
CONJUGATION SPACES AND 4-MANIFOLDS

IAN HAMBLETON AND JEAN-CLAUDE HAUSMANN

Abstract. We show that 4-dimensional conjugation manifolds are all obtained from
branched 2-fold coverings of knotted surfaces in Z2-homology 4-spheres.

1. Introduction

Flag manifolds X with complex conjugation, the Chevalley involution on coadjoint
orbits of compact Lie groups, and involutions on toric manifolds or polygon spaces all share
a remarkable property. Let G denote the group of order 2. There is a ring isomorphism

κ : H2∗(X; Z2) ∼= H∗(XG; Z2)

dividing the degrees in half, where XG denotes the fixed set under the involution. The
structure underlying this property was discovered by Hausmann, Holm and Puppe [23],
and studied further in [16, 22, 35, 36, 37]. A G-space with this structure is a conjugation
space (see Section 2 for the precise definition).

In this paper, we study the interaction between conjugation structures and the topology
of smooth 4-manifolds. A conjugation 4-manifold is a smooth closed G-manifold X of
dimension 4 which is a conjugation space. The fixed point set XG is a closed connected
surface embedded in X. In addition, X has no odd-degree cohomology (mod 2), and hence
a conjugation manifold is orientable.

Let X be an oriented conjugation 4-manifold. The quotient space X/G inherits a
canonical smooth structure (see Lemma 7.5), and thus X/G is an oriented closed smooth
4-manifold containing the surface XG as a smooth submanifold.

A Z2-knot is a smooth manifold pair (M,Σ), where M is an oriented 4-dimensional
Z2-homology sphere and Σ is a closed connected surface embedded in M .

Theorem A. The correspondence X 7→ (X/G,XG) defines a bijection between

(a) the orientation-preserving G-diffeomorphism classes of oriented connected conju-
gation 4-manifolds, and

(b) the smooth equivalence classes of Z2-knots.

Two Z2-knots (M,Σ) and (M ′,Σ′) are smoothly equivalent if there is an orientation-
preserving diffeomorphism h : M →M ′ such that h(Σ) = Σ′.

The inverse of the bijection in Theorem A is provided by taking a branched 2-fold
covering of M over the knot Σ. We therefore need to understand the relation between
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smooth manifold structures on the total spaces and quotients of branched 2-fold coverings,
with codimension two branch locus (see the Appendix §7). Other versions of Theorem A
are given in Section 6, for instance for topological manifolds (Theorem B), or for non-
oriented manifolds.

Under the bijection of Theorem A, any knot S2 ↪→ S4 corresponds to a conjugation
4-manifold X with XG ≈ S2. For the trivial knot S2 ⊂ S4, X is the sphere S4 on which
G acts by a linear involution with 2 negative eigenvalues (see Example 4.1). In general,
X is not simply connected. On the other hand, Gordon [20], [21] and Sumners [44] found
infinitely many topologically distinct knots in S4 which are the fixed point set of smooth
involutions (contrasting with the Smith conjecture in dimension 3), and earlier examples
on homotopy 4-spheres were found by Giffen [19]. Our work adds a new perspective:
the examples of Gordon and Sumners produce infinitely many topologically inequivalent
smooth conjugations on S4 (see Section 5).

The classical examples of conjugation 4-manifolds come from the complex conjugations

on S2 × S2, with fixed point set S1 × S1, and on CP 2 (or CP 2
), with fixed point set

RP 2. By taking connected sums along the fixed sets, one can thus realize any closed
surface as the fixed point set of a conjugation 4-manifold. These classical examples all
have quotient a smooth manifold diffeomorphic to S4 (see Arnold [3], Kuiper [27], Letizia
[30], and Massey [33]). For the reader’s convenience, in Proposition 5.4 we include a proof
using classification results for group actions by Bredon [5] and Orlik-Raymond [39] (but
not the deep results of Freedman [17] or Cerf [6]).

If X is any simply-connected conjugation 4-manifold, we prove in Proposition 5.3 that
X/G is at least homeomorphic to S4. In addition, we show in Proposition 2.19 that X is

homeomorphic to a connected sum of copies of S2×S2, CP 2, and CP 2
(but not necessarily

equivariantly). For example, the K3 surface does not admit a conjugation structure.

Remark. A conjugation 4-manifold X is equivariantly minimal among G-actions on 4-
manifolds with a given surface as the fixed set, since X can not be decomposed as a
non-trivial equivariant connected sum in the free part of the G-action (see Proposition
2.16).

For the remainder of the paper, the cohomology H∗(−) = H∗(−; Z2) is taken with
coefficients in the field Z2, unless otherwise mentioned. The letter G stands for the group
of order 2, with G = {1, τ}, and a G-space is a space together with an involution τ .

Acknowledgements. The authors would like to thank Allan Edmonds, Ron Fintushel,
Cameron Gordon, Slava Kharlamov, Volker Puppe, Ron Stern and Claude Weber for
helpful conversations and correspondence, and the referee for valuable suggestions.

2. Conjugation spaces and manifolds

For a G-space X, the equivariant cohomology H∗G(X) is defined as the (singular) coho-
mology of the Borel construction:

H∗G(X) = H∗(X ×G EG) .
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Hence, H∗G(X) is a H∗(BG)-algebra via the projection X ×G EG→ BG. Since G is the
group of order two, BG = RP∞ and H∗(BG) = Z2[u], with u in degree 1. Thus H∗G(X)
is a Z2[u]-algebra. Let ρ : H∗G(X)→ H∗(X) and r : H∗G(X)→ H∗G(XG) be the restriction
homomorphisms. As G acts trivially on XG, one has (XG)G = BG × XG, whence a
canonical ring isomorphism H∗G(XG) = H∗(XG)[u].

2.1. Conjugation spaces ([23]). A cohomology frame or H∗-frame for a G-space X is a
pair (κ, σ), where

(a) κ : H2m(X) → Hm(XG), m ≥ 0, is an additive isomorphism dividing the degrees
in half, and

(b) σ : H2m(X)→ H2m
G (X), m ≥ 0, is an additive section of ρ.

Moreover, κ and σ must satisfy the conjugation equation

(2.2) r ◦ σ(a) = κ(a)um + `m(u)

for all a ∈ H2m(X) and all m ∈ N, where `m(u) denotes any polynomial in the variable
u of degree less than m. An involution admitting a H∗-frame is called a conjugation. A
G-space X such that Hodd(X) = 0 and admitting an H∗-frame is called a conjugation
space.

Here below are some important properties of conjugation spaces.

(a) If (κ, σ) is H∗-frame, then κ and σ are ring homomorphisms [23, Theorem 3.3].
The ring homomorphism κ also commutes with the Steenrod squares: κ ◦ Sq2i =
Sqi ◦ κ, [16, Theorem 1.3].

(b) H∗-frames are natural for τ -equivariant maps [23, Prop. 3.11]. In particular, if an
involution admits an H∗-frame, it is unique [23, Cor. 3.12].

(c) For a conjugate-equivariant complex vector bundle η (“real bundle” in the sense
of Atiyah) over a conjugation space X, the isomorphism κ sends the total Chern
class of η onto the total Stiefel-Whitney class of its fixed bundle.

2.3. Equivariantly formal spaces. A G-space X is equivariantly formal (over Z2) if the
restriction homomorphism ρ : H∗G(X)→ H∗(X) is surjective. For instance, a conjugation
space is equivariantly formal. The following result is proved in [2, Prop. 1.3.14].

Proposition 2.4. Let X be finite dimensional G-CW-complex with
∑
bi(X) finite, where

bi(−) = dimH i(−). The following statements are equivalent.

(1) X is equivariantly formal.
(2)

∑
bi(X) =

∑
bi(X

G).
(3) The restriction homomorphism H∗G(X)→ H∗G(XG) is injective.

