluing constructions, we work
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entirely within a fixed Coulomb slice. Since the natural Coulomb slice varies
as the connections vary, this dependence becomes relevant when we glue over
families of connections, which is necessary for Theorem C. This is a central
obstacle with which we must contend in the present paper: In the usual ASD
setting, one could apply suitable gauge transformations that put all nearby
ASD connections into the same slice. However, in this mASD setting, the
gauge-transformed mASD connections would no longer be mASD. To ac-
count for this, we establish a pair of gauge fixing results, Proposition 4.3
and Theorem 4.5, that show that, by a making an additional perturbation,
an mASD connection in one Coulomb slice can be perturbed to an mASD
connection in a nearby Coulomb slice.

Apart from the failure of gauge equivariance in the mASD setting, the
main difference between the mASD and ASD settings is that we now need
to handle the additional nonlinearities that arise from the term modifying
the ASD operator. The key observation we use for handling this term is that
it factors through a finite-dimensional manifold.

Finally, we mention that if Γ is non-degenerate, then every mASD
connection with asymptotic value near Γ is in fact ASD. E.g., this non-
degeneracy hypothesis is satisfied when N is a rational homology 3-sphere
and Γ is the trivial connection. As such, our results recover standard glu-
ing results for ASD connections on cylindrical end manifolds with non-
degenerate asymptotic limits; see Sections 2C.2 and 6D for more details.
More interestingly, there are situations for which Γ is degenerate, but for
which every mASD connection with asymptotic value near Γ is ASD. In such
cases, our mASD gluing theorem produces an ASD connection. Theorem A
is one result of this type.

2. Background on the thickened moduli space

In this section we give a rapid review of the relevant background material
from [17]; we also expand on some of the results of [17], which will assist in
our discussion of gluing below. With a few exceptions, we use much of the
same notation and set-up established in [17]. To allow for a more streamlined
discussion, we assume throughout that the 3-manifold end N is nonempty;
however, see Section 2C for an extension to the case N = ∅.

We will write A(E) and G(E) for, respectively, the spaces of smooth
connections and gauge transformations on E → X. When the bundle is clear
from context, we will simply write A(X) and G(X). Given a connection A,
we denote by FA its curvature, which is a 2-form on X with values in the
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adjoint bundle gE . We will write Ωℓ(X), and sometimes Ωℓ, for the space of
smooth adjoint bundle-valued ℓ-forms on X that are rapidly decaying.

To touch base with constants associated with characteristic classes be-
low, we work relative to an inner product on g obtained as follows. Fix a
Lie group homomorphism

(2.1) G −→ SU(r)

that is also an immersion. Then the induced map g →֒ su(r) is an embedding
of Lie algebras. Let ⟨·, ·⟩ : g⊗ g → R denote the inner product on g obtained
by pulling back the inner product A⊗B 7→ −tr(AB) on su(r). This inner
product is Ad-invariant, and so determines a metric on the adjoint bun-
dle gE .

Notation such as Lp
k(Ω

ℓ(X), g) will denote the Lp
k-Sobolev completion

of Ωℓ(X), relative to a metric g on X and the above-defined metric on gE .
When X or g are clear from context, or not relevant, we may drop them
from the notation.

2A. Auxiliary choices

2A.1. The center manifold. Recall from the introduction that we have
fixed a bundle Q → N as well as a smooth flat connection Γ on Q. Fix a
metric gN on N . Let UΓ ⊆ L2

2(A(N)) be a coordinate patch centered at Γ,
in the sense of [17, Def. 2.3.1]; for our purposes, it suffices to know that UΓ

is a small open neighborhood of Γ in the Coulomb slice {Γ}+ ker(d∗Γ). As
in [17, Lemma 2.5.1], there is a unique Stab(Γ)-equivariant map

Θ: UΓ −→ L2
2(Ω

0(N))

with Θ(a) ∈ (ker∆Γ)
⊥ and

d∗Γ(∗Fa − daΘ(a)) = 0.

It follows from this last equation, and uniqueness, that if a has higher reg-
ularity then so too does Θ(a).

We will be interested in the densely-defined vector field

∇fΓ : UΓ −→ TUΓ a 7−→ ∇fΓ(a) := − ∗ Fa + daΘ(a).

Note that the zeros of ∇fΓ are precisely the flat connections in UΓ. (As
described in [17, Lemma 2.5.1(1)], this vector field is the (negative) gradient
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of the restriction to UΓ of the Chern–Simons functional, where the gradi-
ent is taken relative to a certain inner product that takes into account the
possibility of a non-trivial stabilizer of Γ.)

For m ≥ 2, let H = HΓ ⊆ UΓ be a Stab(Γ)-invariant Cm-center manifold
for the vector field ∇fΓ, as in [17, Cor. 5.1.4]. In particular, this means that

• HΓ is a finite-dimensional Cm-manifold containing Γ,

• the tangent space to HΓ at Γ is the Γ-harmonic space

H1
Γ := ker(dΓ ⊕ d∗Γ) ⊆ Ω1(N),

• ∇fΓ is tangent to HΓ, and

• every zero of ∇fΓ sufficiently close to Γ is contained in HΓ.

We denote by Ξ = ΞΓ the restriction of ∇fΓ to HΓ.
Fix a compactly supported cutoff function β : H → [0, 1] that is identi-

cally 1 near Γ. The trimmed vector field is given by

Ξtr(h) := β(h)Ξ(h).

Set Hin = β−1(1) and Hout = β−1((0, 1]).
Fix a real number T ≥ 1. The trimmed vector field is complete and so,

for each h ∈ H, there is a unique solution hT : R → H to the flow

d

dt
hT (t) = Ξtr(hT (t)) hT (T ) = h.

We then set

α(h) = αT (h) := hT (t) + Θ(hT (t))dt.

Depending on context, we may view α as a connection on the submanifold
EndX ∼= [0,∞)×N , or on the cylinder R×N .

Lemma 2.2. For all h ∈ H, the connection α(h) is in L2
2,loc(R×N) ∩

C0(R×N), and hence in Lp
1,loc(R×N) ∩ C0(R×N) for any 1 ≤ p < 4.

Moreover, the map α : h 7→ α(h) is Cm relative to the L2
2(N)-topology on

the domain and the C0(R×N)-topology on the codomain.

Proof. The initial condition h is in L2
2(N) ⊂ C0(N), by assumption. It then

follows from standard regularity arguments for flows that the path hT is
in L2

2,loc ∩ C0 on R×N . Hence α(h) is in the same space as well, since the
regularity of Θ(hT ) is controlled by that of hT . That α is Cm relative to these
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topologies follows from a similar argument applied to its kth derivative for
1 ≤ k ≤ m. The assertion about Lp

1 follows from the embedding L2
2,loc →֒

Lp
1,loc, which holds provided 1 ≤ p < 4. □

In Hin, the flow defining hT (t) is gauge equivalent to the Chern–Simons
gradient flow. It follows that if hT (t) ∈ int(Hin) lies in the interior for some
t, then α(h) is ASD in a neighborhood of {t} ×N . This has the following
useful linear analogue for the linearization (Dα)Γ of α at Γ.

Lemma 2.3. If η ∈ TΓH = H1
Γ, then

(Dα)Γη = π∗η

where π : R×N → N is the projection.

Proof. Since Γ is flat, we have Θ(Γ) = 0 and so α(Γ) = π∗Γ. This is a flat
connection on R×N and so it is ASD:

F+
α(Γ) = F+

π∗Γ = 0.

Linearizing this in the direction of η ∈ TΓH implies

d+π∗Γ((Dα)Γη) = 0.

Note that, since η is Γ-harmonic, we also have

d+π∗Γ(π
∗η) = 0.

In general, we can view the kernel of d+A on the cylinder R×N as defining
a flow on the space Ω1(N)× Ω0(N). In the case of (Dα)Γη and π∗η, these
both take values in the graph

Graph((DΘ)Γ|TΓH) ⊆ TΓH× L2
2(Ω

0(N))

of the linearization of Θ. Observe two things: (i) this graph is finite-
dimensional, and (ii) the 1-forms (Dα)Γη and π∗η, viewed as paths in the
graph, both equal η at time T . Then (Dα)Γη = π∗η follows by the unique-
ness for flows on finite-dimensional spaces. □

2A.2. The choice of metric. We will use t : EndX → [0,∞) to denote
the projection relative to the identification EndX ∼= [0,∞)×N . With the
use of a cutoff function, we can view t as a smooth real-valued function
defined on all of X, which we will denote by the same symbol.
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Fix a smooth cylindrical end metric g0 on X; this means that the re-
striction

g0|EndX = dt2 + gN

is a product metric, where gN is the fixed metric on N . Let B be a C3-
neighborhood of g0 in the space of Cmax(m,3)-metrics on X so that the con-
clusions of [17, Theorem 2.6.3] hold (the proof of Theorem 2.6.3 shows that
such a set exists; the details of the theorem will not play an active role in
the discussion that follows). Let µ±

Γ be the smallest positive eigenvalue of
∓ ∗ dΓ : Ω1(N) → Ω1(N). The sign convention here is to agree with that of
[17, Def. 2.1.1]. Then we will say that a metric g on X is asymptotically
cylindrical if g ∈ B and

∥g − g0∥C1({t}×N) ≤ e−max(µ−

Γ ,µ+
Γ )t

for all t ≥ 0. (This is effectively Condition A3 of [17, p. 116].) Throughout,
we will always assume our metrics are asymptotically cylindrical in this
sense. Note that every cylindrical end metric is automatically asymptotically
cylindrical.

2A.3. Thickening data. Fix data as in [17, Section 7.2]; we will refer to
this as the thickening data and denote it by TΓ. In particular, this includes
the choice of positive numbers ϵ0 and δ, that we will describe momentarily.
The details of the remaining data in TΓ will not play an active role in our
discussion. For convenience, we also assume that TΓ includes the choice of
the fixed T ≥ 1 from above.

The key feature for us regarding ϵ0 is that |CS(h2)− CS(h1)| < ϵ0/2
for all h1, h2 ∈ supp(β), where CS is the Chern–Simons function. For any
ϵ0 > 0, this inequality can be arranged by shrinking the support of β, if
necessary. The remaining requirements for ϵ0 will not be directly relevant
to us, but see [17, Definition 4.3.2] for more details. As for δ, we assume
δ > µ−

Γ and that δ/2 is not an eigenvalue of − ∗ dΓ. By shrinking the size
of the coordinate patch UΓ, if necessary, we may assume further that δ/2 is
not an eigenvalue of − ∗ da for any a ∈ UΓ. At various times, we may place
additional restrictions on δ.

2A.4. Weighted spaces. We define the space Lp
k,δ(X) to be the comple-

tion of the set of compactly supported smooth forms f on X, relative to the
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weighted Sobolev norm:

∥f∥Lp
k,δ

:= ∥eδt/2f∥Lp
k
.

When p = 2, this recovers the family of norms used in [17]. The subspace
of ℓ-forms will be denoted by Lp

k,δ(Ω
ℓ) or Lp

k,δ(Ω
ℓ(X)). Following standard

conventions, when k = 0, we will write Lp
δ for Lp

0,δ. Note that the norm
∥f∥Lp

k,δ
is equivalent to the norm:

∑

0≤j≤k

∥eδt/2∇jf∥Lp .

In particular, we can use this equivalence to transfer Sobolev embedding
results for Lp

k to the weighted setting; e.g., see the proof of Lemma 3.9.

2B. Gauge theory

2B.1. The space of connections. For 1 ≤ p < 4, define A1,p(TΓ) to con-
sist of the connections A on E satisfying the following:

• A has regularity Lp
1,loc,

• there is some h ∈ Hout so that A− α(h) ∈ Lp
1,δ(Ω

1(EndX)),

• for each t ≥ T , the connection A|{t}×N is gauge equivalent to a con-
nection in the coordinate patch UΓ centered at Γ.

This space of connections is generally not an affine subspace of Lp
1,loc(A(E));

this reflects the nonlinearities in the definition of the map h 7→ α(h). We give
A1,p(TΓ) the structure of a Cm-Banach manifold, as in [17, Section 7.2.2].
(Equivalently, this Cm-Banach manifold structure is precisely the one for
which the map ι, defined in (2.5) below, is a Cm-diffeomorphism.) By [17,
Prop. 7.2.3] (see also [17, p. 120]), given A ∈ A1,p(TΓ), the element h ∈ Hout

from the second bullet point is uniquely determined; this uses the assumption
that δ > µ−

Γ . As such, there is a well-defined map

pT : A1,p(TΓ) −→ Hout

that is Cm-smooth.

Remark 2.4. (a) Note that our space A1,p(TΓ) consists of connections with
weaker regularity than the one in [17, Ch. 7], which is modeled on L2

2 instead
of Lp

1. This changes little as far as the exposition of [17] is concerned; the
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only significant exception to this is the gauge group, which we will discuss
in the next section.

(b) The restriction to p less than 4 is, at the moment, coming from
Lemma 2.2. A much deeper reason for restricting to p less than 4 will appear
in our gluing analysis of Section 3 (in particular, (3.12)), where this condition
ensures we have a right inverse to our linearized operator that is uniformly
bounded; see also [5, p. 293].

Fix a smooth cutoff function β′′ on X supported on [T − 1/2,∞)×N
and identically 1 on [T,∞)×N . Fix also a smooth reference connection Aref

on E; we assume this belongs to the space A1,p(TΓ). Using these objects, we
can form the map

i : Hout −→ A1,p(TΓ)
h 7−→ Aref + β′′(α(h)−Aref )

where α(h) = hT (t) + Θ(hT (t))dt is as above. This map i is Cm-smooth. As
in [17, Lemma 10.1.1], it is convenient to introduce the map

(2.5)
ι : Hout × Lp

1,δ(Ω
1(X)) −→ A1,p(TΓ)

(h, V ) 7−→ ι(h, V ) := i(h) + V.

This map ι is a Cm-diffeomorphism with inverse given by A 7→ (pT (A), A−
i(pT (A))). It follows immediately from the definitions that

pT (i(h)) = pT (ι(h, V )) = h

for all h ∈ Hout and V ∈ Lp
1,δ(Ω

1). We view ι as providing something of a
coordinate system on the space of connections.

The tangent space to A1,p(TΓ) at A is the space of all 1-forms W ∈
Lp
1,loc(Ω

1(X)) so that there is some η ∈ Tp(A)H with

W − (Di)pT (A)η ∈ Lp
1,δ(X)

where (Di)h is the linearization at h ∈ Hout of the map i : Hout → A1,p(TΓ).
Linearizing ι at (h, V ), we obtain a Banach space isomorphism

(2.6)
(Dι)(h,V ) : ThHout × Lp

1,δ(Ω
1(X)) −→ TAA

1,p(TΓ)

(η,W ) 7−→ (Di)hη +W.

The 1-form (Di)hη vanishes on X0, so the operator norm of (Dι)(h,V ) is
independent of the metric on X0.
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2B.2. The gauge group. When 2 < p < 4, we will write G2,p
δ (Γ) for the

set of bundle automorphisms u of E with the property that u∗A ∈ A1,p(TΓ)
for all A ∈ A1,p(TΓ). The condition that p be less than 4 is a carry-over from
Remark 2.4 (b). The condition that p be larger than 2 ensures that G2,p

δ (Γ) is
a well-defined Banach Lie group that acts Cm-smoothly on A1,p(TΓ); these
claims follow from the Sobolev multiplication maps W 2,p

loc ×W 2,p
loc → W 2,p

loc

and W 2,p
loc ×W 1,p

loc → W 1,p
loc being well-defined in dimension 4 for p > 2. See,

for example, [23, Lemma A.6]. We will only consider G2,p
δ (Γ) for p satisfying

2 < p < 4.
The proof of [17, Lemma 7.2.7] carries over to this setting to imply

that the group G2,p
δ (Γ) is equal to the space of Lp

2,loc-gauge transformations
with the property that there is some τu ∈ Stab(Γ), viewed as a t-invariant
gauge transformation on EndX, so that u|EndX ◦ τ−1

u is in Lp
2,δ(EndX).

The gauge transformation τu is uniquely determined by u, and we denote
by G2,p

δ ⊆ G2,p
δ (Γ) the (normal) subgroup of all gauge transformations u with

τu = e equal to the identity. Thus, we have a short exact sequence of groups:

(2.7) {e} −→ G2,p
δ −→ G2,p

δ (Γ) −→ Stab(Γ) −→ {e} .

We will write Stab(A) for the stabilizer of A under the action of G2,p
δ (Γ).

The center Z(G) of G embeds into G2,p
δ (Γ) as the set of constant maps

X → Z(G), and we will identify Z(G) with its image in the gauge group.
Note that Z(G) is also the center of G2,p

δ (Γ) and Z(G) ⊆ Stab(A). We will
say that A is irreducible if Z(G) and Stab(A) have the same dimension
(equivalently, if they have isomorphic Lie algebras). Note that the term
“irreducible” is only defined when 2 < p < 4.

Lemma 2.8. Fix 2 < p < 4, and assume A ∈ A1,p(TΓ) is irreducible. Then
there is a neighborhood U ⊆ A1,p(TΓ) of A so that A′ is irreducible for all
A′ ∈ U .

Proof. We begin with a few preliminaries. Set A := A1,p(TΓ) and G :=
G2,p
δ (Γ). Linearizing the gauge group action at A ∈ A, we obtain a map

dA : Lie(G) −→ TAA ϕ 7−→ dAϕ.

Then a connection A ∈ A is irreducible if and only if the kernel of dA equals
the Lie algebra z := Lie(Z(G)) of the center of G. It follows form the defini-
tion of the topologies on A and G, as well as from standard elliptic estimates
for δ-decaying spaces, that the operator dA is bounded. Moreover, this op-
erator has a range that is closed and admits a complement in TAA.
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Let H0
Γ := ker(dΓ) ⊆ Ω0(N) be the Lie algebra of Stab(Γ). The center z

is naturally a subalgebra of H0
Γ, so we can write

H0
Γ = z⊕ z

⊥

where z
⊥ is the L2(N)-orthogonal complement of z. Then for τ ∈ H0

Γ, we
will write τ⊥ ∈ z

⊥ for its projection.
Just as the map ι provides “coordinates” for A, there is an analogous

Banach space isomorphism

ιΩ0 : H0
Γ × Lp

2,δ(Ω
0) −→ Lie(G) (τ, ξ) 7−→ (τ − τ⊥) + β′′τ⊥ + ξ

where we are viewing τ − τ⊥ ∈ z as a 0-form on X. This map ιΩ0 takes
z× {0} isomorphically to z ⊆ Lie(G). Let Υ ⊆ Lie(G) be the image under
ιΩ0 of the complement z⊥ × Lp

2,δ(Ω
0) to z× {0}. Then we have a direct sum

decomposition

Lie(G) = z⊕Υ.

The key point is that A is irreducible if and only if the restriction

d⊥A := dA|Υ : Υ −→ TAA

is injective. We will want to view this operator as a function of A, and for this
it would be convenient if d⊥A were to have a codomain that is independent of
A. Though this is not the case presently, we can arrange for A-independence
of the codomain as follows: Let (Dι)A : ThH× Lp

1,δ(Ω
1) → TAA be the

linearization of the coordinate map ι. The L2
2-inner product for 1-forms

on N provides a Riemannian metric on the finite-dimensional subspace
H ⊆ L2

2(A(N)) of connections on N . Use this Riemannian metric to define
the parallel transport map PTh : ThH → TΓH. Letting I denote the identity
on Lp

1,δ(Ω
1), we will be interested in the operator

DA := (PTh × I) ◦ (Dι)−1
A ◦ d⊥A : Υ −→ TΓH× Lp

1,δ(Ω
1).

This is a bounded linear map, and expansions of the form dA = dA′ +
[(A−A′), ·] show it depends continuously on A ∈ A in the operator norm
topology on the space B(Υ, TΓH× Lp

1,δ(Ω
1)) of bounded linear maps from Υ

to TΓH× Lp
1,δ(Ω

1). Since Υ has finite codimension, and dA has closed range,
the operator DA has closed range as well.

It follows from the construction that DA is injective if and only if A is
irreducible. Assume that A is irreducible. Then the fact that im(dA) has a
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complement in TAA implies that DA admits a bounded left inverse, which
we denote by LA. In summary, the map

A −→ B(Υ,Υ) A′ 7−→ LADA′

is a continuous map into the space of bounded linear operators on the Banach
space Υ. It is clearly invertible at A′ = A. Since the set of invertible bounded
linear maps on a Banach space is open, there is some neighborhood U ⊆ A
of A so that LADA′ is invertible for all A′ ∈ U . Thus if A′ ∈ U , then A′ is
irreducible. □

Remark 2.9. Completing Lp
2,δ(Υ) to Lp

1,δ(Υ), the map DA extends to a
bounded linear operator of the form

DA : Lp
1,δ(Υ) −→ TΓH× Lp

δ(Ω
1(X)).

Let p∗ = 4p/(4− p) be the Sobolev conjugate of p ∈ (2, 4). Then one can
show that the map A 7→ DA ∈ B(Lp

1,δ(Υ), TΓH× Lp
δ(Ω

1(X))) is continu-

ous in A = i(h) + V relative to the topology (h, V ) ∈ C0(N)× Lp∗

δ (X). The
proof we gave for Lemma 2.8 carries over to show that A′ = ι(h′, V ′) is irre-
ducible whenever A = ι(h, V ) is irreducible, and ∥h− h′∥C0 + ∥V − V ′∥Lp∗

δ

is sufficiently small.

