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Abstract. Let M be a closed, connected, orientable topological 4-manifold, and G be
a finite group acting topologically and locally linearly on M . In this paper we investigate
the spectral sequence for the Borel cohomology H∗

G(M), and establish new bounds on
the rank of G for homologically trivial actions with discrete singular set.

1. Introduction

In this paper we provide some new information about the existence of finite group
actions on closed, connected, orientable 4-manifolds. In this dimension, the comparison
between smooth and topological group actions is particularly interesting. Our focus will
be on locally linear topological actions as background for future work on smooth actions.

For free actions on simply-connected 4-manifolds, or equivalently for closed topological
4-manifolds with finite fundamental group, there are a number of classification results
in the literature (for example, see [6, 7, 8, 9]). One challenging open problem is to
compute the Hausmann-Weinberger invariant [11], namely to determine the minimal Euler
characteristic of a 4-manifold with a given fundamental group. The answer is only known
at present in special cases (see [12]).

We will extend the scope of previous work by including non-simply-connected manifolds,
and concentrate on non-free actions. We often assume that the actions are homologically
trivial, meaning that the group of symmetries acts as the identity on the homology groups
of the manifold.

A useful measure of the complexity of a finite group G is its p-rank, defined as the
maximum rank r of an elementary abelian p-group (Zp)r ≤ G. We let rankp(G) denote
the p-rank of G for each prime p, and let rank(G) denote the maximum over all primes
of the p-ranks.

Question. Given a closed orientable 4-manifold M , what is the maximum value of
rank(G) over all the finite groups G which act effectively, locally linearly, and homo-
logically trivially on M ?

We note that a Zp-action, for p a prime, will be homologically trivial if M has torsion-
free homology and (p− 1) is larger than each of the Betti numbers of M . If M has Euler
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characteristic χ(M) 6= 0, then any homologically trivial action of a finite group must be
non-free (by the Lefschetz fixed-point theorem).

Beyond the rank restrictions, we would like to know which finite groups G can act. For
example, if M is the connected sum of two or more complex projective planes, then G is
abelian and rank(G) ≤ 2 (see [10]). This was proved for smooth actions using techniques
from gauge theory. Then McCooey [14], building on earlier work by Edmonds [5], used
methods from equivariant algebraic topology to prove a much stronger result:

Theorem (McCooey [14, Theorem 16]). Let G be a (possibly finite) compact Lie group,
and suppose M is a closed 4-manifold with H1(M ;Z) = 0 and b2(M) ≥ 2, equipped with
an effective, locally linear, homologically trivial G-action.

(i) If b2(M) = 2 and Fix(M) 6= ∅, then G is isomorphic to a subgroup of S1 × S1.
(ii) If b2(M) ≥ 3 then G is isomorphic to a subgroup of S1 × S1, and the fixed set

Fix(M) is necessarily nonempty.

What should we expect for actions on arbitrary non-simply-connected 4-manifolds ?
Here is possible uniform answer to the rank question (compare [5, Conjecture 9.1]).

Conjecture. If a finite group G acts effectively, locally linearly, and homologically triv-
ially on a closed orientable 4-manifold M with Euler characteristic χ(M) 6= 0, then
rankp(G) ≤ 2 for p odd.

The condition χ(M) 6= 0 rules out actions on M = T 4 (for example), but the group
G = (Z2)

4 acts linearly on S4, so additional conditions must be found for p = 2.

Remark 1.1. Mann and Su [13, Theorem 2.2]) showed that rankp(G) ≤ 2, for p an
odd prime, provided that the fixed set Fix(M) 6= ∅, without assuming that the action
was locally linear or homologically trivial. However, the existence of a global fixed point
is a strong assumption: in the locally linear case the result follows easily from a result
of P. A. Smith [19, §4] applied to the boundary S3 of a G-invariant 4-ball at a point
x ∈ Fix(M).

The main tool from equivariant algebraic topology used for the study of non-free group
actions is the Borel spectral sequence. Let BG denote the classifying space for principal
G-bundles, and EG the universal free, contractible G-space. Then the Borel cohomology
H∗G(M) := H∗(M×GEG) is “computable” in principle from the Serre spectral sequence of
the fibration M →M×GEG→ BG. We will use integral coefficients or Fp-coefficients for
H∗(M), but note that in general this is a local coefficient system for the group cohomology
of G. For homologically trivial actions, we have ordinary coefficients.

Theorem A. Suppose that G = Zp acts locally linearly on a closed, connected, oriented
4-manifold M , preserving the orientation, with fixed point set F = Fix(M) 6= ∅.

(i) If the map H1(F ;Z) � H1(M ;Z) is surjective, then the Borel spectral sequence
for H∗G(M) collapses with integral and Fp coefficients.

(ii) If ker(H1(M ;Z) → H1(F ;Z)) is non-trivial, but has trivial G-action, then the
Borel spectral sequence with integral coefficients does not collapse.



RANK CONDITIONS FOR FINITE GROUP ACTIONS ON 4-MANIFOLDS 3

Edmonds [4, Prop. 2.3] showed that the Borel spectral sequence with integral or Fp
coefficients collapses for orientation preserving Zp actions with F 6= ∅ on closed simply-
connected 4-manifolds. We generalize this result to non-simply-connected 4-manifolds.

The 2-dimensional components of Fix(M) are always orientable if p > 2, and for p = 2
this would follow, for example, by assuming that G preserves a Spinc structure in a
suitable sense (see [4, Proposition 3.2] and Ono [17, Section 4]). However, the complex
conjugation involution on CP2 with fixed set RP2 shows that orientability of the fixed set
is not necessary in general for the collapse of the Borel spectral sequence with integral
coefficients (see [4, Prop. 2.3]).

In his arXiv paper [16, Proposition 3.1] McCooey proposed a “collapse” result for
homologically trivial actions under the assumption thatH1(M) is torsion-free, but without
our condition on H1(F ) (see Example 7.2 for a counter-example).

Remark 1.2. Note that if H1(F ) � H1(M) is surjective, then H1(M) � H1(F ) is
injective, but not conversely if H1(M) has torsion.

Recall that an action is called pseudofree if the singular set Σ := Σ(M,G) ⊂M consists
of isolated points. For such actions, we can estimate the rank.

Theorem B. Let M be a closed, orientable 4-manifold with χ(M) 6= 0. If a finite group
G acts locally linearly, pseudofreely and homologically trivially on M , then rankp(G) ≤ 1
for p ≥ 5, and rankp(G) ≤ 2 for p = 2, 3.

Remark 1.3. Note that the actions of G = (Z2)
4 on M = S4 are not pseudofree (see

Breton [3]). In addition, M = CP2 admits a pseudofree action of G = Z3 × Z3, (see
Example 6.2), and S2 × S2 admits pseudofree actions of Z2 × Z2 (see [15]).

Here is a short outline of the paper. Throughout the paper M denotes a closed, con-
nected, oriented topological 4-manifold.

For orientation-preserving actions, the assumptions in Theorem A imply that the fixed
point set must be two dimensional whenever H1(M) 6= 0. In Section 7, we give some
examples of group actions on a closed, connected oriented 4-manifolds to illustrate various
features. For example, there is an action with zero dimensional fixed point set, where the
Borel spectral sequence does not collapse, and another with a two dimensional fixed point
component where the Borel spectral sequence does not collapse. This motivates our
assumption that H1(F )� H1(M) is surjective.

In Section 2, we give some general facts about the main tool we use in the proof; the
Leray-Serre spectral sequence for the fibration M → M ×G EG → BG, which is also
called the Borel Spectral Sequence. The details can be found in the books [2] and [20].

In Section 3, we prove the first part of Theorem A, and complete the proof in Section
4. In Section 5 we give some applications under the extra assumptions of homological
triviality and H1(M) = 0. In Section 6 we prove Theorem B.