Remark 2.5. A smooth G-manifold has the equivariant homotopy type of a finite G-
CW complex [25]. The assumptions of Proposition 2.4 are also satisfied for X a closed
topological manifold with a locally smooth G-action. See Kwasik [28] for this statement
and further references.

Here is a consequence of Proposition 2.4.

Proposition 2.6. Let X be a finite G-CW-complex. Suppose that H∗(X) ≈ H∗(S2n)
and H∗(XG) ≈ H∗(Sn). Then X is a conjugation space.
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Proof. By Proposition 2.4, X is equivariantly formal and the restriction homomorphism
r : H∗G(X) → H∗G(XG) is injective. Let a ∈ H2n(X) and b ∈ Hn(XG) be the generators.
Let σ : H2n(X) → H2n

G (X) be a section of ρ : H2n
G (X) → H2n(X). Since H2n

G (XG) is
generated by bun and u2n, one has r ◦ σ = λ1bu

n + λ2u
2n. Setting σ′(a) = σ(a) + λ2u

2n

produces a new section σ′ with r ◦ σ′(a) = bun. Hence, X is a conjugation space. �

2.7. Conjugation manifolds. A conjugation manifold is a smooth closed manifold
equipped with a smooth involution which is a conjugation. As Hodd(X) = 0, X must
be orientable and of dimension 2n. The fixed point set XG is a closed smooth mani-
fold of dimension n. Also, the involution of a conjugation manifold preserves connected
components (see [23, Remark 3.1]), so one can restrict to connected manifolds.

There are natural questions in all dimensions:

(i) Given a closed connected smooth manifold Mn, does there exists a conjugation
2n-manifold X with XG diffeomorphic to M ?

(ii) Given a closed connected smooth 2n-manifold X, does X admit a smooth conju-
gation structure ?

(iii) How can one classify conjugation manifolds up to G-diffeomorphism ?

Theorem A provides an answer for question (iii) in dimension 4. The remainder of this
section contains some partial results on questions (i) and (ii).

Remark 2.8. The circle is the fixed point of a unique conjugation 2-manifold, namely S2

with a reflection through the equator. The uniqueness comes from the classical result that
a continuous involution on S2 is topologically conjugate to a linear one, see Constantin
and Kolev [7, Theorem 4.1]. For a smooth conjugation, the uniqueness follows from the
smooth Schönflies theorem. The work of Olbermann [35, 36, 37] addresses questions
(i)-(iii) for 6-manifolds.

We have already seen that any closed surface can be the fixed point set of a conjugation
manifold. However, the answer to question (i) can be negative without further assump-
tions on Mn, for n > 2. For example, W. Pitsch and J. Scherer observed that the Cayley
projective plane is a closed 16-dimensional manifold [46, Theorem 7.21, p. 707], which can
not be the fixed point set of any conjugation space. Indeed, a famous theorem of Adams
and its proof [1, Theorem 1.1.1] shows that Z2[x]/(x3) is not the Z2-cohomology ring of a
space if degree (x) > 8.

If X is a manifold, we denote by vi(X) and wi(X) in H i(X) its Wu and Stiefel-Whitney
classes. Proposition 2.9 below and its corollaries were also noticed by Pitsch and Scherer.

Proposition 2.9. Let X be a smooth conjugation manifold of dimension 2n, with H∗-
frame (κ, σ). Then κ(v2i(X)) = vi(X

G) and κ(w2i(X)) = wi(X
G).

Proof. The Wu class v2i(X) is characterised by the equation

(2.10) v2i(X) ^ a = Sq2i(a) for all a ∈ H2n−2i(X) .

The ring isomorphism κ : H2∗(x) → H∗(XG) satisfying κ ◦ Sq2i = Sqi ◦ κ, [16, Theo-
rem 1.3]. Applying κ to (2.10) thus gives

(2.11) κ(v2i(X)) ^ κ(a) = Sqi(κ(a)) for all a ∈ H2n−2i(X) .
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As κ is bijective, (2.11) implies that

κ(v2i(X)) ^ b = Sqi(b) for all b ∈ Hn−i(XG) ,

which implies that κ(v2i(X)) = vi(X
G). As Hodd(X) = 0, the Wu formula says that

(2.12) w2i(X) =
i∑

k=1

Sq2i−2k v2k(X) .

Applying κ to (2.12) and using that κ(v2i(X)) = vi(X
G), we get

κ(w2i(X)) =
i∑

k=1

Sqi−k κ(v2k(X)) =
i∑

k=1

Sqi−k vk(X
G) .

By the Wu formula for XG, this implies that κ(w2i(X)) = wi(X
G). �

The following corollary may be compared with [10, Theorem 3]. Note that, if a conju-
gation manifold X is spin, it has a unique spin structure since H1(X) = 0.

Corollary 2.13. Let X be conjugation manifold of dimension 2n. Then X is spin if and
only if XG is orientable.

Proof. As Hodd(X) = 0, X is spin if and only if w2(X) = 0. The results thus follows from
Proposition 2.9. �

Another corollary concerns non-oriented bordism.

Corollary 2.14. Let X be a conjugation manifold. Then X bounds a compact (possibly
non-oriented) manifold if and only if XG does so.

Proof. By theorems of Pontrjagin and of Thom [34, pp. 52-53], a manifold bounds if and
only if all its Stiefel-Whitney numbers vanish. As Hodd(X) = 0, Proposition 2.9 implies
that the collections of the Stiefel-Whitney numbers for X and XG are in bijection. �

Since a surface bounds if and only if its Euler characteristic is even, the same statement
holds true, by Corollary 2.14, for a conjugation 4-manifold. Actually, any orientable
4-manifold satisfies w2

2 = w4 by Wu’s formula, so it bounds if and only if its Euler
characteristic is even.

The following proposition will be useful.

Proposition 2.15. Let X be a smooth closed connected G-manifold of dimension 4n.
Suppose that Hk(X) = 0 for 0 < k < 2n. Then, the following statements are equivalent

(1) X is a conjugation manifold.
(2) XG is a 2n-manifold and bn(XG) ≥ b2n(X).

Observe that, in general, the existence of an abstract ring isomorphism from H2∗(X)
and H∗(XG) does not imply that X is a conjugation manifold (see [16, Example 1]).

Proof. Obviously, (1) implies (2). Also, by Poincaré duality, the condition Hk(X) = 0 for
0 < k < 2n implies that Hodd(X) = 0.
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Suppose that (2) holds true. Let X0 obtained from X by removing a small open G-
invariant 4n-disk containing a fixed point. Then X0 is a G-subspace with XG

0 equal to
XG minus an open 2n-disk. Hence,

(2.15) dimH∗(XG
0 ) ≥ b0(XG

0 ) + bn(XG
0 ) ≥ 1 + b2n(X0) = dimH∗(X0) .

On the other hand, dimH∗(XG
0 ) ≤ dimH∗(X0) by Smith theory (see [2, Corollary 1.3.8]).

Therefore, all the inequalities occuring in (2.15) are equalities, implying b0(XG) = 1,
bn(XG

0 ) = b2n(X0) and Hk(XG
0 ) = 0 for 0 < k < n. Also, by Proposition 2.4, X0 is

equivariantly formal and

H2n
G (XG

0 ) = Hn(XG
0 )un ⊕ Z2 u

2n .

Choose a section σ : H2n(X0)→ H2n
G (X0) of ρ : H2n

G (X0)→ H2n(X0). Let φ : H2n(X0)→
Z2 be defined by letting φ(b) denote the coefficient of u2n in (r ◦ σ)(b). Then by changing
σ(b) into σ′(b) = σ(b)+φ(b)u2n, one may assume that the image im(r◦σ) ⊆ Hn(XG

0 )u. As
b2n(X0) = bn(XG

0 ), r◦σ(a) is of the form κ(a)u for an isomorphism κ : H2(X0)→ H1(XG
0 ).

