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Rank conditions for finite group actions on
4-manifolds
Ian Hambleton and Semra Pamuk
Abstract. Let M be a closed, connected, orientable topological 4-manifold, and G be a finite group
acting topologically and locally linearly on M. In this paper, we investigate the spectral sequence for
the Borel cohomology H∗G(M) and establish new bounds on the rank of G for homologically trivial
actions with discrete singular set.

1 Introduction

In this paper, we provide some new information about the existence of finite group
actions on closed, connected, orientable 4-manifolds. In this dimension, the compar-
ison between smooth and topological group actions is particularly interesting. Our
focus will be on locally linear topological actions as background for future work on
smooth actions.

For free actions on simply connected 4-manifolds, or equivalently for closed topo-
logical 4-manifolds with finite fundamental group, there are a number of classification
results in the literature (for example, see [6–9]). One challenging open problem is to
compute the Hausmann–Weinberger invariant [11], namely to determine the minimal
Euler characteristic of a 4-manifold with a given fundamental group. The answer is
only known at present in special cases (see [12]).

We will extend the scope of previous work by including nonsimply connected
manifolds and concentrate on nonfree actions. We often assume that the actions are
homologically trivial, meaning that the group of symmetries acts as the identity on the
homology groups of the manifold.

A useful measure of the complexity of a finite group G is its p-rank, defined as
the maximum rank r of an elementary abelian p-group (Zp)r ≤ G. We let rankp(G)
denote the p-rank of G for each prime p and let rank(G) denote the maximum over
all primes of the p-ranks.
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Question Given a closed orientable 4-manifold M, what is the maximum value of
rank(G) over all the finite groups G which act effectively, locally linearly, and homo-
logically trivially on M?

We note that a Zp-action, for p a prime, will be homologically trivial if M has
torsion-free homology and (p − 1) is larger than each of the Betti numbers of M. If
M has Euler characteristic χ(M) ≠ 0, then any homologically trivial action of a finite
group must be nonfree (by the Lefschetz fixed-point theorem).

Beyond the rank restrictions, we would like to know which finite groups G can act.
For example, if M is the connected sum of two or more complex projective planes,
then G is abelian and rank(G) ≤ 2 (see [10]). This was proved for smooth actions
using techniques from gauge theory. Then, McCooey [14], building on earlier work
by Edmonds [5], used methods from equivariant algebraic topology to prove a much
stronger result:

Theorem (McCooey [14, Theorem 16]) Let G be a (possibly finite) compact Lie group,
and suppose M is a closed 4-manifold with H1(M;Z) = 0 and b2(M) ≥ 2, equipped with
an effective, locally linear, homologically trivial G-action.
(i) If b2(M) = 2 and Fix(M) ≠ ∅, then G is isomorphic to a subgroup of S1 × S1.

(ii) If b2(M) ≥ 3, then G is isomorphic to a subgroup of S1 × S1, and the fixed set
Fix(M) is necessarily nonempty.

What should we expect for actions on arbitrary nonsimply connected 4-manifolds?
Here is a possible uniform answer to the rank question (compare [5, Conjecture 9.1]).

Conjecture If a finite group G acts effectively, locally linearly, and homologically
trivially on a closed orientable 4-manifold M with Euler characteristic χ(M) ≠ 0, then
rankp(G) ≤ 2 for p odd.

The condition χ(M) ≠ 0 rules out actions on M = T4 (for example), but the group
G = (Z2)4 acts linearly on S4, so additional conditions must be found for p = 2.

Remark 1.1 Mann and Su [13, Theorem 2.2]) showed that rankp(G) ≤ 2, for p an odd
prime, provided that the fixed set Fix(M) ≠ ∅, without assuming that the action was
locally linear or homologically trivial. However, the existence of a global fixed point
is a strong assumption: in the locally linear case, the result follows easily from a result
of P. A. Smith [19, Section 4] applied to the boundary S3 of a G-invariant 4-ball at a
point x ∈ Fix(M).

The main tool from equivariant algebraic topology used for the study of nonfree
group actions is the Borel spectral sequence. Let BG denote the classifying space
for principal G-bundles and EG the universal free, contractible G-space. Then, the
Borel cohomology H∗G(M) ∶= H∗(M ×G EG) is “computable” in principle from the
Serre spectral sequence of the fibration M → M ×G EG → BG. We will use integral
coefficients or Fp-coefficients for H∗(M), but note that, in general, this is a local
coefficient system for the group cohomology of G. For homologically trivial actions,
we have ordinary coefficients.

Theorem A Suppose that G = Zp acts locally linearly on a closed, connected, oriented
4-manifold M, preserving the orientation, with fixed-point set F = Fix(M) ≠ ∅.
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(i) If the map H1(F;Z) ↠ H1(M;Z) is surjective, then the Borel spectral sequence for
H∗G(M) collapses with integral and Fp-coefficients.

(ii) If ker(H1(M;Z) → H1(F;Z)) is nontrivial, but has trivial G-action, then the Borel
spectral sequence with integral coefficients does not collapse.

Edmonds [4, Proposition 2.3] showed that the Borel spectral sequence with integral
orFp-coefficients collapses for orientation preservingZp-actions with F ≠ ∅ on closed
simply connected 4-manifolds. We generalize this result to nonsimply connected 4-
manifolds.

The two-dimensional components of Fix(M) are always orientable if p > 2, and for
p = 2, this would follow, for example, by assuming that G preserves a Spinc structure
in a suitable sense (see [4, Proposition 3.2] and Ono [17, Section 4]). However, the
complex conjugation involution on CP

2 with fixed set RP2 shows that orientability of
the fixed set is not necessary, in general, for the collapse of the Borel spectral sequence
with integral coefficients (see [4, Proposition 2.3]).

In his arXiv paper [16, Proposition 3.1], McCooey proposed a “collapse” result for
homologically trivial actions under the assumption that H1(M) is torsion-free, but
without our condition on H1(F) (see Example 7.2 for a counterexample).

Remark 1.2 Note that if H1(F) ↠ H1(M) is surjective, then H1(M) ↣ H1(F) is
injective, but not conversely if H1(M) has torsion.

Recall that an action is called pseudofree if the singular set Σ ∶= Σ(M , G) ⊂ M
consists of isolated points. For such actions, we can estimate the rank.

Theorem B Let M be a closed, orientable 4-manifold with χ(M) ≠ 0. If a finite group G
acts locally linearly, pseudofreely, and homologically trivially on M, then rankp(G) ≤ 1
for p ≥ 5 and rankp(G) ≤ 2 for p = 2, 3.

Remark 1.3 Note that the actions of G = (Z2)4 on M = S4 are not pseudofree (see
Breton [3]). In addition, M = CP2 admits a pseudofree action of G = Z3 ×Z3 (see
Example 6.2), and S2 × S2 admits pseudofree actions of Z2 ×Z2 (see [15]).

Here is a short outline of the paper. Throughout the paper, M denotes a closed,
connected, oriented topological 4-manifold.

For orientation-preserving actions, the assumptions in Theorem A imply that the
fixed-point set must be two-dimensional whenever H1(M) ≠ 0. In Section 7, we
give some examples of group actions on a closed, connected oriented 4-manifold to
illustrate various features. For example, there is an action with zero-dimensional fixed-
point set, where the Borel spectral sequence does not collapse, and another with a
two-dimensional fixed-point component where the Borel spectral sequence does not
collapse. This motivates our assumption that H1(F) ↠ H1(M) is surjective.

In Section 2, we give some general facts about the main tool we use in the proof;
the Leray–Serre spectral sequence for the fibration M → M ×G EG → BG is also called
the Borel Spectral Sequence. The details can be found in the books [2] and [20].

In Section 3, we prove the first part of Theorem A and complete the proof in Section
4. In Section 5, we give some applications under the extra assumptions of homological
triviality and H1(M) = 0. In Section 6, we prove Theorem B.
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2 The Borel spectral sequence

In this section, we recall some of the standard facts about H∗G(M), where G is a finite
group acting on a finite-dimensional G– CW complex M. In particular, these results
apply to G-manifolds and singular cohomology with coefficients in R = Z (or R = Fp
when indicated). The details about this construction and the spectral sequence can be
found in Borel [2] and tom Dieck [20].