Acknowledgement. The authors would like to thank Allan Edmonds and Michael Mc-
Cooey for helpful conversations and correspondence. We would also like to thank the
referee for many valuable comments on the first version of this paper.
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2. The Borel Spectral Sequence

In this section we recall some of the standard facts about H∗G(M), where G is a finite
group acting on a finite dimensional G-CW complex M . In particular, these results apply
to G-manifolds and singular cohomology with coefficients in R = Z (or R = Fp when
indicated). The details about this construction and the spectral sequence can be found
in Borel [2] and tom Dieck [20].

The Leray-Serre spectral sequence for the fibration M →M ×GEG→ BG is known as
the Borel spectral sequence. The total space of this fibration which is known as the Borel
construction, and denoted by MG = M ×G EG. The E2 page of this spectral sequence is

Ek,l
2 (M) = Hk(G;H l(M))

which converges to the cohomology H∗(MG) of the total space MG. These are denoted
by H∗G(M) and known as the Borel equivariant cohomology groups. This construction is
natural with respect to G-maps of G-spaces.

In the examples in Section 7, we use Proposition 2.4 given below to decide whether the
Borel spectral sequence collapses. Before we state this proposition we recall some basic
definitions for the convenience of the reader. In this section we will denote the fixed set
by MG.

Since EG is path-connected, any fibre inclusion jb : M → EG×GM , with jb(m) = (b,m)
for b ∈ EG and m ∈M , induces a well-defined map j∗ : H∗G(M)→ H∗(M).

A cohomology extension of the fibre is an R-module homomorphism of degree zero
t : H∗(M) → H∗G(M) such that j∗ ◦ t is the identity. M is called totally non-homologous
to zero in MG with respect to H∗(−) if j∗ is surjective.

Since a surjective map onto a free R-module splits, if M is totally non-homologous to
zero and H∗(M) is a free R-module then a cohomology extension of the fibre exists. Also,
if M is totally non-homologous to zero in MG then G acts trivially on H∗(M).

One can show that [20, Ch. III, Prop.1.17]: M is totally non-homologous to zero in
MG if and only if G acts trivially on H∗(M) and E0,∗

2 consists of permanent cocyles
(i.e E0,p

2 = E0,p
∞ ). Also if we have H∗(M) is finitely generated free R-module then [20,

Ch. III, Prop.1.18]: M is totally non-homologous to zero in MG if and only if G acts
trivially on H∗(M) and the Borel spectral sequence collapses. In this case, H∗G(M) is a
free H∗(BG)-module.

The [20, Ch. III, Prop. 4.16] comes as an application of Localization Theorem, so let
us recall it briefly. Let S be a multiplicatively closed subset of homogeneous elements in
H∗(BG) and F(S) = {H 6 G | S

⋂
ker(H∗G(G/G) → H∗G(G/H)) 6= ∅} then [20, Ch. III,

Theorem 3.8]:

Theorem 2.1. Let (M,A) be a finite dimensional relative G-complex. Suppose M \ A
has finite orbit types with orbits isomorphic to G/H for H ∈ F(S). Then the inclusion
A ⊂M induces the isomorphism S−1H∗G(M) ∼= S−1H∗G(A).

Assumption: In the remainder of this section we list some results about the Borel coho-
mology H∗G(M) for finite p-group actions, with coefficients in k := Fp understood.

In this setting, the Localization Theorem has a stronger conclusion.
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Theorem 2.2 ([20, Ch. III, Theorem 3.13]). Let G = (Zp)n be a p-torus and M a finite
dimensional G-CW complex. Then S−1H∗G(M) ∼= S−1H∗G(MG).

Let j : M → {pt} denote the map of M to a point.

Corollary 2.3. Let G = (Zp)n be a p-torus and M a finite dimensional G-CW complex.
Then MG 6= ∅ if and only if j∗ : H∗G(pt)→ H∗G(M) is injective.

Here are some useful criteria for the collapse of the Borel spectral sequence: we are
combining statements from Borel [2, Ch. XII, Thm 3.4] and tom Dieck [20, Ch. III,
Prop. 4.16].

Proposition 2.4 (Borel). Let G = (Zp)n be a p-torus and k = Fp. Suppose the total
dimension

∑
r dimkH

r(M) is finite and Hq(M) = 0 for q > dimM = n. Then∑
r

dimkH
r(MG) ≤

∑
r

dimkH
r(M)

Moreover, the following are equivalent:

(i)
∑

r dimkH
r(MG) =

∑
r dimkH

r(M).

(ii) M is totally non-homologous to zero in MG with respect to H∗(−).

(iii) dimkH
q
G(M) =

∑
r dimkH

r(M) for q > n.

(iv) G acts trivially on H∗(M) and the Borel spectral sequence collapses.

With some extra assumptions, the following statement can be proved:

Corollary 2.5 ([2, Ch.XII, Corollary 3.5]). Let G be an elementary abelian p-group, and
M be a compact G-space for which dimkM , dimkH

∗(M), and the number of orbit types
are all finite. Assume that

(i) G acts homologically trivially, and
(ii) H∗(M) is generated by elements which are transgressive in the Borel spectral

sequence.

Then the fixed point set MG is non-empty if and only if the Borel spectral sequence col-
lapses.

3. Collapse of the Spectral Sequence

Under some conditions, including the strong assumption that H1(F ) � H1(M) is
surjective, we prove the first part of Theorem A, namely a “collapse” result for the Borel
spectral sequence.

Theorem 3.1. Let G = Zp act locally linearly on a closed, connected, oriented 4-manifold
M , preserving the orientation, with fixed point set F 6= ∅. If H1(F ;Z) � H1(M ;Z) is
surjective, then the Borel spectral sequence for H∗G(M) collapses with integral and Fp
coefficients.

Remark 3.2. Since all the arguments in the proof of this result are cohomological, the
conclusion should hold (at least for integral coefficients) if coker{H1(F ) → H1(M)} 6= 0
is a cohomologically trivial ZG-module and H1(M) is torsion free. We have not checked
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the details. If H1(M) has p-primary torsion, then the situation in this extra generality
appears much more complicated.

At various points, we will need to use some properties of the group cohomology of
G = Zp, Recall that the integral cohomology is a polynomial algebra H∗(G;Z) = Z[θ],
where |θ| = 2 is a class of degree 2. For p odd, we have

H∗(G;Fp) = Fp[u]⊗ Λ(x)

where |u| = 2 and |x| = 1, with x2 = 0. For p = 2, H∗(G; F2) = F2[x], where |x| = 1.
The cup products are natural with respect to the change of coefficients Z→ Fp, and the
induced maps H2k(G;Z) → H2k(G;Fp) are isomorphisms for k > 0 and surjective for
k = 0. The differentials in the Er terms of the Borel spectral sequence for H∗G(M) are
multiplicative with respect to cup products in the cohomology of M and G.

Before starting the proof of Theorem 3.1 we will collect some useful remarks:

(i) Since G preserves the orientation on M (automatic for p odd), and H1(F ) →
H1(M) is surjective, G acts trivially on the homology and cohomology of M ,
except possibly for H2(M) ∼= H2(M).

(ii) Let A ⊂ F denote a non-empty 1-dimensional subset of the fixed point set, such
that the map H1(A) � H1(M) is surjective. For example, take A to be a 1-
skeleton of F .

(iii) The induced map H1(M)→ H1(A) is injective.
(iv) By applying duality to a neighhourhood ofA inM , we haveH∗(M -A) ∼= H4−∗(M,A),

and similarly H∗(M,A) ∼= H4−∗(M -A).
(v) The statements so far also hold for homology and cohomology with Fp-coefficients.
(vi) H1(M,A) = ker{H0(A)→ H0(M)} is Z-torsion free, with trivial G-action.

(vii) H2(M,A) is Z-torsion free: its torsion subgroup is Ext(H1(M,A),Z) = 0.

Proof. We first consider the E2-page of the Borel spectral sequenceEk,l
2 (M) = Hk(G;H l(M))

and show that d2 differentials are zero. Integral coefficients are understood unless Fp co-
efficients are stated explicitly.