Hence X0 is a conjugation space. Now, the closure of the small 4n-disk removed in X
is what is called a conjugation cell in [23, Section 5.1]. By [23, Prop. 5.1], attaching
a conjugation cell (by a G-map) to a conjugation space produces a conjugation space.
Therefore, X is a conjugation space. �

We now restrict our attention to conjugation 4-manifolds. Here, the G-action preserves
the orientation (as can be seen on the tangent space to a fixed point). In the statement
below, Z(2) denotes Z localized at 2, the smallest subring of Q where all odd primes are
invertible.

Proposition 2.16. Let X be a smooth G-manifold of dimension 4 with H1(X; Z(2)) = 0.
Then, X is a conjugation 4-manifold if and only if XG 6= ∅ and G acts on H2(X; Z(2)) as
multiplication by −1.

Remark 2.17. The condition H1(X; Z(2)) = 0 is equivalent to H1(X; Z2) = 0. The con-
dition on H2(X; Z(2)) is then equivalent to τ acting as multiplication by −1 on H∗(X; Z)
modulo torsion.

Proof. If X is simply-connected with G acting as τ∗ = −1 on H2(X; Z), then X is a
conjugation manifold by results of V. Puppe (see [41, Theorem 5 and Remark 2]). We
note that the same arguments (which are all 2-local) prove that X is a conjugation 4-
manifold under our weaker assumption. Again, if X were simply-connected then the
other direction would follow from results of A. Edmonds [11, 2.4]. We leave the reader
to verify our claim that the arguments of [11, 2.1-2.4] are 2-local, and again hold under
our weaker assumption. It follows that the number of Z(2)-summands in H2(X; Z(2)) on
which τ∗ = −1 is equal to the rank of H1(Σ; Z2), which equals the rank of H2(X; Z2).
Hence we have τ∗ = −1 on all of H2(X; Z(2)). �

Remark 2.18. If XG is orientable then its integral fundamental class [XG] represents a
τ∗-fixed class in H2(X; Z) modulo odd torsion. But τ∗ = −1 on this quotient, so XG is
null-homologous mod 2 in X. On the other hand, if XG is non-orientable then w2(X) 6= 0
by Corollary 2.13 and, by [11, Cor. 5.2], the mod 2 homology class of the fixed set XG
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represents the Poincaré dual of w2(X). We conclude that XG is null-homologous mod 2
in X if and only if XG is orientable, or equivalently if and only if X is spin.

Proposition 2.19. Let X be a simply connected smooth conjugation 4-manifold. Then
X is (non-equivariantly) homeomorphic to a connected sum of copies of S2 × S2, if X is

spin, or copies of CP 2 and CP 2
, if X is non-spin.

Proof. In the non-spin case, if X has a (positive) definite intersection form then X is
homeomorphic to a connected sum of copies of CP 2 (by Donaldson [8] and Freedman
[17]). If X has an indefinite intersection form then X is homeomorphic to a connected

sum of CP 2’s and CP 2
’s by Freedman’s Theorem and the classification of odd unimodular

indefinite forms.
If X is spin, we use the equivariant Hirzebruch formula [24, Formula (6)], [4, Prop. 6.15]:

sign(X, τ) = sign((Xτ )2)

where the right-hand side is given by evaluating the twisted Euler class of the normal
bundle of Σ in X. By Proposition 2.16, G acts on H2(X; Z) by multiplication by −1.
Therefore, sign(X) = − sign(X, τ). As X is spin, the manifold XG is orientable, by
Corollary 2.13. By Remark 2.18, the integral homology class represented by XG is zero,
and hence sign(X) = 0. We deduce that the (even) integral intersection form of X is a
sum of hyperbolic forms and apply Freedman’s theorem again. �

Remark 2.20. The results of Proposition 2.16 and Remark 2.18 hold also for topological
conjugation 4-manifolds, if the involution is assumed to be locally linear (see Section
6). The corresponding result to Proposition 2.19 is true in the spin topological locally-
linear case: note that the index formula holds in this context [45, 14B] and the Kirby-
Siebenmann invariant vanishes because X is spin with sign(X) = 0. In the non-spin case,
we don’t know what happens if X has a definite intersection form.

3. The proof of Theorem A

We divide the two directions of the proof into separate lemmas.

Lemma 3.1. Let X be a connected, oriented, 4-dimensional conjugation manifold. Then
(X/G,XG) is a Z2-knot.

Proof. As X is a 4-dimensional conjugation manifold, the fixed point set XG is a closed
connected surface which we call Σ. Let V be a closed G-invariant tubular neighbourhood
of Σ in X and let K be the complement of the interior of V . Now, M = X/G is a smooth
manifold by Lemma 7.5. As noted in the introduction, τ preserves the orientation, so M
inherits an orientation and the projection map p : X → M is smooth, of degree 2. We
identify Σ with p(Σ). Then V̄ = p(V ) is a tubular neighbourhood of Σ in M . One has
M = V̄ ∪ K̄, with K̄ = p(K). We have to prove that M is a Z2-homology sphere.

As X is a conjugation manifold, the restriction map H∗G(X) → H∗G(XG) is injective
by Proposition 2.4 and Remark 2.5. Also, H∗G(K) ≈ H∗(K̄) and H∗G(∂V ) ≈ H∗(∂V̄ )
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since the G-action on K and ∂V is free. The Mayer-Vietoris sequence in equivariant
cohomology looks then like

(3.2) 0→ H∗G(X)→ H∗G(Σ)⊕H∗(K̄)→ H∗(∂V̄ )→ 0.

Since Σ ⊂ X is codimension 2, the manifold K is connected. Therefore, K̄ has a non-
trivial 2-fold cover, which implies that b1(K) ≥ 1. Also, since X is a conjugation space,
H1(X) = 0, so dimH1

G(X) = 1. As G acts trivially on Σ, one has dimH1
G(Σ) = b1(Σ)+1.

On the other hand, b1(∂V̄ ) ≤ b1(Σ) + 1 by the Gysin sequence of the circle bundle
∂V̄ → Σ. Thus, Sequence (3.2) implies that b1(K̄) = 1, b1(∂V̄ ) = b1(Σ) + 1 and that

H∗(Σ) ⊕ H∗(K̄)
≈−→ H∗(∂V̄ ) is an isomorphism. This isomorphism sits in the Mayer-

Vietoris sequence for M which implies that H1(M) ≈ H3(M) = 0. The decompositions
X = V ∪K and M = V̄ ∪ K̄ give the system of equations{

χ(X) = χ(Σ) + χ(K)− χ(∂V )
χ(M) = χ(Σ) + χ(K̄)− χ(∂V̄ )

.

As χ(∂V ) = 2χ(∂V̄ ) and χ(K) = 2χ(K̄), one deduces that

(3.3) χ(X) + χ(Σ) = 2χ(M) ,

(compare [5, Chapter III, Theorem 7.10]). In our case, Equation (3.3) amounts to

2 + b2(X) + 2− b1(Σ) = 2χ(M) ,

which implies that χ(M) = 2. Hence, M is a Z2-homology sphere. �

We now construct the correspondence from Z2-knots to conjugation manifolds.

Lemma 3.4. Let (M,Σ) be a Z2-knot. Then M has a unique oriented branched covering

M̂ →M , with branched locus Σ. Moreover, M̂ is a conjugation manifold.

Proof. Let W be a closed tubular neighbourhood of Σ in M and let L be the complement
of the interior of W . For i = 1, 2, one has the “Alexander duality’

H i(L)
≈−→ H i+1(M,L)

≈−→ H i+1(W,∂W )
≈−→ H i−1(Σ) ,

the last arrow being the Thom isomorphism. Thus, b1(L) = 1, b2(L) = b1(Σ). Also, the
Mayer-Vietoris exact sequence for the decomposition M = W ∪L gives the isomorphisms

(3.5) H i(Σ)⊕H i(L)
≈−→ H i(∂W ) (i = 1, 2) .