The Leray–Serre spectral sequence for the fibration M → M ×G EG → BG is
known as the Borel spectral sequence. The total space of this fibration is known as the
Borel construction and is denoted by MG = M ×G EG. The E2-page of this spectral
sequence is

Ek , l
2 (M) = Hk(G; H l(M)),

which converges to the cohomology H∗(MG) of the total space MG . These are
denoted by H∗G(M) and are known as the Borel equivariant cohomology groups. This
construction is natural with respect to G-maps of G-spaces.

In the examples in Section 7, we use Proposition 2.4 given below to decide whether
the Borel spectral sequence collapses. Before we state this proposition, we recall some
basic definitions for the convenience of the reader. In this section, we will denote the
fixed set by MG .

Since EG is path-connected, any fiber inclusion jb ∶M → EG ×G M, with jb(m) =
(b, m) for b ∈ EG and m ∈ M, induces a well-defined map j∗∶H∗G(M) → H∗(M).

A cohomology extension of the fiber is an R-module homomorphism of degree zero
t∶H∗(M) → H∗G(M) such that j∗ ○ t is the identity. M is called totally nonhomologous
to zero in MG with respect to H∗(−) if j∗ is surjective.

Since a surjective map onto a free R-module splits, if M is totally nonhomologous to
zero and H∗(M) is a free R-module, then a cohomology extension of the fiber exists.
Also, if M is totally nonhomologous to zero in MG , then G acts trivially on H∗(M).

One can show that [20, Chapter III, Proposition 1.17] M is totally nonhomologous
to zero in MG if and only if G acts trivially on H∗(M) and E0,∗

2 consists of permanent
cocyles (i.e., E0, p

2 = E0, p
∞ ). Also, if we have H∗(M) is finitely generated free R-module,

then [20, Chapter III, Proposition 1.18] M is totally nonhomologous to zero in MG if
and only if G acts trivially on H∗(M) and the Borel spectral sequence collapses. In
this case, H∗G(M) is a free H∗(BG)-module.

The [20, Chapter III, Proposition 4.16] comes as an application of Localization The-
orem, so let us recall it briefly. Let S be a multiplicatively closed subset of homogeneous
elements in H∗(BG) and F(S) = {H ⩽ G ∣ S⋂ker(H∗G(G/G) → H∗G(G/H)) ≠ ∅},
then [20, Chapter III, Theorem 3.8]:

Theorem 2.1 Let (M , A) be a finite-dimensional relative G-complex. Suppose M/A has
finite orbit types with orbits isomorphic to G/H for H ∈ F(S). Then, the inclusion A ⊂ M
induces the isomorphism S−1H∗G(M) ≅ S−1H∗G(A).

Assumption In the remainder of this section, we list some results about the Borel
cohomology H∗G(M) for finite p-group actions, with coefficients in k ∶= Fp understood.

In this setting, the Localization Theorem has a stronger conclusion.
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Theorem 2.2 [20, Chapter III, Theorem 3.13] Let G = (Zp)n be a p-torus and M a
finite-dimensional G– CW complex. Then, S−1H∗G(M) ≅ S−1H∗G(MG).

Let j∶M → {pt} denote the map of M to a point.

Corollary 2.3 Let G = (Zp)n be a p-torus and M a finite-dimensional G– CW
complex. Then, MG ≠ ∅ if and only if j∗∶H∗G(pt) → H∗G(M) is injective.

Here are some useful criteria for the collapse of the Borel spectral sequence: we are
combining statements from Borel [2, Chapter XII, Theorem 3.4] and tom Dieck [20,
Chapter III, Proposition 4.16].

Proposition 2.4 (Borel) Let G = (Zp)n be a p-torus and k = Fp. Suppose the total
dimension∑r dimk Hr(M) is finite and Hq(M) = 0 for q > dim M = n. Then,

∑
r

dimk Hr(MG) ≤ ∑
r

dimk Hr(M).

Moreover, the following are equivalent:
(i) ∑r dimk Hr(MG) = ∑r dimk Hr(M).

(ii) M is totally nonhomologous to zero in MG with respect to H∗(−).
(iii) dimk Hq

G(M) = ∑r dimk Hr(M) for q > n.
(iv) G acts trivially on H∗(M), and the Borel spectral sequence collapses.

With some extra assumptions, the following statement can be proved:

Corollary 2.5 [2, Chapter XII, Corollary 3.5] Let G be an elementary abelian p-group
and M be a compact G-space for which dimk M, dimk H∗(M), and the number of orbit
types are all finite. Assume that
(i) G acts homologically trivially, and

(ii) H∗(M) is generated by elements which are transgressive in the Borel spectral
sequence.

Then, the fixed-point set MG is nonempty if and only if the Borel spectral sequence
collapses.

3 Collapse of the spectral sequence

Under some conditions, including the strong assumption that H1(F) ↠ H1(M) is
surjective, we prove the first part of Theorem A, namely a “collapse” result for the
Borel spectral sequence.

Theorem 3.1 Let G = Zp act locally linearly on a closed, connected, oriented 4-manifold
M, preserving the orientation, with fixed-point set F ≠ ∅. If H1(F;Z) ↠ H1(M;Z) is
surjective, then the Borel spectral sequence for H∗G(M) collapses with integral and Fp-
coefficients.

Remark 3.2 Since all the arguments in the proof of this result are cohomological, the
conclusion should hold (at least for integral coefficients) if coker{H1(F) → H1(M)} ≠
0 is a cohomologically trivial ZG-module and H1(M) is torsion-free. We have not
checked the details. If H1(M) has p-primary torsion, then the situation in this extra
generality appears much more complicated.
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At various points, we will need to use some properties of the group cohomology of
G = Zp . Recall that the integral cohomology is a polynomial algebra H∗(G;Z) = Z[θ],
where ∣θ∣ = 2 is a class of degree 2. For p odd, we have

H∗(G;Fp) = Fp[u] ⊗ Λ(x),

where ∣u∣ = 2 and ∣x∣ = 1, with x2 = 0. For p = 2, H∗(G; F2) = F2[x], where ∣x∣ = 1. The
cup products are natural with respect to the change of coefficients Z→ Fp , and the
induced maps H2k(G;Z) → H2k(G;Fp) are isomorphisms for k > 0 and surjective
for k = 0. The differentials in the Er terms of the Borel spectral sequence for H∗G(M)
are multiplicative with respect to cup products in the cohomology of M and G.

Before starting the proof of Theorem 3.1, we will collect some useful remarks:

(i) Since G preserves the orientation on M (automatic for p odd) and H1(F) →
H1(M) is surjective, G acts trivially on the homology and cohomology of M,
except possibly for H2(M) ≅ H2(M).

(ii) Let A ⊂ F denote a nonempty one-dimensional subset of the fixed-point set,
such that the map H1(A) ↠ H1(M) is surjective. For example, take A to be a
1-skeleton of F.

(iii) The induced map H1(M) → H1(A) is injective.
(iv) By applying duality to a neighborhood of A in M, we have H∗(M-A) ≅

H4−∗(M , A), and similarly H∗(M , A) ≅ H4−∗(M-A).
(v) The statements so far also hold for homology and cohomology with Fp-

coefficients.
(vi) H1(M , A) = ker{H0(A) → H0(M)} is Z-torsion-free, with trivial G-action.

(vii) H2(M , A) is Z-torsion-free: its torsion subgroup is Ext(H1(M , A),Z) = 0.

Proof We first consider the E2-page of the Borel spectral sequence Ek , l
2 (M) =

Hk(G; H l(M)) and show that d2 differentials are zero. Integral coefficients are
understood unless Fp-coefficients are stated explicitly.