2B.3. The mASD equation. Fix a cut off function β′ on X that is
identically 1 on the cylinder [T + 1/2,∞)×N and supported on the slightly
larger cylinder [T,∞)×N . Consider the map

s : A1,p(TΓ) −→ Lp
δ(Ω

+(X)) A 7−→ F+
A − β′F+

i(pT (A)).

We will call s the modified ASD (mASD) operator. The equation s(A) = 0 is
the modified ASD (mASD) equation, and any A satisfying s(A) = 0 will be
called modified ASD (mASD). The map s is Cm in the specified topologies;
see [17, Lemma 7.1.1] and use the fact that the composition of Cm functions
is again Cm.

The following will help us understand the linearization of s.

Lemma 2.10. If A = ι(h, V ) for (h, V ) ∈ Hout × Lp
1,δ(Ω

1(X)), then

(2.11) s(A) = s(ι(h, V )) = (1− β′)F+
i(h) + d+i(h)V +

1

2
[V ∧ V ]+ .

Proof. This follows from the identity F+
i(h)+V = F+

i(h) + d+i(h)V + 1
2 [V ∧ V ]+

and the fact that pT (ι(h, V )) = h. □
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Remark 2.12. Unfortunately, when G is not abelian, the mASD operator
s is not generally well-behaved under any suitable gauge group; e.g., it is not
equivariant relative to the action of the gauge group of Section 2B. The issue
is that the term Fi(pT (A)) is gauge equivariant relative to the trivial G-action
on g, while the term FA is gauge equivariant relative to the adjoint G-action
on g. Consequently, any non-trivial linear combination of these (e.g., as in
the above formula for s) is not equivariant relative to either G-action. This
issue is apparent even in the smooth compactly supported setting, and hence
persists regardless of which Sobolev completion we choose. See Section 2B.5
for some comments about the effect of this issue on the results of [17].

2B.4. A Coulomb slice. To obtain a Fredholm operator, we will restrict
the operator s to a Coulomb (gauge) slice

SL(A′) :=
{
ι(h, V )

∣∣∣ h ∈ H and V ∈ ker(d∗,δA′ ) ⊆ Lp
1,δ(Ω

1)
}

for some fixed connection A′. Here d∗,δA = e−tδd∗Ae
tδ is the adjoint relative to

the L2
δ-inner product. For more details on this slice, see [17, Prop. 10.3.1].

Since δ/2 is not in the spectrum of − ∗ dΓ on 1-forms, it follows from [17,
Lem. 8.3.1] that the restriction s|SL(A′) of s to this slice is a Fredholm map.

We set

M̂ = M̂(TΓ, A
′) := s−1(0) ∩ SL(A′)

which we refer to as the space of mASD-connections. For us, this will play the
role that the ASD moduli space usually plays in the closed setting (though,
as discussed in the introduction, this is less than satisfying for global con-
siderations due to its dependence on A′). Elliptic regularity implies that any

element of M̂ has regularity Cm.
Consider the restriction of the mASD operator s to this slice SL(A′).

Then the linearization at A ∈ SL(A′) of this restriction is a bounded linear
map (

Ds|SL(A′)

)
A
: TASL(A

′) −→ Lp
δ(Ω

+).

We will say that an mASD connection A is A′-regular if this operator is
surjective. When A′ = A, we drop the A′ and say that A is regular if it is
A-regular. We will also be interested in connections that are not regular,
and for these we will need to consider the cokernel

(2.13) H+
A,δ := coker

(
Ds|SL(A)

)
A
.

Clearly H+
A,δ = 0 if and only if A is regular.
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We will write

M̂reg = M̂reg(TΓ, A
′) ⊆ M̂(TΓ, A

′)

for the subset of A′-regular mASD connections. It follows from the implicit
function theorem that M̂reg is a Cm-smooth manifold.

2B.5. Navigating Morgan–Mrowka–Ruberman [17]. Since the op-
erator s is not gauge equivariant, we do not currently know how to define a
suitable gauge quotient of s−1(0) ⊂ A1,p(TΓ) in order to obtain the mASD
moduli space Mℓ,w(TΓ, T0, g) envisaged in [17, p. 125]. Though this appears
to be a significant error in [17], the major results of [17] remain intact. For
the reader’s benefit, we will now review [17], highlighting those areas that
need adjustment. In this section, we refer freely to the notation established
in [17], and the phrase “thickened moduli space” will refer to any of the
following spaces

Mℓ,w(TΓ, T0, g), M0
ℓ,w(TΓ, T0, g), Mℓ,w(h, TΓ, T0, g)

(note that sometimes the w or the g are dropped from the notation in [17]).
The thickened moduli space does not appear in any significant way in

Chapters 1–6, 10–13, 15–16, and the results therein remain intact as stated.
In Chapters 7–9, it is often the case that claims about the thickened moduli
space remain intact if one interprets the term as meaning an object defined
by a gauge slice as opposed to a quotient by the gauge group (e.g., replace

the based version M0
ℓ,w(TΓ, T0, g) by what we called M̂(TΓ, A

′) above). Such
is the case with the patching results of § 7.4, the index calculations of Ch.
8 (more details below), and most of the generic metrics results of Ch. 9.
However, it is not immediately clear to us how best to interpret the claims
in Lemma 7.5.3 and §9.4 since they refer to the µ-map on the thickened
moduli space, which is an inherently global object.

At first sight, Chapter 14 appears to have issues but, upon closer in-
spection, the results of this chapter remain intact as well, with the possible
exception of the claims of [17, Remark 14.0.5] (which don’t appear to be
used elsewhere in [17]). Here are some more details regarding Chapter 14:
The main goal of this chapter is to prove Theorem 14.0.1, which is a struc-
tural result that gives dimension formulas for various ASD moduli spaces.
This theorem has two cases. In the situation of Case I, as the authors point
out explicitly (p. 202), every mASD connection is actually ASD and so the
“thickened moduli space” is indeed well-defined because it is really (an open
set of) the ASD moduli space (this coincidence is one that we too exploit,
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and is discussed more in Section 6D). Thus, there is no problem with this
case. The remaining Case II in Theorem 14.0.1 does not appeal to the thick-
ened moduli space at all, and instead works with the space B0

ℓ,δ(X) (despite

being a gauge group quotient, the space B0
ℓ,δ(X) is indeed well-defined as it

does not make reference to the mASD operator s). Thus, the statement and
proof of Theorem 14.0.1 need no adjustment and appear to be correct as
written. However, we are not sure how to interpret the argument of Remark
14.0.5, which uses the thickened moduli space to deduce a Whitney strati-
fication on the ASD-moduli space. In the setting of this remark, there are
mASD connections that are not ASD, so the above-referenced coincidence
does not apply.

We end this section with a more detailed discussion of Chapter 8 in
[17], with the aim of salvaging the index calculation of Proposition 8.5.1.
As in [17, Ch. 8], in addition to our usual hypotheses on δ, we also assume
that δ < 2µ−

Γ . We also restrict to the case where G = SO(3) or G = SU(2);
the index for more general compact G can be computed using the strategy
outlined in [5, Section 7.1] (e.g., when G is simple and simply-connected,
use the data from [1, Table 8.1] to pin down the constants specific to G).

The first issue appears on p. 139, since the image of the map Dωm is
not generally contained in the kernel of Dωs (this is the linear version of
the fact that s is not gauge-equivariant). As a consequence, Eδ(ω) is not a
complex in the usual sense. Nevertheless, much of what is desired of Eδ(ω)
can be salvaged by “wrapping it up” and considering the operator

D := (d∗,δω , Dωs) : TωAℓ,w(TΓ, T0) −→ TeGδ(Γ)× Ω2
+,1,δ(X)

where d∗,δω = e−tδd∗ωe
tδ is the L2

δ-adjoint of dω and Dωs is the notation used
in [17] for the linearization of s at a connection ω (what they call ω is what
we call A). Then Proposition 8.5.1 can be interpreted as saying that this
operator D is Fredholm with index given by the formula:

Ind(D) = 8ℓ−
3

2
(χ(X) + σ(X)) +

h1Γ − h0Γ
2

+
ρ(Γ)

2
.

There is a “based” version of this that replaces Gδ(Γ) by the normal subgroup
Gδ. Wrapping in this case produces a map

D0 := (d∗,δω , Dωs) : TωAℓ,w(TΓ, T0) −→ TeGδ × Ω2
+,1,δ(X).
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This operator is also Fredholm and, in light of the sequence (2.7), its index
is given by

Ind(D0) = Ind(D) + h0Γ = 8ℓ−
3

2
(χ(X) + σ(X)) +

h1Γ + h0Γ
2

+
ρ(Γ)

2

since h0Γ = dim(Stab(Γ)). Restricting D0 to a slice SL(A′) and project-
ing to the Ω2

+,1,δ(X)-component, we obtain the operator that we called
(Ds|SL(A′))A above. When A = A′ and this connection is flat down the end,
it follows readily that the index of (Ds|SL(A))A equals that of D0. Since the
index remains unchanged under addition of compact operators, it follows
that

(2.14) Ind((Ds|SL(A′))A) = 8ℓ−
3

2
(χ(X) + σ(X)) +

h1Γ + h0Γ
2

+
ρ(Γ)

2

for all A ∈ SL(A′). The right-hand side of (2.14) is the expected dimension

of the mASD space M̂(TΓ, A
′), and it is the actual dimension of the Cm-

manifold M̂reg(TΓ, A
′) of A′-regular mASD connections.

2C. Special cases

2C.1. Flat connections. In this section, we study the linearized operator
(Ds)A and its cokernel in the special case when A is flat and asymptotic to
Γ. To simplify the discussion, we assume A is in temporal gauge on the end
[4, p. 15] (though we continue to work in the general setting where the metric
is asymptotically cylindrical). It follows that, for each t ≥ T , the restriction
A|{t}×N = Γ is constantly equal to Γ on the end. Then A ∈ A1,p(TΓ) and
p(A) = Γ. The associated flow α(Γ) = A recovers the flat connection A on
EndX. This implies A is mASD.

The operator s is defined in terms of the map ι, and we recall that
the definition of ι required the choice of a reference connection Aref on X.
Likewise, the space of mASD connections is defined by restricting s to a slice
SL(A′) for some choice of connection A′. It is convenient to take Aref := A
and A′ := A; the reader can check that any other choice of Aref does not
affect the outcome of the discussion that follows, though different choices of
A′ may. In particular, our choice of Aref gives

A = i(Γ) = ι(Γ, 0).
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Let b+(X,A) be the dimension of a maximal positive definite subspace
for the pairing map qA : Ĥ2(X, ad(A))⊗ Ĥ2(X, ad(A)) → R, as in [17, Sec-
tion 8.7], where X is the natural compactification of X obtained by adding a
copy of N at infinity. For example, when A = Atriv is the trivial connection
on the trivial G-bundle, then b+(X,Atriv) = dim(G)b+(X) is a multiple of
the usual self-dual Betti number of X. We will need the following result.

Proposition 2.15. Assume 0 < δ/2 < µ−
Γ , where µ−

Γ is as in Section 2A.
Then the cokernel H+

A,δ = (Ds|SL(A))A has dimension b+(X,A).

This is proved in [17, Prop. 8.7.1(4)], however the discussion there does
not deal with the linearized operator (Ds)A directly. In preparation for
our gluing arguments below, we will summarize the argument given in [17,
Prop. 8.7.1(4)], but from the present perspective. Our proof is sketched be-
low, after we give some preliminary computations that will be useful in their
own right.

The restriction ι| : H× ker(d∗,δA ) → SL(A) is a diffeomorphism, essen-
tially by definition. To understand the cokernel H+

A,δ it suffices to under-
stand the cokernel of the linearization of s ◦ ι|. Towards this end, differen-
tiating (2.11) at A = ι(Γ, 0) in the direction of (η, V ) ∈ TΓHout × ker(d∗,δA )
gives

(2.16) (Ds)A ◦ (Dι)(Γ,0)(η, V ) = (1− β′)d+A(Di)Γη + d+AV.

Next, it follows from Lemma 2.3 that (Di)Γη = β′′η. Since we also have
dΓη = 0 for η ∈ TΓH = H1

Γ, it follows that

(2.17) d+A(Di)Γη = (∂tβ
′′)(dt ∧ η)+.

This is zero everywhere except on (T − 1/2, T )×N , where it vanishes if and
only if η = 0. Combining this with (2.16), we therefore have the formula

(2.18) (Ds)A ◦ (Dι)(Γ,0)(η, V ) = (1− β′)(∂tβ
′′)(dt ∧ η)+ + d+AV.

This shows that, relative to the coordinates afforded by ι, the leading or-
der term of

(
Ds|SL(A)

)
A

is d+A|ker(d∗,δ
A ). The remaining term is compactly-

supported and of order zero.

Proof of Proposition 2.15 (sketch). Amaximal positive definite subspace for
qA can be realized as the space H+(X, ad(A)) of self-dual 2-forms W ∈
L2(Ω+(X, ad(A))) satisfying dAW = 0 and so that the restriction to any
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slice {t} ×N has trivial Γ-harmonic part; note that this definition does not
depend on δ, but see also Lemma 2.20. Setting

D :=
(
Ds|SL(A)

)
A

we can similarly represent the cokernel H+
A,δ of D as the L2

δ-orthogonal com-

plement (imD)⊥,δ to the image. Then Proposition 2.15 follows by showing
that the map

j : (imD)⊥,δ −→ H+(X, ad(A)) W 7−→ eδtW

is well-defined and bijective. That the map j is well-defined follows from the
formula in (2.18). Indeed, if W ∈ (im D)⊥,δ, then the identity (2.16) implies

0 = (W,D ◦ (Dι)(Γ,0)(0, V ))δ = (W,d+AV )δ = (d∗,δA W,V )δ

where (·, ·)δ is the L2
δ-inner product. This holds for all V ∈ L2

1,δ(Ω
1), so it

follows that dAj(W ) = −etδ ∗ d∗,δA W = 0. Similarly, we have

0 = (W,D ◦ (Dι)(Γ,0)(η, 0))δ = (W, (1− β′)(∂tβ
′′)(dt ∧ η)+)δ.

Since (1− β′)∂tβ
′′ is non-zero on the cylinder (T − 1/2, T )×N , and since

η ∈ TΓH = H1
Γ is allowed to roam freely over the Γ-harmonic space, it follows

that the harmonic part of W |{t}×N must vanish for any t ∈ (T − 1/2, T ).
It is clear that the map j is injective; this already gives dim(H+

A,δ) ≤
b+(X,A). Surjectivity of j is equivalent to the reverse inequality holding, and
this follows from a dimension count: By [17, Prop. 8.7.1(4)] (which uses the
assumption 0 < δ/2 < µ−

Γ ), the integer b+(X,A) is equal to the dimension
of the cokernel of (Ds)A : TAA

1,p(TΓ) → Lp
δ(Ω

+). The result follows because
cokernels are non-decreasing under domain restriction:

b+(X,A) = dim coker
(
(Ds)A : TAA

1,p(TΓ) → Lp
δ(Ω

+)
)

≤ dim coker
(
(Ds|SL(A))A : TASL(A) → Lp

δ(Ω
+)

)

= dim H+
A,δ.

□

Remark 2.19. Proposition 2.15 is the observation that makes the mASD-
operator—and not the ASD-operator—a viable candidate for our existence
results, including Theorem A which is purely in the ASD setting. Indeed,
consider the case where b+(X) = 0 and A is the trivial flat connection. Then
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b+(X,A) = b+(X) = 0 and so Proposition 2.15 implies A is regular as an
mASD connection. However, when Γ is degenerate, the trivial flat connec-
tion A is not regular as an ASD connection: The proof just given shows
that, for the operator (2.18), the image of η 7→ (1− β′)(∂tβ

′′)(dt ∧ η)+ is
not contained in the image of d+A. Thus, the additional degree of freedom
afforded by η ∈ TΓH in (2.18) is necessary (and sufficient) to obtain surjec-
tivity of (Ds|SL(A))A when A is the trivial flat connection, Γ is degenerate,
and b+(X) = 0.

We end with the following exponential decay estimate that we will use
in Section 6C.

Lemma 2.20. For each W ∈ H+(X, ad(A)), there is some C so that the
restriction W |{t}×N satisfies

∥W |{t}×N∥C0(N) ≤ Ce−µ+
Γ t

for all t ≥ 0. In particular, H+(X, ad(A)) ⊆ L2
δ(X) for any δ < 2µ+

Γ .

Proof. It suffices to establish the estimate of the lemma under the assump-
tion that the metric g is cylindrical. Since A is in temporal gauge on the
end, its covariant derivative decomposes as dA = dt ∧ ∂t + dΓ. Standard el-
liptic estimates for the operator ∆Γ = d∗ΓdΓ + dΓd

∗
Γ on N provide a uniform

constant C so that

∥v∥C0(N) ≤ C
(
∥v∥L2(N) + ∥∆Γv∥L2(N)

)

for all v ∈ Ω1(N).
Fix W ∈ H+(X, ad(A)). On EndX, we can write W = dt ∧ v + ∗Nv for

some path v = v(t) ∈ Ω1(N) of 1-forms. The condition dAW = 0 implies
dΓ ∗N v = 0 and ∗NdΓv = ∂tv. In particular, the above elliptic estimate im-
plies

∥v(t)∥C0(N) ≤ C
(
∥v(t)∥L2(N) + ∥∂2

t v(t)∥L2(N)

)
.

It suffices to show that f(t) := ∥v(t)∥2L2(N) + ∥∂2
t v(t)∥

2
L2(N) decays exponen-

tially in t at a rate of 2µ+
Γ . To see this, differentiate twice to get

f ′′(t) = 2∥∂tv(t)∥
2
L2(N) + 2∥∂3

t v(t)∥
2
L2(N)

+ 2
(
∂2
t v(t), v(t)

)
+ 2

(
∂4
t v(t), ∂

2
t v(t)

)

= 4∥dΓv(t)∥
2
L2(N) + 4∥dΓ∂

2
t v(t)∥

2
L2(N)
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where we used ∂tv = ∗NdΓv and integration by parts. By definition of
H+(X, ad(A)), v(t) is orthogonal to the Γ-harmonic space and dΓ ∗N v(t) =
0. It follows that v(t) lies in the image of ∗NdΓ. Moreover, the 2-form W , and
hence v, is in L2, by definition. This combines with the equation ∗NdΓv = ∂tv
to imply that v(t) lies in the span of the negative eigenspaces of ∗NdΓ: ex-
press v(t) as a t-dependent linear combination of an orthonormal basis of
eigenvectors, use a separation of variables argument to show that each coef-
ficient decays or grows down the end according to whether the eigenvalue is
negative or positive, and then use the fact that v is in L2 and so must decay
down the end.

Likewise, ∂2
t v(t) always lies in the negative eigenspace of ∗NdΓ. Recall

that µ+
Γ is the smallest positive eigenvalue of− ∗N dΓ. Thus, it is the absolute

value of the largest negative eigenvalue of ∗NdΓ, and so

f ′′(t) = 4∥dΓv(t)∥
2
L2(N) + 4∥dΓ∂

2
t v(t)∥

2
L2(N) ≥ 4(µ+

Γ )
2f(t).

Since f(t) is non-negative and converges to 0 as t approaches ∞, it follows
from this estimate that f(t) ≤ Ce−2µ+

Γ t (e.g., see [6, p. 623]). □

2C.2. Non-degenerate Γ. Here we assume that Γ is non-degenerate in
the sense that the harmonic space H1

Γ = {0} is trivial. Then any center man-
ifold necessarily consists of a single point and so there is a unique choice of
cutoff function β. Then the mASD operator is the ASD operator. Moreover,
non-degeneracy implies that any finite-energy ASD connection asymptotic
to Γ decays exponentially on the end at a rate of e−δt for any δ/2 < µ−

Γ ,
where µ−

Γ is as in Section 2A (the proof of this assertion is similar to the
proof of Lemma 2.20, but µ−

Γ appears in the present setting since the cur-
vature is anti -self dual). We also assumed that δ is greater than µ−

Γ , but
that was only to construct the map pT , whose existence is trivial in the non-
degenerate setting since the center manifold consists of a single point. Thus,
in the non-degenerate case this lower bound restriction on δ can be dropped,
though we still need to retain the assumption that δ/2 is not an eigenvalue
of − ∗N dΓ. In particular, it follows that whenever −µ+

Γ < δ/2 < µ−
Γ , the re-

sulting mASD/ASD space is independent of the choice of this δ, and the
dimension of the space is given by (2.14) (apart from this paragraph, we
always assume δ > 0).

In summary, when Γ is non-degenerate, there is an essentially canonical
choice of thickening data TΓ,can. Moreover, if A′ is any connection defining
a slice, then the associated space of mASD connections

M̂(TΓ,can, A
′) =

{
A ∈ A(X)

∣∣∣ F+
A = 0, d∗A′(A−A′) = 0, lim

t→∞
A|{t}×N = Γ

}
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is the set of ASD connections in the A′-Coulomb slice that are asymptotic
to Γ.

2C.3. Closed X. Here we assume that X is closed. View X as a cylin-
drical end 4-manifold with an empty end. Then one can check that it makes
sense to choose the empty set T∅ = ∅ of thickening data, and that, e.g., the
mASD space M̂(T∅, A

′) is exactly the set of ASD connections on E in the
A′-Coulomb slice.