Therefore, b1(∂W ) = b2(∂W ) = b1(Σ)+1. Since Σ is of codimension 2 in M , the manifold

L is connected. As b1(L) = 1, there is a unique connected 2-fold cover L̃→ L. The induced

cover ∂̃W → ∂W is connected: otherwise, using Lemma 7.18 and Remark 7.22, L̃ → L
could be extended to a connected 2-fold covering of M , contradicting the assumption

that H1(M) = 0. Hence, L̃ → L extends to a unique branched covering M̂ → M with

branched locus Σ, see Lemma 7.18. The complement Ŵ of the interior of L̃ is a tubular

neighbourhood of Σ in M̂ .

In equivariant cohomology, the Mayer-Vietoris exact sequence for M̂ = Ŵ ∪ L̃ starts as

(3.6) 0→ H1
G(M̂)→ H1

G(Σ)⊕H1(L)→ H1(∂W )
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with H1
G(Σ) = H1(Σ) ⊕ Z2. Using the isomorphism of (3.5) for i = 1, we deduce that

H1
G(M̂) = Z2. This implies that H1(M̂) = 0. Indeed, the choice of a G-fixed point in M̂

provides a section to the fibration M̂ → M̂G → BG. The homomorphism H∗(BG) →
H∗G(M̂) is then injective and the Serre spectral sequence for the fibration M̂ → M̂G → BG
gives the exact sequence

0→ H1(BG)→ H1
G(M̂)→ H0(BG;H1(M̂))→ 0 .

Thus, if H1
G(M̂) = Z2, then 0 = H0(BG;H1(M̂)) = H1(M̂)G. But, a finite dimensional

G-vector space V over Z2 vanishes if V G = 0 (if 0 6= v 6= τ(v) then 0 6= v + τ(v) ∈ V G).

Therefore, H1(M̂) = 0. By Poincaré duality, we have then Hodd(M̂) = 0. Equation (3.3)

holds with the same proof and gives χ(M̂) + χ(Σ) = 2χ(M) = 4 which implies that

b2(M̂) = b1(σ). Therefore, M̂ is a conjugation manifold by Proposition 2.15. �

The proof of Theorem A. With the equivalence relations used for the statement of The-
orem A, let C be the set of equivalence classes of oriented conjugation 4-manifolds and
let N be that of classes of Z2-knots. By Lemma 3.1, the correspondence X 7→ X/G
associates a a Z2-knot to a conjugation 4-manifold. By Lemma 7.13, this correspondence
produces a well defined map Φ: C → N .

By Lemma 3.4, the correspondence M 7→ M̂ sends a Z2-knot to an oriented conjugation
4-manifold. By Lemma 7.23, this provides a well defined map Ψ: N → C.

The fact that Φ ◦ Ψ = idN is guaranteed by Lemma 7.17. That Ψ ◦ Φ = idC follows
from Lemma 7.5 (since p : X → X/G is a branched covering with branched locus Σ), and
the uniqueness part of Lemma 7.18. �

4. Examples and Remarks

We present some examples and remarks concerning the bijection of Theorem A.

Example 4.1. Let Σ = S2 ⊂ R3 × 0 ⊂ R3 × C. The involution on X = S4 ⊂ R3 × C
induced by the linear map (w, z) 7→ (w,−z) is a conjugation by Proposition 2.6. The map
q : R3×C→→ R3×C given by q(w, z) = (w, z2) identifies (R3×C)/G with R3×C and S4/G
with S4. This shows that, with the smooth structure of Lemma 7.5, S4/G is diffeomorphic
to S4. The image in X/G of the sphere S3 ⊂ R3×R is a 3-disk with boundary Σ. Hence,
under the bijectionX 7→ X/G of Theorem A, the standard conjugation sphere corresponds
to the trivial knot.

Interesting examples occur with Σ = RP 2.

Proposition 4.2. Let (M,Σ) be a Z2-knot with Σ = RP 2. Then, any homeomorphism
h : (M,Σ)→ (M,Σ) is of degree one. In consequence, (M,σ) and (−M,σ) are inequiva-
lent Z2-knots.

Proof. By the uniqueness of branched coverings [31, Prop. 3], h is covered by a home-

omorphism ĥ : M̂ → M̂ . The cohomology ring H∗(M̂) is isomorphic to that of CP 2.

By the universal coefficient theorem and Poincaré duality, H∗(M̂ ; Q) ≈ Q[a]/(a3), with
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a ∈ H2(M̂ ; Q). Thus, ĥ∗(a) = λa for some λ ∈ Q and ĥ(a2) = λ2a2. Therefore, ĥ is of
degree 1 and so is h. �

Example 4.3. The projective space X = CP 2 with the complex conjugation is a conju-
gation manifold with XG = RP 2. The quotient X/G is diffeomorphic to S4 (see Propo-
sition 5.4 below), and (X/G,RP 2) is the “standard” embedding of RP 2 into S4 (see
Lawson [29] for an explicit description). Let r : X → X be the diffeomorphism given
by r(x, y, z) = (x, y,−z). It commutes with the complex conjugation and thus descends
to an involution r̄ of X/G ≈ S4, preserving RP 2. The diffeomorphism r is isotopic to
the identity by the isotopy rt(x, y, z) = (x, y, eiπtz). Thus, r and r̄ are of degree 1, in
accordance with Proposition 4.2.

5. Applications to knots in S4

The 2-fold branched coverings in which the branch locus is a knotted 2-sphere in S4, are
particularly interesting, We first investigate the relation between the fundamental groups
of a conjugation 4-manifold X and its quotient X/G.

Let (M,Σ) be a Z2-knot, and let W be a closed tubular neighbourhood of Σ. Then
∂W → Σ is a locally trivial S1-bundle. We get an exact sequence

C∞ → π1(∂W )→ π1(Σ)→ 1 ,

where C∞ is an infinite cyclic group. The image of a generator γ ∈ C∞ via the composed
homomorphism C∞ → π1(∂W ) → π1(M − Σ) is called a meridian, and denoted m ∈
π1(M − Σ) . A Z2-knot admits two meridians, which are inverses of each other. From
the proof of Lemma 3.4 we see that H1(M − Σ) ∼= Z2, so there is a unique epimorphism
φ : π1(M − Σ)→ Z2. Furthermore, φ(m) 6= 0.

Proposition 5.1. Let (M,Σ) be a Z2-knot and let M̂ be the associated conjugation 4-
manifold. If m ∈ π1(M − Σ) is a meridian, then

π1(M̂) ∼= kerφ/〈m2〉

Proof. Let M = W ∪ L, where L ' M − Σ, and similarly M̂ = Ŵ ∪ L̃. As noted above,

π1(∂W ) → π1(Σ) is surjective, and so is π1(∂̃W ) → π1(Σ) by the same argument. We

also have the description π1(L̃) = kerφ. Let γ be a generator of C∞ sent to m ∈ π1(L)

and let γ̄ be the image of γ in ker(π1(∂W ) → π1(Σ)). Then ker(π1(∂̃W ) → π1(Σ)) is
generated by γ2. Proposition 5.1 follows from the Van Kampen theorem, because of the

surjectivity of the map π1(∂̃W )→ π1(Σ). �

Corollary 5.2. Let (M,Σ) be a Z2-knot and let m ∈ π1(M − Σ) be a meridian. The

associated conjugation 4-manifold M̂ is simply connected if and only if kerφ is the normal
closure of m2.