3A The maps dk ,4
2 ∶ Ek ,4

2 (M) → Ek+2,3
2 (M)

For any fixed point x ∈ F, the inclusion map i∶M-{x} ↪ M induces a homomor-
phism i∗∶Hn(M) → Hn(M-{x}), which is zero for n ≥ 4 and isomorphism for other
dimensions. The corresponding map of spectral sequences Ek , l

r (M) → Ek , l
r (M-{x})

is trivial when l = 4 and an isomorphism otherwise. By naturality, we have the
commutative diagrams of differentials:

Hk(G; H4(M))

i∗
��

d k ,4
2 �� Hk+2(G; H3(M))

≅

��
Hk(G; H4(M-{x}))

d k ,4
2 �� Hk+2(G; H3(M-{x}))

Since H4(M-{x}) = 0, we have i∗ = 0 and H3(M-{x}) ≅ H3(M), so dk ,4
2 = 0. The

same argument works for Fp-coefficients.
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3B The maps dk ,1
2 ∶ E

k ,1
2 (M) → Ek+2,0

2 (M)

Similarly, for any x ∈ F, consider the map j∗∶Hn(M , {x}) → Hn(M) induced by
j∶ (M , ∅) → (M , {x}). From the long exact sequence in relative cohomology, j∗ is iso-
morphism for all n ≥ 1. The corresponding map of spectral sequences Ek , l

r (M , {x}) →
Ek , l

r (M) is also isomorphism for l ≥ 1. By naturality, we again have the commutative
diagrams of differentials:

Hk(G; H1(M , {x}))

j∗

��

d k ,1
2 �� Hk+2(G; H0(M , {x}))

��
Hk(G; H1(M))

d k ,1
2 �� Hk+2(G; H0(M))

Since H0(M , {x}) = 0 and j∗ is isomorphism, then dk ,1
2 = 0. The same argument

works for Fp-coefficients.

3C The maps dk ,3
2 ∶ E

k ,3
2 (M) → Ek+2,2

2 (M)

From the long exact sequence of relative homology, and H2(A) = 0, we get injectivity
of H2(M) ↣ H2(M , A). Since H1(A) ↠ H1(M) is surjective, we conclude that the
map H1(M) → H1(M , A) is zero. By duality, the map H3(M) → H3(M-A) is zero.
This also holds for Fp-coefficients. We obtain the commutative diagram:

0 �� H2(M) ��

≅

��

H2(M-A)

≅

��

�� K ��
��

��

0

0 �� H2(M) �� �� H2(M , A) �� H1(A) �� �� H1(M) �� 0

(3.3)

where K ∶= ker{H1(A) → H1(M)}. For k ≥ 0 even, Hk+1(G; K) = 0, since K is Z-
torsion-free with trivial G-action. When we apply group cohomology to the upper
short exact sequence in (3.3), we get the long exact sequence:

⋯ �� Hk+1(G; K) �� Hk+2(G; H2(M)) �� Hk+2(G; H2(M-A)) �� ⋯

It follows that the map Hk+2(G; H2(M)) ↣ Hk+2(G; H2(M-A)) is injective for k
even.

Since the map H3(M) → H3(M-A) is zero, the induced map in group cohomology
Hk(G; H3(M)) → Hk(G; H3(M-A)) is also zero. By naturality of spectral sequences
with respect to the inclusion M-A↪ M, we have the following commutative diagram:

Hk(G; H3(M))

0
��

d k ,3
2 �� Hk+2(G; H2(M))

��

��
Hk(G; H3(M-A))

d k ,3
2 �� Hk+2(G; H2(M-A))

https://doi.org/10.4153/S0008414X21000018 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X21000018


Rank conditions for finite group actions on 4-manifolds 557

implying dk ,3
2 = 0 for k even. For Fp , we are missing the injectivity of the right-

hand vertical map. However, the isomorphism H3(M) ⊗ Fp ≅ H3(M;Fp) implies
that H0(G; H3(M)) → H0(G; H3(M;Fp)) is surjective, since both coefficients have
trivial G-action, so reduces to the surjection H3(M) → H3(M;Fp). Then, naturality
gives d2i ,3

2 = 0 for integral or Fp-coefficients.

The differentials dk ,3
2 for k odd (-coefficients). If H1(M) has no p-torsion, then

H3(M;Fp) = 0 and dk ,3
2 = 0 with Fp-coefficients for k odd. To handle the case where

H3(M) has p-primary torsion and k is odd, we compare with the Fp-coefficient spec-
tral sequence via the change of coefficientsZ→ Fp . Note that since H0(G; H3(M)) →
H0(G; H3(M;Fp)) is surjective, and d0,3

2 = 0, we see that

d0,3
2 ∶H

0(G; H3(M;Fp)) → H2(G; H2(M;Fp))

is also zero. Now we use the multiplicativity of the Fp-coefficient spectral sequence,
and the fact that

∪ x∶H0(G; H3(M;Fp)) → H1(G; H3(M;Fp))

is surjective (since the coefficients have trivial G-action), where 0 ≠ x ∈ H1(G;Fp), to
conclude that

d1,3
2 ∶H

1(G; H3(M;Fp)) → H3(G; H2(M;Fp))

is zero for Fp-coefficients, and hence for all odd k by naturality and periodicity. We
have now shown that dk ,3

2 = 0 for all k in the spectral sequence with Fp-coefficients .

Remark 3.4 If H1(M) ≅ H3(M) is p-primary torsion-free, then Hk(G , H3(M)) =
0 for k odd, since H1(M) ≅ H3(M) is a trivial G-module, due to the assumption
that H1(F) ↠ H1(M) is surjective. Hence, the differentials dk ,3

2 = 0 with integral
coefficients for all odd k, if the order of H1(M) is not divisible by p.

We will return to the remaining differentials dk ,3
2 , for k odd and integral coefficients,

after showing that the spectral sequence collapses for Fp-coefficients.

3D The maps dk ,2
2 ∶ E

k ,2
2 (M) → Ek+2,1

2 (M)

Let T = ker{H2(M , A) → H2(M)} = coker{H1(M) → H1(A)}. Since T is a quotient
of H1(A), it has trivial G-action. Since T ⊆ H2(M , A), it is Z-torsion-free. Since
H2(A) = 0, we have a short exact sequence:

0 �� T �� H2(M , A) α �� �� H2(M) �� 0

which induces a long exact sequence in group cohomology:

⋯ �� Hk(G; T) �� Hk(G; H2(M , A)) �� Hk(G; H2(M)) �� Hk+1(G; T) �� ⋯

Therefore, the map Hk(G; H2(M , A)) → Hk(G; H2(M)) is surjective for k even,
since Hk+1(G; T) = 0 in this case.
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By naturality with respect to the map of pairs (M , ∅) → (M , A), we have the
commutative diagram:

Hk(G; H2(M , A))

����

d k ,2
2 �� Hk+2(G; H1(M , A))

0
��

Hk(G; H2(M))
d k ,2

2 �� Hk+2(G; H1(M))

We note that the map H1(M , A) → H1(M) is zero, since H1(M) → H1(A) is injec-
tive. Hence, the map Hk+2(G; H1(M , A)) → Hk+2(G; H1(M)) is zero, for k even,
and dk ,2

2 = 0, for k even. For odd k, we have Hk+2(G; H1(M)) = 0, since H1(M)
is torsion-free with trivial G-action, and dk ,2

2 = 0 also for k odd (with integral
coefficients).

To understand the dk ,2
2 differentials with Fp-coefficients, we use the mul-

tiplicative structure in the spectral sequence. Suppose that 0 ≠ d0,2
2 (z) ∈ E2,1

2 =
H2(G; H1(M;Fp)), for some z ∈ E0,2

2 . Since the cup product pairing

H2(G; H1(M;Fp)) ×H2(G; H3(M;Fp)) → H4(G; H4(M;Fp)) = Fp

is nonsingular, there exists w ∈ H2(G; H3(M;Fp)) = E2,3
2 such that d0,2

2 (z) ⋅w ≠ 0.
But

0 = d2,5
2 (z ⋅w) = z ⋅ d2,3

2 (w) − d0,2
2 (z) ⋅w ,

since z ⋅w ∈ E2,5
2 = 0 and d2,3

2 (w) = 0, as shown above. This is a contradiction,
and hence d0,2

2 = 0. Since ∪ x∶H2(G; H1(M;Fp)) ≅ H3(G; H1(M;Fp)), we have
d1,2

2 = 0. This completes the proof that all the d2 differentials are zero for Fp-
coefficients.

3E Vanishing of differentials in the E3-page

Obviously, dk ,1
3 = 0, and we again use the maps induced from i∶M-{x} ↪ M to show

dk ,4
3 = 0, and j∶ (M , ∅) → (M , {x}) to show dk ,2

3 = 0.