3. Gluing two mASD connections

Here we state and prove our first gluing result, which discusses gluing to-
gether mASD connections over the compact parts of two cylindrical end
4-manifolds. When the connections are not regular, the resulting connection
may not be mASD, and its failure to be mASD is captured by a suitable
obstruction map. Our set-up is very similar to that of ASD gluing outlined
in Donaldson–Kronheimer [5, Section 7.2], to which we refer the reader for
more details at various points. When introducing new terms for the analysis,
we have tried to keep our notation as consistent with that of [5] as possible.
Our emphasis below will be on the new features that arise in the mASD
setting. In the present section, the only serious new features arise from the
fact that the mASD operator s has a nonlinear term not present in the usual
ASD setting; these features manifest themselves in the proofs of the claims
appearing in the proof of Theorem 3.3.

3A. Set-up for gluing

LetX1 andX2 be oriented cylindrical end 4-manifolds equipped with asymp-
totically cylindrical metrics as in Section 2A.2. We will write Xk0 for com-
pact part of Xk and we set Nk := ∂Xk0. We will need parameters λ > 0 and
L > 1 so that b := 4Lλ1/2 ≪ 1. The constant L will be fixed later, but we
will ultimately be interested in allowing λ to be arbitrarily small. For each
k, fix a point

xk ∈ Bb(xk) ⊂ int(Xk0)

in the interior of the compact part. To simplify the discussion, we assume
that the metric on Xk is flat over Bb(xk); see [3, Section IV(vi)] for how to
extend the discussion to handle more general metrics.
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Following the approach in [5, Section 7.2.1], we glue along the annuli

Ωk := BLλ1/2(xk)\BL−1λ1/2(xk)

using an “inversion” map fλ : Ω1 → Ω2 to produce a connected sum

X = X(L, λ) :=
(
X1\BL−1λ1/2(x1)

)
∪fL,λ

(
X2\BL−1λ1/2(x2)

)
.

ThenX is an oriented cylindrical end 4-manifold with asymptotic 3-manifold
N = N1 ⊔N2. We will write X0 for the compact part of X; this is formed
by analogously gluing the compact parts Xk0 of the Xk. The metrics on
the Xk can be glued to form a metric on X, and we assume this is done as
outlined at the end of p. 293 in [5]. We denote this metric by gL,λ. Since we
are interested in the limiting behavior of this for small λ, we will include
the metric in the notation for our various norms and spaces of connections,
forms, etc. whenever it is relevant.

Bb(x1)

X10

EndX1

X1

Bb(x2)

X20

EndX2

X2
(a)

X0

EndX

X

(b)

Figure 1: Illustrated above are the manifolds X1, X2 in (a), and their con-
nected sum X in (b). The 3-manifolds N1, N2, and N are unlabeled, but are
illustrated as dotted lines in the figure above.

Fix principal G-bundles Ek → Xk and flat connections Γk ∈ A(Nk) for
k = 1, 2. These induce a bundle over N as well as a flat connection Γ on N .
Fix δ > 0 as in Section 2A.3 associated to this flat connection Γ. It follows
that, for k = 1, 2, the quantity δ/2 is not in the spectrum of − ∗ dΓk

on
1-forms. Let Tk,Γk

be thickening data for Ek with this δ.
Fix an isomorphism ρ : (E1)x1

→ (E2)x2
of G-spaces, as well as flat con-

nections A♭,k for Ek over Bb(xk). Using these flat connections and radial
parallel transport, we can extend ρ to a bundle isomorphism E1|Ω1

∼= E2|Ω2

covering fλ. It is with this bundle isomorphism that we glue the Ek over the
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Ωk to obtain a bundle

E = E(ρ, L, λ) −→ X(L, λ).

Since the gluing takes place away from the cylindrical end, the thickening
data Tk,Γk

for the Ek induce thickening data TΓ for E.
Fix 1 ≤ p < 4 and suppose that, for each k, we have a smooth mASD

connection

Ak ∈ A1,p(Tk,Γk
)

on Xk. By performing the cutting off procedure described in Sections 7.2.1
and 4.4.5 of [5], we can form a connection A′

k on Ek that is equal to Ak

outside of the ball Bb(xk) and equal to the flat connection A♭,k inside of the
ball Bb/2(xk). Then the A′

k patch together to determine a smooth connection
A′ = A′(A1, A2) on E; this depends on ρ, L, λ and the Ak. It follows that A

′

is equal to Ak in Xk\Bb(xk) ⊆ X and that A′ is approximately mASD:

(3.1) ∥s(A′)∥Lp
δ(X,gL,λ) ≤ C(3.1)b

4/p

where C(3.1) is a constant independent of L, λ (see (7.2.36) in [5]). We will
refer to A′ as the preglued connection. We define the maps i and ι of Sec-
tion 2B.1 by taking Aref := A′.

Remark 3.2. Assume 2 < p < 4 and set p∗ = 4p/(4− p). By [5, Eq.
(7.2.37)], as b → 0, the connections A′

k converge in Lp∗

δ to Ak. In partic-
ular, by Remark 2.9, if Ak is irreducible, then so too is A′

k provided b is
sufficiently small. The stabilizer group of A′ is contained in that of A′

k and
so it follows that A′ is irreducible when either of A1 or A2 is irreducible and
b is sufficiently small.

On Xk, use the slice SL(Ak) defined by Ak and denote by H+
k := H+

Ak,δ
the cokernel of the linearized operator Dk := (Ds|SL(Ak))Ak

, as in (2.13). As
described in [5, p. 290], we can choose lifts

σk : H
+
k −→ Lp

δ(Ω
+(Xk))

so that the operator Dk ⊕ σk is surjective. Moreover, we can do this in such a
way that, for every v ∈ H+

k , the form σk(v) is supported in the complement
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of the ball B2b(xk). Set

H+ := H+
1 ⊕H+

2

and consider the linear map

σ := σ1 ⊕ σ2 : H
+ −→ Lp

δ(Ω
+(X), gL,λ).

Relative to the Lp
δ(X, gL,λ)-norm on H+, this map σ is bounded with a

bound independent of L and λ.

3B. Gluing two connections

The main result of this section is as follows.

Theorem 3.3. Assume 2 ≤ p < 4 and set p∗ = 4p/(4− p). Fix ρ, δ, thick-
ening data, and mASD connections A1, A2 as in Section 3A. Then there
are constants C,L, λ0 > 0 so that the following holds for each 0 < λ < λ0.

Let A′ = A′(A1, A2) be the preglued connection constructed from ρ, L, λ,
and the Ak.

(a) There is a Cm-map JA1,A2
: Lp

δ(Ω
+(X), gL,λ) → SL(A′) ⊆ A1,p(TΓ) that

satisfies JA1,A2
(0) = A′. The first m derivatives of ξ 7→ JA1,A2

(ξ) are
bounded in operator norm by a bound that is independent of λ.

(b) There is a linear map π : Lp
δ(Ω

+(X), gL,λ) → H+ satisfying σ ◦ π ◦ σ =
σ and

∥πξ∥H+ ≤ C∥ξ∥Lp
δ(X,gL,λ) ∀ξ ∈ Ω+(X).

(c) There is a unique 2-form ξ(A1, A2) ∈ Lp
δ(Ω

+(X)) so that

(3.4) ∥ξ(A1, A2)∥Lp
δ(X,gL,λ) ≤ Cb4/p

and so that the connection J (A1, A2) := JA1,A2
(ξ(A1, A2)) satisfies

(3.5) s(J (A1, A2)) = −σπξ(A1, A2).

In particular, for k = 1, 2 the connection J (A1, A2) is close to Ak on
Xk\BLλ1/2(xk) ⊆ X in the sense that

(3.6) ∥ι−1(J (A1, A2))− ι−1(Ak)∥L2
2(Nk)×Lp∗

δ (Xk\BLλ1/2 (xk))
≤ Cb4/p.

For the author's personal use only.

For the author's personal use only.



✐

✐

“3-Duncan” — 2024/11/28 — 17:05 — page 2216 — #30
✐

✐

✐

✐

✐

✐

2216 D. L. Duncan and I. Hambleton

If A1 and A2 are regular, then the connection J (A1, A2) is regular. In
this case, J (A1, A2) is mASD and the maps (A1, A2, ξ) 7→ JA1,A2

(ξ) and
(A1, A2) 7→ ξ(A1, A2) are both Cm-smooth, relative to the specified topologies.

If p > 2 and either A1 or A2 is irreducible, then so is J (A1, A2).

Before getting to the proof, we briefly discuss the maps appearing in this
theorem, and their analogues in the standard ASD theory; precise definitions
of these maps are given in the proof, below. First, the most interesting part
of the theorem is part (c), with parts (a) and (b) serving to set up (c). The
map π from (b) is a measure of the failure of A′ to be regular. It serves
the same role here and enjoys the same properties as the map of the same
name [5, pp. 290—291] in the ASD setting. As for J in (a), this map is
formed from a near-right inverse P of (Ds|SL(A′))A ⊕ σ, pre-composed by
an exponential map (see Claim 1 below for a precise statement). As an
example, in the special case where Γ is non-degenerate (so mASD = ASD)
the relevant space of connections is an affine space, and this exponential map
is simply given by the affine action. In this case, the map JA1,A2

simplifies
to JA1,A2

(ξ) = A′ + Pξ, just as in the usual ASD setting [5, p. 289].
The object J (A1, A2) is the glued connection we are after. Equation (3.5)

expresses the degree to which this connection is mASD. In particular, the
obstruction map mentioned in the introduction can be taken to be the map
(A1, A2) 7→ π ◦ ξ(A1, A2). Finally we mention that the diffeomorphism ι−1

appears in (3.6) only to make explicit the sense in which J (A1, A2) approx-
imates the Ak away from the gluing points.

The proof of Theorem 3.3 that we adopt relies on the following two
lemmas.

Lemma 3.7. Let S : B → B be a Cm-map on a Banach space B with S(0) =
0 and

(3.8) ∥S(ξ1)− S(ξ2)∥ ≤ κ(∥ξ1∥+ ∥ξ2∥)∥ξ1 − ξ2∥,

for some κ > 0 and all ξ1, ξ2 ∈ B1(0) ⊂ B in the unit ball. Then for each
η ∈ B with ∥η∥ < 1/(10κ), there is a unique ξ ∈ B with ∥ξ∥ ≤ 1/(5κ) such
that

ξ + S(ξ) = η.

Moreover, if η = η(a) depends Cm-smoothly on a parameter a, then the so-
lution ξ = ξ(a) depends Cm-smoothly on this parameter as well.
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Proof. The existence and uniqueness claims follow from the contraction
mapping principle and is carried out in [5, Lemma 7.2.23]. The Cm-smooth
dependence of ξ on a follows from, e.g., the discussion in [14, Section I.5]. □

The remaining lemma will be used to establish the nonlinear esti-
mate (3.8) in our mASD setting.

Lemma 3.9. Assume 2 ≤ p < 4 and set p∗ = 4p/(4− p). There is a con-
stant C(3.9) so that if L, λ > 0 are any constants for which the connected
sum X is defined, then

∥fg∥Lp
δ(X,gL,λ) ≤ C(3.9)∥f∥Lp∗

δ (X,gL,λ)
∥g∥Lp∗

δ (X,gL,λ)

for all real-valued functions f, g ∈ Lp∗

δ (X).

Proof. Writing X = X0 ∪ EndX, it suffices to show that there is a uniform
constant C so that

∥fg∥Lp(X0,gL,λ) ≤ C∥f∥Lp∗ (X0,gL,λ)
∥g∥Lp∗ (X0,gL,λ)

∥fg∥Lp
δ(EndX,gL,λ) ≤ C∥f∥Lp∗

δ (EndX,gL,λ)
∥g∥Lp∗

δ (EndX,gL,λ)
.

We begin with the estimate over EndX. Note that the metric gL,λ is inde-
pendent of L, λ over this region, so we do not need to worry about showing
that any such constant C is independent of L, λ. To obtain the estimate, use
the definition of the δ-dependent norms, together with Hölder’s inequality
to get

∥fg∥Lp
δ(EndX) = ∥etδ/2fg∥Lp(EndX)

= ∥(e−tδ/2etδ/2f)(etδ/2g)∥Lp(EndX)

≤ ∥e−tδ/2(etδ/2f)∥L4(EndX)∥e
tδ/2g∥Lp∗ (EndX).

Since 2 ≤ p < 4, we have 4 ≤ p∗ < ∞. Hence there is some 4 < r ≤ ∞ with
4−1 = r−1 + (p∗)−1. Then we can use Hölder’s inequality again to continue
the above:

∥fg∥Lp
δ(EndX) ≤ ∥e−tδ/2∥Lr(EndX)∥f∥Lp∗

δ (EndX)∥g∥Lp∗

δ (EndX).

Then the requisite estimate holds with C = ∥e−tδ/2∥Lr(EndX), which is
plainly finite.
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2218 D. L. Duncan and I. Hambleton

As for the estimate over X0, the same type of argument gives

∥fg∥Lp(X0,gL,λ) ≤ vol(X0, gL,λ)
1/r∥f∥Lp∗ (X0,gL,λ)

∥g∥Lp∗ (X0,gL,λ).

As discussed on p. 293 of [5], the condition p ≥ 2 implies that vol(X0, gL,λ)
can be taken to be independent of L, λ, provided Lλ1/2 is uniformly bounded
from above (which is necessarily the case whenever the connected sum is
defined). □

Proof of Theorem 3.3. Our intention is to apply Lemma 3.7. To do this, we
need to recast solving s(A) = 0 for A into solving an equation for a self-
mapping S of a Banach space. Ultimately, the Banach space will be the
codomain of the mASD operator s, and S will essentially be the quadratic
part of s.

We begin this process by passing to a local chart on A1,p(TΓ) (recall
from Section 2B.1 that this space of connections is generally not an affine
space). For this, write

A′ = ι(h′, V ′) = i(h′) + V ′

for (h′, V ′) ∈ Hout × Lp
1,δ(Ω

1(X)). Let exph′ : Bϵ(0) ⊂ Th′H → H be the ex-

ponential map associated to the L2
2(N)-metric on H := HΓ; here ϵ > 0 is

small enough so that the exponential is well-defined. This is all taking place
on the 3-manifold N , and so this exponential and this ϵ are manifestly in-
dependent of L, λ. Coupling this exponential on H with the exponential on
Ω1(X) given by the affine action, we obtain a map

exp(h′,V ′) : Bϵ(0)× Lp
1,δ

(
Ω1(X)

)
−→ H× Lp

1,δ

(
Ω1(X)

)

(η, V ) 7−→
(
exph′(η), V ′ + V

)
.

The chart for A1,p(TΓ) that we will use is ι ◦ exp(h′,V ′). We note that ι ◦

exp(h′,V ′) identifies the “slice” Bϵ(0)× Lp
1,δ(ker(d

∗,δ
A′ )) with a neighborhood

of A′ in SL(A′).

Remark 3.10. Throughout the proof that follows, we will work with the
L2
2(N)-norm on Th′H; we will often not keep track of this in the notation.

Note that this choice of norm is effectively immaterial since H is finite-
dimensional and so any two norms are equivalent, provided they are well-
defined.
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Consider the map

s̃ : Bϵ(0)× Lp
1,δ

(
ker(d∗,δA′ )

)
−→ Lp

δ

(
Ω+(X), gL,λ

)

(η, V ) 7−→ s
(
ι
(
exp(h′,V ′)(η, V )

))

which is the map s|SL(A′) relative to the chart just described. This satisfies
s̃(0, 0) = s(A′) and so (3.1) gives

(3.11) ∥s̃(0, 0)∥Lp(X,gL,λ) ≤ C(3.1)b
4/p.

Write (Ds̃)(η,V ) for the linearization of s̃ at (η, V ). As the following claim
indicates, the definition of σ implies that the operator (Ds̃)(0,0) ⊕ σ is sur-
jective.

Claim 1: For 2 ≤ p < 4, there are constants C(3.12), λ0 > 0, and L > 1, as
well as linear maps

P : Lp
δ(Ω

+(X), gL,λ) −→ Th′H× Lp
1,δ

(
ker(d∗,δA′ ), gL,λ

)

π : Lp
δ(Ω

+(X), gL,λ) −→ H+

so that P ⊕ π is a right inverse to (Ds̃)(0,0) ⊕ σ that, for all 0 < λ < λ0,
satisfies
(3.12)
∥(P ⊕ π)ξ∥(L2

2(N)×Lp∗

δ (X,gL,λ))⊕Lp
δ(X,gL,λ)

≤ C(3.12)∥ξ∥Lp
δ(X,gL,λ) ∀ξ ∈ Ω+(X).

This claim also has an extension to some p < 2; see Corollary 3.26 for
details. We will prove Claim 1 shortly. At the moment, we will show how we
use it to finish the proof of the theorem. To prove Theorem 3.3 (a), set

J(ξ) = JA1,A2
(ξ) := ι

(
exp(h′,V ′)(Pξ)

)
∈ SL(A′).

Clearly J(0) = A′ and J is an immersion near 0. That the derivatives of
J are bounded uniformly (λ-independent) follows from the fact that P is
uniformly bounded (by the claim) and the fact that the maps ι and exp(h′,V ′)

are uniformly bounded. The map in Theorem 3.3 (b) is the map π from
Claim 1.

We now prove Theorem 3.3 (c). Define S : Lp
δ(Ω

+(X), gL,λ) →
Lp
δ(Ω

+(X), gL,λ) by

S(ξ) := s̃(Pξ)− (Ds̃)(0,0)Pξ − s̃(0, 0).

This is Cm and is the nonlinear part of the map s̃ ◦ P . The following claim
says that this map satisfies the requisite nonlinear estimates.
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Claim 2: The map S satisfies the hypotheses of Lemma 3.7 with a constant
κ that is independent of 0 < λ < λ0.

Once again, we defer the proof of this claim until after we have finished
the argument for Theorem 3.3. It follows from Claim 2, Lemma 3.7, and
the estimate (3.11) that, provided λ is sufficiently small, there is a unique
ξ = ξ(A1, A2) ∈ Lp

δ(Ω
+) satisfying

(3.13) ξ + S(ξ) = −s̃(0, 0) and ∥ξ∥Lp
δ(X) ≤ 1/(5κ).

Setting ∥ · ∥Lp
δ
:= ∥ · ∥Lp

δ(X,gL,λ) and using (3.8), we get

∥ξ∥Lp
δ
≤ ∥s̃(0, 0)∥Lp

δ
+ ∥S(ξ)∥Lp

δ
≤ C(3.1)b

4/p +
1

5
∥ξ∥Lp

δ
.

This implies the requisite estimate on ξ. Unraveling the definitions, we also
have

s(J (A1, A2)) = s̃(Pξ) = s̃(0, 0) + (Ds̃)(0,0)Pξ + S(ξ)

= −ξ + (Ds̃)(0,0)Pξ = −σπξ,

where J (A1, A2) := J(ξ), by definition. This finishes the proof of (c).
To prove (3.6), note that

ι−1(J (A1, A2))− ι−1(A′) = exp(h′,V ′)(Pξ)− exp(h′,V ′)(0).

From our definition of the exponential appearing on the right, we see that
the difference exp(h′,V ′)(Pξ)− exp(h′,V ′)(0) equals Pξ plus some higher order
terms supported only on the center manifold component, and thus in a
component with a norm independent of λ. In particular, since ξ is small,
these higher order terms can be uniformly controlled to yield a uniform first
order estimate of the form

∥ι−1(J (A1, A2))− ι−1(A′)∥L2
2(N)×Lp∗

δ (X,gL,λ)
≤ C1∥Pξ∥L2

2(N)×Lp∗

δ (X,gL,λ)
.

We can then combine this with (3.12) to get

(3.14) ∥ι−1(J (A1, A2))− ι−1(A′)∥L2
2(N)×Lp∗

δ (X,gL,λ)

≤ C1C(3.12)∥ξ∥Lp
δ(X,gL,λ) ≤ C2b

4/p

where the second inequality comes from the estimates of the previous para-
graph. The estimate (3.6) follows from this and the fact that Ak agrees with
A′ = A′(A1, A2) on Xk\BLλ1/2(xk).

For the author's personal use only.

For the author's personal use only.



✐

✐

“3-Duncan” — 2024/11/28 — 17:05 — page 2221 — #35
✐

✐

✐

✐

✐

✐

Existence of mASD connections 2221

When the Ak are regular, the map π is the zero map so J (A1, A2)
is automatically mASD by (3.5). In this case, the operator (Dι)(h′,V ′) ◦ P
is a right inverse to (Ds|SL(A′))A′ , essentially by definition; in particular,
(Ds|SL(A′))A′ is surjective. Thus (Ds|SL(A))A is surjective whenever A is
close to A′. In particular, by (3.14), this is the case with A = J (A1, A2) and
so J (A1, A2) is regular. The Cm-smooth dependence of J on the Ak follows
from Remark 3.19 (a) below, and the Cm-smoothness of ξ follows from the
Cm-smoothness assertion of Lemma 3.7.

Finally, assume A1 or A2 is irreducible (assume p > 2 so this term is
defined). It follows from Remark 3.2 that A′ is irreducible as well. The
irreducibility of J (A1, A2) then follows from (3.14) and Lemma 2.8.

To finish the proof of Theorem 3.3, it therefore suffices to verify the
claims; we begin with Claim 1. Let Hk be the space Hout for the connection
Γk, and set

hk = pT (Ak) ∈ Hk

where pT is the map from Section 2B.1. Similar to what we did above over
X, for each k, we can form a map

s̃k : Thk
Hk × Lp

1,δ(ker(d
∗,δ
Ak

)) −→ Lp
δ(Ω

+(Xk))

by precomposing s with ι and the exponential exphk
for Hk based at hk.