Proposition 5.3. Let X be a conjugation 4-manifold. If X is simply connected, then
X/G is homeomorphic to S4.
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Proof. Let M = X/G and Σ = XG. We know that (M,Σ) is a Z2-knot. Let m be a
meridian for (M,Σ). By Corollary 5.2, kerφ is the normal closure of m2. But φ(m) 6= 0,
as seen in the proof of Lemma 3.4 since the 2-fold covering given by φ is not trivial over
∂W . This implies that π1(M−Σ) is the normal closure of m. As above, the Van Kampen
theorem implies that M is simply connected. By the universal coefficient theorem and
Poincaré duality, a simply connected Z2-homology sphere is an integral homology sphere.
Therefore, M is homotopy equivalent to S4, and hence homeomorphic to S4 by Freedman’s
proof [17] of the Poincaré conjecture in dimension 4. �

As mentioned in the Introduction, it is well-known that the classical conjugation 4-
manifolds all have quotient the standard smooth S4. For the reader’s convenience, we
include a proof using results on group actions due to Bredon and Orlik-Raymond (but
not the deep results of Freedman [17] or Cerf [6]).

Proposition 5.4 (Arnold, Kuiper, Massey). Let (X,G) denote the classical conjugation
4-manifolds (i) CP 2 with complex conjugation, or (ii) S2×S2 with the complex conjugation
in each factor. Then the quotient X/G with the smooth structure given by Lemma 7.5 is
diffeomorphic to the standard smooth S4.

Proof. There is a smooth SO(3)-action on X = CP 2 which commutes with complex con-
jugation. By Lemma 7.14, the quotient space X/G inherits the structure of a smooth
SO(3)-manifold. The classification of smooth cohomogeneity one actions of SO(3) by
Bredon [5, Theorem VI.6.3] shows that (X/G, SO(3)) is SO(3)-equivariantly diffeomor-
phic to the standard SO(3)-action on S4. Therefore X/G is diffeomorphic to S4. The
case X = S2 × S2 is done in Example 7.8 and in Example 7.15. �

To describe other examples for Proposition 5.3, we start with a technique of Mazur
and Zeeman [47]. Let N be a smooth oriented 3-dimensional Z2-homology sphere. Let
h : N → N be a diffeomorphism such that

(1) h preserves the orientation.
(2) h has a fixed point.

Let Th = N × [0, 1]/{(x, 1) ∼ (h(x), 0)} be the mapping torus of h. Choose a fixed point
x0 ∈ N for h. The map ψ0 : [0, 1] → Th given by ψ0(t) = [x0, t] is a parametrisation of a
circle S in Th. The normal bundle of S is trivial by condition (1). We can then choose a
parametrisation ψ : [0, 1] ×D3 → Th of a tubular neighbourhood of S extending ψ0. We
consider the the surgery using ψ, producing a smooth 4-manifold

(5.5) Mh,ψ = [Th − ψ([0, 1]× intD3)] ∪ψ̇ D
2 × S2 ,

where ψ̇ is the restriction of ψ to [0, 1]×S2. The manifold Mh,ψ contains {0}×S2, so we
get a pair (Mh,ψ, S

2).

Lemma 5.6. .

(1) (Mh,ψ, S
2) is a Z2-knot.

(2) If N is a Z-homology sphere, then Mh,ψ is a Z-homology sphere.
(3) The fundamental group of Mh,ψ is isomorphic to the quotient of π1(N) by the

relations x = h∗(X) for all x ∈ π1(N).
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(4) The fundamental group of the associated conjugation 4-manifold M̂h,ψ is isomor-
phic to the quotient of π1(N) by the relations x = h2

∗(X) for all x ∈ π1(N), where
h2 = h ◦ h.

Proof. By the Serre spectral sequence of the bundle N → Th → S1, the homology of Th is
isomorphic to that of N×S1. Conclusions (1) and (2) then follow from the Mayer-Vietoris
sequence of the decomposition (5.5).

For the fundamental group, choose a base point ỹ0 ∈ S2 and let y0 = ψ̇(ỹ0, 0) ∈ N ⊂ Th.

The map ψ1(t) = ψ̇(ỹ0, t) represents an element m ∈ π1(Th, y0) and the fundamental group
of Th is the HNN-extension

π1(Th, y0) ≈ 〈 π1(N),m ; mxm−1 = h∗(x), x ∈ π1(N) 〉

(we use the notations of [32, § IV.2]). By the Van Kampen theorem applied to the
decomposition (5.5), π1(Mh,ψ, y0) is the quotient of π1(Th, y0) by the normal closure of m.
This proves (3).

To prove (4), let L = Mh,ψ − (intD2 × S2) = Th − ψ([0, 1] × intD3). The element m
is a meridian and the epimorphism φ : π1(Mh,ψ − S2, y0) → Z2 sends m to the generator

and π1(N) to 0. Thus, L̃ is the mapping torus of h2 and there is a decomposition

(5.7) M̂h,ψ = Mh2,ψ̂ = Th2 ∪D2 × S2

for some parametrisation ψ̂ analogous to (5.5). Conclusion (4) follows from Van Kampen’s
theorem. �

Examples of 3-dimensional Z2-homology spheres are given by cyclic branched coverings
of classical knots. In such case, following results of Zeeman [47, Corollary 1, p. 486] and
Gordon [21, Theorem 3.1], Pao proved the following result (see [40, § 3]).

Lemma 5.8. Let N be the p-fold cyclic covering S3 branched over a knot. Let h : N → N
be the diffeomorphism corresponding to the action of a generator of Zp. Then Mh,ψ is
diffeomorphic to S4 for any ψ. �

Example 5.9. Let N = L(p, q) be a 3-dimensional lens space with p odd. By [42,
Satz 6], N is the 2-fold branched covering of S3 for some knot. By Lemma 5.8, this gives

an involution h of N for which Mh,ψ is diffeomorphic to S4 (but π1(M̂h,ψ) ≈ Zp).

Example 5.10. Let N be the Poincaré homology sphere

N = SO(3)/A5

with π1(N) = ∆ the binary icosahedral group, defined as the universal central extension
of A5. The conjugation in SO(3) by an element b ∈ A5 produces a diffeomorphism

h : N → N . The induced automorphism h∗ of ∆ is the conjugation by an element b̃ over

b. Lemma 5.6 has the following consequences on the manifolds Mh,ψ and M̂h,ψ (for any
choice of ψ).

• Mh,ψ is an integral homology sphere.
• If b is not trivial, Mh,ψ is a homotopy sphere.
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• If b2 is not trivial, M̂h,ψ is a homotopy sphere. Indeed, the relations x = b2xb−2

kills A5 which is simple, so the relations y = b̃2yb̃−2 kills ∆.

It is classical that N = SO(3)/A5 is the 5-fold covering of S3 branched over the trefoil

knot [43, § 65]. By Lemma 5.8 and (5.7), Mh,ψ and M̂h,ψ are both diffeomorphic to S4 for
some choice of b of order 5.

Remark 5.11. Example 5.10 with b2 6= 1 produces counter-examples to the generalised
Smith conjecture in dimension 4: a smooth involution on a homotopy 4-sphere with a
non-trivial knot (even topologically) as fixed point set. The first such examples appeared
in 1966 in the work of Giffen [19, Theorem 3.3]. Later Gordon [20], [21] and Sumners
[44] proved that there are infinitely many non-equivalent knots in S4 which are the fixed
point sets of smooth involutions. In addition, Cameron Gordon (email communication)
has informed us that the quotient spaces S4/G of his examples are obtained from S4 by a
“Gluck surgery” construction on a (twist-spun) knot, and hence are diffeomorphic to S4

by [21, Theorem 3.1]. Proposition 2.6 now implies the following statement:

Proposition 5.12. There are infinitely many smooth conjugations on S4 which are topo-
logically inequivalent. �

Remark 5.13. Further examples of smooth conjugation 4-manifolds might also come
from the rim surgery construction of Fintushel and Stern [14], [15], although it is not
clear at present how to detect exotic smooth structures on the 2-fold branched coverings
of Z2-homology 4-spheres.

6. Conjugations on topological 4-manifolds

We first state a topological version of Theorem A. The involution in a topological
conjugation manifold is supposed to be locally linear (also called locally smooth in [5,
Chapter IV]). We also consider topological locally flat Z2-knots. Two of them, (M,Σ) and
(M ′,Σ′) are topologically equivalent if there is an orientation-preserving homeomorphism
h : M →M ′ such that h(Σ) = Σ′.