Ek ,4
3 (M) = Hk(G; H4(M))

i∗
��

d k ,4
3 �� Hk+3(G; H2(M))/ Im dk+1,3

2 (M)

≅

��
Ek ,4

3 (M-{x}) = Hk(G; H4(M-{x}))
d k ,4

3 �� Hk+3(G; H2(M-{x}))/ Im dk+1,3
2 (M-{x})

We have H2(M-{x}) ≅ H2(M) and H3(M-{x}) ≅ H3(M), which gives the right-
hand vertical isomorphism. The map i∗ = 0, since H4(M-{x}) = 0, so dk ,4

3 = 0.
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Next, consider the diagram:

Hk(G; H2(M , {x}))/ Im dk−2,3
2 (M , {x})

j∗

��

d k ,2
3 �� Hk+3(G; H0(M , {x}))

��
Hk(G; H2(M))/ Im dk−2,3

2 (M)
d k ,2

3 �� Hk+3(G; H0(M))

Since H0(M , {x}) = 0 and j∗ is an isomorphism, we have dk ,2
3 = 0. The same argu-

ments work for Fp-coefficients.
For dk ,3

3 , we again use naturality and the following commutative diagram:

Hk(G; H3(M)) ⊇ ker dk ,3
2 (M)

i∗
��

d k ,3
3 �� Hk+3(G; H1(M))

i∗ ≅
��

Hk(G; H3(M-A)) ⊇ ker dk ,3
2 (M-A)

d k ,3
3 �� Hk+3(G; H1(M-A))

By duality, H1(M) → H1(M-A) is an isomorphism, and so is the map

i∗∶Hk+3(G; H1(M)) → Hk+3(G; H1(M-A)).

Since the map H3(M) → H3(M-A) is zero (as noted above), we have dk ,3
3 = 0. The

same arguments work for Fp-coefficients. For integral coefficients (where we have not
yet shown ker dk ,3

2 = 0 if k is odd), we are using the vanishing of dk−2,4
2 to see that the

domain of dk ,3
3 is ker dk ,3

2 ⊆ Hk(G; H3(M)).

3F Vanishing of differentials in the E4-page

Obviously, dk ,1
4 = 0 and dk ,2

4 = 0, and again we use the induced maps i∗ to show dk ,4
4 =

0 and j∗ to show dk ,3
4 = 0.

Hk(G; H4(M))

i∗
��

d k ,4
4 �� Hk+4(G; H1(M))

≅

��
Hk(G; H4(M-{x}))

d k ,4
4 �� Hk+4(G; H1(M-{x}))

Since H4(M-{x}) = 0, we have i∗ = 0 and H1(M-{x}) ≅ H1(M), so dk ,4
4 = 0.

Hk(G; H3(M , {x})) ⊇ ker dk ,3
2 (M , {x})

j∗

��

d k ,3
4 �� Hk+4(G; H0(M , {x}))

��
Hk(G; H3(M)) ⊇ ker dk ,3

2 (M)
d k ,3

4 �� Hk+4(G; H0(M))

Since H0(M , {x}) = 0 and j∗ is an isomorphism, it follows that dk ,3
4 = 0. The same

arguments work for Fp-coefficients.
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3G Vanishing of differentials in the E5-page

There is only one differential to consider dk ,4
5 ∶Ek ,4

5 (M) → Ek+5,0
5 (M), which can

easily shown to be zero by again using j∗:

Hk(G; H4(M , {x}))

j∗

��

d k ,4
5 �� Hk+5(G; H0(M , {x}))

��
Hk(G; H4(M))

d k ,4
5 �� Hk+5(G; H0(M))

Since H0(M , {x}) = 0 and j∗ is isomorphism, then dk ,4
5 = 0. The same arguments

work for Fp-coefficients.

Remark 3.5 For the vanishing of the differentials dk ,r−1
r hitting the (∗, 0) line, we

could just have cited Corollary 2.3, since F ≠ ∅.

We have now shown that the Borel spectral sequence with Fp-coefficients collapses
and that E3 = E∞ with integral coefficients (independently of the vanishing of d2i+1,3

2 ).

3H The maps d2i+1,3
2 ∶ E2i+1,3

2 (M;Z) → E2i+3,2
2 (M;Z)

We will show that the differentials d2i+1,3
2 = 0 by comparing the integral calculations

with the mod p calculations.
Note that the groups Hq

G(M) with integral coefficients are all k-vector spaces for
q > 4 (with notation k ∶= Fp as before). This follows from the isomorphism Hq

G(M) ≅
Hq

G(F) ≅ Hq(F × BG) (see [5, Proposition 2.1]).
There is a short exact sequence of k-vector spaces

0→ H5
G(M) → H5

G(M;Fp) → H6
G(M) → 0,(3.6)

and we will compute both sides of the resulting equality

dimk H5
G(M) + dimk H6

G(M) = dimk H5
G(M;Fp)(3.7)

via separate calculations.
Suppose that d1,3

2 ≠ 0, and we let b = dimk(Im d1,3
2 ) = dimk(Im d3,3

2 ) (by peri-
odicity). Let t = dimk Hodd(G; H3(M)) and note that Hodd(G; H1(M)) = 0. Since
H3(M) ≅ H1(M) has trivial G-action, we have dimk H2(G; H3(M)) = b1(M) + t.

Lemma 3.8 (i) dimk H5
G(M) = 2b1(M) + (t − b) + dimk H3(G; H2(M));

(ii) dimk H6
G(M) = 2 + (t − b) + dimk H4(G; H2(M));

(iii) dimk H5
G(M;Fp) = 2 + 2b1(M) + 2t + dimk H3(G; H2(M;Fp)).

Proof We compute

dimk H5
G(M) =

4
∑
i=0

dimk H5−i(G; H i(M)) − b

and note that

dimk E3.2
∞ = dimk H3(G; H2(M)) − b.

https://doi.org/10.4153/S0008414X21000018 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X21000018


Rank conditions for finite group actions on 4-manifolds 561

We then obtain the first formula after taking into account the vanishing of all the other
differentials. Similarly,

dimk H6
G(M) =

4
∑
i=0

dimk H6−i(G; H i(M)) − b

after substituting the value

dimk E3.3
∞ = dimk H3(G; H3(M)) − b = t − b,

and we obtain the second formula. To compute the third formula, we note that

dimk H1(G; H4(M;Fp)) = dimk H5(G;Fp) = 1

and

dimk H2(G; H3(M;Fp)) = dimk H4(G; H1(M;Fp)) = t + b1(M). ∎

In order to compare the integral and mod p formulas, we need some information
about the structure of H2(M;Fp) as a G-module. We can decompose

H2(M)/Tors ≅ Zr0(M) ⊕Z[ζp]r1(M) ⊕ Λr2(M)

as a G-module (this uses the classification ofZ-torsion-freeZG-modules and an argu-
ment with G0(ZG) due to Swan). This module supports a nonsingular G-invariant
symmetric bilinear form arising from the intersection form on M.

Let T = Tors(H2(M)) and note that T∗ = Ext1(T ,Z) = Tors(H3(M)) ≅
Tors(H1(M)). In our case, T∗ ≅ T as G-modules with trivial G-action. We introduce
the notation V ∶= T ⊗ Fp and V∗ ∶= pT ≅ Homk(V ,Fp) for the elements of exponent
p in T.

Definition 3.9 Let V ∶= Tors(H1(M)) ⊗ Fp and V∗ = Homk(V ,Fp). We say that
the G-representation H2(M;Fp) has split type if the short exact sequences

0→ H2(M) ⊗ Fp → H2(M;Fp) → V∗ → 0

and

0→ V → H2(M) ⊗ Fp → (H2(M)/Tors) ⊗ Fp → 0

of G-representations are split exact over G.

We will show that this condition is always satisfied in the setting of Theorem A.

Lemma 3.10 If G = Zp, then H2(M;Fp) has split type as a G-representation, and
H2(M;Fp) ≅ (H2(M)/Tors) ⊗ Fp ⊕ V ⊕ V∗ as a G-module.