3A. The maps dk,4
2 : Ek,4

2 (M) → Ek+2,3
2 (M): For any fixed point x ∈ F , the inclu-

sion map i : M -{x} ↪→ M induces a homomorphism i∗ : Hn(M) → Hn(M -{x}) which is
zero for n ≥ 4 and isomorphism for other dimensions. The corresponding map of spectral
sequences Ek,l

r (M) → Ek,l
r (M -{x}) is trivial when l = 4 and an isomorphism otherwise.

By naturality we have the commutative diagrams of differentials;

Hk(G;H4(M))

i∗

��

dk,42 // Hk+2(G;H3(M))

∼=
��

Hk(G;H4(M -{x}))
dk,42 // Hk+2(G;H3(M -{x}))

Since H4(M -{x}) = 0, we have i∗ = 0 and H3(M -{x}) ∼= H3(M), so dk,42 = 0. The same
argument works for Fp coefficients.
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3B. The maps dk,1
2 : Ek,1

2 (M) → Ek+2,0
2 (M): Similarly, for any x ∈ F consider the

map j∗ : Hn(M, {x}) → Hn(M) induced by j : (M, ∅) → (M, {x}). From the long exact
sequence in relative cohomology, j∗ is isomorphism for all n ≥ 1. The corresponding
map of spectral sequences Ek,l

r (M, {x}) → Ek,l
r (M) is also isomorphism for l ≥ 1. By

naturality, we again have the commutative diagrams of differentials;

Hk(G;H1(M, {x}))

j∗

��

dk,12 // Hk+2(G;H0(M, {x}))

��
Hk(G;H1(M))

dk,12 // Hk+2(G;H0(M))

Since H0(M, {x}) = 0 and j∗ is isomorphism then dk,12 = 0. The same argument works
for Fp coefficients.

3C. The maps dk,3
2 : Ek,3

2 (M) → Ek+2,2
2 (M): From the long exact sequence of rel-

ative homology, and H2(A) = 0, we get injectivitiy of H2(M) � H2(M,A). Since
H1(A) � H1(M) is surjective, we conclude that the map H1(M) → H1(M,A) is zero.
By duality, the map H3(M)→ H3(M -A) is zero. This also holds for Fp coefficients. We
obtain the commutative diagram

(3.3)

0 // H2(M) //

∼=
��

H2(M -A)

∼=
��

// K //
��

��

0

0 // H2(M) // // H2(M,A) // H1(A) // // H1(M) // 0

where K := ker{H1(A)→ H1(M)}. For k ≥ 0 even, Hk+1(G;K) = 0 since K is Z-torsion
free with trivial G-action. When we apply group cohomology to the upper short exact
sequence in (3.3) we get the long exact sequence

· · · // Hk+1(G;K) // Hk+2(G;H2(M)) // Hk+2(G;H2(M -A)) // · · ·

It follows that the map Hk+2(G;H2(M))� Hk+2(G;H2(M -A)) is injective for k even.
Since the map H3(M) → H3(M -A) is zero, the induced map in group cohomology

Hk(G;H3(M))→ Hk(G;H3(M -A)) is also zero. By naturality of spectral sequences with
respect to the inclusion M -A ↪→M we have the following commutative diagram

Hk(G;H3(M))

0
��

dk,32 // Hk+2(G;H2(M))
��

��
Hk(G;H3(M -A))

dk,32 // Hk+2(G;H2(M -A))

implying dk,32 = 0 for k even. For Fp we are missing the injectivity of the right-hand vertical
map. However, the isomorphism H3(M)⊗Fp ∼= H3(M ;Fp) implies that H0(G;H3(M))→
H0(G;H3(M ;Fp)) is surjective, since both coefficients have trivial G-action, so reduces

to the surjection H3(M)→ H3(M ;Fp). Then naturality gives d2i,32 = 0 for integral or Fp
coefficients.
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The differentials dk,32 for k odd (Fp-coefficients): If H1(M) has no p-torsion, then

H3(M ;Fp) = 0 and dk,32 = 0 with Fp-coefficients for k odd. To handle the case where
H3(M) has p-primary torsion and k is odd, we compare with the Fp-coefficient spec-
tral sequence via the change of coefficients Z → Fp. Note that since H0(G;H3(M)) →
H0(G;H3(M ;Fp)) is surjective, and d0,32 = 0, we see that

d0,32 : H0(G;H3(M ;Fp))→ H2(G;H2(M ;Fp))
is also zero. Now we use the multiplicativity of the Fp-coefficients spectral sequence, and
the fact that

∪x : H0(G;H3(M ;Fp))→ H1(G;H3(M ;Fp))
is surjective (since the coefficients have trivial G-action), where 0 6= x ∈ H1(G;Fp), to
conclude that

d1,32 : H1(G;H3(M ;Fp))→ H3(G;H2(M ;Fp))
is zero for Fp coefficients, and hence for all odd k by naturality and periodicity. We have

now shown that dk,32 = 0 for all k in the spectral sequence with Fp coefficients .

Remark 3.4. If H1(M) ∼= H3(M) is p-primary torsion free, then Hk(G,H3(M)) = 0
for k odd, since H1(M) ∼= H3(M) is a trivial G-module, due to the assumption that

H1(F ) � H1(M) is surjective. Hence the differentials dk,32 = 0 with integral coefficients
for all odd k, if the order of H1(M) is not divisible by p.

We will return to the remaining differentials dk,32 , for k odd and integral coefficients,
after showing that the spectral sequence collapses for Fp coefficients.

3D. The maps dk,2
2 : Ek,2

2 (M) → Ek+2,1
2 (M): Let T = ker{H2(M,A)→ H2(M)} =

coker{H1(M) → H1(A)}. Since T is a quotient of H1(A), it has trivial G-action. Since
T ⊆ H2(M,A), it is Z-torsion free. Since H2(A) = 0, we have a short exact sequence:

0 // T // H2(M,A)
α // // H2(M) // 0

which induces a long exact sequence in group cohomology:

· · · // Hk(G;T ) // Hk(G;H2(M,A)) // Hk(G;H2(M)) // Hk+1(G;T ) // · · ·

Therefore the map Hk(G;H2(M,A)) → Hk(G;H2(M)) is surjective for k even, since
Hk+1(G;T ) = 0 in this case.

By naturality with respect to the map of pairs (M, ∅) → (M,A) we have the commu-
tative diagram:

Hk(G;H2(M,A))

����

dk,22 // Hk+2(G;H1(M,A))

0
��

Hk(G;H2(M))
dk,22 // Hk+2(G;H1(M))

We note that the map H1(M,A) → H1(M) is zero, since H1(M) → H1(A) is injective.

Hence the map Hk+2(G;H1(M,A))→ Hk+2(G;H1(M)) is zero, for k even. and dk,22 = 0,



RANK CONDITIONS FOR FINITE GROUP ACTIONS ON 4-MANIFOLDS 9

for k even. For odd k, we have Hk+2(G;H1(M)) = 0 since H1(M) is torsion free with

trivial G-action, and dk,22 = 0 also for k odd (with integral coefficients).

To understand the dk,22 differentials with Fp coefficients we use the multiplicative struc-

ture in the spectral sequence. Suppose that 0 6= d0,22 (z) ∈ E2,1
2 = H2(G;H1(M ;Fp)), for

some z ∈ E0,2
2 . Since the cup product pairing

H2(G;H1(M ;Fp))×H2(G;H3(M ;Fp))→ H4(G;H4(M ;Fp)) = Fp
is non-singular, there exists w ∈ H2(G;H3(M ;Fp)) = E2,3

2 such that d0,22 (z) · w 6= 0. But

0 = d2,52 (z · w) = z · d2,32 (w)− d0,22 (z) · w
since z · w ∈ E2,5

2 = 0 and d2,32 (w) = 0, as shown above. This is a contradiction, and
hence d0,22 = 0. Since ∪x : H2(G;H1(M ;Fp)) ∼= H3(G;H1(M ;Fp)), we have d1,22 = 0.
This completes the proof that all the d2 differentials are zero for Fp coefficients.