Linearizing at (0, 0), and coupling with σk, we obtain a bounded linear map

D̃k := (Ds̃k)(0,0) ⊕ σk :
(
Thk

Hk × Lp
1,δ

(
ker(d∗,δAk

)
))

⊕H+
k −→ Lp

δ(Ω
+(Xk)).

This is surjective by the construction of σk. Standard elliptic theory for
δ-decaying spaces [15] and the finite-dimensionality of Hk imply that D̃k

restricts to a bounded map of the form

D̃k :
(
Thk

Hk × Lp
ℓ+1,δ

(
ker(d∗,δAk

)
))

⊕H+
k −→ Lp

ℓ,δ(Ω
+)

for each ℓ ≥ 0, and this restriction remains surjective. In particular, the
“Laplacian”

D̃kD̃
∗,δ
k : Lp

2,δ(Ω
+) −→ Lp

δ(Ω
+)

is a Banach space isomorphism, where D̃∗,δ
k is the adjoint of D̃k relative to

the δ-decaying L2-inner products on the domain and codomain. It follows
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from these observations that the formula

Pk := D̃∗,δ
k

(
D̃kD̃

∗,δ
k

)−1
: Lp

δ(Ω
+) −→

(
Thk

Hk × Lp
1,δ

(
ker(d∗,δAk

)
))

⊕H+
k

defines a bounded right inverse for D̃k. Coupling this with the embedding
Lp
1,δ →֒ Lp∗

δ it follows that there is a constant ck with

(3.15) ∥Pkξ∥(L2
2(Nk)×Lp∗

δ (Xk))⊕Lp
δ(Xk)

≤ ck∥ξ∥Lp
δ(Xk), ∀ξ ∈ Ω+(Xk).

The argument at this stage is almost identical to that given in [5, Section
7.2.3] (see also [5, Prop. 7.2.18]); however, we supply some of the details
since we will refer to them below. Following [5, p. 288], the operators P1, P2

can be glued together to produce an operator

Q : Lp
δ

(
Ω+(X), gL,λ

)
−→

(
Th′H× Lp

1,δ

(
Ω1(X), gL,λ

))
⊕H+

that satisfies

∥Qξ∥(L2
2(N)×Lp∗

δ (X,gL,λ))⊕Lp
δ(X,gL,λ)

≤ (c1 + c2)∥ξ∥Lp
δ(X,gL,λ), ∀ξ ∈ Ω+(X).

Somewhat more explicitly, we have

Q = β1P1γ1 + β2P2γ2

where the {β1, β2} and {γ1, γ2} are partitions of unity on X. The only prop-
erty we need about these partitions is that the derivatives∇βk are supported
in the gluing region and satisfy ∥∇βk∥L4(X) → 0 as L → ∞ and b → 0. For
future reference we note that since A′ equals the Ak away from the gluing
region and the Pk take values in the Ak-slice, there is a uniform constant C3

so that

(3.16) ∥d∗,δA′ Qξ∥Lp
δ
≤ C3(∥∇β1∥L4 + ∥∇β2∥L4)∥Qξ∥Lp∗

δ
.

It also follows that Q is an approximate right inverse to (Ds̃)(0,0) ⊕ σ in the
sense that (

(Ds̃)(0,0) ⊕ σ
)
◦Q = I +R

for some R satisfying

∥R(ξ)∥Lp
δ
≤ ϵ(L, b, p)∥ξ∥Lp

δ

where ϵ(L, b, p) → 0 as L → ∞ and b → 0 (the assumption p ≥ 2 is used here
to establish this decay property for ϵ(L, b, p), see [5, pp. 293,294]).
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At this stage, Donaldson and Kronheimer [5] take their right inverse to
be Q(I +R)−1. However, this is not sufficient for us since we want our right
inverse to take values in the slice, and the operator Q(I +R)−1 generally
does not. We thus want to modify the construction above, and we do this
by simply projecting to the slice. Specifically, let Π be the L2

δ-orthogonal

projection of Ω1(X) to the kernel of d∗,δA′ (note that d∗,δA′ is injective on the
image of I −Π). This projection Π extends to the codomain of Q by acting
on the Ω1(X)-factor only. Thus, the map

Q̃ := Π ◦Q

takes values in the slice. We want to use this Q̃ in place of Q, but for this we
need to port the estimates on Q over to Q̃. To achieve this goal, note that the
difference Q− Q̃ takes values in the image of I −Π, on which the operator
d∗,δA′ is injective. From this we have the following Sobolev-type estimate

∥Qξ − Q̃ξ∥(L2
2(N)×Lp∗

δ (X,gL,λ))⊕Lp
δ(X,gL,λ)

≤ C4∥d
∗,δ
A′ (Qξ − Q̃ξ)∥Lp

δ

for all ξ ∈ Lp
δ(Ω

+(X)). As in [5, Section 7.2.3], our range restriction on p
implies that this constant C4 can be taken to be uniform in the neck-scaling
parameter b. By construction, Q̃ takes values in the kernel of d∗,δA′ and so we
can combine the above with (3.16) to get

(3.17) ∥Qξ − Q̃ξ∥(L2
2(N)×Lp∗

δ (X,gL,λ))⊕Lp
δ(X,gL,λ)

≤ C3C4(∥∇β1∥L4 + ∥∇β2∥L4)∥Qξ∥Lp∗

δ

By taking L large and b sufficiently small, we can now transfer our estimate
from Q to Q̃ to conclude that Q̃ is uniformly bounded and is an approximate
right inverse to (Ds̃)(0,0) ⊕ σ in the sense that

((Ds̃)(0,0) ⊕ σ) ◦ Q̃ = I + R̃

for some R̃ satisfying

(3.18) ∥R̃(ξ)∥Lp
δ
≤ ϵ̃(L, b, p)∥ξ∥Lp

δ

where ϵ̃(L, b, p) → 0 as L → ∞ and b → 0. The whole point, of course, is
that

Q̃ : Lp
δ

(
Ω+(X), gL,λ

)
−→

(
Th′H× Lp

1,δ

(
ker(d∗,δA′ )

))
⊕H+

takes values in the slice where Q may not have.
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Choose L > 1, λ0 > 0 so that ϵ̃(L, 4Lλ
1/2
0 , p) < 1/3 and C3C4(∥∇β1∥L4 +

∥∇β2∥L4) < 1. Then Q̃(I + R̃)−1 is a right inverse to D̃ ⊕ σ and has oper-
ator norm at most 3(c1 + c2 + 1). Then we can write this right inverse as
Q̃(I + R̃)−1 = P ⊕ π, where the splitting corresponds to the direct sum de-
composition of the codomain of Q̃. The estimate (3.12) immediately follows,
so this finishes the proof of Claim 1.

Remark 3.19. (a) It is not hard to show from the construction outlined
in [5] that, when the Ak are regular, then the right inverse P depends Cm-
smoothly on the Ak. The key observation here is that, though many choices
have been made in this construction (e.g., cutoff functions), the only ones
that depend on the Ak are the choices of σk, but these can be taken to be
zero when the Ak are regular.

(b) By construction, the connection J (A1, A2) of Theorem 3.3 naturally
belongs to two slices: The one centered at itself, and the one centered at A′.

Now we move on to prove Claim 2. Fix L, λ0 as in Claim 1 and we assume
λ ∈ (0, λ0). We clearly have S(0) = 0, so it suffices to show that S satisfies
the quadratic estimate (3.8) for a uniform constant κ. For this, note that by
Lemma 2.2 and Taylor’s Theorem, we can write

i(exph′(η)) = i(h′) + (Di)h′η + qh′(η)

where qh′ : Th′H → Lp
1,loc(X) ∩ C0(X) vanishes to first order. Since Hout is

finite-dimensional, we can quantify this relative to any metric with respect
to which the terms are well-defined. In particular, there is a constant C(3.20)

so that
(3.20)

∥qh′(η1)− qh′(η2)∥C0(X) ≤ C(3.20)(∥η1∥L2
2(N) + ∥η2∥L2

2(N))∥η1 − η2∥L2
2(N)

for all η1, η2 in the unit ball in Th′H. Note that qh′(η) need not decay to zero
down the ends of X since i(h′) and i(exph′(η)) generally do not converge to
the same connection at infinity. However, on the compact part we have

(3.21) qh′(η)|X0
= 0.

Indeed, on X0 the connection i(h) equals the reference connection for all
h ∈ Hout, and i vanishes to all but the zeroth order on X0.
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To verify (3.8), fix ξ1, ξ2 ∈ Lp
δ(Ω

+(X), gλ) with ∥ξj∥Lp
δ
≤ 1 and set

(ηj , Vj) := Pξj ∈ Th′H× Lp
1,δ(Ω

1(X)).

Then using the definition of S and the formula (2.11), we can write

S(ξj) =
1

2
[Vj ∧ Vj ]

+ +
1− β′

2

[(
(Di)h′ηj + qh′(ηj)

)
∧
(
(Di)h′ηj + qh′(ηj)

)]+
(3.22)

+ (1− β′)d+i(h′)qh′(ηj) +
[
V ′ ∧ qh′(ηj)

]+

+ [Vj ∧ qh′(ηj)]
+ + [Vj ∧ (Di)h′ηj ]

+ .

(These are the higher order terms in the mASD operator s, expressed in
terms of Vj and ηj .) It suffices to show that each term on the right satisfies
an estimate of the form (3.8). Below we set ∥ · ∥Lp

δ
:= ∥ · ∥Lp

δ(X,gλ).
We begin with the first term on the right of (3.22). This shows up in

the ASD setting as well (see [5, p. 289]), but our argument is a bit more
involved due to the non-compactness of X. For this, we use Lemma 3.9 to
get

1

2

∥∥ [V1 ∧ V1]
+ − [V2 ∧ V2]

+
∥∥
Lp

δ

=
1

2

∥∥ [(V1 + V2

)
∧
(
V1 − V2

)]+ ∥∥
Lp

δ

≤ cg

∥∥|V1 + V2||V1 − V2|
∥∥
Lp

δ

≤ cgC(3.9)

(
∥V1∥Lp∗

δ
+ ∥V2∥Lp∗

δ

)
∥V1 − V2∥Lp∗

δ

where cg is defined by

(3.23) cg := sup
(ν1,ν2,ν3)

|⟨ν1, [ν2, ν3]⟩|

with the supremum running over all νj ∈ g with |νj | = 1. Since Vj is a com-
ponent of Pξj , we can then use the estimate of Claim 1 to continue the
above and get

1

2

∥∥ [V1 ∧ V1]
+ − [V2 ∧ V2]

+
∥∥
Lp

δ

≤ cgC(3.9)C
2
(3.12)

(
∥ξ1∥Lp

δ
+ ∥ξ2∥Lp

δ

)
∥ξ1 − ξ2∥Lp

δ

which is the desired estimate.
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Now we move on to the second term in (3.22). Set r(η) := (Di)h′η +
qh′(η), so we want to bound the Lp

δ-norm of

1− β′

2

(
[r(η1) ∧ r(η1)]

+ − [r(η2) ∧ r(η2)]
+
)

=
1− β′

2

[(
r(η1) + r(η2)

)
∧
(
r(η1)− r(η2)

)]+

in terms of the right-hand side of (3.8). Note that this is supported on
the compact cylinder Cyl0 := [T − 1/2, T + 1/2]×N , and so its Lp

δ-norm is
bounded by a constant times

( 2∑

j=1

∥r(ηj)∥Lp∗

δ (Cyl0)

)
∥r(η1)− r(η2)∥Lp∗

δ (Cyl0)

≤ ∥etδ/2∥2Lp∗ (Cyl0)

( 2∑

j=1

∥r(ηj)∥C0(Cyl0)

)
∥r(η1)− r(η2)∥C0(Cyl0)

By Lemma 2.2, this is bounded by a constant times

(
∥η1∥L2

2(N) + ∥η2∥L2
2(N)

)
∥η1 − η2∥L2

2(N)

≤ C2
(3.12)

(
∥ξ1∥Lp

δ
+ ∥ξ2∥Lp

δ

)
∥ξ1 − ξ2∥Lp

δ
.

as desired.
The estimate for the third term (1− β′)d+i(h′)qh′(ηj) is similar and we

leave it to the reader. Moving on to the fourth term in (3.22), recall from
(3.21) that qh′(ηj) vanishes on X0. This observation combines with (3.20)
and then Claim 1 to give

∥∥ [V ′ ∧ qh′(η1)]
+ − [V ′ ∧ qh′(η2)]

+
∥∥
Lp

δ

=
∥∥ [V ′ ∧

(
qh′(η1)− qh′(η2)

)]+ ∥∥
Lp

δ(EndX)

≤ cg∥V
′∥Lp

δ(EndX)∥qh′(η1)− qh′(η2)∥C0(EndX)

≤ cgC(3.20)∥V
′∥Lp

δ(EndX)

(
∥η1∥L2

2(N) + ∥η2∥L2
2(N)

)
∥η1 − η2∥L2

2(N)

≤ cgC(3.20)C
2
(3.12)∥V

′∥Lp
δ(EndX)

(
∥ξ1∥Lp

δ
+ ∥ξ2∥Lp

δ

)
∥ξ1 − ξ2∥Lp

δ
.

This is the desired estimate for this term because ∥V ′∥Lp
δ(EndX) is plainly

independent of λ and the ξj .
The remaining two terms are the most difficult to bound. This is because

(i) these terms involve both the infinite-dimensional terms Vi as well as the
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finite-dimensional terms qh′(ηj) and (Di)h′ηj , and (ii) neither of these finite-
dimensional terms generally decays to zero at infinity (nor do the differences
qh′(η1)− qh′(η2) and (Di)h′η1 − (Di)h′ηj). The main estimate we need is the
following, which we will see is equivalent to the fact that the operator d+A′

is Fredholm (on the appropriate spaces) with our choice of δ.

Claim 3: There is some T1 ≫ T + 3/2 and a constant C(3.24) so that

(3.24) ∥V ∥Lp
δ([T1,∞)×N) ≤ C(3.24)∥d

+
A′V ∥Lp

δ([T1−1,∞)×N)

for all V ∈ Lp
1,δ(Ω

1(X)) with d∗,δA′ V |[T1−1,∞)×N = 0.

We prove Claim 3 after we finish our estimates for the last two terms
in (3.22). The argument we give applies to both of these last two terms, so
we focus on establishing the estimate for the second-to-last term:

[V1 ∧ qh′(η1)]
+ − [V2 ∧ qh′(η2)]

+

=
1

2

( [(
V1 − V2

)
∧
(
qh′(η1) + qh′(η2)

)]+

+
[(
V1 + V2

)
∧
(
qh′(η1)− qh′(η2)

)]+ )
.

It suffices to bound the Lp
δ-norm of each term on the right by the right-hand

side of (3.8); we will carry this out for [V1 + V2 ∧ qh′(η1)− qh′(η2)]
+, the

other term is similar. Since the qh′(ηj) are supported on EndX, we do not
need to worry whether our constants are λ-dependent. With T1 as in Claim
3, write

(3.25)
∥∥ [(V1 + V2

)
∧
(
qh′(η1)− qh′(η2)

)]+ ∥∥
Lp

δ

≤
(∥∥ [(V1 + V2

)
∧
(
qh′(η1)− qh′(η2)

)]+ ∥∥
Lp

δ([0,T1]×N)

+
∥∥ [(V1 + V2

)
∧
(
qh′(η1)− qh′(η2)

)]+ ∥∥
Lp

δ([T1,∞)×N)

)
.

Set Cyl1 := [0, T1]×N and estimate the first term on the right as follows:

∥∥ [(V1 + V2

)
∧
(
qh′(η1)− qh′(η2)

)]+ ∥∥
Lp

δ(Cyl1)

≤ cg

(
∥V1∥Lp∗

δ (Cyl1)
+ ∥V2∥Lp∗

δ (Cyl1)

)
∥qh′(η1)− qh′(η2)∥L4

δ(Cyl1)

≤ cg∥e
tδ/2∥L4(Cyl1)

(
∥V1∥Lp∗

δ
+ ∥V2∥Lp∗

δ

)
∥qh′(η1)− qh′(η2)∥C0(Cyl1)

≤ cgC(3.20)C
3
(3.12)∥e

tδ/2∥L4(Cyl1)

(
∥ξ1∥Lp

δ
+ ∥ξ2∥Lp

δ

)2
∥ξ1 − ξ2∥Lp

δ
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which is the desired estimate for this terms since we have assumed ∥ξj∥Lp
δ
≤

1, and so

(∥ξ1∥Lp
δ
+ ∥ξ2∥Lp

δ
)2 ≤ 2(∥ξ1∥Lp

δ
+ ∥ξ2∥Lp

δ
).

As for the remaining term on the right of (3.25), note that it is bounded by
a constant times

(
∥V1∥Lp

δ([T1,∞)×N) + ∥V2∥Lp
δ([T1,∞)×N)

)
∥qh′(η1)− qh′(η2)∥C0([T1,∞)×N)

≤ C(3.20)C
2
(3.12)

(
∥V1∥Lp

δ([T1,∞)×N) + ∥V2∥Lp
δ([T1,∞)×N)

)

× (∥ξ1∥Lp
δ
+ ∥ξ2∥Lp

δ
)∥ξ1 − ξ2∥Lp

δ
.

We will therefore be done with the proof of Claim 2 if we can show that the
terms ∥Vj∥Lp

δ([T1,∞)×N) are bounded. For this, note that the linearization of
s̃ can be written as

(Ds̃)(0,0)(η, V ) = d+A′

(
(Di)h′η + V

)
− β′d+i(h′)(Di)h′η

= d+A′V + (1− β′)d+i(h′)(Di)h′η + [V ′ ∧ (Di)h′η]+ .

Note also that, by the definition of P , the 1-form Vj lies in the kernel of d∗,δA′ .
We can therefore use Claim 3 and the above formula for (Ds̃)(0,0) to write

∥Vj∥Lp
δ([T1,∞)×N) ≤ C(3.24)∥d

+
A′Vj∥Lp

δ([T1−1,∞)×N)

≤ C(3.24)

(
∥(Ds̃)(0,0)(ηj , Vj)∥Lp

δ
+ ∥

[
V ′ ∧ (Di)h′ηj

]+
∥Lp

δ

)

where we also used the fact that β′ = 1 on [T1 − 1,∞)×N . Since (ηj , Vj) =
Pξj and P ⊕ π is a right-inverse for (Ds̃)(0,0) ⊕ σ, we can continue this as

≤ C(3.24)

(
∥ξj∥Lp

δ
+ ∥σπξj∥Lp

δ
+ cg∥V

′∥Lp
δ
∥(Di)h′ηj∥C0

)

≤ C(3.24)

(
1 + Cσπ + cgC(Di)h′

∥V ′∥Lp
δ
∥ηj∥L2

2(N)

)

≤ C(3.24)

(
1 + Cσπ + cgC(Di)h′

C(3.12)∥V
′∥Lp

δ

)

where Cσπ and C(Di)h′
are the operator norms of σπ and (Di)h′ , respectively

(we are viewing the latter as a map L2
2(N) → C0(X); see Lemma 2.2 and

the definition of i). This is the uniform bound we are after, and thus finishes
the proof of Claim 2.
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Finally, we prove Claim 3. Let h′T : [T,∞) → Hout denote the flow of the
trimmed vector field Ξtr with h′T (T ) = h′. Let

h′∞ := lim
t→∞

h′T (t) ∈ Hout

be the limiting connection of this flow. This is a connection on N , but
we will view it as a connection on EndX = [0,∞)×N that is constant in
the t-direction. Let X be the Lp

1,δ-completion of the space of 1-forms on X

supported on EndX, and let Y be the Lp
δ-completion of the elements of

Ω+ ⊕ Ω0 supported on EndX (so the elements of X and Y vanish on the
compact part). Then the map

d+h′

∞

⊕ d∗,δh′

∞

: X −→ Y

is bounded and elliptic. We have assumed that δ/2 is not in the spectrum
of − ∗ dh, so it follows that the above operator has trivial kernel (it also
has trivial cokernel, though we do not need this). In particular, there is a
constant C5 so that

∥V ∥Lp
δ
≤ ∥V ∥Lp

1,δ
≤ C5

(
∥d+h′

∞

V ∥Lp
δ
+ ∥d∗,δh′

∞

V ∥Lp
δ

)

for all V ∈ X . The connection A′ is C0-asymptotic to h′∞. In particular, we
can choose T1 large enough so that

∥A′ − h′∞∥C0([T1−1,∞)×N) < 1/(6cgC4).

Then if V ∈ X is supported on [T1 − 1,∞)×N and in the kernel of d∗,δA′ we
have

∥V ∥Lp
δ([T1−1,∞)×N) ≤ C5

(
∥d+h′

∞

V ∥Lp
δ([T1−1,∞)×N) + ∥d∗,δh′

∞

V ∥Lp
δ([T1−1,∞)×N)

)

= C5

(∥∥d+A′V +
[(
h′∞ −A′

)
∧ V

]+ ∥∥
Lp

δ([T1−1,∞)×N)

+
∥∥ [(h′∞ −A′

)
∧ ∗V

] ∥∥
Lp

δ([T1−1,∞)×N)

)

≤ C5∥d
+
A′V ∥Lp

δ([T1−1,∞)×N) +
1

3
∥V ∥Lp

δ([T1−1,∞)×N).

Then Claim 3 follows (with C(3.24) := 3C5/2) from this estimate and a cutoff
function. □

For the author's personal use only.

For the author's personal use only.