Proof We have a short exact sequence of k-vector spaces with G-action:

0→ H2(M) ⊗ Fp → H2(M;Fp) → V∗ → 0,

where V∗ ≅ p(H3(M)) as a trivial G-representation. Let L̄ ∶= (H2(M)/Tors) ⊗ Fp
and consider the short exact sequence

0→ V → H2(M) ⊗ Fp → L̄ → 0.
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Since L̄ supports a nondegenerate G-invariant symmetric bilinear form L̄ × L̄ → Fp
(induced by the intersection from of M), it follows that this sequence splits over
G and we have H2(M) ⊗ Fp ≅ V ⊕ L̄ as G-modules. Similarly, the submodule L̄ of
H2(M;Fp) is a direct summand, and we have a splitting

H2(M;Fp) ≅ L̄ ⊕H(V),

where H(V) is determined by an extension 0→ V → H(V) → V∗ → 0. The G-
module is an Fp-vector space, with isometry t given by a generator of G = ⟨t⟩.

To show that the extension determining H(V) ⊆ H2(M;Fp) is G-split, consider
the diagram:

0 �� H2(M) ⊗ Fp ��

��

H2(M;Fp) ��

��

V∗ → 0

H2(M-A) ⊗ Fp
≅ �� H2(M-A;Fp)

The lower isomorphism comes from the Bockstein sequence for M-A and the fact that
H3(M-A) is Z-torsion-free. The short exact sequence in diagram (3.3)

0→ H2(M) → H2(M-A) → K → 0

shows that Tors H2(M) ≅ → Tors H2(M-A), since K is Z-torsion-free. After tensoring
with Fp , we obtain a G-splitting of the submodule H(V). ∎

Corollary 3.11 dimk H3(G; H2(M;Fp)) = 2t + r0(M) + r1(M).

Proof This follows from Lemma 3.10. ∎

We can put this information together with the formulas in Lemma 3.8. We have

dimk H3(G; H2(M)) = t + r1(M), dimk H4(G; H2(M)) = t + r0(M).

By substituting the values obtained into the dimension formula (3.7), we conclude that
b = dimk(Im d1,3

2 ) = 0. In other words, we have shown that the differential dk ,3
2 = 0

for k odd in the Borel spectral sequence with integral coefficients. This completes the
proof of Theorem 3.1 and establishes the first part of Theorem A. ∎

Remark 3.12 Since Hr
G(M) ≅ Hr

G(F) = Hr(F × BG) for r > 4, we have
dimk H5

G(M) = dimk H5
G(F) = b1(F) and dimk H6

G(F) = b0(F) + b2(F). In
addition, dimk H5

G(F) = dimk H3
G(F), since F consists of surfaces and isolated

points. By computing the trace of the action of a generator on H∗(M), we obtain the
relation

χ(F) = b2(F) − b1(F) + b0(F) = 2 − 2b1(M) + r0(M) − r1(M).

However, since Hq
G(M) = Hq

G(F) for q > 4, we can use the Herbrand quotient formula

dim H4((G; H2(M)) − dim H3((G; H2(M)) = r0(M) − r1(M)

and further calculations similar to those above for Hq
G(M), to show directly that

χ(F) = dim H6
G(M) − dim H5

G(M).
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4 A non-collapse result

We complete the proof of Theorem A by showing that our surjectivity condition for the
map H1(F) → H1(M) is necessary in many cases (see Section 7 for some examples).

Proposition 4.1 Suppose that G = Zp acts locally linearly on a closed, connected,
oriented 4-manifold M, preserving the orientation, with nonempty fixed-point set F. If

ker(H1(M;Z) → H1(F;Z))

is nontrivial, but has trivial G-action, then the Borel spectral sequence with integral
coefficients does not collapse.

Proof The proof uses the fact that Hq
G(M , F) = 0 for q > 4, implying that

Eq ,1
∞ (M , F) = 0 for q > 4 in the Borel spectral sequence. We will show that this leads

to a contradiction.
If H1(M) → H1(F) is not injective, we let 0 ≠ K = ker(H1(M) → H1(F)), which

by assumption has trivial G-action. Therefore, H2r(G; K) ≠ 0. We consider the relative
long exact sequence for the pair (M , F), and we get short exact sequences

0→ H0(F)/H0(M) → H1(M , F) → K → 0

and

0→ K → H1(M) → L → 0,

where L = Im(H1(M) → H1(F)). Since both L and H0(F)/H0(M) areZ-torsion-free
with trivial G-action, we have H2r−1(G; L) = 0 and H2r+1(G; H0(F)/H0(M)) = 0. By
applying group cohomology to the sequences above, we obtain

H2r(G; H1(M , F)) α ��

���
���

���
�

��

H2r(G; H1(M))

H2r(G; K)

������������

where H2r(G; H1(M , F)) ↠ H2r(G; K) is surjective and H2r(G; K) ↣
H2r(G; H1(M)) is injective. Since E2r ,1

∞ (M , F) = 0 for 2r > 4, some differential
must hit a preimage of a nonzero element in H2r(G; K). By comparison, we see that
the Borel spectral sequence for H∗G(M) has a nonzero differential and hence does not
collapse. ∎

5 Homologically trivial actions

We will first consider the Borel spectral sequence for a cyclic p-group acting homo-
logically trivially. We use Fp-coefficients throughout this section.

Proposition 5.1 Let G = Zp act homologically trivially on M. Assume that χ(M) ≠ 0
and the fixed set F is discrete. Then, the differentials dr = 0, for r ≥ 3, in the Borel spectral
sequence with Fp coefficients. Moreover, b2(M) ≥ 2b1(M), and the Borel spectral
sequence does not collapse unless b1(M) = 0. In particular, dk ,3

2 is injective for k ≥ 0
and dk ,2

2 is surjective for k ≥ 0.
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Proof The difference in the multiplicative structure of the Fp-cohomology algebras
of G = Zp for p odd and p = 2 does not affect the proof, so we consider both cases
together. Since the action is homologically trivial and χ(M) ≠ 0, the fixed set F ≠ ∅,
and F consists of χ(M) isolated points.

We will prove the result by computing the dimension of H5
G(M), which must be

equal to dim H5
G(F) = χ(M) by [5, Proposition 2.1].

The same arguments used in the proof of Theorem A show that the differentials d0,4
2

and d0,1
2 are both zero (these work the same way for p = 2 as for p odd). Moreover, since

F ≠ ∅, the inclusion induces an injection H∗(G) → H∗(MG), so E∗,0
2 = E∗,0

∞ .
The key to understanding the other d2 differentials is the result of Sikora [18,

Section 3.3], which shows that E2,1
3 ≅ E2,3

3 by recognizing a Poincaré duality structure
on certain terms of the Borel spectral sequence. Since E2,1

2 ≅ E2,3
2 , and d2,1

2 = 0, it
follows that ker d2,3

2 ≅ coker d0,2
2 . Therefore, if R = dim ker d2,3

2 , we have dim Im d0,2
2 =

b1(M) − R. Therefore,

dim Im d2,3
2 = dim Im d1,3

2 = dim Im d3,2
2 = b1(M) − R,

so we have dim E2,3
3 = dim E4,1

3 = R, and dim E3,2
3 = b2(M) − 2b1(M) + 2R. A detailed

study of the possible d3 differentials now shows that from the relation

∑dim Ek ,5−k
3 = 2 + b2(M) − 2b1(M) + 4R

and the convergence to H5
G(M) ≅ H5

G(F), we must have R = 0. The details are similar
to those in Section 3. Since F ≠ ∅, we conclude that d∗,4

r = 0 for r = 3, 4, 5. The only
remaining differential to consider is d∗,3

3 , but since Poincaré duality is preserved
between E4,1

4 ≅ E4,3
4 , we see that d∗,3

3 = 0. Therefore, dk ,3
2 is injective for k ≥ 0 and

dk ,2
2 is surjective for k ≥ 0. By the dimension count above, this shows that the higher

differentials dr = 0 for r ≥ 3. ∎

With extra assumptions such as homological triviality and torsion-free H1(M), we
can prove the converse of Theorem 3.1.