3E. Vanishing of differentials in the E3-page: Obviously dk,13 = 0, and we again use

the maps induced from i : M -{x} ↪→ M to show dk,43 = 0, and j : (M, ∅) → (M, {x}) to

show dk,23 = 0.

Ek,4
3 (M) = Hk(G;H4(M))

i∗

��

dk,43 // Hk+3(G;H2(M))/ Im dk+1,3
2 (M)

∼=
��

Ek,4
3 (M -{x}) = Hk(G;H4(M -{x}))

dk,43 // Hk+3(G;H2(M -{x}))/ Im dk+1,3
2 (M -{x})

We have H2(M -{x}) ∼= H2(M) and H3(M -{x}) ∼= H3(M), which gives the righthand

vertical isomorphism. The map i∗ = 0 since H4(M -{x}) = 0, so dk,43 = 0.

Next consider the diagram:

Hk(G;H2(M, {x}))/ Im dk−2,32 (M, {x})

j∗

��

dk,23 // Hk+3(G;H0(M, {x}))

��
Hk(G;H2(M))/ Im dk−2,32 (M)

dk,23 // Hk+3(G;H0(M))

Since H0(M, {x}) = 0 and j∗ is an isomorphism, we have dk,23 = 0. The same arguments
work for Fp coefficients.

For dk,33 we again use naturality and the following commutative diagram;

Hk(G;H3(M)) ⊇ ker dk,32 (M)

i∗

��

dk,33 // Hk+3(G;H1(M))

i∗ ∼=
��

Hk(G;H3(M -A)) ⊇ ker dk,32 (M -A)
dk,33 // Hk+3(G;H1(M -A))

By duality, H1(M)→ H1(M -A) is an isomorphism, and so is the map

i∗ : Hk+3(G;H1(M))→ Hk+3(G;H1(M -A)).
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Since the map H3(M)→ H3(M -A) is zero (as noted above), we have dk,33 = 0. The same
arguments work for Fp coefficients. For integral coefficients (where we have not yet shown

ker dk,32 = 0 if k is odd), we are using the vanishing of dk−2,42 to see that the domain of dk,33

is ker dk,32 ⊆ Hk(G;H3(M)).

3F. Vanishing of differentials in the E4-page: Obviously dk,14 = 0 and dk,24 = 0, and

again we use the induced maps i∗ to show dk,44 = 0 and j∗ to show dk,34 = 0.

Hk(G;H4(M))

i∗

��

dk,44 // Hk+4(G;H1(M))

∼=
��

Hk(G;H4(M -{x}))
dk,44 // Hk+4(G;H1(M -{x}))

Since H4(M -{x}) = 0, we have i∗ = 0 and H1(M -{x}) ∼= H1(M), so dk,44 = 0.

Hk(G;H3(M, {x})) ⊇ ker dk,32 (M, {x})

j∗

��

dk,34 // Hk+4(G;H0(M, {x}))

��
Hk(G;H3(M)) ⊇ ker dk,32 (M)

dk,34 // Hk+4(G;H0(M))

Since H0(M, {x}) = 0 and j∗ is an isomorphism, it follows that dk,34 = 0. The same
arguments work for Fp coefficients.

3G. Vanishing of differentials in the E5-page. there is only one differential to con-
sider dk,45 : Ek,4

5 (M)→ Ek+5,0
5 (M) which can easily shown to be zero by again using j∗:

Hk(G;H4(M, {x}))

j∗

��

dk,45 // Hk+5(G;H0(M, {x}))

��
Hk(G;H4(M))

dk,45 // Hk+5(G;H0(M))

Since H0(M, {x}) = 0 and j∗ is isomorphism then dk,45 = 0. The same arguments work
for Fp coefficients.

Remark 3.5. For the vanishing of the differentials dk,r−1r hitting the (∗, 0) line, we could
just have cited Corollary 2.3, since F 6= ∅.

We have now shown that the Borel spectral sequence with Fp coefficients collapses, and

that E3 = E∞ with integral coefficients (independently of the vanishing of d2i+1,3
2 ).

3H. The maps d2i+1,3
2 : E2i+1,3

2 (M ;Z) → E2i+3,2
2 (M ;Z): We will show that the

differentials d2i+1,3
2 = 0 by comparing the integral calculations with the mod p calculations.

Note that the groups Hq
G(M) with integral coefficients are all k-vector spaces for q > 4

(with notation k := Fp as before). This follows from the isomorphism Hq
G(M) ∼= Hq

G(F ) ∼=
Hq(F ×BG) (see [5, Proposition 2.1]).
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There is a short exact sequence of k-vector spaces

(3.6) 0→ H5
G(M)→ H5

G(M ;Fp)→ H6
G(M)→ 0.

and we will compute both sides of the resulting equality

(3.7) dimkH
5
G(M) + dimkH

6
G(M) = dimkH

5
G(M ;Fp)

via separate calculations.
Suppose that d1,32 6= 0, and we let b = dimk(Im d1,32 ) = dimk(Im d3,32 ) (by periodicity).

Let t = dimkH
odd(G;H3(M)) and note that Hodd(G;H1(M)) = 0. Since H3(M) ∼=

H1(M) has trivial G-action, we have dimkH
2(G;H3(M)) = b1(M) + t.

Lemma 3.8.

(i) dimkH
5
G(M) = 2b1(M) + (t− b) + dimkH

3(G;H2(M));
(ii) dimkH

6
G(M) = 2 + (t− b) + dimkH

4(G;H2(M));
(iii) dimkH

5
G(M ;Fp) = 2 + 2b1(M) + 2t+ dimkH

3(G;H2(M ;Fp)).

Proof. We compute:

dimkH
5
G(M) =

4∑
i=0

dimkH
5−i(G;H i(M))− b

and note that

dimkE
3.2
∞ = dimkH

3(G;H2(M))− b.
We then obtain the first formula after taking into account the vanishing of all the other
differentials. Similarly,

dimkH
6
G(M) =

4∑
i=0

dimkH
6−i(G;H i(M))− b

after substituting the value

dimkE
3.3
∞ = dimkH

3(G;H3(M))− b = t− b,

and we obtain the second formula. To compute the third formula, we note that

dimkH
1(G;H4(M ;Fp)) = dimkH

5(G;Fp) = 1,

and

dimkH
2(G;H3(M ;Fp)) = dimkH

4(G;H1(M ;Fp)) = t+ b1(M).

�

In order to compare the integral and mod p formulas, we need some information about
the structure of H2(M ;Fp) as a G-module. We can decompose

H2(M)/Tors ∼= Zr0(M) ⊕ Z[ζp]
r1(M) ⊕ Λr2(M)

as a G-module (this uses the classification of Z-torsion free ZG-modules, and an argument
with G0(ZG) due to Swan). This module supports a non-singular G-invariant symmetric
bilinear form arising from the intersection form on M .



12 IAN HAMBLETON AND SEMRA PAMUK

Let T = Tors(H2(M)) and note that T ∗ = Ext1(T,Z) = Tors(H3(M)) ∼= Tors(H1(M)).
In our case, T ∗ ∼= T as G-modules with trivial G-action. We introduce the notation
V := T ⊗ Fp and V ∗ := pT ∼= Homk(V,Fp) for the elements of exponent p in T .

Definition 3.9. Let V := Tors(H1(M)) ⊗ Fp and V ∗ = Homk(V,Fp). We say that the
G-representation H2(M ;Fp) has split type if the short exact sequences:

0→ H2(M)⊗ Fp → H2(M ;Fp)→ V ∗ → 0

and
0→ V → H2(M)⊗ Fp → (H2(M)/Tors)⊗ Fp → 0

of G-representations are split exact over G.