✐

✐

“3-Duncan” — 2024/11/28 — 17:05 — page 2230 — #44
✐

✐

✐

✐

✐

✐

2230 D. L. Duncan and I. Hambleton

3C. Extensions to p < 2

In our existence result of Section 6C, we will need extensions to p < 2 of the
estimates (3.4) and (3.12); we state and prove the relevant extensions here.
In fact, all we will need is an extension to p = 4/3 (so p∗ = 2); we leave any
more general extensions to the interested reader. Throughout this section,
we fix data as in the statement of Theorem 3.3.

For the first result, let L > 1, λ0 > 0, and P ⊕ π be as in the statement
of Claim 1 appearing in the proof of Theorem 3.3.

Corollary 3.26. There is a constant C so the following holds for all 0 <
λ < λ0 and ξ ∈ Ω+(X):

∥(P ⊕ π)ξ∥(L2
2(N)×L2

δ(X,gL,λ))⊕L
4/3
δ (X,gL,λ)

≤ C∥ξ∥L4/3
δ (X,gL,λ)

.

Proof. We refer to the notation established in the proof of Claim 1. Momen-
tarily suppressing Sobolev completions, let

(P ⊕ π)∗,δ :
(
Th′H× ker(d∗,δA′ )

)
⊕H+ −→ Ω+(X)

be the formal adjoint of P ⊕ π, relative to the L2
δ-inner product onX. By the

duality isometries (L2
δ(X))∗ ∼= L2

δ(X), (L4
δ(X))∗ ∼= L

4/3
δ (X), and (L2

2(N))∗ ∼=
L2
−2(N), we will be done if we can establish a uniform bound of the form

∥(P ⊕ π)∗,δ(η, V, µ)∥L4
δ(X) ≤ C1

(
∥η∥L2

−2(N) + ∥V ∥L2
δ(X) + ∥µ∥L4

δ(X)

)
.

Since Th′H is finite-dimensional, there is a bound of the form ∥η∥L2
2(N) ≤

C2∥η∥L2
−2(N) for all η ∈ Th′H. It therefore suffices to show

(3.27) ∥(P ⊕ π)∗,δ(η, V, µ)∥L4
δ(X) ≤ C3

(
∥η∥L2

2(N) + ∥V ∥L2
δ(X) + ∥µ∥L4

δ(X)

)

for a uniform constant C3. This is precisely the estimate of Claim 1, except
with the adjoint operator (P ⊕ π)∗,δ in place of P ⊕ π. We will show that
the proof of Claim 1 can be sufficiently modified to hold for this adjoint.

Towards this end, note that the adjoint of Pk = D̃∗,δ
k (D̃kD̃

∗,δ
k )−1 is given

by P ∗,δ
k = (D̃kD̃

∗,δ
k )−1D̃k and so satisfies

∥P ∗,δ
k (ηk, Vk, µk)∥L4

δ(Xk) ≤ ck
(
∥ηk∥L2

2(Nk) + ∥Vk∥L2
δ(Xk) + ∥µk∥L4

δ(Xk)

)
.
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Just as before, these can be glued together to form an operator Q∗,δ that
satisfies

(3.28) ∥Q∗,δ(η, V, µ)∥L4
δ(X) ≤ (c1 + c2)

(
∥η∥L2

2(N) + ∥V ∥L2
δ(X) + ∥µ∥L4

δ(X)

)
.

Moreover, it is not hard to see that this gluing can be done so that Q∗,δ is
exactly the formal L2

δ-adjoint of the operator Q appearing in the proof of

Claim 1. It follows that the formal L2
δ-adjoint of Q̃ is the restriction of Q∗,δ

to the slice (this just restricts V to line in the kernel of d∗,δA′ ).

Then the defining formula P ◦ π = Q̃(I + R̃)−1 implies

(3.29) (P ◦ π)∗ = (I + R̃∗,δ)−1Q̃∗,δ

where R̃∗,δ is the formal adjoint of R̃ and so satisfies ∥R̃∗,δξ∥L2
δ(X) =

∥R̃ξ∥L2
δ(X). Then the estimate (3.27) follows from (3.29), (3.28),

and (3.18). □

For the second and last of the extensions we need, let ξ(A1, A2) ∈
L2
δ(Ω

+(X)) be as in the conclusion of Theorem 3.3 (c).

Corollary 3.30. There are C, λ′
0 > 0, so that if 0 < λ < λ′

0 then

∥ξ(A1, A2)∥L4/3
δ (X,gL,λ)

≤ Cλ3/2.

Proof. Setting ξ := ξ(A1, A2), the identity in (3.13) gives

∥ξ∥L4/3
δ (X) ≤ ∥s̃(0, 0)∥L4/3

δ (X) + ∥S(ξ)∥L4/3
δ (X).

The estimate (3.1) holds with p = 4/3, so the same is true of (3.11); that is,

∥s̃(0, 0)∥L4/3
δ (X) ≤ C1b

3

for a uniform constant C1, where b = 4Lλ1/2. To estimate S(ξ), note that
the formula (3.22) implies that S(ξ) is quadratically bounded in Pξ. Then
we can argue as we did in the proof of Claim 2, but use Hölder’s inequality
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∥fg∥L4/3
δ

≤ ∥f∥L4
δ
∥g∥L2 , to get a uniform estimate of the form

∥S(ξ)∥L4/3
δ (X) ≤ C2∥Pξ∥L4

δ(X)∥Pξ∥L2
δ(X).

By (3.12) and Corollary 3.26, this implies

∥S(ξ)∥L4/3
δ (X) ≤ C3∥ξ∥L2

δ(X)∥ξ∥L4/3
δ (X).

It follows from (3.4) that we can assume ∥ξ∥L2
δ(X) < (2C3)

−1, provided λ > 0
is sufficiently small. In summary, this implies

∥ξ∥L4/3
δ (X) ≤ C1b

3 +
1

2
∥ξ∥L4/3

δ (X)

from which the corollary follows with C = 128L3C1. □

4. Gauge fixing and the mASD condition

In the next section, we will find ourselves in the situation where we have an
mASD connection A and a nearby connection Aref . We will want to find
a gauge transformation u so that u∗A is in the Coulomb slice of Aref . The
issue is that, due to the failure of the mASD equation to be gauge invariant,
the connection u∗A will no longer be mASD. Nevertheless, we will show in
this section that, when A is regular, the connection u∗A is close to a unique
mASD connection that lies in the Aref -Coulomb slice. This is made precise
in Theorem 4.5, which extends the discussion to handle connections A that
are not regular by means of an obstruction map. To accomplish this, we
first prove a general gauge fixing result that is tailored to our setting; this
is stated in Proposition 4.3.

4A. Gauge fixing

We begin by refining our choices of δ and the cut-off function β used to create
Hout. For the former, we assume δ2/4 is not in the spectrum of the Laplacian
∆ on real-valued functions. It then follows from Sobolev embedding that,
for each 1 < q < 4, there is a constant cq so that

(4.1) ∥f∥Lq
δ(X) + ∥f∥Lq∗

δ (X) ≤ cq∥df∥Lq
δ(X)

for all compactly supported real-valued smooth functions f , where q∗ =
4q/(4− q) is the Sobolev conjugate.
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As for the cutoff function β : H → [0, 1], we assume this is chosen so that
it has small support in the sense that

(4.2) sup
h,h0∈supp(β)

∥h− h0∥C0(N) + ∥Θ(h)−Θ(h0)∥C0(N) <
1

2c2cg

where cg is the constant from (3.23) and c2 is the constant from (4.1) with
q = 2.

The main gauge fixing result we will need is as follows.

Proposition 4.3. Fix 2 < p < 4, set p∗ = 4p/(4− p), and assume δ, β are
as above. There are constants C, ϵ > 0 so that if A = ι(h, V ) and Aref =
ι(href , Vref ) are in A1,p(TΓ) and satisfy

∥V − Vref∥Lp∗

δ (X) + ∥d∗,δAref
(V − Vref )∥Lp

δ(X) < ϵ

then there is a unique µ = µ(A,Aref ) ∈ Lp
2,δ(Ω

0(X)) so that

exp(µ)∗A ∈ SL(Aref ), and ∥d∗,δAref
dAµ∥Lp

δ(X) ≤ C∥d∗,δAref
(V − Vref )∥Lp

δ(X).

Moreover, this 0-form µ(A,Aref ) depends C
m-smoothly on the pair (A,Aref ).

Proof. We will show below that

∥µ∥X := ∥d∗,δAref
dAµ∥Lp

δ(X)

defines a norm on the space Ω0(X) of smooth rapidly decaying adjoint
bundle-valued 0-forms. Assuming this for now, we denote by X the com-
pletion of Ω0(X) relative to ∥ · ∥X . Let Y be the completion of Ω0(X), but
relative to the norm ∥ · ∥Y := ∥ · ∥Lp

δ(X). Since p > 2, the map

F : A1,p(TΓ)×A1,p(TΓ)×X −→ Y

(A,Aref , µ) 7−→ d∗,δAref
(u∗A− i(p(u∗A))− Vref )

is Cm-smooth, where we have set u = exp(µ) ∈ G2,p
δ . Note that, relative to

the product structure given by ι via (2.5), the quantity u∗A− i(p(u∗A)) is
the Lp

1,δ(Ω
1(X))-component (i.e., non-center manifold-component) of u∗A,

and so u∗A ∈ SL(Aref ) for u = exp(µ) if and only if F(A,Aref , µ) = 0. It
therefore suffices to solve F(A,Aref , µ) = 0 for µ. For this, we have that
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µ = 0 is an approximate solution since

F(A,Aref , 0) = d∗,δAref
(V − Vref )

which we have assumed is bounded by ϵ. The linearization in the third
component of F at (A,Aref , 0) is the operator

µ 7−→ d∗,δAref
dAµ.

This has operator norm 1 relative to the norms on X and Y. In particular, it
is invertible and so the proposition follows from the inverse function theorem
(e.g., precompose F in the third component with the inverse of d∗,δAref

dA and
then use Lemma 3.7).

All that remains is to show that ∥ · ∥X defines a norm; it suffices to show
that the operator

d∗,δAref
dA : Lp

2,δ −→ Lp
δ

is injective. For this, suppose µ lies in its kernel and let (·, ·)δ be the δ-
dependent L2-inner product. Note that µ ∈ L2

1,δ by Sobolev’s embedding

theorem Lp
2 →֒ L2

1 on cylindrical end 4-manifolds [4, Prop. 3.20]. This justi-
fies the following computation:

0 = (d∗,δAref
dAµ, µ)δ = (dAµ, dAref

µ)δ

= ∥dAref
µ∥2L2

δ
+
([(

A−Aref

)
, µ

]
, dAref

µ
)
δ
.

Hence

∥dAref
µ∥L2

δ
≤

∥∥∥
[(
A−Aref

)
, µ

]∥∥∥
L2

δ

.

The definition of ι gives A−Aref = β′′(h− href + (Θ(h)−Θ(href ))dt) +
V − Vref . Then Hölder’s inequality and (4.2) allow us to continue the above
inequality to get

∥dAref
µ∥L2

δ
≤ cg

(
∥V − Vref∥L4∥µ∥L4

δ
+ ∥h− href

+(Θ(h)−Θ(href ))dt∥C0∥µ∥L2
δ

)

≤ cg∥e
−δt/2∥Lr∥V − Vref∥Lp∗

δ
∥µ∥L4

δ
+ 1

2c2
∥µ∥L2

δ

where r is defined by r−1 + (p∗)−1 = 4−1. Using (4.1) with f = |µ|, and
then Kato’s inequality |d|µ|| ≤ |dAref

µ| (which holds for arbitrary metric
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connections), we can use the above to get

∥µ∥L2
δ
+ ∥µ∥L4

δ
≤ c2∥d|µ|∥L2

δ

≤ c2∥dAref
µ∥L2

δ

≤ c2cg∥e
−δt/2∥Lr∥V − Vref∥Lp∗

δ
∥µ∥L4

δ
+ 1

2∥µ∥L2
δ
.

When ϵ < 1/(2c2cg∥e
−δt/2∥Lr), this implies that µ = 0. □

Remark 4.4. The operator d∗,δAref
dA : Lp

2,δ → Lp
δ is Fredholm, and we have

just seen that it has trivial kernel under the hypotheses of the proposition.
It then follows from the embedding Lp

2,δ ⊆ Lp
δ ∩ C0 that there is a constant

C so that

∥µ∥Lp
δ(X) + ∥µ∥C0(X) ≤ C∥d∗,δAref

dAµ∥Lp
δ(X)

for all µ ∈ Lp
2,δ(Ω

0(X)). It follows from arguments similar to those just used
that this constant can be chosen to be independent of A and Aref provided
these connections satisfy the hypotheses of Proposition 4.3.

4B. Recovering the mASD condition within a slice

Throughout this section, we assume 2 < p < 4, and δ, β are chosen as in
Section 4A.

As suggested in the introduction to this section, we will use Proposi-
tion 4.3 to put mASD connections into a fixed nearby slice, but this process
will generally not preserve the mASD condition. The following theorem is
our main readjustment tool that will recover the mASD condition, while
simultaneously preserving the slice condition. To state it, use the L2

δ-inner
product to identify the cokernel H+

A,δ = coker(Ds|SL(A))A with the subset

of A-harmonic self-dual forms in Lp
δ(Ω

+(X)). We denote by

σA : H+
A,δ −→ Lp

δ(Ω
+(X)) πA : Lp

δ(Ω
+(X)) −→ H+

A,δ

the inclusion and L2
δ-orthogonal projection, respectively. (These maps will

play a role analogous to the one played by σ and π in Section 3.) It follows
that (Ds|SL(A))A ⊕ σA maps surjectively onto Lp

δ(Ω
+(X)).

Theorem 4.5. Fix Aref = ι(href , Vref ) ∈ A1,p(TΓ). Then there are con-
stants C, ϵ > 0 so that the following holds for all mASD connections A =
ι(h, V ) satisfying

(4.6) ∥h− href∥L2
2(N) + ∥V − Vref∥Lp∗

δ (X) + ∥d∗,δAref
(V − Vref )∥Lp

δ(X) < ϵ.

For the author's personal use only.

For the author's personal use only.



✐

✐

“3-Duncan” — 2024/11/28 — 17:05 — page 2236 — #50
✐

✐

✐

✐

✐

✐

2236 D. L. Duncan and I. Hambleton

(a) There is a Cm-map KA : Lp
δ(Ω

+(X)) → SL(Aref ) that restricts to an
embedding on a neighborhood U of 0.

(b) There is a unique 2-form ζ(A) ∈ U ⊆ Lp
δ(Ω

+(X)) so that

∥ζ(A)∥Lp
δ(X) ≤ C∥d∗,δAref

(V − Vref )∥Lp
δ(X)

and so that the connection K(A) := KA(ζ(A)) satisfies

s(K(A)) = −σAπAζ(A).

In particular, the connection K(A) is close to A in the sense that there is a
constant C ′ so that

∥ι−1(K(A))− ι−1(A)∥L2
2(N)×Lp∗

δ (X) ≤ C ′∥d∗,δAref
(V − Vref )∥Lp

δ(X).

If either A or Aref is regular, then all three connections A, Aref and K(A)
are regular and K(A) is Aref -regular. In this case, the connection K(A) is
mASD and the maps (A, ζ) 7→ KA(ζ) and A 7→ ζ(A) are both Cm-smooth,
relative to the specified topologies. If A is irreducible, then so is K(A). The
constants ϵ, C,C ′ can be chosen to vary continuously in Aref .

SL(Aref )

K(A)

Aref

M̂reg(TΓ, Aref )
SL(A)

A
M̂reg(TΓ, A)

Figure 2: Pictured above is the special case of Theorem 4.5 where A is
regular. The curved lines represent the spaces of regular mASD connections
in the slices SL(Aref ) and SL(A), respectively.

Proof. Take ϵ > 0 to be no larger than the epsilon from the statement of
Proposition 4.3. Then it follows from that proposition and Remark 4.4 that,
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given A = ι(h, V ) with

s(A) = 0, and ∥V − Vref∥Lp∗

δ (X) +
∥∥d∗,δAref

(V − Vref )
∥∥
Lp

δ(X)
< ϵ

there is a unique µ ∈ Lp
2,δ(Ω

0) so that exp(µ)∗A ∈ SL(Aref ) and

∥µ∥Lp
δ
+ ∥µ∥C0 ≤ C1

∥∥d∗,δAref
(V − Vref )

∥∥
Lp

δ

.

Set u = exp(µ) and write u∗A = ι(hA, VA) for hA ∈ Hout and VA ∈ Lp
1,δ(Ω

1).
Let exphA

: Bϵ(0) ⊆ ThA
H → H be the exponential map for the center man-

ifold based at hA, and extend this to a map

exp(hA,VA) : Bϵ(0)× Lp
1,δ

(
ker(d∗,δAref

)
)

−→ H× Lp
1,δ(ker(d

∗,δ
Aref

))

(η, V ) 7−→
(
exphA

(η), VA + V
)

which is a Cm-diffeomorphism in a neighborhood of (0, 0). Using this, define

s̃ : ThA
H× Lp

1,δ

(
ker(d∗,δAref

)
)
−→ Lp

δ(Ω
+), (η, V ) 7−→ s

(
ι
(
exp(hA,VA)(η, V )

))
.

By definition of σA, the operator (Ds|SL(A))A ⊕ σA is surjective. The oper-
ators (Ds)A and (Ds)u∗A are approximately equal when u is C0-close to the
identity (i.e., when ∥µ∥C0 is small). Thus, when ϵ is sufficiently small, the
operator (Ds|SL(Aref ))u∗A ⊕ σA is also surjective, as is (Ds̃)(0,0) ⊕ σA. Then
we can choose a right inverse to (Ds̃)(0,0) ⊕ σA of the form P ⊕ πA, where
πA is the projection to H+

A,δ. For ζ ∈ Lp
δ(Ω

+(X)), define

KA(ζ) := ι
(
exp(hA,VA)(Pζ)

)
.

This proves (a) in the statement of the theorem, by taking U ⊆ Lp
δ(Ω

+(X))

to be small enough so that P (U) ⊆ Bϵ(0)× ker(d∗,δAref
).

To prove (b), we use the same implicit function theorem argument as in
Theorem 3.3. Namely, set

S(ζ) := s̃(Pζ)− (Ds̃)(0,0)Pζ − s̃(0, 0).

The argument of Claim 2 in the proof of Theorem 3.3 carries over to show
that S satisfies the quadratic estimate of Lemma 3.7. We will show in a
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moment that there is a uniform constant C2 so that

(4.7) ∥s̃(0, 0)∥Lp
δ
≤ C2

∥∥d∗,δAref
(V − Vref )

∥∥
Lp

δ

.

From this and Lemma 3.7 it follows that, by assuming ϵ is sufficiently small,
there is a unique ζ(A) so that

ζ(A) + S(ζ(A)) = −s̃(0, 0).

As we argued in the proof of Theorem 3.3, this ζ(A) satisfies the asser-
tions of (b). The regularity and irreducibility assertions also follow as in
Theorem 3.3.

It therefore suffices to verify (4.7). By definition of s̃, we have s̃(0, 0) =
s(u∗A). Recall that the projection pT to the center manifold is gauge invari-
ant, so pT (u

∗A) = pT (A) = h. This implies

s̃(0, 0) = s(u∗A) = F+
u∗A − βF+

i(h)

= Ad(u−1)F+
A − βF+

i(h)

= Ad(u−1)βF+
i(h) − βF+

i(h)

= β(Ad(u−1)− I)F+
i(h)

where, in the penultimate equality, we used the assumption that s(A) =
F+
A − βF+

i(h) = 0 vanishes. By shrinking ϵ further still, we may suppose

∥µ∥C0 ≤ 1. Then the Taylor expansion for the exponential u = exp(µ) gives

∥s̃(0, 0)∥Lp
δ

≤ C3

∥∥F+
i(h)∥C0∥µ

∥∥
Lp

δ

≤ C1C3

∥∥F+
i(h)

∥∥
C0

∥∥d∗,δAref
(V − Vref )

∥∥
Lp

δ

.

The quantity ∥F+
i(h)∥C0 is bounded independent of h since Hout is compact.

□

5. Gluing regular families

Throughout this section we work with the space A1,p(TΓ) for fixed 2 < p < 4.
We assume that δ and the cutoff function β are chosen as in Section 4A.
We also assume δ/2 < µ−

Γ , so the index formula discussed in Section 2B.5
applies.
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We freely refer to the notation of Section 3. For k = 1, 2, fix a precompact
open set

Gk ⊆ M̂reg(Tk,Γk
, Aref,k)

of Aref,k-regular mASD connections on Xk relative to some reference con-
nection Aref,k. Since the Gk are precompact, we can fix L, λ > 0 so that
conclusions of Theorem 3.3 hold for all (A1, A2) ∈ G1 ×G2. (In our appli-
cations of the material of this section, the values of L and λ will be fixed, so
we do not keep track of them in the notation.) Then Theorem 3.3 produces
a regular mASD connection J (A1, A2) ∈ A1,p(TΓ).

Ideally, we would want to view the mapping (A1, A2) 7→ J (A1, A2) as
a function from G1 ×G2 into a fixed mASD space. However, since the
Coulomb slice to which J (A1, A2) belongs depends on (A1, A2) (cf. Re-
mark 3.19 (b)), it is more natural to realize this mapping as a section of a
bundle. Towards this end, set

E :=
{
(A1, A2, A)

∣∣∣ Ak ∈ Gk, A ∈ M̂reg

(
TΓ,J (A1, A2)

)}
.

Let Π: E → G1 ×G2 be the projection to the first two factors. Then the
map

Ψ(A1, A2) :=
(
A1, A2,J (A1, A2)

)

is clearly a section of the map Π.

