
This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 147, Number 7, July 2019, Pages 3177–3179
https://doi.org/10.1090/proc/14465

Article electronically published on March 15, 2019

ORIENTABLE 4-DIMENSIONAL POINCARÉ COMPLEXES HAVE

REDUCIBLE SPIVAK FIBRATIONS

IAN HAMBLETON

(Communicated by Mark Behrens)

Abstract. We show that the Spivak normal fibration of an orientable 4-
dimensional Poincaré complex has a vector bundle reduction.

1. Introduction

A Poincaré complex (PD-complex ), as introduced by Wall [10, p. 214], is a
(connected) finitely dominated CW complex X equipped with:

(1) a homomorphism w : π1(X) → {±1} defining a twisted Λ := Zπ1(X) mod-
ule structure Z

t on Z,
(2) an integer n and a class [X] ∈ Hn(X;Zt) such that
(3) for all integers r ≥ 0, cap product with [X] induces an isomorphism

[X] � : Hr(X; Λ) → Hn−r(X; Λ⊗ Z
t) .

The integer n = dimX is called the dimension of X. It follows from the foun-
dational results of Kirby and Siebenmann [5, Annex 3] that every closed topo-
logical n-manifold has the homotopy type of a Poincaré complex of dimension n
(see the discussion in Wall [11, §17B]). In the manifold case, the homomorphism
w : π1(X) → {±1} is given by the first Stiefel-Whitney class. Accordingly, a PD-
complex X is called orientable if its homomorphism w is trivial.

Spivak [9] discovered that every simply-connected PD-complex X with dimX =
n has an associated spherical fibration, denoted νX , which is unique up to stable fi-
bre homotopy equivalence. It is constructed by embedding X in a high-dimensional
Euclidean space R

n+k (k � n) and considering the fibration homotopic to the pro-
jection map p : ∂N → X from the boundary of a regular neighbourhood N ⊂ R

n+k.
The duality properties of X imply that the fibres of p are homotopy equivalent to
Sk−1. The definition and the uniqueness statement were generalized by Wall [10, §3]
to all PD-complexes, and νX is now called the Spivak normal fibration of X.

In the smooth manifold case, νX is the spherical fibration associated to the sphere
bundle of the (stable) normal k-vector bundle of X. For topological manifolds, the
corresponding notion is the (stable) normal Rk-bundle (k � n) and its sub-bundle
with fibres Rk − {0} � Sk−1.

After the further development of geometric surgery theory, due to Browder, Mil-
nor, Novikov, Sullivan, and Wall, the normal structures on PD-spaces and manifolds
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were re-expressed via classifying spaces (see [11, §§10 and 17B], [5], [8], [6]). One
outcome was the construction of a sequence of classifying spaces

BO → BPL → BTOP → BG

relating smooth, PL, and topological bundles to spherical fibrations. In particular,
the (stable) Spivak normal fibre space νX is classified by a map νX : X → BG.

Definition 1.1. We say that PD-complexX has a reducible Spivak normal fibration
if the classifying map νX : X → BG lifts to a map ν̃X : X → BTOP .

Similarly, we say that the Spivak normal fibre space is reducible to a vector
bundle if νX lifts to a map ν̃X : X → BO. The lifting obstruction is given by the
image of νX in [X,B(G/TOP )] or [X,B(G/O)], respectively. In dimensions ≥ 5,
these are different problems, but if dimX ≤ 4 these two obstruction groups are the
same because

[X,B(G/O)] = [X,B(G/PL)] = [X,B(G/O)] ∼= H3(X;Z/2) if dimX ≤ 4.

This is explained in Kirby-Taylor [6, §2]. In other words, the obstruction to re-
ducibility for the Spivak normal fibration of a PD-complex X in dimensions ≤ 4 is
a single characteristic class k3(X) ∈ H3(X;Z/2).

Theorem A. Let X be a Poincaré complex. If dimX ≤ 3 or dimX = 4 and X is
orientable, then the Spivak normal fibration of X is reducible to a vector bundle.

Remark 1.2. The dimension 4 case was known to the experts (see the statements
in Spivak [9, p. 95] and Kirby-Taylor [6, p. 399]), but Land [7] pointed out the lack
of a proof in the literature and provided his own argument. For dimensions ≤ 2 the
result is immediate, and the dimension 3 cases follow easily from the dimension 4
statement. In general, non-oriented PD-complexes in dimensions ≥ 4 do not have
reducible Spivak normal fibrations (see Hambleton and Milgram [4] for explicit
examples in every even dimension ≥ 4). The first non-reducible orientable example
occurs in dimension 5 (see Gitler and Stasheff [3]).

2. The proof of Theorem A

Here is a short argument to show that an orientable 4-dimensional Poincaré
complex has a reducible Spivak normal fibration. The proof is essentially contained
in [4].

1. Suppose that X is an orientable 4-dimensional PD-complex such that νX is
not reducible. Then by Poincaré duality there is a class e ∈ H1(X.Z/2) such that

〈k3(X) ∪ e, [X]〉 �= 0,

where k3(X) denotes the pullback to X of the first exotic characteristic class.
2. Let f : X → RP∞ represent the cohomology class e ∈ H1(X;Z/2). Then

the element 0 �= (X, f) ∈ N PD
4 (RP∞) has Arf invariant A(X, f) = 1 (see [4],

Corollaries 4.2 and 5.3, and Theorem 5.6).
3. By low-dimensional surgery, we may assume that π1(X) = Z/2 and that

f : X → RP∞ classifies its universal covering ˜X → X (see Wall [10, Corollary
2.3.2] to justify this much Poincaré surgery).

4. The form B(a, b) = 〈a ∪ T ∗b, [ ˜X]〉 is a symmetric unimodular bilinear form

on H2( ˜X,Z), where T denotes the non-trivial covering involution. The form B is
even (see Bredon [1, Chapter VII, Theorem 7.4]).
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5. The invariant A(X, f) is the Arf invariant associated to the Browder-Livesay
quadratic map q (see [2, §4] and [4, Theorem 1.4]), which refines the mod 2 reduc-
tions of B. By [2, Lemma 4.6], we have

q(a) ≡ B(a, a)

2
(mod 2)

since T : ˜X → ˜X is orientation preserving. But B is an even unimodular symmetric
bilinear form, so the Arf invariant obtained in this way is zero, and we have a
contradiction. �
Remark 2.1. To obtain the reducibility results for 3-dimensional PD-complexes,
one can make an appropriate circle bundle construction (which does not affect
reducibility) resulting in orientable 4-dimensional PD-complexes and then apply
Theorem A.
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