We will show that this condition is always satisfied in the setting of Theorem A.

Lemma 3.10. If G = Zp then H2(M ;Fp) has split type as a G-representation, and
H2(M ;Fp) ∼= (H2(M)/Tors)⊗ Fp ⊕ V ⊕ V ∗ as a G-module.

Proof. We have a short exact sequence of k-vector spaces with G-action:

0→ H2(M)⊗ Fp → H2(M ;Fp)→ V ∗ → 0

where V ∗ ∼= p(H
3(M)) as a trivial G-representation. Let L̄ := (H2(M)/Tors) ⊗ Fp, and

consider the short exact sequence

0→ V → H2(M)⊗ Fp → L̄→ 0.

Since L̄ supports a non-degenerate G-invariant symmetric bilinear form L̄ × L̄ → Fp
(induced by the intersection from of M), it follows that this sequence splits over G and
we have H2(M) ⊗ Fp ∼= V ⊕ L̄ as G-modules. Similarly, the submodule L̄ of H2(M ;Fp)
is a direct summand, and we have a splitting

H2(M ;Fp) ∼= L̄⊕H(V ),

where H(V ) is determined by an extension 0 → V → H(V ) → V ∗ → 0. The G-module
is an Fp-vector space, with isometry t given by a generator of G = 〈t〉.

To show that the extension determining H(V ) ⊆ H2(M ;Fp) is G-split, consider the
diagram

0 // H2(M)⊗ Fp //

��

H2(M ;Fp) //

��

V ∗ → 0

H2(M -A)⊗ Fp
∼= // H2(M -A;Fp)

The lower isomorphism comes from the Bockstein sequence for M -A, and the fact that
H3(M -A) is Z-torsion free. The short exact sequence in diagram (3.3):

0→ H2(M)→ H2(M -A)→ K → 0

shows that TorsH2(M)
∼=−→ TorsH2(M -A), since K is Z-torsion free. After tensoring with

Fp, we obtain a G-splitting of the submodule H(V ). �

Corollary 3.11. dimkH
3(G;H2(M ;Fp)) = 2t+ r0(M) + r1(M).

Proof. This follows from Lemma 3.10. �
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We can put this information together with the formulas in Lemma 3.8. We have

dimkH
3(G;H2(M)) = t+ r1(M), dimkH

4(G;H2(M)) = t+ r0(M).

By substituting the values obtained into the dimension formula (3.7), we conclude that

b = dimk(Im d1,32 ) = 0. In other words, we have shown that the differential dk,32 = 0 for k
odd in the Borel spectral sequence with integral coefficients. This completes the proof of
Theorem 3.1, and establishes the first part of Theorem A.. �

Remark 3.12. Since Hr
G(M) ∼= Hr

G(F ) = Hr(F×BG) for r > 4, we have dimkH
5
G(M) =

dimkH
5
G(F ) = b1(F ) and dimkH

6
G(F ) = b0(F ) + b2(F ). In addition, dimkH

5
G(F ) =

dimkH
3
G(F ) since F consists of surfaces and isolated points By computing the trace of

the action of a generator on H∗(M), we obtain the relation

χ(F ) = b2(F )− b1(F ) + b0(F ) = 2− 2b1(M) + r0(M)− r1(M).

However, since Hq
G(M) = Hq

G(F ) for q > 4, we can use the Herbrand quotient formula

dimH4((G;H2(M))− dimH3((G;H2(M)) = r0(M)− r1(M)

and further calculations similar to those above for Hq
G(M), to show directly that χ(F ) =

dimH6
G(M)− dimH5

G(M).

4. A non-collapse result

We complete the proof of Theorem A by showing that our surjectivity condition for the
map H1(F )→ H1(M) is necessary in many cases (see Section 7 for some examples).

Proposition 4.1. Suppose that G = Zp acts locally linearly on a closed, connected,
oriented 4-manifold M , preserving the orientation, with non-empty fixed point set F . If

ker(H1(M ;Z)→ H1(F ;Z))

is non-trivial, but has trivial G-action, then the Borel spectral sequence with integral co-
efficients does not collapse.

Proof. The proof uses the fact that Hq
G(M,F ) = 0 for q > 4, implying that Eq,1

∞ (M,F ) = 0
for q > 4 in the Borel spectral sequence. We will show that this leads to a contradiction.

If H1(M) → H1(F ) is not injective, we let 0 6= K = ker(H1(M) → H1(F )), which by
assumption has trivial G-action. Therefore H2r(G;K) 6= 0. We consider the relative long
exact sequence for the pair (M,F ), we get short exact sequences

0→ H0(F )/H0(M)→ H1(M,F )→ K → 0

and
0→ K → H1(M)→ L→ 0

where L = Im(H1(M) → H1(F )). Since both L and H0(F )/H0(M) are Z-torsion free
with trivial G action, we have H2r−1(G;L) = 0 and H2r+1(G;H0(F )/H0(M)) = 0. By
applying group cohomology to the sequences above, we obtain

H2r(G;H1(M,F ))
α //

))

H2r(G;H1(M))

H2r(G;K)

66
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where H2r(G;H1(M,F )) � H2r(G;K) is surjective, and H2r(G;K) � H2r(G;H1(M))
is injective. Since E2r,1

∞ (M,F ) = 0 for 2r > 4, some differential must hit a pre-image of a
non-zero element in H2r(G;K). By comparison, we see that the Borel spectral sequence
for H∗G(M) has a non-zero differential, and hence does not collapae. �

5. Homologically trivial actions

We will first consider the Borel spectral sequence for a cyclic p-group acting homologi-
cally trivially. We use Fp coefficients throughout this section.

Proposition 5.1. Let G = Zp act homologically trivially on M , and assume that χ(M) 6=
0 and the fixed set F is discrete. Then the differentials dr = 0, for r ≥ 3, in the Borel
spectral sequence with Fp-coefficients. Moreover, b2(M) ≥ 2b1(M) and the Borel spectral

sequence does not collapse unless b1(M) = 0. In particular, dk,32 is injective for k ≥ 0 and

dk,22 is surjective for k ≥ 0.

Proof. The difference in the multiplicative structure of the Fp-cohomology algebras of
G = Zp for p odd and p = 2 does not affect the proof, so we consider both cases together.
Since the action is homologically trivial and χ(M) 6= 0, the fixed set F 6= ∅, and F consists
of χ(M) isolated points.

We will prove the result by computing the dimension of H5
G(M) which must be equal

to dimH5
G(F ) = χ(M) by [5, Proposition 2.1].

The same arguments used in the proof of Theorem A show that the differentials d0,42

and d0,12 are both zero (these work the same way for p = 2 as for p odd). Moreover, since
F 6= ∅ the inclusion induces an injection H∗(G)→ H∗(MG), so E∗,02 = E∗,0∞ .

The key to understanding the other d2 differentials is the result of Sikora [18, Section
3.3], which shows that E2,1

3
∼= E2,3

3 by recognizing a Poincaré duality structure on certain
terms of the Borel spectral sequence. Since E2,1

2
∼= E2,3

2 , and d2,12 = 0, it follows that
ker d2,32

∼= coker d0,22 . Therefore, if R = dim ker d2,32 , we have dim Im d0,22 = b1(M) − R.
Therefore

dim Im d2,32 = dim Im d1,32 = dim Im d3,22 = b1(M)−R.
so we have dimE2,3

3 = dimE4,1
3 = R, and dimE3,2

3 = b2(M) − 2b1(M) + 2R. A detailed
study of the possible d3 differentials, now shows that from the relation∑

dimEk,5−k
3 = 2 + b2(M)− 2b1(M) + 4R

and the convergence to H5
G(M) ∼= H5

G(F ), we must have R = 0. The details are similar
to those in Section 3. Since F 6= ∅, we conclude that d∗,4r = 0 for r = 3, 4, 5. The only
remaining differential to consider is d∗,33 , but since Poincaré duality is preserved between

E4,1
4
∼= E4,3

4 , we see that d∗,33 = 0. Therefore dk,32 is injective for k ≥ 0 and dk,22 is surjective
for k ≥ 0. By the dimension count above, this shows that the higher differentials dr = 0
for r ≥ 3. �

With extra assumptions such as homological triviality and torsion free H1(M), we can
prove the converse of Theorem 3.1.
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Corollary 5.2. Let G = Zp for p odd act locally linearly, homologically trivially on
a closed, connected, oriented 4-manifold M with the fixed point set F non-empty and
H1(M ;Z) torsion-free. Then the Borel spectral sequence with integral coefficients collapses
if and only if H1(F )� H1(M) is surjective.