Theorem B. The correspondence X 7→ (X/G,XG) defines a bijection between

(a) the orientation-preserving G-homeomorphism classes of oriented connected topo-
logical conjugation 4-manifolds, and

(b) the topological equivalence classes of topological locally flat Z2-knots.

Proof. The orbit space X/G of a locally linear action is a closed topological 4-manifold,
and the image p(XG) of the fixed set is a locally flat submanifold of X/G. By [18, § 9.3],
this submanifold admits a normal bundle and therefore a tubular neighbourhood. Lifting
this tubular neighbourhood to X gives a G-invariant tubular neighbourhood for XG in
X. Similarly, a locally flat submanifold Σ of M admits a tubular neighbourhood. The
proofs of Lemmas 3.1 and 3.4 can be carried out using these tubes (using Remark 2.5 as
noted to justify the application of Proposition 2.4). The existence of the 2-fold branched

covering M̂ →M is guaranteed by [31, Prop. 2].
The arguments of the proof of Theorem A (end of Section 3) are much simpler than

in the smooth case. They come from the fact that the constructions under consideration
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are functorial for homeomorphisms. For X 7→ X/G, this is obvious. For M 7→ M̂ , this
follows from [31, Prop. 3]. �

Examples 6.1. Finashin, Kreck and Viro [12] have constructed an infinite family of topo-
logically equivalent, but smoothly inequivalent embeddings of Σ = #10 RP 2 in S4. In all
these examples, the fundamental group of the complement is just Z/2. By Theorem A, this
gives an infinite family of smooth conjugation 4-manifolds which are topologically equiv-
alent by Theorem B but not diffeomorphic (since the associated conjugation 4-manifolds
are non-diffeomorphic Dolgachev surfaces).

Other examples, this time of topologically equivalent, but smoothly inequivalent knot-
ted surfaces in CP 2, were constructed by Finashin [13].

Remark 6.2. Non-oriented versions of Theorems A and B hold: just leave out the words
“orientation preserving” and “oriented” in (a) and in the definition of Z2-knots. For
instance, (M,Σ) is equivalent to (−M,Σ). This is definitely a coarser equivalence relation,
as seen in Proposition 4.2.

7. Appendix: Branched coverings and smooth structures

Branched covering spaces of manifolds is a classical topic in geometric topology, which
appears frequently in the literature (for example, see the references cited in Durfee and
Kauffman [9] and Lines [31]). By a 2-fold branched covering we mean a ramified 2-fold
covering in which the branch locus is a closed submanifold of codimension two.

In the proof of Theorem A, we need to know the relationship between smooth structures
on the total space and quotient space of a 2-fold branched covering of 4-manifolds. This
material may be well-known, but we were not able to find the right references for our
proofs. Smooth manifolds are so strikingly different from topological manifolds in dimen-
sion 4, that these issues perhaps deserve some extra attention. This section is included
to provide a detailed account, as a service to the reader.

The map z 7→ z2 from C to C is the simplest example of a 2-fold branched covering,
with {0} being the (strict) branched locus. We will need a precise local description of this
example. Let D be the unit disk in C. Identify SO(2) with S1 and O(2) with the R-linear
isometries of C. The homomorphism γ 7→ γ2 of S1 extends to a smooth epimorphism

(7.1) ψ : O(2)→ O(2) .

Let P → K be a smooth principal O(2)-bundle. Consider the two Borel constructions

P ×O(2) D = P ×D
/
{(aα, z) = (a, α z) | α ∈ O(2)}

and

P ×̄O(2)D = P ×D
/
{(aα, z) = (a, ψ(α) z) | α ∈ O(2)} .

The map (a, z) 7→ (a, z2) descends to a smooth surjection

(7.2) q : P ×O(2) D → P ×̄O(2)D

which will be our local model for a 2-fold branched covering with branched locus K. The
general definition is the following.
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Definition 7.3. Let M be a smooth manifold of dimension n with a codimension 2
submanifold N . A smooth map p : (X, Y )→ (M,N) is a (2-fold) branched covering with
branched locus N if

• p : X − Y → M − N is a smooth 2-fold covering, in particular a local diffeomor-
phism.
• p : Y → N is a diffeomorphism. We often identify Y with N via p.
• there are closed tubular neighbourhoods Y ⊂ Ṽ ⊂ X and N ⊂ V ⊂M for Y and
N such that p(Ṽ ) = V and p|Ṽ has, up to diffeomorphism, the form of (7.2).

This definition may be compared with the properties of smooth branched coverings
given in Durfee and Kauffman [9, Prop. 1.1]. On one hand, it is simpler because we
are dealing with the special case of 2-fold coverings. On the other hand, Definition 7.3
is more precise: we specify the model around the branched locus (compare part (ii) of
Proposition 1.1 in [9]).

7.4. Quotient structure. Our first task is to show how a smooth G-action on a closed
manifold X determines a smooth structure on the quotient space X/G, which is unique
up to diffeomorphism.

Lemma 7.5. Let X be a smooth G-manifold such that the fixed point set XG is a closed
manifold of codimension 2. Then,

(1) X/G admits the structure of a smooth manifold such that p : X → X/G is a
branched covering with branched locus p(XG).

(2) if X is a closed manifold, any two such structures on X/G are diffeomorphic.

Proof. Let Xfree = X − XG. The quotient map pfree : Xfree → Xfree/G is a covering
projection, and hence Xfree/G has a unique a smooth structure such that pfree is a local
diffeomorphism. We shall put a smooth structure on a neighbourhood of XG in X/G
which agrees with that on Xfree.

Step 1. Existence. To a G-invariant Riemannian metric g on X, we will associate a
smooth structure (X/G)g on X/G satisfying condition (1) of Lemma 7.5. Let ν be the
normal bundle to XG in X given by the metric g, so νx = (TxX

G)⊥ ⊂ TxX for x ∈
XG. Let P → XG be the O(2)-principal bundle associated to ν, so Px is the space
of orthonormal frames in νx. The space P ×O(2) D is a smooth G-manifold, with the
involution τ(a, z) = (a,−z). It is G-diffeomorphic to the unit disk bundle associated to ν

Let us perform the equivariant tubular neighbourhood construction [5, Chapter VI,
Theorem 2.2] using the exponential map for the metric g. We say that g is calibrated
around XG if the exponential map is an embedding on P ×O(2) D. As XG is compact,
one can multiply g by a constant (scaling) so that it is calibrated. Therefore, there exists
a G-invariant neighbourhood V of XG in X and a G-equivariant diffeomorphism

ϕ : P ×O(2) D
≈−→ V .
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The map q of (7.2) sits in a commutative diagram

P ×O(2) D

π

wwwwnnnnnnnnnn q

&&NNNNNNNNN

P ×O(2) D
/
G

h

≈
// P ×̄O(2)D

.

The map h is a continuous bijection between compact spaces, and hence a homeomor-
phism. Therefore, we get a commutative diagram

(7.6)

P ×O(2) D

q

��

ϕ

≈
// V

p
��

P ×̄O(2)D
ϕ̄

≈
// V/G

where ϕ̄ is a homeomorphism. As q is smooth, the homeomorphism ϕ̄ provides a smooth
structure on V/G, which is a neighbourhood of XG in X/G, and the projection p : V →
V/G is smooth. As ϕ composed with the inclusion V ↪→ X is a smooth embedding,
the smooth structures on Xfree/G and on V/G agree on V/G − XG. This defines the
structure (X/G)g, which does not depends on the scaling. By diagram (7.6), it satisfies
condition (1) of Lemma 7.5.