Theorem 5.1.
(a) For all sufficiently small λ > 0, there is a neighborhood U ⊆ E of

the image of Ψ so that the restriction Π|U : U → G1 ×G2 is a locally triv-
ial fiber bundle. The fibers of Π|U can be identified with open subsets of

M̂reg(TΓ, Aref ) for some Aref .
More specifically, every (A10, A20) ∈ G1 ×G2 is contained in an

open neighborhood V ⊆ G1 ×G2 so that the following holds. Let Aref =
A′(A10, A20) be the preglued connection, and consider the map K from The-
orem 4.5, defined relative to this reference connection Aref . Then the map
(5.2)

Π−1(V) ∩ U −→ V × M̂reg(TΓ, Aref ) (A1, A2, A) 7−→ (A1, A2,K(A))

is a well-defined Cm-diffeomorphism onto an open subset of the codomain,
and this map produces a local trivialization of Π|U over V.
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(b) The map

Φ := K ◦ J : V 7−→ M̂reg(TΓ, Aref )

is a Cm-embedding. If A1 or A2 is irreducible, then the connection Φ(A1, A2)
is also irreducible.

Part (b) can be restated by saying that, relative to the local trivilization
of (a), locally the section Ψ becomes a Cm-embedding onto an embedded Cm-
submanifold of the fiber. This is an mASD version of the familiar result for
ASD connections that gluing produces a parametrized family of connections
in the ASD moduli space for a connected sum. See Figure 3 for an illustration
of the fiber bundle in (a), and Figure 4 for an illustration of the specified
trivialization, as well as the map Φ.

UE

im(Ψ)

Π Ψ

G1 ×G2

Figure 3: The above picture illustrates the fiber bundle Π|U : U → G1 ×
G2 obtained by restricting the projection Π : E → G1 ×G2 to the open
submanifold U ⊆ E . The fibers are Cm-diffeomorphic to open subsets of
M̂reg(TΓ, Aref ).

Remark 5.3. (a) We will also be interested in the case where G2 consists
of a single point (and so not necessarily an open set in the mASD space).
In this case, Theorem 5.1 continues to hold verbatim; there is no significant
change in the proofs to account for this extension.

(b) Recall the fiber isomorphism ρ from the beginning of Section 3. The
usual ASD gluing results (e.g., those of [5, 19, 20]) allows ρ to vary as a
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im(Ψ)

Π−1(V) ∩ U
V × M̂reg(TΓ, Aref ) M̂reg(TΓ, Aref )

V ⊆ G1 ×G2

(5.2)

Π
Ψ

Φ

Figure 4: The horizontal arrow on the left is the Cm-diffeomorphism (5.2)
trivializing Π|U over V. This is a Cm-diffeomorphism onto the region in V ×
M̂reg(TΓ, Aref ) represented by the dashed lines. It takes im(Ψ), represented

by the solid arc, Cm-diffeomorphically onto the region in V × M̂reg(TΓ, Aref )
represented by the solid diagonal line. The horizontal arrow on the right is
the projection of V × M̂reg(TΓ, Aref ) to the second factor. This takes the
region represented by the dotted (resp., dashed) lines in the domain onto
the region represented by the dotted (resp., dashed) line in the codomain.
It restricts to a Cm-diffeomorphism from the region represented by the solid
diagonal line onto the region in the codomain represented by the solid line.
The vertical arrow is the projection of V × M̂reg(TΓ, Aref ) to the first factor.
This restricts to a Cm-diffeomorphism from the region represented by the
solid diagonal line onto V. The map Φ is a Cm-embedding and its image
is represented by the solid line in the picture on the right (despite what
the picture suggests, the dimension of the image of Φ may not equal the
dimension of M̂reg(TΓ, Aref ); a higher dimensional illustration would be
needed to accurately represent this phenomenon).

“gluing parameter”. Presumably a similar construction could be carried out
in the mASD setting, with the expectation that a parametrized version of
the map Φ from (a) would be a Cm-diffeomorphism onto an open subset of

M̂reg(TΓ, Aref ). Though we do not pursue the details of this parametrized
gluing construction here, the isomorphism ρ will play an active role in our
existence result of Section 6C.
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(c) We have chosen to phrase Theorem 5.1 in terms of the reference con-
nection Aref = A′(A10, A20) given by the preglued connection. This is only
in preparation for our applications below, and this specific choice is by no
means necessary. Indeed, the proof will show the connection Aref can be re-
placed by any connection that is sufficiently close to J (A10, A20) in the sense
that the coordinates of Aref and J (A10, A20) satisfy the estimate (5.12).

We begin by giving several technical lemmas in Section 5A, which are
used to prove that Φ is an immersion. The proof of Theorem 5.1 is given in
Section 5B.

5A. Immersion lemmas

Our ultimate goal is to show that the map Φ is an immersion. Recall this
is made up of the maps J and K, and hence of the maps J, ξ,K, ζ of The-
orems 3.3 and 4.5. Each of the four lemmas below establishes an estimate
on the derivative of one of these latter four maps. To state the lemmas, we
introduce the following seminorms on the tangent space TAA

1,p(TΓ): Fix an
open subset U ⊆ X containing EndX and let W ∈ TAA

1,p(TΓ). Using the
isomorphism (2.6), we can identify W with a pair

(η, V ) ∈ Tp(A)HΓ × Lp
1,δ(Ω

1(X)).

Then set

∥W∥L(U);A := ∥η∥L2
2(N) + ∥V ∥Lp

δ(U) + ∥d+AV ∥Lp
δ(U) + ∥d∗,δA V ∥Lp

δ(U)

where the derivatives defining the norm ∥ · ∥L2
2(N) on Tp(A)HΓ are defined

using the connection Γ. Then ∥ · ∥L(U);A is a continuous seminorm. These
seminorms are gauge-invariant in the sense that

(5.4) ∥W∥L(U);A = ∥Ad(u−1)W∥L(U);u∗A

for all gauge transformations u ∈ G2,p
δ (Γ); here, via a slight abuse of notation,

we are writing Ad(u−1)W for the linearization in the direction of W of the
map A 7→ u∗A. We use similar notation on the Xk. We note that if U = X,
then ∥ · ∥L(X);A is a norm that induces the topology on TAA

1,p(TΓ). When
the metric gL,λ is relevant, we will include it in the notation by writing
∥ · ∥L(X,gL,λ);A.
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Our first lemma deals with the map (A1, A2, ξ) 7→ JA1,A2
(ξ). To first

order, this map is the sum of the pregluing map (A1, A2) 7→ A′(A1, A2) to-
gether with a map that is bounded in ξ. We now quantify this to an extent
that is sufficient for our purposes.

Lemma 5.5. Fix connections Ak ∈ Gk for k = 1, 2. There are constants
C,L, λ0, ϵ > 0 so that the following holds for all 0 < λ < λ0 and all ξ ∈
Lp
δ(Ω

+(X), gL,λ) with ∥ξ∥Lp
δ(X,gL,λ) < ϵ. Let DJ(A1,A2,ξ)(W1,W2, x) denote

the linearization at (A1, A2, ξ) in the direction (W1,W2, x) of the map

(A1, A2, ξ) 7−→ JA1,A2
(ξ)

from Theorem 3.3 (a). Then

2∑

k=1

∥Wk∥L(Xk);Ak
≤ C

(
∥DJ(A1,A2,ξ)(W1,W2, x)∥L(X,gL,λ),A′ + ∥x∥Lp

δ(X,gL,λ)

)

for all Wk ∈ TAk
Gk and all x ∈ Lp

δ(Ω
+(X), gL,λ), where A′ := A′(A1, A2) is

the preglued connection. The constants C,L, λ0, ϵ can be chosen to depend
continuously on the Ak ∈ Gk.

The next lemma shows that the map (A1, A2) 7→ ξ(A1, A2) depends min-
imally on the connections A1, A2. In the next section, this will combine with
the previous lemma to show that the map J (A1, A2) = JA1,A2

(ξ(A1, A2)) is
approximately the pregluing map (A1, A2) 7→ A′(A1, A2) for λ small; at this
point it will follow that J is an immersion.

Lemma 5.6. Fix Ak ∈ Gk for k = 1, 2. Then there are constants C,L, λ0 >
0 so that the following holds for all 0 < λ < λ0. Let Dξ(A1,A2)(W1,W2) de-
note the linearization at (A1, A2) in the direction (W1,W2) of the map

(A1, A2) 7−→ ξ(A1, A2)

from Theorem 3.3 (c). Then this satisfies

∥Dξ(A1,A2)(W1,W2)∥Lp
δ(X,gL,λ) ≤ b4/pC

2∑

k=1

∥Wk∥L(Xk);Ak

for all Wk ∈ TAk
Gk, where b = 4Lλ1/2. The constants C,L, λ0 can be chosen

to depend continuously on the Ak ∈ Gk.
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These next two lemmas are analogues of the previous two, but for the
map K(A) = KA(ζ(A)) in place of J (A1, A2) = JA1,A2

(ξ(A1, A2)).

Lemma 5.7. Fix a regular connection Aref ∈ A1,p(TΓ). Then there
are constants C, ϵ′ > 0 so that the following holds for all connections
A ∈ M̂reg(TΓ, Aref ) satisfying (4.6) with respect to any 0 < ϵ < ϵ′. Let
DK(A,ζ)(W, z) denote the linearization at (A, ζ) in the direction (W, z) of
the map

(A, ζ) 7−→ KA(ζ)

from Theorem 4.5 (a). Then this satisfies

∥W∥L(X),A ≤ C
(
∥DK(A,ζ)(W, z)∥L(X),A′ + ∥z∥Lp

δ(X)

)

for all W ∈ TAM̂reg(TΓ, Aref ) and all z ∈ Lp
δ(Ω

+(X)). The constants C, ϵ
can be chosen to depend continuously on A and Aref .

Lemma 5.8. Fix a regular connection Aref ∈ A1,p(TΓ). Then there are
constants C, ϵ′ > 0 so that the following holds for all connections A ∈
M̂reg(TΓ, Aref ) satisfying (4.6) with respect to any 0 < ϵ < ϵ′. Let DζAW
denote the linearization at A in the direction W of the map

A 7−→ ζ(A)

from Theorem 4.5 (b). Then this satisfies

∥DζAW∥Lp
δ(X) ≤ C∥d∗,δAref

(V − Vref )∥Lp
δ(X)∥W∥L(X),A

for all W ∈ TAM̂reg(TΓ, Aref ). The constants C, ϵ can be chosen to depend
continuously on Aref .

Now we give the proofs of Lemmas 5.5, 5.7, 5.6, and 5.8, in that order.

Proof of Lemma 5.5. The tangent space TAk
Gk is cut out by linear elliptic

equations. In particular, unique continuation holds for the elements of this
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tangent space, and so the assignment

Wk 7−→ ∥Wk∥L(Xk\BLλ1/2(xk)
);Ak

defines a norm on TAk
Gk. Since TAk

Gk is a finite-dimensional vector space,
any two norms are equivalent and so there is a constant C1 so that

∥Wk∥L(Xk);Ak
≤ C1∥Wk∥L(Xk\BLλ1/2(xk)

);Ak

for all Wk ∈ TAk
Gk. A simple contradiction argument shows that this con-

stant can be taken to be independent of L, λ, provided L ≥ 1 and λ is suffi-
ciently small.

Now fix tangent vectors Wk ∈ TAk
Gk for k = 1, 2. Since Ak is regular,

we can find a Cm-smooth path Ak(τ) of Ak-regular mASD connections with
Ak(0) = Ak and d

dτ |τ=0Ak(τ) = Wk. Let W
′ = d

dτ |τ=0A
′(A1(τ), A2(τ)). Note

that the construction of the preglued connection A′(A1, A2) implies there is
a uniform constant C2 so that

∑

k

∥Wk∥L(Xk\BLλ1/2 (xk));Ak
≤ C2

∥∥W ′
∥∥
L(X);A′(A1,A2)

provided λ > 0 is sufficiently small. Thus we have

(5.9)
∑

k

∥Wk∥L(Xk);Ak
≤ C1C2

∥∥W ′
∥∥
L(X);A′

.

The next claim ties this in with the linearization of the map J at
(A1, A2, ξ) when ξ = 0.

Claim 1: DJ(A1,A2,0)(W1,W2, x) = W ′ + (Dι)ι−1(A′)Px, ∀x ∈ Lp
δ(Ω

+(X)).

Here P is the right-inverse from the proof Theorem 3.3. This depends on
A1, A2, so to emphasize this, we will temporarily write PA1,A2

:= P . Consider
the map

(5.10) (A, ξ) 7−→ ι ◦ expι−1(A)

(
PA1,A2

ξ
)

where A ranges over all connections near A′ = A′(A1, A2) and ξ ranges over
all self-dual 2-forms near 0. The linearization of (5.10) at (A′, 0) is the op-
erator

(W,x) 7−→ W + (Dι)ι−1(A′)

(
PA1,A2

x
)
.
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Recall from the proof of Theorem 3.3 that

JA1,A2
(ξ) = ι

(
expι−1(A′(A1,A2))

(
PA1,A2

ξ
))

.

That is, (A1, A2, ξ) 7→ JA1,A2
(ξ) is the map (5.10) precomposed with

A′(A1, A2) in the A-component. Then Claim 1 follows from the chain rule
and the fact that we are differentiating at ξ = 0, which kills off all terms
involving the Ak-derivatives of PA1,A2

.
In summary, we have

∑

k

∥Wk∥L(Xk);Ak
≤ C1C2

∥∥W ′
∥∥
L(X);A′(A1,A2)

≤ C1C2

(
∥W ′ + (Dι)ι−1(A′)Px∥L(X);A′ + ∥(Dι)ι−1(A′)Px∥L(X);A′

)

= C1C2

(
∥DJ(A1,A2,0)(W1,W2, x)∥L(X);A′ + ∥(Dι)ι−1(A′)Px∥L(X);A′

)
.

We will discuss each term on the right individually.
The first term on the right is almost satisfactory, except we linearized

at (A1, A2, 0) instead of (A1, A2, ξ). To account for this, note that it follows
from our regularity assumptions and Theorem 3.3 that J is Cm-smooth. In
particular, Taylor’s theorem gives

∥(DJ(A1,A2,ξ) −DJ(A1,A2,0))(W1,W2, x)∥L(X);A′

≤ C3∥ξ∥Lp
δ(X)

(
∥x∥Lp

δ(X) +
∑

k

∥Wk∥L(Xk);Ak

)

for some constant C3 that depends continuously on the Ak and λ.

Claim 2: The constant C3 can be taken to be independent of λ, provided λ
is sufficiently small.

To see this, recall that the proof of Taylor’s theorem shows that C3 can
be taken to be a constant multiple of the supremum of the operator norm of
the second derivative of J at (A1, A2, 0). By the chain rule, it therefore suf-
fices to uniformly estimate the first two derivatives of ι, expι−1(A′(A1,A2)) and
P = PA1,A2

. Obtaining such estimates for ι and the exponential map follow
readily because the gluing region is in the complement of the cylindrical end
(e.g., ι is affine-linear over this gluing region). That the derivatives of P are
uniformly bounded is addressed in Remark 3.19 (a), above.
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With this claim in hand, we have

∑

k

∥Wk∥L(Xk);Ak

≤ C1C2

(
∥DJ(A1,A2,ξ)(W1,W2, x)∥L(X);A′ + ∥(Dι)ι−1(A′)Px∥L(X);A′

)

+C1C2C3∥ξ∥Lp
δ(X)

(
∥x∥Lp

δ(X) +
∑

k

∥Wk∥L(Xk);Ak

)
.

When ∥ξ∥Lp
δ(X) < ϵ := 1/2C1C2C3 this implies that

∑

k

∥Wk∥L(Xk);Ak
is

bounded by

2C1C2

(
∥DJ(A1,A2,ξ)(W1,W2, x)∥L(X);A′ + ∥(Dι)ι−1(A′)Px∥L(X);A′

)
+ ∥x∥Lp

δ(X).

The lemma now follows from the next claim.

Claim 3: There are constants C4, L, λ0 > 0 so that

∥(Dι)ι−1(A′)Px∥L(X,gL,λ);A′ ≤ C4∥x∥Lp
δ(X,gL,λ)

for all x and all 0 < λ < λ0. These constants can be chosen to depend con-
tinuously on the Ak ∈ A1,p(Tk,Γk

).

We briefly sketch the proof, leaving the details to the reader. Use the fact
that P is uniformly bounded to control the zeroth order terms appearing
in the definition of ∥ · ∥L(X);A′ . The term involving d∗,δA′ vanishes because P
takes values in the slice. To control the d+A′ term use the fact that P is a right
inverse to an operator that is essentially d+A′ plus lower order terms. □

Proof of Lemma 5.7. Fix A and W as in the lemma. Let A(τ) be a path in

M̂reg(TΓ, Aref ) that is C
m-smooth and satisfies A(0) = A and d

dτ |τ=0A(τ) =
W . Let µτ = µ(A(τ), Aref ) be the 0-form from Proposition 4.3 associated to
A(τ) and Aref . Set

uτ := exp(µτ ), A′ := u∗0A, W ′ :=
d

dτ

∣∣∣
τ=0

u∗τA(τ).

By the product rule, we have

W ′ = Ad(u−1
0 )W + dA′

( d

dτ

∣∣∣
τ=0

µτ

)
.
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Now the gauge invariance (5.4) and the definition of our norms give

∥W∥L(X);A = ∥Ad(u−1
0 )W∥L(X);A′

≤ ∥W ′∥L(X);A′ +
∥∥∥dA′

( d

dτ

∣∣∣
τ=0

µτ

)∥∥∥
L(X);A′

= ∥W ′∥L(X);A′ +
∥∥∥dA′

( d

dτ

∣∣∣
τ=0

µτ

)∥∥∥
Lp

δ(X)

+
∥∥∥
[
F+
A′ ,

( d

dτ

∣∣∣
τ=0

µτ

)]∥∥∥
Lp

δ(X)
+
∥∥∥d∗,δA′ dA′

( d

dτ

∣∣∣
τ=0

µτ

)∥∥∥
Lp

δ(X)
.

Focusing on the second term on the right, we note that the operator d∗,δA′ is
injective on im(dA′) so there is a bound of the form

∥∥∥dA′

( d

dτ

∣∣∣
τ=0

µτ

)∥∥∥
Lp

δ(X)
≤ C1

∥∥∥d∗,δA′ dA′

( d

dτ

∣∣∣
τ=0

µτ

)∥∥∥
Lp

δ(X)
.

As for the third term on the right, the fact that A is mASD implies that F+
A

is uniformly bounded in C0; the same is therefore true of F+
A′ = Ad(u−1

0 )F+
A .

Combining this with the fact that the operator d∗,δA′ dA′ is injective on 0-forms,
we obtain

∥∥∥
[
F+
A′ ,

(
d
dτ

∣∣∣
τ=0

µτ

)] ∥∥∥
Lp

δ(X)
≤ C2

∥∥∥ d
dτ

∣∣∣
τ=0

µτ

∥∥∥
Lp

δ(X)

≤ C3

∥∥∥d∗,δA′ dA′

(
d
dτ

∣∣∣
τ=0

µτ

)∥∥∥
Lp

δ(X)
.

In summary, we have

∥W∥L(X);A ≤ ∥W ′∥L(X);A′ + (1 + C1 + C3)
∥∥∥d∗,δA′ dA′

(
d
dτ

∣∣∣
τ=0

µτ

)∥∥∥
Lp

δ(X)
.

Our hypotheses imply that A′ and Aref differ by a term that is controlled
by the C0-norm of µ. This implies we have an estimate of the form

∥∥∥d∗,δA′ dA′

( d

dτ

∣∣∣
τ=0

µτ

)∥∥∥
Lp

δ

≤ C4

∥∥∥d∗,δAref
dA′

( d

dτ

∣∣∣
τ=0

µτ

)∥∥∥
Lp

δ

.

To estimate this further, differentiate the defining identity 0 = d∗,δAref
(u∗τAτ −

Aref ) at τ = 0 to get

d∗,δAref
dA′

( d

dτ

∣∣∣
τ=0

µτ

)
= −d∗,δAref

W.
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Thus
∥∥∥d∗,δAref

dA′

(
d
dτ

∣∣∣
τ=0

µτ

)∥∥∥
Lp

δ

=
∥∥∥d∗,δAref

W
∥∥∥
Lp

δ

≤
∥∥∥d∗,δA W

∥∥∥
Lp

δ

+ C5∥W∥Lp
δ

=
∥∥∥d∗,δA′ W ′

∥∥∥
Lp

δ

+ C5∥W
′∥Lp

δ

≤ max(1, C5)∥W
′∥L(X);A′ .

Hence

∥W∥L(X);A ≤ C6∥W
′∥L(X);A′

where C6 = 1 + (1 + C1 + C3)C4max(1, C5). To finish the proof of the
lemma, argue exactly as we did in the proof of Lemma 5.5, starting after
the estimate (5.9). □

Proof of Lemma 5.6. Let Ak(τ) be a Cm-smooth path in Gk satisfying
Ak(0) = Ak and

d
dτ |τ=0Ak(τ) = Wk. Set ξτ := ξ(A1(τ), A2(τ)). Note that the

τ -derivative
d

dτ

∣∣∣
τ=0

ξτ = Dξ(A1,A2)(W1,W2)

is the term that we are looking to bound.
The regularity hypotheses and Theorem 3.3 (c) imply that ξτ satisfies

0 = s(Jτ (ξτ )) for all τ , where Jτ := JA1(τ),A2(τ) is the map from Theorem 3.3
(a). Continuing to use a subscript τ for any term defined in terms of the
Ak(τ) (and hence dependent on τ), we recall the definition of s̃ from the
proof of Theorem 3.3; in particular, this satisfies s(Jτ (·)) = s̃(Pτ (·)). The
Taylor expansion of s̃ therefore gives

0 = s(Jτ (ξτ )) = s̃(Pτ (ξτ )) = s̃τ (0, 0) + ξτ + Sτ (ξτ ).