Proof. Since we are assuming that H1(M ;Z) torsion-free, the condition that H1(F ) →
H1(M) is surjective is equivalent to the condition that H1(M ;Z)→ H1(F ;Z) is injective.
The result now follows from Theorem 3.1 and Proposition 4.1. �

Corollary 5.3. Let p be an odd prime. If G = Zp acts homologically trivially and locally
linearly on M with χ(M) 6= 0, such that H1(F )� H1(M) is surjective, then the Fp-Betti
numbers satisfy b1(F ) = 2b1(M) and b0(F ) + b2(F ) = 2 + b2(M).

Proof. Since the action is homologically trivial, χ(F ) = χ(M) 6= 0 by the Lefschetz fixed
point theorem and hence F 6= ∅. By Theorem 3.1 we know that Borel spectral sequence
collapses and by Proposition 2.4 (with k = Fp coefficients) we have∑

r

dimkH
r(F ) =

∑
r

dimkH
r(M).

It follows that b1(F ) = 2b1(M) and b0(F ) + b2(F ) = 2 + b2(M) for odd p. �

We can also apply our results to some actions of rank two groups (compare [5, Propo-
sition 6.1]).

Remark 5.4. If G acts homologically trivially and the Borel spectral sequence E(MK)
does not collapse for the subgroup K ≤ G of a group G then E(MG) does not collapse.

Proposition 5.5. Let p be an odd prime. If G = Zp × Zp acts homologically trivially,
locally linearly on M with non-empty fixed point set. Suppose that H1(M ;Z) is torsion
free. Then the Borel spectral sequence with Fp coefficients collapses if and only if H1(M) =
0.

Proof. Suppose that the fixed set F contains a 2-dimensional component F1 ⊆ F . Con-
sider the action of G on the boundary of an G-equivariant normal 2-disk neighbourhood
of a point x ∈ F1. Since G = Zp × Zp and p is odd, this gives a contradiction since there
is no such G-action on a circle. Hence the fixed set F consists of a finite set of isolated
points.

Next we remark that in a small G-invariant neighbourhood U of each fixed point x ∈ F
has TxU ∼= V1 ⊕ V2, where Vi = Fix(TxU,Ki), for two order p subgroups K1 = 〈a〉 and
K2 = 〈b〉 of G which have K1 ∩K2 = {1}.

Therefore each G-fixed point x ∈ F is contained in exactly two singular surfaces S1 and
S2, where S1 ⊆ Fix(K1) and S2 ⊆ Fix(K2). Note that the action of G/K on a K-fixed
surface S has an even number of fixed points, equal to 2 + dimkH

1(G/K;H1(S)).
We now restrict the G-action to any index p subgroup K ≤ G, and let Fix(K) denote

its fixed set. The remarks above show that Fix(K) contains fixed orientable surfaces, each
with an effective action of G/K ∼= Zp. Since a Zp action on an orientable surface S 6= S2

induces an effective action on H1(S), we see that the map H1(M) → H1(Fix(K)) must
be zero: either all the surfaces are 2-spheres, so that H1(Fix(K)) = 0, or the G/K-action
on H1(M) would be non-trivial, contradicting our homologically trivial assumption.
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Therefore, if H1(M) 6= 0 the Borel spectral sequence for EK(M) does not collapse with
Z-coefficients (by Proposition 4.1). Since the homology of M is torsion free, Hr(M)⊗Fp ∼=
Hr(M ;Fp), and it follows from the Bockstein sequence that the maps Hr(K;Hs(M))→
Hr(K;Hs(M ;Fp)) are injective for all r > 0. Therefore the Borel spectral sequence for
EK(M) does not collapse with Fp-coefficients either. Hence if H1(M) 6= 0, the Borel
spectral sequence for E(MG) does not collapse (see Remark 5.4).

If H1(M) = 0, then our assumption that the fixed set F 6= ∅ and multiplicativity
implies that the Borel spectral sequence for E(MG) does collapse (since no differentials
can hit the line E∗,02 ). �

6. The proof of Theorem B

Let G = Zp × Zp, for p odd, and recall that the mod p cohomology algebra

H∗(G) = Fp[u1, u2]⊗ Λ(x1, x2)

where |ui| = 2 and |xi| = 1, with x2i = 0. We will use cohomology with Fp coefficients
throughout this section.

The essential cohomology, denoted Ess∗(G) ⊂ H∗(G) is defined as the intersection of
the kernels of the restriction maps induced by the (p + 1) non-trivial cyclic subgroups
K ≤ G. A nice description is given by

Theorem 6.1 (Aksu and Green [1]). For G = Zp × Zp, the essential cohomology Ess(G)
is the smallest ideal in H∗(G) containing x1x2 and closed under the action of the Steenrod
algebra. Moreover, as a module over Fp[u1, u2], the essential ideal Ess∗(G) is free on the
set of Mùi generators.

This statement is a special case of their general result. For the rank two case, the Mùi
generators are as follows:

γ1 = x1x2, γ2 = x1u2 − x2u1, γ3 = x1u
p
2 − x2u

p
1, and γ4 = u1u

p
2 − u2u

p
1.

We note that the degrees are 2, 3, 2p+ 1, 2p+ 2 respectively. For detailed calculations, it
is useful to let R := Fp[u1, u2] and Λ := Λ(x1, x2). These are graded rings with dimR2k =
k + 1, dim Λ1 = 2 and dim Λ2 = 1. In this notation, H2k(G) = R2k ⊕ (R2k−2 ⊗ Λ2) and
H2k+1(G) = R2k ⊗Λ1. Note that H∗(G) is generated as an R-module by the cohomology
groups Hk(G), for k ≤ 2.

The proof of Theorem B is based on a detailed study of the Borel spectral sequence.
Here is an example for the case p = 3 which illustrates some of the features. As explained
in that proof, the images of any differentials in the Borel spectral sequence for H∗G(M)
with range Ek,0

r , for any k ≥ 0, must belong to Ess∗(G).

Example 6.2. Let M = CP2 with the pseudo-free action of G = Z3 × Z3 given by
S(z1, z2, z3) = (z1, ωz2, ω

2z3) and T (z1, z2, z3) = (z2, z3, z1). The singular set consists of
12 points, arranged in 4 triangles each fixed by one of the 4 subgroups of order three
in G. By [5, Proposition 2.1], we have an isomorphism Hq

G(M) → Hq
G(Σ), for q > 4,

and hence dimHq(G;H0(Σ)) = 4 for q > 4 (see the proof of Theorem B for details). It
turns out that for this dimension bound to hold, the Múi generators γ2, γ3 and γ4 (in
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degrees 3, 7, 8 respectively) must be hit by differentials. We will use the dimension bound
dimEq,0

∞ ≤ dimHq
G(M) = 4, for q > 4.

Since d2 = 0, E2 = E3 and the E3-page has three lines, where the differentials are
determined by the values of d0,q3 : E0,q

2 → E3,q−2
2 , for q = 2, 4, and the multiplicative

structure of H∗(G). Let z ∈ H2(CP2;Z) be the generator dual to the homology class of
CP1 ⊂ CP2, and let w = z2 ∈ H4(CP2;Z) be the orientation class. Then d3(z) = γ2 and
d3(w) = −γ2z. Therefore d2,43 (γ1w) = −γ1γ2 = 0 and d3,43 (γ2w) = −(γ2)

2z = 0 so these
elements persist to the E5-page, with dimE2,4

5 = dimE3,4
5 = 1.