Corollary 5.2 Let G = Zp for p odd act locally linearly and homologically trivially
on a closed, connected, oriented 4-manifold M with the fixed-point set F nonempty
and H1(M;Z)-torsion-free. Then, the Borel spectral sequence with integral coefficients
collapses if and only if H1(F) ↠ H1(M) is surjective.

Proof Since we are assuming that H1(M;Z)-torsion-free, the condition
that H1(F) → H1(M) is surjective is equivalent to the condition that
H1(M;Z) → H1(F;Z) is injective. The result now follows from Theorem 3.1 and
Proposition 4.1. ∎

Corollary 5.3 Let p be an odd prime. If G = Zp acts homologically trivially and locally
linearly on M with χ(M) ≠ 0, such that H1(F) ↠ H1(M) is surjective, then theFp-Betti
numbers satisfy b1(F) = 2b1(M) and b0(F) + b2(F) = 2 + b2(M).

Proof Since the action is homologically trivial, χ(F) = χ(M) ≠ 0 by the Lefschetz
fixed-point theorem and hence F ≠ ∅. By Theorem 3.1, we know that Borel spectral
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sequence collapses, and by Proposition 2.4 (with k = Fp-coefficients), we have

∑
r

dimk Hr(F) = ∑
r

dimk Hr(M).

It follows that b1(F) = 2b1(M) and b0(F) + b2(F) = 2 + b2(M) for odd p. ∎

We can also apply our results to some actions of rank-two groups (compare [5,
Proposition 6.1]).

Remark 5.4 If G acts homologically trivially and the Borel spectral sequence E(MK)
does not collapse for the subgroup K ≤ G of a group G, then E(MG) does not collapse.

Proposition 5.5 For an odd prime p, let G = Zp ×Zp act homologically trivially and
locally linearly on M with nonempty fixed-point set. Suppose that H1(M;Z) is torsion-
free. Then, the Borel spectral sequence with Fp-coefficients collapses if and only if
H1(M) = 0.

Proof Suppose that the fixed set F contains a two-dimensional component F1 ⊆ F.
Consider the action of G on the boundary of a G-equivariant normal 2-disk neigh-
borhood of a point x ∈ F1. Since G = Zp ×Zp and p is odd, this gives a contradiction,
since there is no such G-action on a circle. Hence, the fixed set F consists of a finite set
of isolated points.

Next, we remark that in a small G-invariant neighborhood U of each fixed point
x ∈ F has Tx U ≅ V1 ⊕ V2, where Vi = Fix(Tx U , K i), for two-order p subgroups K1 =
⟨a⟩ and K2 = ⟨b⟩ of G which have K1 ∩ K2 = {1}.

Therefore, each G-fixed point x ∈ F is contained in exactly two singular surfaces S1
and S2, where S1 ⊆ Fix(K1) and S2 ⊆ Fix(K2). Note that the action of G/K on a K-fixed
surface S has an even number of fixed points, equal to 2 + dimk H1(G/K; H1(S)).

We now restrict the G-action to any index p subgroup K ≤ G and let Fix(K)
denote its fixed set. The remarks above show that Fix(K) contains fixed orientable
surfaces, each with an effective action of G/K ≅ Zp . Since aZp-action on an orientable
surface S ≠ S2 induces an effective action on H1(S), we see that the map H1(M) →
H1(Fix(K))must be zero: either all the surfaces are 2-spheres, so that H1(Fix(K)) = 0
or the G/K-action on H1(M) would be nontrivial, contradicting our homologically
trivial assumption.

Therefore, if H1(M) ≠ 0, the Borel spectral sequence for EK(M) does not collapse
with Z-coefficients (by Proposition 4.1). Since the homology of M is torsion-free,
Hr(M) ⊗ Fp ≅ Hr(M;Fp), and it follows from the Bockstein sequence that the maps
Hr(K; Hs(M)) → Hr(K; Hs(M;Fp)) are injective for all r > 0. Therefore, the Borel
spectral sequence for EK(M) does not collapse with Fp-coefficients either. Hence, if
H1(M) ≠ 0, the Borel spectral sequence for E(MG) does not collapse (see Remark
5.4).

If H1(M) = 0, then our assumption that the fixed set F ≠ ∅ and multiplicativity
implies that the Borel spectral sequence for E(MG) does collapse (since no differen-
tials can hit the line E∗,0

2 ). ∎
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6 The proof of Theorem B

Let G = Zp ×Zp , for p odd, and recall that the mod p cohomology algebra

H∗(G) = Fp[u1 , u2] ⊗ Λ(x1 , x2),

where ∣u i ∣ = 2 and ∣x i ∣ = 1, with x2
i = 0. We will use cohomology with Fp-coefficients

throughout this section.
The essential cohomology, denoted Ess∗(G) ⊂ H∗(G), is defined as the intersec-

tion of the kernels of the restriction maps induced by the (p + 1) nontrivial cyclic
subgroups K ≤ G. A nice description is given below:

Theorem 6.1 (Aksu and Green [1]) For G = Zp ×Zp, the essential cohomology Ess(G)
is the smallest ideal in H∗(G) containing x1x2 and closed under the action of the
Steenrod algebra. Moreover, as a module over Fp[u1 , u2], the essential ideal Ess∗(G)
is free on the set of Mùi generators.

This statement is a special case of their general result. For the rank-two case, the
Mùi generators are as follows:

γ1 = x1x2 , γ2 = x1u2 − x2u1 , γ3 = x1up
2 − x2up

1 , and γ4 = u1up
2 − u2up

1 .

We note that the degrees are 2, 3, 2p + 1, and 2p + 2, respectively. For detailed cal-
culations, it is useful to let R ∶= Fp[u1 , u2] and Λ ∶= Λ(x1 , x2). These are graded
rings with dim R2k = k + 1, dim Λ1 = 2, and dim Λ2 = 1. In this notation, H2k(G) =
R2k ⊕ (R2k−2 ⊗ Λ2) and H2k+1(G) = R2k ⊗ Λ1. Note that H∗(G) is generated as an
R-module by the cohomology groups Hk(G), for k ≤ 2.

The proof of Theorem B is based on a detailed study of the Borel spectral sequence.
Here is an example for the case p = 3, which illustrates some of the features. As
explained in that proof, the images of any differentials in the Borel spectral sequence
for H∗G(M) with range Ek ,0

r , for any k ≥ 0, must belong to Ess∗(G).

Example 6.2 Let M = CP2 with the pseudofree action of G = Z3 ×Z3 given by
S(z1 , z2 , z3) = (z1 , ωz2 , ω2z3) and T(z1 , z2 , z3) = (z2 , z3 , z1). The singular set consists
of 12 points, arranged in 4 triangles each fixed by one of the 4 subgroups of order 3
in G. By [5, Proposition 2.1], we have an isomorphism Hq

G(M) → Hq
G(Σ), for q > 4,

and hence dim Hq(G; H0(Σ)) = 4 for q > 4 (see the proof of Theorem B for details). It
turns out that for this dimension bound to hold, the Múi generators γ2, γ3, and γ4 (in
degrees 3, 7, and 8, respectively) must be hit by differentials. We will use the dimension
bound dim Eq ,0

∞ ≤ dim Hq
G(M) = 4, for q > 4.

Since d2 = 0, E2 = E3 and the E3-page has three lines, where the differentials are
determined by the values of d0,q

3 ∶E0,q
2 → E3,q−2

2 , for q = 2, 4, and the multiplicative
structure of H∗(G). Let z ∈ H2(CP2;Z) be the generator dual to the homology class
of CP1 ⊂ CP2 and let w = z2 ∈ H4(CP2;Z) be the orientation class. Then, d3(z) = γ2
and d3(w) = −γ2z. Therefore, d2,4

3 (γ1w) = −γ1γ2 = 0 and d3,4
3 (γ2w) = −(γ2)2z = 0, so

these elements persist to the E5-page, with dim E2,4
5 = dim E3,4

5 = 1.
For the dimension count of H6

G(M), we also need to compute E4,2
4 and E6,0

4 (and
note that E4 = E5). It is not hard to check that Im d1,4

3 = ⟨γ1u1 , γ1u2⟩ ⊂ E4,2
3 ≅ H4(G),
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and this equals the kernel of d4,2
3 . Therefore, E4,2

4 = 0. Next,

Im d3,2
3 = Λ1 ⋅ R2 ⋅ γ2 = ⟨γ1u2

1 , γ1u1u2 , γ1u2
2⟩ ⊂ E6,0

3 ≅ H6(G).