Differentiate the right-hand side at τ = 0 and rearrange to get

(5.11)
d

dτ

∣∣∣
τ=0

ξτ = −
d

dτ

∣∣∣
τ=0

s̃τ (0, 0)−
d

dτ

∣∣∣
τ=0

Sτ (ξ0)− (DS0)ξ0

( d

dτ

∣∣∣
τ=0

ξτ

)

where (DS0)ξ0 is the linearization at ξ0 of S0. We will return to this after
we estimate each term on the right individually.

For the first term on the right of (5.11), note that s̃τ (0, 0) = s(A′
τ ) de-

pends on τ only through the preglued connection A′
τ := A′(A1(τ), A2(τ)).

Moreover, the proof of (3.1) shows that s(A′
τ ) is equal to a product of a cut-

off function supported in the gluing region, times the connection form for
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A′
τ in this region. In particular, differentiating this in τ , the same argument

used for (3.1) allows us to conclude a uniform bound of the form

∥∥∥ d
dτ

∣∣∣
τ=0

s̃τ (0, 0)
∥∥∥
Lp

δ(X,gL,λ)
≤ C1b

4/p
∥∥∥ d
dτ

∣∣∣
τ=0

A′
τ

∥∥∥
L(X,gL,λ),A′

0

≤ C2b
4/p

∑

k

∥∥∥Wk

∥∥∥
L(X);Ak

where the second inequality follows by differentiating the defining formula
for the preglued connection A′(A1, A2). This is the desired bound on the
first term.

The second term on the right of (5.11) is similar, albeit a little more
involved. The point here is that the quadratic estimates on Sτ give a uniform
bound of the form

∥∥∥ d

dτ

∣∣∣
τ=0

Sτ (ξ0)
∥∥∥
Lp

δ(X,gL,λ)
≤ C3∥ξ0∥Lp

δ(X,gL,λ)

∑

k

∥∥∥Wk

∥∥∥
TAk

A
.

Theorem 3.3 (c) gives ∥ξ0∥Lp
δ(X,gL,λ) ≤ C4b

4/p, so the desired estimate for
this term follows.

Turn now to the last term on the right of (5.11). By the estimate (3.8),
the linearization (DS0)ξ0 satisfies

∥(DS0)ξ0ξ
′∥Lp

δ(X,gL,λ) ≤ 2κ∥ξ0∥Lp
δ(X,gL,λ)∥ξ

′∥Lp
δ(X,gL,λ)

for all ξ′. Since ∥ξ0∥Lp
δ(X,gL,λ) ≤ C4b

4/p, we may assume that ∥ξ0∥Lp
δ(X,gL,λ) <

1/4κ, which gives

∥(DS0)ξ0ξ
′∥Lp

δ(X,gL,λ) ≤
1

2
∥ξ′∥Lp

δ(X,gL,λ).

To see that the above estimates imply the lemma, take the norm of each
side of (5.11) and use the estimates just established to obtain

∥∥∥ d

dτ

∣∣∣
τ=0

ξτ

∥∥∥
Lp

δ(X,gL,λ)

≤ (C2 + C3C4)b
4/p

∑

k

∥∥∥Wk

∥∥∥
TAk

A
+

1

2

∥∥∥ d

dτ

∣∣∣
τ=0

ξτ

∥∥∥
Lp

δ(X,gL,λ)
.

The corollary follows by subtracting the last term from both sides, and using

the identity Dξ(A1,A2)(W1,W2) =
d
dτ

∣∣∣
τ=0

ξτ . □
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Proof of Lemma 5.8. This follows from the same type of argument given for
Lemma 5.6. □

5B. Proof of Theorem 5.1

Let ϵ > 0 be small enough so that Theorem 4.5 holds with this value
of ϵ. Define U to be the set of triples (A1, A2, A) with Ak ∈ Gk and

A ∈ M̂(TΓ,J (A1, A2)), and so that

(5.12) ∥h− h0∥L2
2(N) + ∥V − V0∥Lp∗

δ (X) + ∥d∗,δA0
(V − V0)∥Lp

δ(X) < ϵ/3

where A = ι(h, V ) and A0 = ι(h0, V0) := J (A1, A2). Since all elements of the
Gk are regular, it follows from Theorem 3.3 that J (A1, A2) is regular, so
any connection A satisfying (5.12) is automatically A0-regular. Thus U ⊆ E .

To show that Π|U : U → G1 ×G2 is locally trivial, fix (A10, A20) ∈ G1 ×
G2, and set Aref := A′(A10, A20). By (3.14) and the fact that J (A10, A20)
takes values in the Aref -slice, by choosing λ sufficiently small, it follows that
the coordinates of Aref and J (A10, A20) satisfy the estimate (5.12); in fact,
this estimate is uniform in λ, in the sense that it holds for all sufficiently
small λ. Fix any such λ; we will refine this choice in the next paragraph.
Take V ⊆ G1 ×G2 to be a neighborhood of (A10, A20) that is small enough
so that if (A1, A2) ∈ V, then the components of Aref and A′(A1, A2) satisfy
(5.12). Though we do not use this observation presently, we note that the set
V can also be chosen to be uniform in λ, provided λ > 0 is sufficiently small;
this is due to the scaling properties the Lp∗

-norm of 1-forms [5, p.293].
Use two applications of the triangle inequality to conclude that, for any
triple (A1, A2, A) ∈ Π−1(V) ∩ U , the pair A,Aref satisfies the hypotheses of
Theorem 4.5. Thus the map (5.2) is well-defined and indeed provides a local
trivialization of Π|U .

To finish the proof, it suffices to show that the map Φ = K ◦ J : V →
M̂reg(TΓ, Aref ) is a Cm-immersion; it can then be made into an embedding
by further shrinking V, if necessary. Since Φ = K ◦ J , it suffices to show that
J and K are immersions for all λ > 0 sufficiently small. For J , note that
the linearization at (A1, A2) is the map

(W1,W2) 7−→ DJ(A1,A2,ξ(A1,A2))(W1,W2, Dξ(A1,A2)(W1,W2)).
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Suppose this vanishes at some (W1,W2). Then by Lemmas 5.5 and 5.6, we
would have

∑

k

∥Wk∥L(Xk);Ak
≤ Cb4/p

∑

k

∥Wk∥L(Xk);Ak
.

By taking λ > 0 sufficiently small, we may assume Cb4/p < 1 and so Wk = 0.
Thus J is an immersion. A similar argument, but using Lemmas 5.7 and 5.8,
shows that K is an immersion for small λ.

The irreducibility claims follow from the analogous claims appearing in
Theorems 3.3 and 4.5. □

6. Existence results

Let X be an oriented cylindrical end 4-manifold with b+(X) = 0 or 1. In this
section, we will show how to use the above framework to prove the existence
of families of mASD connections on X; the cases b+(X) = 0 and b+(X) = 1
are treated in Sections 6B and 6C, respectively. The ASD existence result
Theorem A is proved in Section 6D.

Part of our existence results state that the connections we construct are
topologically non-trivial in a certain sense. In the case of closed 4-manifolds,
this non-triviality is captured by the non-vanishing of a characteristic class
of the bundle supporting the connections. In the present cylindrical end
setting, we will use a certain relative characteristic class to measure this
non-triviality. The details of this are carried out in Section 6A.

6A. Relative characteristic classes and adapted bundles

This section reviews topological quantities associated to 4-manifolds with
cylindrical ends. We begin with a review of characteristic classes in the
closed (compact with no boundary) setting.

Suppose Z is a closed, oriented 4-manifold and P → Z is a principal
G-bundle. We define

κ(P ) := −
1

8π2

∫

Z
⟨FA ∧ FA⟩

where A ∈ A(P ) is any connection and ⟨FA ∧ FA⟩ is obtained by combining
the wedge and the inner product on g defined via the immersion (2.1). Then
κ(P ) is independent of the choice of A by the Bianchi identity. Topologi-
cally, κ(P ) = c2(P ×G Cr) [Z] is the second Chern number of the Cr-bundle
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associated to P via the map (2.1) and the standard action of SU(r) on Cr.
In particular, κ(P ) ∈ Z is an integer representing an obstruction to P being
trivializable.

Now consider the bundle Q → N over the 3-manifold N , and fix a
gauge transformation u ∈ G(Q). We can form the mapping torus Qu =
[0, 1]×Q/(0, u(q)) ∼ (1, q) which is a principal G-bundle over S1 ×N . Then
we define the degree of u to be the integer

deg(u) := κ(Qu).

This depends only on the homotopy type of u and so descends to a group
homomorphism

deg : π0(G(Q)) −→ Z

from the group of components of G(Q). The degree is an obstruction to
extending u to a gauge transformation on X0 (or equivalently X). We denote
by G0(Q) the subgroup of degree-zero gauge transformations. When G is
simply-connected, the degree deg : π0(G(Q)) → Z is injective, and so G0(Q)
is exactly the identity component of G(Q).

Since the cylinder EndX deformation retracts to the 3-manifold N ,
we have a natural isomorphism π0(G(EndX)) ∼= π0(G(N)) and so the de-
gree provides a homomorphism deg : π0(G(EndX)) → Z. We denote by
G0(EndX) the degree-zero elements of G(EndX).

We will be working with principal G-bundles on the cylindrical end 4-
manifold X. Bundle isomorphism is too course of an equivalence relation to
be useful in the cylindrical-end setting (e.g., when G is simply-connected, all
principal G-bundles are trivializable since H4(X) = 0). A more useful rela-
tion for our purposes deals with adapted bundles, which are pairs (E,AEnd),
where E → X is a principal G-bundle, and AEnd is a connection on the cylin-
drical end EndX. Then we say that (E,AEnd) is equivalent to (E′, A′

End) if
there is a bundle isomorphism from E to E′ that carries AEnd to A′

End. See
Donaldson’s book [4, Section 3.2] for more details; note that Donaldson only
treats flat connections AEnd, but our applications require that we extend the
discussion.

By the above discussion, it follows that G0(EndX) consists of gauge
transformations on EndX that have extensions to E → X. Thus, any
adapted bundle (E,AEnd) depends on AEnd only through its G0(EndX)-
equivalence class. The next example illustrates an interplay between the
degree and the equivalence classes of adapted bundles; it will be relevant to
our gluing discussion below.
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Example 6.1. Fix an adapted bundle (E,AEnd) and a point x ∈ X. Sup-
pose Eℓ → S4 is a principal G-bundle with κ(Eℓ) = ℓ ∈ Z. Taking the con-
nected sum ofX and S4 at x, we recover the same manifold backX ∼= X#S4,
up to diffeomorphism. At the bundle level, we can carry out a similar con-
nected sum procedure to obtain a bundle E′ = E#Eℓ over X. Provided
x ∈ X0 is not on the end, the connection AEnd can be viewed as a connec-
tion on E′. Then the adapted bundles (E,AEnd) and (E′, AEnd) are equiva-
lent if and only if ℓ = 0. More generally, there is a gauge transformation u
on EndX with deg(u) = ℓ, and so that the adapted bundle (E, u∗AEnd) is
equivalent to (E′, AEnd).

Assume that the connection AEnd converges on the end in the sense that

lim
t→∞

AEnd|{t}×N = Γ

for some connection Γ on N , where the limit is in L2
1(N), say. Let A be any

connection on E that restricts on EndX to AEnd. Then the quantity

κ(E,AEnd) := lim
T→∞

−
1

8π2

∫

X0∪[0,T ]×N
⟨FA ∧ FA⟩

is well-defined and independent of the choice of A. We will call κ(E,AEnd)
the relative characteristic number of the adapted bundle (E,AEnd). It de-
pends on AEnd only through the value of Γ and the topological type of E.
Indeed, if E′ = E#Eℓ is as in Example 6.1, then

κ(E′, AEnd) = κ(E,AEnd) + ℓ.

Moreover, if AEnd is asymptotic to Γ, then working modulo Z, we recover

8π2κ(E,AEnd) = CS(Γ) mod Z

the Chern–Simons value of Γ as defined in [17, Section 2.1] (here one should
interpret the trace in [17] as the one induced from (2.1)).

6B. Existence when b+(X) = 0

Let Etriv → X be the trivial bundle, Atriv the trivial connection on Etriv,
and Γtriv the trivial connection on the end. Fix thickening data TΓtriv

. Here
we assume δ and β are chosen as in the beginning of Section 5. We recall
from Section 2B that the thickening data also includes the choice of ϵ0 > 0
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so that any two points in the center manifold have Chern–Simons values
differing by ϵ0/2. For each 0 < ϵ < ϵ0, we will write T (ϵ) for the same set of
thickening data as TΓtriv

, but with ϵ in place of ϵ0.
Let Eℓ → S4 be a principal G-bundle with κ(Eℓ) = ℓ ∈ Z, where κ is the

characteristic number of Section 6A. We will write

Mℓ(S
4, G) :=

{
A ∈ A(Eℓ) | F

+
A = 0

}/
G(Eℓ)

for the moduli space of ASD connections on Eℓ; here we are working relative
to the standard metric on S4. LetM∗

ℓ (S
4, G) ⊆ Mℓ(S

4, G) denote the subset
of irreducible ASD connections. The existence of irreducible ASD connec-
tions on S4 was studied extensively in [1, Section 8]. For example, when G =
SU(r) and the embedding (2.1) is the identity, then the spaceM∗

ℓ (S
4, SU(r))

is nonempty if and only if ℓ ≥ r/2. The most famous situation is when
G = SU(2) and ℓ = 1, in which case M1(S

4, SU(2)) = M∗
1(S

4, SU(2)) and
this is diffeomorphic to the open unit ball in R5. The dimension ofM∗

ℓ (S
4, G)

for general simple, simply-connected G is given in [1, Table 8.1].
The following is the first of our main existence results for mASD con-

nections; Theorem C with b+(X) = 0 from the introduction is an immediate
consequence.

Theorem 6.2 (Existence of mASD-connections when b+ = 0). As-
sume b+(X) = 0 and Aℓ is an irreducible ASD connection on Eℓ → S4 for
some ℓ ∈ Z. Then for every 0 < ϵ < ϵ0, there is

(a) a neighborhood V ⊆ Mℓ(S
4, G) of [Aℓ] ∈ Mℓ(S

4, G);

(b) a trivializable principal G-bundle E → X that is canonically trivial on
the end;

(c) a connection A′ on E that is flat in the complement of a compact set,
asymptotic to Γ on the end, and satisfies κ(E,A′|EndX) = ℓ; and

(d) a Cm-embedding

Φ : V −→ M̂reg(T (ϵ), A′).

The image of Φ consists of irreducible connections. In particular, there exist
an irreducible, regular mASD connection A on E with |κ(E,A|EndX)− ℓ| <
ϵ/2.

For ℓ ̸= 0 and 0 < ϵ < 2|ℓ|, the condition |κ(E,A|EndX)− ℓ| < ϵ/2 im-
plies that A is not flat. (The analogous statement in the case where X
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is closed and G = SU(r) is that A is supported on a bundle P with
c2(P ) [X] = ℓ.)

Proof of Theorem 6.2. View S4 as a cylindrical end 4-manifold with no ends,
and let T∅ be the empty set of thickening data as in Section 2C.3. Form the
connected sum of S4 and X at any point in S4 and any point in X lying
in the interior of the compact part. Note that all ASD connections on S4

are regular (e.g., use the Weitzenböck formula [5, (7.1.23)]). In particular,
since Aℓ is irreducible and regular, there is a neighborhood V ⊆ M∗

ℓ (S
4, G)

of [Aℓ] that is diffeomorphic to a precompact open set G1 ⊆ M̂reg(T∅, Aℓ)
containing Aℓ; that is, V consists of gauge equivalence classes of regular,
irreducible ASD connections on S4, and G1 consists of their lifts to the
Coulomb slice through Aℓ. Using this diffeomorphism, we identify V and G1.

By Proposition 2.15, the assumption b+(X) = 0 implies that Atriv is
regular; see also Remark 2.19. Then the singleton set G2 := {Atriv} plainly
consists of regular connections. By Remark 5.3 (a), we can apply Theo-
rem 5.1 with this G2. Define E := Etriv#Eℓ to be the connected sum bun-
dle as in Section 6A, equipped with thickening data T (ϵ). Take A′ to be
the preglued connection, which is plainly asymptotic to Γtriv. In particular,
κ(E;A′|EndX) = ℓ due to the discussion of Section 6A. By possibly shrinking
V, if necessary, we define Φ to be the Cm-embedding of the same name from
Theorem 5.1 (b) (here we are using the identifications V ∼= G1

∼= G1 ×G2). If
A is any connection in the image of Φ, then |κ(E,A|EndX)− ℓ| < ϵ/2 follows
from the definition of ϵ as a parameter in the set of thickening data and the
fact that κ(E;A|EndX) recovers the Chern–Simons value of the asymptotic
limit of A. □

6C. Existence when b+(X) = 1

Here we consider the case where b+(X) = 1 and G = SU(2). We assume (2.1)
is the identity (so r = 2); then the characteristic number κ from Section 6A
is the second Chern number. Fix thickening data TΓtriv

and assume δ and β
are chosen as in the beginning of Section 5. Define T (ϵ) as in Section 6B. The
following is the second of our main existence results for mASD connections.
Theorem C with b+(X) = 1 is an immediate consequence.

Theorem 6.3 (Existence of mASD-connections when b+ = 1). As-
sume b+(X) = 1 and fix an integer ℓ ≥ 2. Then for every 0 < ϵ < ϵ0, there
is

For the author's personal use only.

For the author's personal use only.



✐

✐

“3-Duncan” — 2024/11/28 — 17:05 — page 2257 — #71
✐

✐

✐

✐

✐

✐

Existence of mASD connections 2257

(a) a trivializable principal SU(2)-bundle E → X that is canonically trivial
on the end;

(b) a connection A′ on E that is flat in the complement of a compact set,
asymptotic to Γ on the end, and satisfies κ(E;A′|EndX) = ℓ; and

(c) an irreducible mASD connection A ∈ M̂(T (ϵ), A′) on E satisfying

|κ(E,A|EndX)− ℓ| < ϵ/2.

Proof. Our proof follows that of [20, Section 7] and [3, pp. 327—334].
The assumption that b+ = 1 implies that the cokernel of the operator d+ :
Lp
1,δ(Ω

1(X,R)) → Lp
δ(Ω

+(X,R)) is one-dimensional. As in Section 2C.1, this

cokernel can be realized as the space H+(X,R) of closed self-dual 2-forms
in L2(Ω+(X,R)) that restrict on each slice {t} ×N to be orthogonal to
the space of harmonic forms on N . Fix a non-zero element ω0 ∈ H+(X,R);
this is unique up to scaling. By unique continuation for solutions of el-
liptic equations, it follows that the set of points in X where ω0 does not
vanish is open and dense. In particular, we can find two distinct points
x1, x2 ∈ int(X0) with ω0(x1) ̸= 0 and ω0(x2) ̸= 0. When ℓ > 2, choose ad-
ditional points x3, . . . , xℓ−2 ∈ int(X0); these can be arbitrarily chosen, pro-
vided the xi are all distinct. The gluing Theorem 3.3 has a straightforward
extension to handle gluing for multiple connected sums that we briefly de-
scribe now.

Fix scaling parameters λ1, . . . , λℓ > 0, and set

λ := max(λ1, . . . , λℓ).

Here we will consider ℓ copies of S4; denote these copies by S4
1 , . . . , S

4
ℓ , and

fix points x′i ∈ S4
i . Then as we did in Section 3A, glue xi ∈ X0 to x′i ∈ S4

i

over balls with radii controlled by λi.
At the bundle level, let Etriv → X be the trivial SU(2)-bundle, and

let E1 → S4 be the SU(2)-bundle with κ(E1) = c2(E1)
[
S4

]
= 1. More con-

cretely, we can take E1 to be the frame bundle of Λ+T ∗S4 (then Λ+T ∗S4

is the adjoint bundle of E1). In Section 3, gluing the bundles depended on
the choice of fiber isomorphism ρ identifying the fibers of the principal bun-
dles at the gluing points. In the present setting with ℓ gluing points, this
corresponds to the choice of a fiber isomorphism

ρi ∈ Gli = HomSU(2)((Etriv)xi
, (E1)x′

i
)

for each 1 ≤ i ≤ ℓ.
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Let Atriv be the trivial connection on Etriv. Let A
′ be the preglued con-

nection on E obtained from Atriv and the standard “one-instanton” Ast

on each of the bundles E1 → S4
i for 1 ≤ i ≤ ℓ. Then κ(E,A′|EndX) = ℓ;

note that A′ depends on the λi and ρi. The proof of Theorem 3.3 extends
to produce C,L, λ0, J, π, and ξ ∈ Lp

δ(Ω
+(X)), satisfying the conditions of

Theorem 3.3 (a)—(c) and Corollary 3.26 whenever 0 < λ < λ0; though we
suppress this in the notation, these quantities depend on the connections
Atriv and Ast, as well as the isomorphisms ρi. In particular, the connection
A := J(ξ) is irreducible and satisfies

s(A) = −σπξ and |κ(E,A|EndX)− ℓ| < ϵ/2.