For the dimension count of H6
G(M) we also need to compute E4,2

4 and E6,0
4 (and note

that E4 = E5). It is not hard to check that Im d1,43 = 〈γ1u1, γ1u2〉 ⊂ E4,2
3
∼= H4(G), and

this equals the kernel of d4,23 . Therefore E4,2
4 = 0. Next,

Im d3,23 = Λ1 ·R2 · γ2 = 〈γ1u21, γ1u1u2, γ1u22〉 ⊂ E6,0
3
∼= H6(G).

Therefore dimE6,0
4 = 4 and the dimension count shows that there is one remaining non-

zero differential d2,45 : E2,4
5 → E7,0

5 affecting the line k + l = 6.
For the dimension count of H7

G(M) we have dimE3,4
4 = 1 and we make similar cal-

culations to determine E5,2
4 and E7,0

4 . We see that Im d2,43 = 〈γ2u1, γ2u2〉 = ker d5,23 , so
E5,2

4 = 0. We compute

Im d4,23 = γ2 ·R4 = 〈x1u21u2 − x2u31, x1u1u22 − x2u21u2, x1u32 − x2u1u22〉 ⊂ H7(G).

Therefore dimE7,0
4 = 5, and the dimension count confirms that d2,45 is non-zero with

1-dimensional image. More precisely, Im d2,45 = 〈γ3〉 since

0 6= Im d2,45 ⊆ Ess7(G)/ Im d4,23 = 〈γ3, γ2 ·R4〉/ Im d4,23
∼= 〈γ3〉.

By a similar calculation, Im d5,23 = Im d4,23 · {x1, x2} = Λ2 · R6 has dimension 4. and
dimE8,0

4 = 5, so that d3,45 must have 1-dimensional image. Since Ess8(G) = 〈γ4,Λ2·R6, γ4〉,
it follows that d3,45 hits γ4, and hence the differentials surject onto Essq(G), for q > 2.

Remark 6.3. To rule out higher rank actions as asserted in Theorem B, we will show
that the Mùi generators γ2p+1 and γ2p+2 for p ≥ 5, can not be hit by differentials in the
Borel spectral sequence for G = Zp × Zp. This would imply that the groups Hq

G(M) for
large values of q would have dimensions contradicting the bound (6.4) from the singular
set, and hence rule out the existence of these actions.

In order to prove this claim, the key point is that the differentials are determined
through multiplicativity by their values on Ek,l

r for k ≤ 3. This is a consequence of the
structure of the cohomology ring H∗(G), which is generated by clasees in degrees ≤ 2 (as
explained in Example 6.2).

The proof of Theorem B. Suppose that G is acting homologically trivially on M with
χ(M) 6= 0. In addition, we are assuming that the action is pseudofree, meaning that the
singular set Σ is a discrete set of points. Note that MG = ∅ since G can not act freely
on S3. Each subgroup K ∼= Zp has χ(M) > 0 fixed points, which are then permuted in
χ(M)/p orbits of size p by G/K, so that H0(Fix(K)) is the direct sum of χ(M)/p copies
of the permutation G-module Fp[G/K].
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By [5, Proposition 2.1], we have an isomorphism Hq
G(M)

≈−→ Hq
G(Σ), for q > 4, and this

provides a dimension count as above. In this case, we have p | χ(M) and there are p+ 1
distinct subgroups of order p in G, so that

(6.4) dimHq(G;H0(Σ)) =
∑
i

dimHq(G;Fp[G/Ki])
χ(M)/p =

χ(M)

p
· (p+ 1)

by Shapiro’s Lemma. The main observation is that the images of any differentials in
the Borel spectral sequence for H∗G(M) with range Ek,0

r , for any k ≥ 0, must belong to
Ess∗(G). This follows immediately by comparing the spectral sequences for H∗G(M) and
H∗G(Σ). Similarly, by Proposition 5.1 the images of the higher differentials dr, for r ≥ 3,
must lie in Ess∗(G) modulo indeterminacy from the earlier differentials. Moreover, since
the ResK : Hr(G;Fp[G/K])→ Hr(K;Fp[G/K]) is an injection, the sum of the restriction
maps ⊕

K
ResK : Hq

G(M)→
⊕

K
{Hq

K(M) | 1 6= K 6= G}

is also an injection for q > 4.
We have commutative diagram (for q > 4):

Hq(G)
∼= //

ResK
��

Eq,0
2 (MG)

ResK
��

// // Eq,0
∞ (MG)
��
ResK
��

// // Hq
G(M)
��
ResK
��⊕

Hq(K)
∼= //

⊕
Eq,0

2 (MK)
∼= //

⊕
Eq,0
∞ (MK)

∼= //
⊕

Hq
K(M)

It follows from this diagram, and the fact that the images of differentials with range in
Ek,0
r are contained in Ess∗(G), that Essq(G) = ker{Eq,0

2 (MG)� Eq,0
∞ (MG)}, for q > 4 is a

necessary condition for the G-action to exist.
For p = 3, the Mùi generators have dimensions 2, 3, 7, 8 and these are all within the

range of the differentials dk,lr , for r ≤ 5 and k ≤ 3 (as in Example 6.2). However, for p > 5,
only the first two Mùi generators γ1 = x1x2 and γ2 = x1u2−x2u1 can be hit by a non-zero
differential dk,r−1r if k = 2p+ 1− r or k = 2p+ 2− r, with r ≤ 5. Since 2p+ 1 ≥ 11, this
implies k ≥ 6.

Consider the differentials dr with range in the line E∗,0r . These are dk,12 , dk,23 , dk,34 and

dk,45 . At each page, if the differential dk,r−1r is non-zero its image must lie in Essr(G).
We claim that the images of the differentials dk,r−1r , for all k ≥ 0, will be contained in
the module generated by the first two Mùi generators γ1 and γ2 under the action of the
polynomial algebra Fp[u1, u2]. Since Ess∗(G) is a free module on all the Mùi generators
(by [1, Theorem 1.2]), we will have a contradiction to the dimension bound on Hq

G(M)
for large q, and the assumed G action does not exist.

To verify this, we tabulate the generators of Essk(G) for 2 ≤ k ≤ 6 as follows:

Essk(G) = {〈γ1〉, 〈γ2〉, 〈γ1u1, γ1u2〉, 〈γ2u1, γ2u2〉, 〈γ1u21, γ1u1u2, γ1u22〉}.

For use in our arguments below, we also note that Essk(G) is generated by γ1 and γ2 over
R in degrees k ≤ 10 (for all primes p ≥ 5).
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We first fix some notation for an Fp-basis of the cohomology of M : let us denote them
by w ∈ H4(M), 〈β1, . . . , βt〉 ⊂ H3(M), 〈z1, . . . , zs〉 ⊂ H2(M), and 〈α1, . . . , αt〉 ⊂ H1(M).
We will check the images of the differentials dk,r−1r in each case.

The image of dk,12 : Ek,1
2 → Ek+2,0

2 . Since Im d0,12 ⊆ Ess2(G) = 〈γ1〉, either dk,12 = 0, for

k ≥ 0, or d0,12 (α1) = γ1 and we may assume that dk,12 (αk) = 0, for k ≥ 2. In the second

case, Im dk,12 ⊆ γ1 ·R and ker dk,12 = 〈α1 · (Λ1⊗R), α2, . . . , αt〉. In particular, the image of

dk,12 : Ek,1
2 → Ek+2,0

2 does not contain γ2, γ3 or γ4.

The image of dk,23 : Ek,2
3 → Ek+3,0

2 . The image of dk,22 restricted to any order p subgroup of
G must be surjective, by Proposition 5.1. It follows that either d0,22 (zi) 6= 0 and projects

non-trivially to αj · H2(G)/〈γ1〉, for some αj, or d0,22 (zi) = 0 and Im dk,23 (zi) ⊆ γ2 · R.