Therefore, dim E6,0
4 = 4, and the dimension count shows that there is one remaining

nonzero differential d2,4
5 ∶E

2,4
5 → E7,0

5 affecting the line k + l = 6.
For the dimension count of H7

G(M), we have dim E3,4
4 = 1 and we make similar

calculations to determine E5,2
4 and E7,0

4 . We see that Im d2,4
3 = ⟨γ2u1 , γ2u2⟩ = ker d5,2

3 ,
so E5,2

4 = 0. We compute

Im d4,2
3 = γ2 ⋅ R4 = ⟨x1u2

1 u2 − x2u3
1 , x1u1u2

2 − x2u2
1 u2 , x1u3

2 − x2u1u2
2⟩ ⊂ H7(G).

Therefore, dim E7,0
4 = 5, and the dimension count confirms that d2,4

5 is nonzero with
one-dimensional image. More precisely, Im d2,4

5 = ⟨γ3⟩, since

0 ≠ Im d2,4
5 ⊆ Ess7(G)/ Im d4,2

3 = ⟨γ3 , γ2 ⋅ R4⟩/ Im d4,2
3 ≅ ⟨γ3⟩.

By a similar calculation, Im d5,2
3 = Im d4,2

3 ⋅ {x1 , x2} = Λ2 ⋅ R6 has dimension 4 and
dim E8,0

4 = 5, so that d3,4
5 must have one-dimensional image. Since Ess8(G) = ⟨γ4 , Λ2 ⋅

R6 , γ4⟩, it follows that d3,4
5 hits γ4, and hence the differentials surject onto Essq(G),

for q > 2.

Remark 6.3 To rule out higher rank actions as asserted in Theorem B, we will show
that the Mùi generators γ2p+1 and γ2p+2 for p ≥ 5 cannot be hit by differentials in the
Borel spectral sequence for G = Zp ×Zp . This would imply that the groups Hq

G(M)
for large values of q would have dimensions contradicting the bound (6.4) from the
singular set and hence rule out the existence of these actions.

In order to prove this claim, the key point is that the differentials are determined
through multiplicativity by their values on Ek , l

r for k ≤ 3. This is a consequence of the
structure of the cohomology ring H∗(G), which is generated by classes in degrees ≤ 2
(as explained in Example 6.2).

Proof [The proof of Theorem B] Suppose that G is acting homologically trivially on
M with χ(M) ≠ 0. In addition, we are assuming that the action is pseudofree, meaning
that the singular set Σ is a discrete set of points. Note that MG = ∅ since G cannot
act freely on S3. Each subgroup K ≅ Zp has χ(M) > 0 fixed points, which are then
permuted in χ(M)/p orbits of size p by G/K, so that H0(Fix(K)) is the direct sum of
χ(M)/p copies of the permutation G-module Fp[G/K].

By [5, Proposition 2.1], we have an isomorphism Hq
G(M)

≈
 → Hq

G(Σ), for q > 4, and
this provides a dimension count as above. In this case, we have p ∣ χ(M) and there are
p + 1 distinct subgroups of order p in G, so that

dim Hq(G; H0(Σ)) = ∑
i

dim Hq(G;Fp[G/K i])χ(M)/p =
χ(M)

p
⋅ (p + 1)(6.4)

by Shapiro’s Lemma. The main observation is that the images of any differentials in
the Borel spectral sequence for H∗G(M)with range Ek ,0

r , for any k ≥ 0, must belong to
Ess∗(G). This follows immediately by comparing the spectral sequences for H∗G(M)
and H∗G(Σ). Similarly, by Proposition 5.1, the images of the higher differentials dr ,
for r ≥ 3, must lie in Ess∗(G) modulo indeterminacy from the earlier differentials.
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Moreover, since the ResK ∶Hr(G;Fp[G/K]) → Hr(K;Fp[G/K]) is an injection, the
sum of the restriction maps

⊕K ResK ∶Hq
G(M) →⊕K{Hq

K(M) ∣ 1 ≠ K ≠ G}

is also an injection for q > 4.
We have commutative diagram (for q > 4):

Hq(G) ≅ ��

ResK

��

Eq ,0
2 (MG)

ResK

��

�� �� Eq ,0
∞ (MG)

��
ResK

��

�� �� Hq
G(M)
��
ResK

��
⊕Hq(K) ≅ �� ⊕Eq ,0

2 (MK)
≅ �� ⊕Eq ,0

∞ (MK)
≅ �� ⊕Hq

K(M)

It follows from this diagram, and the fact that the images of differentials with range
in Ek ,0

r are contained in Ess∗(G) and that Essq(G) = ker{Eq ,0
2 (MG) ↠ Eq ,0

∞ (MG)},
for q > 4, is a necessary condition for the G-action to exist.

For p = 3, the Mùi generators have dimensions 2, 3, 7, and 8, and these are all within
the range of the differentials dk , l

r , for r ≤ 5 and k ≤ 3 (as in Example 6.2). However, for
p > 5, only the first two Mùi generators γ1 = x1x2 and γ2 = x1u2 − x2u1 can be hit by
a nonzero differential dk ,r−1

r if k = 2p + 1 − r or k = 2p + 2 − r, with r ≤ 5. 2p + 1 ≥ 11
Since, this implies k ≥ 6.

Consider the differentials dr with range in the line E∗,0
r . These are dk ,1

2 , dk ,2
3 ,

dk ,3
4 , and dk ,4

5 . At each page, if the differential dk ,r−1
r is nonzero, its image must

lie in Essr(G). We claim that the images of the differentials dk ,r−1
r , for all k ≥ 0,

will be contained in the module generated by the first two Mùi generators γ1 and
γ2 under the action of the polynomial algebra Fp[u1 , u2]. Since Ess∗(G) is a free
module on all the Mùi generators (by [1, Theorem 1.2]), we will have a contradiction
to the dimension bound on Hq

G(M) for large q, and the assumed G-action does not
exist.

To verify this, we tabulate the generators of Essk(G) for 2 ≤ k ≤ 6 as follows:

Essk(G) = {⟨γ1⟩, ⟨γ2⟩, ⟨γ1u1 , γ1u2⟩, ⟨γ2u1 , γ2u2⟩, ⟨γ1u2
1 , γ1u1u2 , γ1u2

2⟩}.

For use in our arguments below, we also note that Essk(G) is generated by γ1 and γ2
over R in degrees k ≤ 10 (for all primes p ≥ 5).

We first fix some notation for an Fp-basis of the cohomology of M: let us denote
them by w ∈ H4(M), ⟨β1 , . . . , βt⟩ ⊂ H3(M), ⟨z1 , . . . , zs⟩ ⊂ H2(M), and ⟨α1 , . . . , αt⟩ ⊂
H1(M). We will check the images of the differentials dk ,r−1

r in each case.

The image of dk ,1
2 ∶E

k ,1
2 → Ek+2,0

2 . Since Im d0,1
2 ⊆ Ess2(G) = ⟨γ1⟩, either dk ,1

2 = 0, for
k ≥ 0, or d0,1

2 (α1) = γ1, and we may assume that dk ,1
2 (αk) = 0, for k ≥ 2. In the second

case, Im dk ,1
2 ⊆ γ1 ⋅ R and ker dk ,1

2 = ⟨α1 ⋅ (Λ1 ⊗ R), α2 , . . . , αt⟩. In particular, the image
of dk ,1

2 ∶E
k ,1
2 → Ek+2,0

2 does not contain γ2, γ3, or γ4.