It suffices to show that the λi and ρi can be chosen so that σπξ = 0,
since this implies that A is mASD. For this, let X ′ be the complement in X

of the Lλ
1/2
0 -balls around the xi; we assume λ0 is small enough so these balls

do not intersect and are contained in X0. Note that the bundles E and Etriv

are canonically identified over X ′, and so over X ′ we can compare 2-forms
on Etriv with 2-forms on E. The self-dual 2-form σπξ vanishes if and only if
the integral

(6.4)

∫

X′

⟨ω ∧ σπξ⟩ = 0

vanishes for all ω ∈ H+(X, ad(Atriv)) = H+(X,R)⊗ g.

Claim:

(6.5)

∫

X′

⟨ω ∧ σπξ⟩ = qℓω(
{
(λi, ρi)

}
i
) +O(λ3)

where

qℓω(
{
(λi, ρi)

}
i
) :=

ℓ∑

i=1

λ2
i tr(ρiω(xi)).

Here tr(ρiω(xi)) ∈ R is the pairing of ρi and ω(xi) as described in [3,
Equation (5.3)]. We will prove this claim below, but first we will show how
it is used to finish the proof of the theorem. From the discussion leading up
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to the claim, we are interested in the simultaneous system of equations

(6.6) qℓω(
{
(λi, ρi)

}
i
) = 0 ∀ω ∈ H+(X, ad(Atriv)).

When ℓ = 2, the argument of [3, Section V(ii)] carries over verbatim to show
that the solutions set of the system (6.6) is non-empty and cut out trans-
versely, whenever max(λ1, λ2) is sufficiently small. This uses the assumption
ω0(x1), ω0(x2) ̸= 0. Note that Donaldson’s argument uses b+(X) = 1. (Al-
ternatively, the reader could follow the original argument of Taubes [20,
Prop. 7.1], but our notation is more inline with that of [3].) When ℓ > 2, it
was pointed out by Taubes [20, Prop. 6.2] that by taking max(λ3, . . . , λℓ)
sufficiently small relative to max(λ1, λ2), any transverse zero of q2ω implies
the existence of a transverse zero of qℓω. In summary, for each ℓ ≥ 2, there are
λ′
0 > 0 and µ ∈ (0, 1) so that the system (6.6) has a nonempty, transverse

solution set, for all λ1, . . . , λℓ > 0 with

max(λ1, λ2) < λ′
0 and max(λ3, . . . , λℓ) < µmax(λ1, λ2).

For any such λ1, . . . , λℓ, since q
ℓ
ω is O(λ2), it then follows from the transver-

sality of qℓω = 0 and the identity (6.5) that the solution sets to (6.4) and (6.6)
are diffeomorphic, provided λ is sufficiently small. In particular, there is a
simultaneous zero {(λi, ρi)}

ℓ
i=1 of the solution set to (6.4). For this collection

of gluing data, the glued connection A is therefore mASD, as desired.

It therefore suffices to verify the above Claim. We will first unpack the
notation. Note that the preglued connection A′ restricts on X ′ to equal the
trivial flat connection. Let A′(λ0) be the preglued connection defined using
λ0 at every gluing site, and the same ρi as was used to define A′ (so the
only difference between A′ and A′(λ0) is that the former uses λi at the
gluing site xi, while the latter uses λ0 at all gluing sites). Define the map
i (and hence ι) using A′(λ0) as a reference connection. Write Γ = Γtriv for
the trivial connection on N . Then we can write A′ = ι(Γtriv, V

′) = i(Γtriv) +
V ′ = A′(λ0) + V ′ for some 1-form V ′. It follows that V ′|X′ = 0, and we note
also that A′(λ0)|X′ = Atriv.

Next, recall the map P : Lp
δ(Ω

+) → TΓH× Lp
1,δ(Ω

1) from Claim 1 in the
proof of Theorem 3.3, and write Pξ = (η, V ). The definition of the map
J = JAtriv,Ast

gives

J(ξ) = i(expΓ(η)) + V ′ + V

where expΓ : TΓH → H is the exponential. The observations of the previous
paragraph combine with the formula (2.11) to give that the restriction of
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s(A) takes the following form:

s(A)|X′ = (1− β′)F+
i(expΓ(η))

+ d+i(expΓ(η))
V +

1

2
[V ∧ V ]+ .

Returning to the integral (6.4), we can use the defining property of ξ
and the above identity for s(A) to get
(6.7)∫

X′

⟨ω ∧ σπξ⟩ = −

∫

X′

⟨ω ∧ s(A)⟩

= −

∫

X′

(1− β′)⟨ω ∧ F+
i(expΓ(η))

⟩ −

∫

X′

⟨ω ∧ d+i(expΓ(η))
V ⟩

−1
2

∫

X′

⟨ω ∧ [V ∧ V ]+⟩.

Focus on the last term on the right. Recall from Lemma 2.20 that ω decays
in C0 like e−µ+

Γ t. In particular, ω is bounded and so

∫

X′

∣∣⟨ω ∧ [V ∧ V ]+⟩
∣∣ ≤ C1∥V ∥2L2(X) ≤ C1∥V ∥2L2

δ(X) ≤ C1∥Pξ∥2L2
δ(X)

for some constant C1. By Corollaries 3.26 and 3.30, this term decays like λ3:

−
1

2

∫

X′

⟨ω ∧ [V ∧ V ]+⟩ = O(λ3).

We can control the nonlinear parts of the other two terms in (6.7) similarly.
Indeed, use i(expΓ(η)) = Atriv + (Di)Γη +O(η2) and the expansion formulas
for the curvature and covariant derivative, to get

∫

X′

⟨ω ∧ σπξ⟩ = −

∫

X′

(1− β′)⟨ω ∧ d+(Di)Γη⟩ −

∫

X′

⟨ω ∧ d+V ⟩+O(λ3)

where d = dAtriv
. Focus on the first term on the right (there is no analogue

of this term in the standard ASD framework). It follows from the definitions
of β′ and i that (1− β′)(d+(Di)Γη) is supported on [T − 1/2, T + 1/2]×N .
Using the formula (2.17), we have

−

∫

X′

(1− β′)⟨ω ∧ d+(Di)Γη⟩ = −

∫

X′

(1− β′)(∂tβ
′′)⟨ω ∧ (dt ∧ η)+⟩ = 0

where the last equality uses the facts that (i) η ∈ H1
Γtriv

is in the harmonic
space on N , and (ii) elements of H+(X, ad(Atriv)) restrict on each slice to
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be orthogonal to H1
Γtriv

. In summary, this gives

∫

X′

⟨ω ∧ σπξ⟩ = −

∫

X′

⟨ω ∧ d+V ⟩+O(λ3)

=

∫

∂X′

⟨ω ∧ V ⟩+O(λ3).

What remains is to estimate the integral
∫
∂X′

⟨ω ∧ V ⟩. This is an integral tak-
ing place at the boundary of the disks centered at the gluing sites x1, . . . , xℓ.
In particular, this integral is identical to the analogous term that arises when
gluing in the standard ASD setting (e.g., see the top of [3, p. 328]). Then
the argument of [3, pp. 328—331] carries over verbatim to give

∫

∂X′

⟨ω ∧ V ⟩ = qℓω(
{
(λi, ρi)

}
) +O(λ3).

This proves (6.5). □

6D. An ASD existence result and a proof of Theorem A

Recall from Section 2A the definition of the vector field ΞΓ on the center
manifold. We will be interested in the case where the flat connection Γ
satisfies the following hypothesis:

Hypothesis H. There is a neighborhood U ⊆ HΓ of Γ so that every a ∈ U
flows under ΞΓ to a flat connection in U .

Example 6.8.
(a) Recall from Section 2A that UΓ is a neighborhood of Γ in the

Coulomb slice through Γ. Suppose the set of flat connections in UΓ is smooth
in a neighborhood U ′ ⊆ UΓ of Γ and has the same dimension as HΓ. Then
U := U ′ ∩HΓ satisfies Hypothesis H.

(b) The assumption of (a) trivially holds when Γ is non-degenerate, since
HΓ consists of a single point. More generally, the assumption of (a) also
holds when the Chern–Simons function is Morse–Bott in a neighborhood of
Γ (though there is no assumption in part (a) about the nondegeneracy of
the Hessian in the normal directions).

(c) Suppose N = T 3, and let Γ be a flat connection on the trivial SU(2)-
bundle. If Γ is not gauge equivalent to the trivial connection, then Γ satisfies
the assumption in (a), and hence Hypothesis H; see [10, Lemma 14.2(i)].
However, the trivial connection on T 3 does not satisfy Hypothesis H.
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The main usefulness of Hypothesis H for us is through the following
theorem.

Theorem 6.9. Consider the situation of Theorem 3.3, and assume A1 and
A2 are regular. In addition, assume that Γ1 and Γ2 each satisfy Hypothesis H.
Let λ0 > 0 be the constant from Theorem 3.3. Then there is some 0 < λ′

0 ≤
λ0 so that for all λ ∈ (0, λ′

0) the mASD connection J (A1, A2) guaranteed by
Theorem 3.3 (and hence by Theorems B and C) is in fact ASD.

Proof. Fix 0 < λ < λ0 and let Aλ := J (A1, A2) be the mASD connection
from Theorem 3.3 associated to this value of λ. Recall that Γ = Γ1 ⊔ Γ2,
and so Γ satisfies Hypothesis H since the Γk do. It follows from (3.6) that
pT (Aλ) ∈ Hin converges to Γ as λ approaches 0. In particular, by taking λ
sufficiently small, Hypothesis H implies that the ΞΓ-flow line beginning at
pT (Aλ) lies in Hin for all positive time. This implies i(pT (Aλ)) is ASD (see
the paragraph just before the statement of Lemma 2.3), and so

F+
Aλ

= F+
Aλ

− β′F+
i(pT (Aλ))

= s(Aλ) = 0.

□

Now we can prove our application from the introduction.

Proof of Theorem A. Take Γ to be the trivial flat connection on the trivial
SU(2)-bundle. We will show that the two conditions on N stated in Theo-
rem A each imply that Γ satisfies Hypothesis H; it will then be immediate
that the mASD connection guaranteed by Theorem C is in fact ASD, as
desired.

First assume N is a circle bundle over a surface with positive Euler
class. Then [17, Corollary 13.2.2] implies that Γ satisfies the condition of
Example 6.8 (a), and thus Hypothesis H.

Now assume that b1(N) ≤ 1. If b1(N) = 0, then H1
Γ = H1(N)⊗ g = 0

and so Γ is nondegenerate. Thus, Γ again satisfies Hypothesis H, but this
time by Example 6.8 (b).

Finally, suppose b1(N) = 1. We will show here that Γ satisfies the con-
dition of Example 6.8 (a). Since b1(N) = 1, there is a loop γ : S1 → N and
a harmonic 1-form η ∈ Ω1(N,R) so that

∫
γ η = 1. For each ξ ∈ g, let

aξ := Γ + ξ ⊗ η.
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We claim that aξ lies in the center manifold HΓ for all sufficiently small ξ.
To see this, first note that aξ is flat, since

Faξ
= FΓ + ξ ⊗ (dη) +

1

2
[ξ, ξ]⊗ η ∧ η = 0.

This connection also lies in the Coulomb gauge slice for Γ, since

d∗Γ(aξ − Γ) = ξ ⊗ d∗η = 0.

Recall the map Θ and the vector field∇fΓ from Section 2A.1. Since Faξ
= 0,

we have

Θ(aξ) = 0.

Thus ∇aξ
fΓ = 0. One of the defining features of HΓ is that it contains all

zeros of ∇fΓ that are sufficiently close to Γ, so this proves the claim.
It thus follows that there is some ϵ > 0 so that the map

Bϵ(0) ⊆ g −→ HΓ ξ 7−→ aξ

is well-defined. It is clearly an immersion, so a dimension count implies that
it must be a local diffeomorphism; this uses the fact that b1(N) = 1. This
establishes the condition of Example 6.8 (a). □

7. Partial compactification—the Taubes boundary

Here we give a more global formulation of the result of Theorem 6.2 in
the case where G = SU(2) and ℓ = 1. Fix a closed set X ′

0 contained in the
interior of the compact part X0. Let Ast be the standard one-instanton on
the SU(2)-bundle E1 → S4 with c2(E1)

[
S4

]
= 1. For x ∈ X ′

0, let Xx be the
connected sum of X and S4 obtained by gluing x ∈ X to the north pole
in S4. Similarly, glue the trivial SU(2)-bundle on X to E1 → S4 and let
Ex → Xx be the resulting bundle. Let A′

x = A′(Atriv, Ast) be the preglued
connection on Ex, where Atriv is the trivial connection onX. Note that in the
present situation, all auxiliary gluing data can be chosen to be independent
of x. For example, the fiber isomorphism ρ of Section 3A can be taken to
be independent of x since we are starting with the trivial bundle on X.

7A. The Taubes Boundary

Fix ϵ > 0, and let T (ϵ) be thickening data with this choice of ϵ, as in Sec-
tion 6B. By Theorem 3.3, there are ϵ0, λ0 > 0 so the following holds: For all
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0 < ϵ < ϵ0 and 0 < λ ≤ λ0, there is an irreducible, regular mASD connection

A(x, λ) := J (Atriv, Ast) ∈ A1,p(T (ϵ))

with the property that A(x, λ)−Atriv|X\nbhd(x) goes to zero in λ in the sense
of (3.6). This ϵ0 depends only on the trivial flat connection on the 3-manifold
N ; hence ϵ0 is independent of x. Since X ′

0 is compact, we can assume this
λ0 is independent of x as well.

We want to allow x to vary, and for this, we form the space

E ′ :=
{
(x, λ,A) ∈ X ′

0 × (0, λ0]×A1,p(T (ϵ))
∣∣∣ A ∈ M̂reg(T (ϵ), A(x, λ))

}
.

Let Π′ : E ′ → X ′
0 × (0, λ0] be the projection to the first two factors. Then the

assignment Ψ′(x, λ) := (x, λ,A(x, λ)) defines a section of Π′. Just as in The-
orem 5.1, there is an open neighborhood U ′ ⊆ E ′ of the image of Ψ′ so that
the restriction Π′|U ′ is a locally-trivial Cm-fiber bundle over X ′

0 × (0, λ0]. By

construction, the fiber over (x, λ) is an open subset of M̂reg(T (ϵ), A(x, λ))
containing A(x, λ).

Remark 7.1. Here we describe a sense in which Theorem 6.2 can be viewed
as a local version of this fiber bundle construction. Fix a small neighborhood
Ux ⊆ X0 around x. The gluing procedure of Section 3A identifies this with
a small neighborhood of the north pole in S4. The standard description
[9, Ch. 6] of the ASD moduli space M1(S

4, SU(2)) gives an embedding
S4 × (0, λ0] → M1(S

4, SU(2)) with the S4-component specifying the center
of mass and (0, λ0] parametrizing the scale of the curvature; here the energy-
density of the curvature is concentrating, as λ approaches 0, to a Dirac
delta measure supported at the center of mass. Combining these, we have a
diffeomorphism

f : Ux × (0, λ0] −→ V ⊆ M1(S
4, SU(2))

onto an open set V. It follows from this construction that there is a local
trivialization of the fiber bundle Π′|U ′ relative to which Ψ′ takes the form
(y, λ) 7→ (y, λ,Φ(f(y, λ))) where Φ is the map of Theorem 6.2. In fact, by
possibly shrinking Ux further, this local trivialization can be taken to be over
the full cylinder Ux × (0, λ0]; this due to the fact that the constructions in
the proof of Theorem 5.1 can be taken to be uniform in λ. This construction
is exploiting a coupling between the parameter λ and the “scale” parameter
for the concentration of instantons on E1 → S4; see [5, p. 323] for a related
discussion.
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Now we consider the behavior of this section Ψ′ near λ = 0. For this,
suppose (xn, λn) ∈ X ′

0 × (0, λ0] is a sequence with λn → 0; we will call
Ψ′(xn, λn) a bubbling sequence in X ′

0. By passing to a subsequence, we may
assume the xn converge to some x∞ ∈ X ′

0. It follows from a straight-forward
Uhlenbeck-type compactness argument and (3.6) that, after passing to a sub-
sequence, the associated connections A(xn, λn) converge weakly to the ideal
connection (Atriv, x0) in the sense that the energy densities |FA(xn,λn)|

2 con-
verge in measure to the delta measure supported at x0, and

lim
n→∞

∥∥∥ι−1(A(xn, λn))− ι−1(Atriv)
∥∥∥
L2

2(N)×Lp
1,δ(X\Br(x0))

= 0

for all r > 0; see [5, Section 4.4.1] for the analogous ASD case.
Following the lead of [5, Section 4.4.1], the discussion of the previous

paragraph can be framed geometrically as follows. Consider the set

I(U ′) := U ′ ∪ (X ′
0 × {Atriv})

which we view as coupling the connections in U ′ ⊆ E ′ into the same space
as the above-mentioned ideal connections. We can extend Π′|U ′ to a map
I(Π′) : I(U ′) → X ′

0 × [0, λ0] by declaring it to send (x,Atriv) to (x, 0). Give
I(U ′) any topology (more below) for which the map I(Π′) is continuous and
so that the notion of weak convergence from the previous paragraph implies
convergence in I(U ′); we assume also that this topology is first countable.
Then the observations of the previous paragraph imply the section Ψ′ ex-
tends continuously over X ′

0 × {0} to a section Ψ
′
of I(Π′). It is due to this

that we may view I(U ′) as a “partial compactification” for mASD connec-
tions: The bubbling sequences in X ′

0 converge in I(U ′).

7B. Compactification Issues

We end this section with several comments about the construction of the
partial compactification I(U ′), as well as some of its limitations. This par-
tial compactification is constructed only so that bubbling sequences in X ′

0

converge—our assumptions on the topology on I(U ′) do not necessarily im-
ply subsequential convergence of other types of sequences. The simple reason
for this is that we do not yet know how such sequences behave, and what
additional limiting objects we would need to include in I(Π′) to ensure their
subsequential convergence. What we are presently lacking is a sufficiently
strong version of Uhlenbeck’s compactness theorem for mASD connections.
In the end, such a theorem would need to (at least) address the following:
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(a) Bubble formation on the end : To what extent is the mASD condition
preserved under Uhlenbeck limits where the curvature concentrates
at a point in EndX? More fundamentally, is the connections space
A1,p(TΓ) suitably closed under such limits? This is related to (c) below.

From the gluing perspective, we avoided these questions altogether
by only gluing at points in the compact part where mASD connec-
tions are ASD; that is, I(U ′) only corresponds to the points in the
“Taubes boundary” that corresponds to bubbles in X ′

0 ⊆ X\EndX
(and relative to a fixed gluing parameter ρ; see Remark 5.3 (b)). A
more thorough investigation would require not only an understanding
of the mASD condition under Uhlenbeck limits, but also an under-
standing of how to glue at points on EndX.

(b) Energy escaping down the end : One example of this is bubbling on
the end, as discussed in (a). Another example is where a non-trivial
amount of energy escapes down the end. This is familiar in the ASD
setting, where compactification can be achieved by including spaces of
translationally-invariant ASD connections on R×N (spaces of “Floer
trajectories”); see [4, 8]. In the mASD setting, one would likely need to
include spaces of mASD connections on R×N to account for energy
escaping. The details of this appear to be subtle, since the energy
values of such connections are not governed by topological quantities,
as is the case in the ASD setting. (In the discussion above, where
we considered sequences in the image of Ψ′, we were able to exclude
non-trivial energy on the end by appealing to (3.6).)

(c) Failure of the slice-wise gauge fixing condition: In the definition of the
space A1,p(TΓ) from Section 2B.1, we restricted attention to connec-
tions that restrict on each time slice {t} ×N , for t ≥ T , to be gauge
equivalent to a connection in the gauge slice UΓ. This is an open con-
dition in the space of all Lp

1,loc connections, and we do not see a reason
why this condition should be retained through limits of mASD con-
nections.

It is clear from these observations that I(U ′) is by no means the end
of the story when it comes to compactification. It is due to this that we
have avoided defining a specific topology on I(U ′) above, choosing instead
to axiomatize a minimal set of desirable properties.

Remark 7.2. A challenging problem is to establish a general “gluing
theorem on the ends” for mASD-connections (X1, A1) and (X2, A2) with
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“matching boundary conditions” on two given 4-manifolds with cylindri-
cal ends. Such a theorem was obtained in [16], for ASD-connections as-
suming that their flat limits in the common 3-manifold N end where ir-
reducible smooth points in the representation variety of N . In this case,
the gluing was unobstructed. More generally, in order to glue two mASD-
connections, the matching conditions should at least include (i) an identifica-
tion EndX1

∼= EndX2
∼= N × [0,∞), (ii) the same flat reference connection

Γ on N and center manifold HΓ, and (iii) the same flow lines ω̂h in HΓ,
where h = pT (A1) = pT (A2). We would expect the glued-up connections to
provide an embedded submanifold of connections on the closed 4-manifold
X = X1 ∪X2 obtained by identifying along their cylindrical ends. In this
general mASD case, the glued-up connection would presumably satisfy some
version of the mASD equation on X that equals the ASD equation on the
complement of the neck. How do the ASD connections on X compare to
these “mASD connections” on X? For example, do these “mASD connec-
tions” on X form some sort of local thickening of the ASD moduli space, as
is the case for cylindrical end manifolds? Since X is compact, it seems likely
that the ASD operator differs from the “mASD operator” by a compact
operator. Can this operator be scaled in some way to show that ASD and
mASD spaces on X are, in some sense, cobordant?
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