Step 2. Metric independence. If g and g′ are two G-equivariant Riemannian metrics
on X, and if X is a closed manifold, then we will show that (X/G)g and (X/G)g′ are
diffeomorphic. The family tg′ + (1 − t)g (t ∈ [0, 1]) defines a G-invariant Riemannian
metric ǧ on the manifold with boundary L = X × [0, 1]. By scaling ǧ, we may suppose
that it is calibrated around LG. The above construction provides a smooth structure
(L/G)ǧ (the presence of boundaries does not create difficulties). Using diagram (7.6),
one shows that the projection b : (L/G)ǧ → [0, 1] is a submersion. As X/G is a closed
manifold, integrating a gradient-like vector field for b provides a diffeomorphism between
b−1(0) = (X/G)g and b−1(1) = (X/G)g′ .

Step 3. Uniqueness. Recall that all smooth structures on X/G satisfying condition (1) of
Lemma 7.5 will agree on X/G−XG. We have to show that this is the case around XG.

Suppose that X/G is endowed with a smooth structure such that p : X → X/G is a
2-fold branched covering with branched locus p(XG) = XG. By definition, there is a
neighbourhood W of XG in X and a commutative diagram

(7.7)

P ×O(2) D

q

��

ϕ

≈
// W

p
��

P ×̄O(2)D
ϕ̄

≈
// W/G

where ϕ and ϕ̄ are smooth embeddings. If we restrict these embeddings to P×O(2)D∗ and
P ×̄O(2)D∗, where D∗ = D−{0}, then diagram (7.7) is a morphism of 2-fold (unbranched)
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covering spaces. The deck transformation on P ×O(2) D∗ is given by (a, z) 7→ (a,−z).
Hence, ϕ is a a G-equivariant embedding.

Endow P × D with a Riemannian metric which is the product of a O(2)-invariant
Riemannian metric on P with the standard metric on D. This descends to a Riemannian
metric on P ×O(2) D, which is G-invariant. One can construct a G-invariant Riemannian
metric g on X so that ϕ is an isometry. Hence, ϕ is actually the normal exponential map
and diagram (7.7) plays the role of diagram (7.6) to define the smooth structure (X/G)g
around X/G, via the homeomorphism ϕ̄. As ϕ̄ is a smooth embedding, the given smooth
structure on X/G coincides with (X/G)g.

Now, let (X/G)′ and (X/G)′′ be two smooth structures satisfying condition (1). By
the above argument, there are G-invariant Riemannian metrics g′ and g′′ on X such that
(X/G)′ = (X/G)g′ and (X/G)′′ = (X/G)g′′ . But (X/G)g′ and (X/G)g′′ are diffeomorphic,
as seen in Step 2. �

Example 7.8. Let us consider S2 ⊂ C × R with the involution (z, t) 7→ (z,−t) and let
X = S2×S2 endowed with the diagonal involution τ . One can construct a smooth 2-fold
branched covering π : X → S4 by explicit formulas, which descends to a homeomorphism

π̄ : X/G
≈−→ S4. We remark that an application of Lemma 7.5 then gives the well-known

result that X/G, with the smooth structure of Lemma 7.5, is diffeomorphic to S4.
Our coordinates on X will be (w1, w2), where wj = (rje

iθj , tj) for j = 1, 2. The standard
(S1 × S1)-action on X is defined by

(z1, z2) · (w1, w2) = (z1r1e
iθ1 , t1, z2r2e

iθ2 , t2)

for all (z1, z2) ∈ S1 × S1. Let π̃ : X → C× C× R be defined by

(7.9) π̃(w1, w2) =
(
r2

1e
iθ1 , r2

2e
iθ2 , t1t2

)
.

The function L = L(w1, w2) = ‖π̃(w1, w2)‖2 = r4
1 + r4

2 + (t1t2)2 never vanishes, so

π(w1, w2) =
1√
L
π̃(w1, w2)

defines a smooth map π : X → S4, which is (S1 × S1)-equivariant. One checks that π

descends to a homeomorphism π̄ : X/G
≈−→ S4.

It remains to show that π : X → S4 is a branched covering. Let us consider the following
diagram

(7.10)

X

f
��

π // // S4

f̄
��

C π̂ // C

where

f(w1, w2) =
1

4
√
L

(t1 + it2) , f̄(ρ1e
iθ1 , ρ2e

iθ2 , t) = ρ2 − ρ1 + 2it

and π̂(z) = z2. As r2
j + t2j = 1, one has t21 − t22 = r2

2 − r2
1 and diagram (7.10) commutes.

Observe that f and f̄ are (S1 × S1)-invariant.
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Derivative computations show that 0 ∈ C is a regular value for f . This produces a
(S1 × S1)-invariant trivialization of the normal bundle to XG = f−1(0), since XG is a
free (S1× S1)-orbit. Also, 0 ∈ C is a regular value for f̄ : it is easy to find a smooth local
section of f̄ into the (S1×S1)-slice θ1 = θ2 = 0. This again produces a (S1×S1)-invariant
trivialization of the normal bundle to N = π(XG) =

√
2(eiθ1 , eiθ2 , 0).

LetD′ be a small disk around 0 in the image of f and letD′′ = π̂(D′). Using homotheties
from D to D′ and D′′ together with the above trivializations permits us to put the map
π into the form (7.2) locally around XG.

Remark 7.11. Statement (2) of Lemma 7.5 does not say that the diffeomorphism type
of X/G is functorial. If h : X → X ′ is a G-equivariant diffeomorphism, the induced
homeomorphism h̄ : X/G → X ′/G is in general not smooth. For example, take the
standard involution (u, v) 7→ (−u,−v) in R2 and the map h(u, v) = (u, u + v). The
induced map h̄ : R2 → R2 is is determined by the equation h̄◦q = q◦h, where q : R2 →→ R2

is the complex squaring map q(u, v) = (u2 − v2, 2uv). Hence, h̄(x, 0) = (0, 2x), if x ≥ 0,
and h̄(x, 0) = (x, 0), if x < 0. In particular, h̄ is not differentiable at x = 0. The non-
compactness of R2 is not the point: one can transport this example onto the Riemann
sphere.

Remark 7.12. The smooth structure given by Lemma 7.5 on X/G is not the same as the
functional smooth structure on X/G induced by the orbit map (see Bredon [5, p. 301]), nor
is it the same as the smooth stratifold structure induced by the G-action on X (see Kreck
[26]). Both of these structures are functorial, unlike the structure given by Lemma 7.5,
but neither one gives X/G the structure of a smooth manifold.

In spite of Remark 7.11, one has the following uniqueness result.

Lemma 7.13. Let X and X ′ be two smooth closed G-manifolds with codimension 2 fixed
point sets. Suppose that X and X ′ are G-equivariantly diffeomorphic. Then, the smooth
structures on X/G and X ′/G given by Lemma 7.5 are diffeomorphic.

Proof. Let h : X → X ′ be a G-equivariant diffeomorphism and h̄ : X/G → X ′/G be
the induced homeomorphism. Let g be a G-invariant Riemannian metric on X and let
g′ = h∗g be the metric on X ′ transported by h. With these metrics, h is an isometry and
the construction of Step 1 in the proof of Lemma 7.5 implies that h̄ : (X/G)g → (X ′/G)g′

is a diffeomorphism. The result then follows from Step 2 in the proof of Lemma 7.5. �

As an application of the same ideas, we give the following “descent” result for a smooth
action of a compact Lie group H on X which commutes with the G-action. Note that
such an action induces a topological H-action on X/G.