The image of dk ,2
3 ∶E

k ,2
3 → Ek+3,0

2 . The image of dk ,2
2 restricted to any order

p subgroup of G must be surjective, by Proposition 5.1. It follows that either
d0,2

2 (z i) ≠ 0 and projects nontrivially to α j ⋅H2(G)/⟨γ1⟩, for some α j , or d0,2
2 (z i) = 0,

and Im dk ,2
3 (z i) ⊆ γ2 ⋅ R. Therefore, Im dk ,2

3 does not contain γ3 or γ4.
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The image of dk ,3
4 ∶E

k ,3
4 → Ek+4,0

2 . Since dk ,3
2 is injective when restricted to any order

p subgroup, by Proposition 5.1, it follows that Im dk ,3
2 (β i) projects nontrivially to

Hk(G; H2(M))/⟨Essk(G) ⋅H2(M)⟩. Therefore, dk ,3
2 is injective, and Ek ,3

r = 0 for r ≥ 3
implies dk ,3

4 = 0.

The image of dk ,4
5 ∶E

k ,4
4 → Ek+5,0

4 . Since dk ,3
2 is injective, we have dk ,4

2 = 0, for k ≥ 0.
Suppose first that 0 ≠ d0,4

3 (w) ∈ γ2 ⋅H2(M). Then, Im dk ,4
3 ⊆ (⟨γ1 , γ2⟩ ⋅ R) ⋅H2(M).

Therefore, ker dk ,4
3 ⊆ ⟨γ1w , γ2w⟩ ⋅ R ⊆ Ek ,4

4 , and Im dk ,4
4 is generated by the images

d2,4
4 (γ1w) ∈ Ess6(G) ⋅ E6,1

4 and d3,4
4 (γ2w) ∈ Ess7(G) ⋅ E7,1

4 under the action of R.

If both these images under dk ,4
4 are nonzero, then ker dk ,4

4 = 0, since multiplication
by elements of R is injective on Im dk ,4

4 . Therefore, dk ,4
5 = 0; hence , γ3 or γ4 cannot be

hit.
If either of these images under dk ,4

4 is zero, then their corresponding images under
dk ,4

5 will be contained in Essq(G) for q ≤ 7, and again d5 cannot hit γ3 or γ4.
For p = 3, we rule out actions of G = Z3 ×Z3 ×Z3 by similar arguments. In the

rank-three case, there are eight Mùi generators, starting with γ1 = x1x2x3 and γ2 =
β(γ1) in degrees 3 and 4, and continuing in degrees 8, 9, 20, 21, 25, and 26 (see [1,
Section 3]). The higher Mùi generators are outside the range of differentials hitting
the line E∗,0

r . Hence, such an action does not exist.
For p = 2 and G = Z2 ×Z2 ×Z2, the cohomology ring is now H∗(G) =

F2[x1 , x2 , x3] and there is just one Mùi generator

γ = x1x2x3(x1 + x2)(x1 + x3)(x2 + x3)(x1 + x2 + x3)

in degree 7, which is the product of the distinct linear forms. The ideal Ess∗(G) = ⟨γ⟩ is
a free module over Fp[x1 , x2 , x3], and Ess∗(G) is the Steenrod closure of γ in H∗(G)
(see [1, Lemma 2.2]). This means that the rank-two actions cannot be ruled out by the
method above (in fact, such actions exist on S2 × S2).

However, we can use the information contained in the proof of Proposition 5.1
to see that the images of the differential d0,2

2 in E2,1
2 (K) must be nonzero in each

summand of H2(K) ⊗H1(M), and for each subgroup K ≅ Z2. Therefore, there must
be a class α ∈ H2(G) such that ResK(α) ≠ 0 for each K < G of order 2. We claim that
no such class exists. To see this, let H ≅ Z2 ×Z2 be an index-two subgroup. The only
possibility for ResH(α) is the class δ = x̄2

1 + x̄1 x̄2 + x̄2
2 , where x̄ i denote the degree- 1

generators of the cohomology of H. We look at the restriction of a general element

α = ∑
1≤i≤3

a i x2
i +∑

i< j
b i jx i x j ∈ H2(G)

to each of the index-two subgroups H obtained by imposing one of the seven linear
relations in the formula for γ. First, to get ResH(α) = δ by setting x i = 0 for each 1 ≤
i ≤ 3 separately, we find that all the coefficients a i and b i j must be nonzero. But then,
setting x1 + x2 = 0 gives ResH(α) = x̄2

1 + x̄2
3 ≠ δ. Hence, α does not exist, and such a

rank-three pseudofree G-action is ruled out. ∎
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7 Some examples

In this section, we give some illustrative examples of group actions on a closed,
connected oriented 4-manifold. These indicate the necessity of the conditions in
Theorem 3.1 for the Borel spectral sequence to collapse. We let k = Fp with the prime
p under consideration understood.

Example 7.1 Consider (i) S1 × S3 with Z3 acting trivially on S1 and by rotation on
S3, so that the fixed-point set S1 × S1 and (ii) CP2 with a Z3-action fixing CP1 and a
point. Taking the equivariant connected sum along the two-dimensional fixed set, we
get M = S1 × S3#CP2 with the fixed-point set F = S1 × S1 #CP1 ∪ {pt}.

By Theorem 3.1, since H1(F) = Z⊕Z surjects onto H1(M) = Z , the Borel spectral
sequence with integral coefficients collapses for this example. Since the action is
homologically trivial, and the total dimensions satisfy

∑
r

dimk Hr(F) = 5 = ∑
r

dimk Hr(M),

the Borel spectral sequence with F3-coefficients collapses by Proposition 2.4.

Next, we have a case where the fixed-point set consists of isolated points and H1(M)
is torsion-free.

Example 7.2 Consider the diagonal action of Zp on S2 × S2 with four fixed points.
Now, take two copies of S2 × S2 with this action and take the equivariant connected
sum along two pairs of fixed points where the representations of the tangent bundles
are equivalent. We obtain a 4-manifold M which has a Zp-action with four fixed
points. M has H i(M) = Z for i = 0, 1, 3, 4 and H2(M) = (Z)4 as homology groups.
Since the action is homologically trivial, we can also again use Proposition 2.4

∑
r

dimk Hr(MG) = 4 ≠ 8 = ∑
r

dimk Hr(M),

showing that the Borel spectral sequence with Fp-coefficients does not collapse.

There are also examples where the fixed-point set is two-dimensional, but the Borel
spectral sequence does not collapse.

Example 7.3 Consider again a Z3-action on CP2 fixing a CP1 and a point. Take two
copies of this and take the equivariant connected sum along the two-dimensional fixed
sets and the fixed points. The manifold we obtain is a 4-manifold having Z3-action
with a connected two-dimensional fixed set which has the homology of the two sphere.
Again, the action is homologically trivial and by Proposition 2.4

∑
r

dimk Hr(MG) = 2 ≠ 6 = ∑
r

dimk Hr(M),

showing that the Borel spectral sequence with F3-coefficients does not collapse. Here
the map H1(F) → H1(M) is not surjective.

Here is an example with p-torsion in H1(M).

Example 7.4 Let M = L3(Zp , 1) × S1, with the action of G = Zp given by

ζ ⋅ ([z1 ∶ z2], z3) = ([ζ ⋅ z1 ∶ z2], z3).
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Note that [ζ ⋅ z1 ∶ z2] = [z1 ∶ ζ−1 ⋅ z2] because of the equivalence relation used to define
L3(Zp , 1). The fixed set F = S1 × S1⊔ S1 × S1, and H1(F) → H1(M) is surjective;
hence, the Borel spectral sequence collapses.

Here is an example for which H1(M) has nontrivial G-action.

Example 7.5 For G = Z2 , consider the diagonal reflection on M = S1 × S3 which
reverses the orientation on each factor. The fixed-point set F = S2⊔ S2 and H1(M) =
Z−. Since the total dimensions satisfy

∑
r

dimk Hr(MG) = 4 = ∑
r

dimk Hr(M),

the Borel spectral sequence collapses.

Finally, we will give an example with G = Zp ×Zp acting homologically trivially.

Example 7.6 Consider the Zp ×Zp-action on S2 × S2 given by the product of two
rotation actions of Zp on S2. This action has four fixed points and a singular set
consisting of four 2-spheres. Let M be obtained by taking the equivariant connected
sum of two copies of S2 × S2 along two of the fixed points. Then, M admits a
Zp ×Zp-action with four global fixed points and which is homologically trivial and
locally linear (in fact, smooth). The Borel spectral sequence with Fp-coefficients
does not collapse (by Remark 5.4 and Corollary 5.2). This is a counterexample to
[16, Corollary 3.2].
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