Therefore Im dk,23 does not contain γ3 or γ4.

The image of dk,34 : Ek,3
4 → Ek+4,0

2 . Since dk,32 is injective when restricted to any or-

der p subgroup, by Proposition 5.1, it follows that Im dk,32 (βi) projects non-trivially to

Hk(G;H2(M))/〈Essk(G) · H2(M)〉. Therefore dk,32 is injective, and Ek,3
r = 0 for r ≥ 3

implies dk,34 = 0.

The image of dk,45 : Ek,4
4 → Ek+5,0

4 . Since dk,32 is injective, we have dk,42 = 0, for k ≥ 0.

Suppose first that 0 6= d0,43 (w) ∈ γ2 · H2(M). Then Im dk,43 ⊆ (〈γ1, γ2〉 · R) · H2(M).

Therefore ker dk,43 ⊆ 〈γ1w, γ2w〉 · R ⊆ Ek,4
4 , and Im dk,44 is generated by the images

d2,44 (γ1w) ∈ Ess6(G) · E6,1
4 and d3,44 (γ2w) ∈ Ess7(G) · E7,1

4 under the action of R.

If both these images under dk,44 are non-zero, then ker dk,44 = 0 since multiplication by

elements of R is injective on Im dk,44 . Therefore dk,45 = 0, hence γ3 or γ4 can not be hit.

If either of these images under dk,44 are zero, then their corresponding images under dk,45

will be contained in Essq(G) for q ≤ 7, and again d5 can not hit γ3 or γ4.

For p = 3, we rule out actions of G = Z3 × Z3 × Z3 by similar arguments. In the rank
three case, there are eight Mùi generators, starting with γ1 = x1x2x3 and γ2 = β(γ1) in
degrees 3, 4, and continuing in degrees 8, 9, 20, 21, 25, 26 (see [1, Section 3]). The higher
Mùi generators are outside the range of differentials hitting the line E∗,0r . Hence such an
action does not exist.

For p = 2 and G = Z2 × Z2 × Z2, the cohomology ring is now H∗(G) = F2[x1, x2, x3]
and there is just one Mùi generator

γ = x1x2x3(x1 + x2)(x1 + x3)(x2 + x3)(x1 + x2 + x3)

in degree 7, which is the product of the distinct linear forms. The ideal Ess∗(G) = 〈γ〉 is a
free module over Fp[x1, x2, x3] and Ess∗(G) is the Steenrod closure of γ in H∗(G) (see [1,
Lemma 2.2]). This means that the rank two actions can not be ruled out by the method
above (in fact such actions exist on S2 × S2).

However, we can use the information contained in the proof of Proposition 5.1 to see
that the images of the differential d0,22 in E2,1

2 (K) must be non-zero in each summand
of H2(K) ⊗ H1(M), and for each subgroup K ∼= Z2. Therefore, there must be a class
α ∈ H2(G) such that ResK(α) 6= 0 for each K < G of order two. We claim that no such
class exists. To see this, let H ∼= Z2×Z2 be an index two subgroup. The only possibility
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for ResH(α) is the class δ = x̄21 + x̄1x̄2 + x̄22, where x̄i denote the degree 1 generators of
the cohomology of H. We look at the restriction of a general element

α =
∑
1≤i≤3

aix
2
i +

∑
i<j

bijxixj ∈ H2(G)

to each of the index two subgroups H obtained by imposing one of the 7 linear relations
in the formula for γ. First, to get ResH(α) = δ by setting xi = 0 for each 1 ≤ i ≤ 3
separately, we find that all the coefficients ai and bij must be non-zero. But then, setting
x1 + x2 = 0 gives ResH(α) = x̄21 + x̄23 6= δ. Hence α does not exist, and such a rank three
pseudofree G-action is ruled out. �

7. Some Examples

In this section, we give some illustrative examples of group actions on a closed, con-
nected oriented 4-manifolds. These indicate the necessity of the conditions in Theorem
3.1 for the Borel spectral sequence to collapse. We let k = Fp with the prime p under
consideration understood.

Example 7.1. Consider (i) S1 × S3 with Z3 acting trivially on S1 and by rotation on
S3, so that the fixed point set S1 × S1, and (ii) CP 2 with a Z3-action fixing CP 1 and a
point. Taking the equivariant connected sum along the two dimensional fixed set, we get
M = S1 × S3#CP 2 with the fixed point set F = S1 × S1 #CP 1 ∪ {pt}.

By Theorem 3.1 since H1(F ) = Z ⊕ Z surjects onto H1(M) = Z , the Borel spec-
tral sequence with integral coefficients collapses for this example. Since the action is
homologically trivial, and the total dimensions satisfy∑

r

dimkH
r(F ) = 5 =

∑
r

dimkH
r(M)

the Borel spectral sequence with F3 coefficients collapses by Proposition 2.4.

Next, we have a case where the fixed point set consists of isolated points and H1(M)
is torsion free.

Example 7.2. Consider the diagonal action of Zp on S2 × S2 with four fixed points.
Now take two copies of S2 × S2 with this action and take the equivariant connected
sum along two pairs of fixed points where the representations of the tangent bundles are
equivalent. We obtain a 4-manifold M which has a Zp-action with four fixed points. M
has Hi(M) = Z for i = 0, 1, 3, 4 and H2(M) = (Z)4 as homology groups. Since the action
is homologically trivial, we can also again use Proposition 2.4:∑

r

dimkH
r(MG) = 4 6= 8 =

∑
r

dimkH
r(M)

showing that the Borel spectral sequence with Fp coefficients does not collapse.

There are also examples where the fixed point set is two dimensional, but the Borel
spectral sequence does not collapse:
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Example 7.3. Consider again a Z3 action on CP 2 fixing a CP 1 and a point. Take two
copies of this and take the equivariant connected sum along the two dimensional fixed
sets and the fixed points. The manifold we obtain is a 4-manifold having Z3 action with
a connected two dimensional fixed set which has the homology of the two sphere. Again
the action is homologically trivial and by Proposition 2.4:∑

r

dimkH
r(MG) = 2 6= 6 =

∑
r

dimkH
r(M)

showing that the Borel spectral sequence with F3 coefficients does not collapse. Here the
map H1(F )→ H1(M) is not surjective.

Here is an example with p-torsion in H1(M).

Example 7.4. Let M = L3(Zp, 1)× S1, with the action of G = Zp given by

ζ · ([z1 : z2], z3) = ([ζ · z1 : z2], z3).

Note that [ζ · z1 : z2] = [z1 : ζ−1 · z2] because of the equivalence relation used to define
L3(Zp, 1). The fixed set F = S1×S1

⊔
S1×S1, and H1(F )→ H1(M) is surjective, hence

the Borel spectral sequence collapses.

Here is an example for which H1(M) has non-trivial G-action.

Example 7.5. For G = Z2 , consider the diagonal reflection on M = S1 × S3 which
reverses the orientation on each factor. The fixed point set F = S2

⊔
S2 andH1(M) = Z−.

Because the total dimensions satisfy∑
r

dimkH
r(MG) = 4 =

∑
r

dimkH
r(M),

the Borel spectral sequence collapses.

Finally we will give an example with G = Zp × Zp acting homologically trivially.

Example 7.6. Consider the Zp × Zp-action on S2 × S2 given by the product of two
rotation actions of Zp on S2. This action has 4 fixed points and singular set consisting
of four 2-spheres. Let M be obtained by taking the equivariant connected sum of two
copies of S2 × S2 along two of the fixed points. Then M admits a Zp × Zp-action with 4
global fixed points and which is homologically trivial and locally linear (in fact smooth).
The Borel spectral sequence with Fp coefficients does not collapse (by Remark 5.4 and
Corollary 5.2). This is a counter-example to [16, Corollary 3.2].
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