Lemma 7.14. Let X be a smooth G-manifold such that the fixed point set XG is a closed
manifold of codimension 2. Suppose that X is equipped with a smooth action of a compact
Lie group H which commutes with the G-action. Then, there exists a smooth H-manifold
M and a H-equivariant homeomorphism h : X/G → M such that the composed map

X →→ X/G
h−→ M is a branched covering with branched locus the image of XG. If X is

closed, the manifold M is unique up to H-equivariant diffeomorphism.
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Proof. We use an H-invariant Riemannian metric g on X and apply Lemma 7.5 again. �

Example 7.15. One of the classical conjugation 4-manifolds is S2 × S2 with involution
given by complex conjugation on each factor. Note that complex conjugation on S2 may
be expressed as the reflection (x, y, z) 7→ (x, y,−z), and this involution commutes with the
standard S1-action given by rotation in the xy-plane. Therefore the quotient S2 × S2/G
inherits an effective T 2-action, which is smooth with respect to the smooth structure
provided by Lemma 7.14. However, Orlik [38] applied the classification of smooth T 2-
actions by Orlik and Raymond [39] to show that a smooth homotopy 4-sphere with an
effective smooth T 2-action must be the standard S4.

7.16. Lifted structure. We now consider the opposite problem: to show that a smooth
structure on the quotient of a 2-fold branched covering induces a canonical smooth G-
action on the total space.

Lemma 7.17 (Smooth G-action). Let p : (X, Y )→ (M,N) be a branched 2-fold covering
with branched locus N , where M is a smooth closed manifold, and N is a smooth closed
submanifold of codimension 2 in M . Then X admits a smooth G-action with XG = Y
such that the smooth structure on X/G given by Lemma 7.5 is diffeomorphic to M .

Proof. The involution onX−Y is the deck transformation of the coveringX−Y →M−N .
This is smooth with respect to the induced smooth structure on X−Y from the covering.
Around Y , the map p is modelled by (7.2), and we obtain a smooth structure on X.
The deck transformation of q : P ×O(2) D∗ → P ×̄O(2)D∗ is given by (a, z) 7→ (a,−z). It
extends to a smooth G-action on X with XG = Y .

If M is a closed manifold, so is X. One has a commutative diagram

X
π

||||yy
yy

yy
y q

  A
AA

AA
AA

X/G
h

≈
// M

.

Since h is a continuous bijection between compact spaces, h is a homeomorphism. Hence,
M is a smooth structure on X/G satisfying (1) of Lemma 7.5. The result follows from
part (2) of the same lemma. �

A closed tubular neighbourhood of a codimension 2 submanifold N ⊂M will be called
a D-tube (since it is diffeomorphic to a smooth fibre bundle with fibre D). The next
result is our version of Durfee and Kauffman [9, Prop. 1.1].

Lemma 7.18 (Existence). Let M be a smooth closed manifold, and let N be a smooth
closed submanifold of codimension 2 in M . Let ṗ : Ẋ → M − N be a smooth 2-fold
covering. Suppose that, for a D-tube around N , the preimage by ṗ of each D∗-fiber is
connected. Then

(1) The covering ṗ extends to a smooth 2-fold branched covering p : X → M with
branched locus N .

(2) If p : X → M and p′ : X ′ → M are two such branched coverings, then X ′ is G-
diffeomorphic to X (for the smooth structures and G-action defined in Lemma 7.17).
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Proof. Choose a Riemannian metric ḡ on M . This associates a smooth principal O(2)-
bundle Q to the normal bundle to N . We may suppose that ḡ is calibrated around N ,
meaning that the exponential map defines a smooth embedding ϕ̄ : Q ×O(2) D → M .

Denote by ṗ : L → Q ×O(2) D∗ the 2-fold covering induced from ṗ : Ẋ → M − N by the
embedding ϕ̄. Consider the pull-back diagram

(7.19)

Ľ

p̌
��

// L

ṗ
��

Q×D∗ // Q×O(2) D∗
.

and denote by D̃∗ → D∗ the map z 7→ z2 from D∗ to itself. Choosing a point a ∈ Q
gives a base point (a, 1) ∈ Q×D∗, and we let let Ď∗ = p̌−1({a} ×D∗).

The rotation vector field ξ on D∗, defined by ξz = (z, iz) ∈ D∗ × C ≈ TD∗, lifts to a
smooth vector field ξ̌ on Ď∗, which is complete since ξ is. Consider the radius path given
by the inclusion ρ : (0, 1]→ D∗. Choose a lifting ρ̌ : (0, 1]→ Ď∗ and integrate ξ̌ with these
initial conditions. By our assumption on D∗-fibers, this will produce a G-diffeomorphism

D̃∗ ≈−→ Ď∗ over the identity of D∗.
Over the slice Q × {1}, the map p̌ is a 2-fold covering Q̃ → Q. We deduce that there

is a G-diffeomorphism β̌ : Q̃×G D̃∗
≈−→ Ľ over the identity of Q×D∗.

Let a ∈ Q and let ã ∈ p̌−1(a). Because of diagram (7.19) and the relation (aα, z) ∼
(a, αz) in the definition of Q×O(2) D∗, there is a commutative diagram

(7.20)

O(2)

ψ
��

≈ // p̌−1(a ·O(2))

p̌
��

O(2)
≈ // a ·O(2)

where ψ is the epimorphism defined in (7.1) (this is a 2-fold covering). We deduce that
Q̃ is a smooth principal O(2)-bundle and that Q ≈ Q̃×̄O(2)O(2). Hence

Q×O(2) D∗ ≈ [Q̃×̄O(2)O(2)]×O(2) D∗ ≈ Q̃×̄O(2)D∗ .

Suppose first that the normal bundle ν to N is not orientable. We claim that there is a
G-diffeomorphism β : Q̃×O(2) D̃∗ → L making the following diagram commutative:

Q̃×G D̃∗
β̌

≈
&&MMMMMMMMMMM

��;
;;

;;
;;

;;
;;

;;
;;

;;
;

// Q̃×O(2) D̃∗
β

≈
ww

��

Ľ

p̌
��

// L

ṗ
��

Q×D∗ // Q×O(2) D∗ Q̃ ×̄O(2)D∗
≈oo

.
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Indeed, if ν is non-orientable, then Q is connected. As D̃ is connected, we deduce from
diagram (7.20) that Ľ is connected. Hence, any orbit for the diagonal O(2)-action on
Q̃×G D̃∗ goes to a single point in L. This guarantees that β̌ descends to β. With these
constructions, the covering projection ṗ : Ẋ →M −N now extends to a smooth branched
covering p : X →M where

(7.21) X = Ẋ ∪β Q̃×O(2) D .

This proves the existence of p : X → M when ν is non-orientable. in the other case, we
do the whole proof above, replacing O(2) by the connected group SO(2).

For the uniqueness statement of Lemma 7.18, observe that the smooth structure on
X given by the decomposition (7.21) is associated to the Riemannian metric ḡ on M .
A proof of the uniqueness statement of Lemma 7.18 may thus be obtained in a process
analogous to Steps 2 and 3 of the proof of Lemma 7.5 (see also the uniqueness statement
in [9, Prop. 1.1] and its proof). �

Remark 7.22. Suppose that, in Lemma 7.18, N is connected and let V be a D-tube
around N . By the homotopy exact sequence of the bundle D∗ → V − N → N , the
condition on the D-fibers is equivalent to ṗ−1(V −N) being connected. If this is not the
case, the proof of Lemma 7.18 shows that ṗ extends to an unbranched 2-fold covering
X →M .

As in Remark 7.11, smooth branched coverings are not functorial, see [9, § 1]. However,
as in Lemma 7.13, one has the following uniqueness result.

Lemma 7.23 (Uniqueness). Let (M,N) and (M ′, N ′) be two manifold pairs, where M
and M ′ are closed and N,N ′ are closed submanifolds of codimension 2. Suppose that there
is a diffeomorphism h : (M,N) → (M ′, N ′). Then, the smooth branched coverings over
M and and M ′, with branched locus N and N ′, are diffeomorphic.

Proof. Let X → M and X ′ → M ′ be two such smooth branched coverings. Then the
pull-back h∗X ′ → M is a smooth branched covering over M , with branched locus N ,
obviously diffeomorphic to X ′. By Lemma 7.18, h∗X ′ is diffeomorphic to X. �
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