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Closed oriented 4-manifolds with the same geometrically two-dimensional fundamental
group (satisfying certain properties) are classified up to s-cobordism by their w2-type,
equivariant intersection form and the Kirby–Siebenmann invariant. As an application,
we obtain a complete homeomorphism classification of closed oriented 4-manifolds with
solvable Baumslag–Solitar fundamental groups, including a precise realization result.
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1. Introduction

In this paper we show how a combination of bordism theory and surgery can be
used to classify certain closed oriented 4-manifolds up to s-cobordism. Our results
apply to topological 4-manifolds with geometrically two-dimensional fundamental
groups, satisfying the three properties (W-AA) listed in Definition 1.2 below. We
will prove in Section 6 that these properties are satisfied by the family of solvable
Baumslag–Solitar groups

B(k) := {a, b | aba−1 = bk}, k ∈ Z.
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The groups B(k) have geometrical dimension ≤ 2 because the 2-complex corre-
sponding to the above presentation is aspherical. The easiest cases are

B(0) = Z, B(1) = Z × Z and B(−1) = Z � Z,

and these are the only Poincaré duality groups in this family. Each B(k) is solv-
able, so is a “good” fundamental group for topological 4-manifolds [10]. This
implies that Freedman’s s-cobordism theorem is available to complete the homeo-
morphism classification. This had been done previously only for the three special
cases above, see [11] for B(0), and [18] for B(±1), using a more classial surgery
approach.

A basic homotopy invariant of a 4-manifold M is the equivariant intersection
form, defined as the triple (π1(M, x0), π2(M, x0), sM ), where x0 ∈ M is a base-
point, and

sM : π2(M, x0) ⊗Z π2(M, x0) → Z[π1(M, x0)]

is the form described in Section 2, formula (2.4). This pairing is Λ-hermitian, in
the sense that for all λ ∈ Λ := Z[π1(M, x0)] we have

sM (λ · x, y) = λ · sM (x, y) and sM (y, x) = sM (x, y),

where λ �→ λ̄ is the involution on Λ given by the orientation character of M .
In the oriented case studied below, this involution is determined by ḡ = g−1 for
g ∈ π1(M, x0).

An isometry between two such triples is a pair (α, β), where α : π1(M, x0) →
π1(M ′, x′

0) is an isomorphism of fundamental groups, and β : (π2(M, x0), sM ) →
(π2(M ′, x′

0), sM ′) is an α-invariant isometry of the equivariant intersection forms.
We will assume throughout that our manifolds are connected, so that a change of
base-points leads to isometric intersection forms. For this reason, we will omit the
base-points from the notation.

Recall that an oriented 4-manifold M has type (I) if w2(M̃) �= 0, type (II) if
w2(M) = 0, and type (III) if w2(M) �= 0 but w2(M̃) = 0. The invariant w2 is
defined for topological manifolds in (2.1).

Theorem A. For closed oriented 4-manifolds with solvable Baumslag–Solitar fun-
damental groups, and given type and Kirby–Siebenmann invariant, any isometry
between equivariant intersection forms can be realized by a homeomorphism.

The invariants in Theorem A are not independent. For example, M has type (I)
if and only if the equivariant intersection form sM is odd. This algebraic condition
means that the identity component of sM (x, x) is an odd integer for some x ∈
π2(M). In the other case, if the identity component of sM (x, x) is always even,
then we say that sM is an even equivariant intersection form. This occurs in types
(II) and (III).
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The Kirby–Siebenmann invariant KS(M) ∈ Z/2 (see [22, p. 300]) is determined
for spin manifolds by Rochlin’s formula

KS(M) ≡ sign(M)/8 (mod 2),

where sign(M) is the signature of the 4-manifold M , defined via the ordinary inter-
section form on H2(M ; Z). For fundamental groups π with H4(π; Z) = 0 we show
in Remark 4.2 that this signature is determined by sM via the formula

sign(M) = sign(sM ⊗Λ Z).

This formula does not hold in general, as one can see from examples of surface
bundles over surfaces with nontrivial signature (but vanishing π2).

For π1(M) = B(k), type (III) can only occur if k is odd. In this case, we have
the following generalization of Rochlin’s formula, proven in Corollary 6.10:

KS(M) ≡ sign(M)/8 + Arf(M) (mod 2),

where Arf(M) ∈ Z/2 is a codimension 2 Arf invariant explained in Section 6.
For any closed oriented 4-manifold M , the radical R(sM ) ⊆ π2(M) of the

intersection form sM is completely determined by the fundamental group π of
M , via an isomorphism R(sM ) ∼= H2(π; Zπ) proved in Corollary 3.2. We define
π2(M)† := π2(M)/R(sM ).

Theorem B. For any closed oriented 4-manifold M with fundamental group π =
B(k), the quotient π2(M)† is a finitely generated, stably-free Zπ-module and the
induced form (sM )† is non-singular. Conversely,

(i) Any non-singular Zπ-hermitian form on a finitely generated, stably-free Zπ-
module is realized as (sM )† by a closed oriented 4-manifold M with fundamental
group B(k).

(ii) Up to homeomorphism, there are exactly two such manifolds for odd forms,
distinguished by the Kirby–Siebenmann invariant. If k is even, an even form
determines a manifold of type (II) uniquely; type (III) does not occur. For k

odd, there is exactly one 4-manifold with a given even intersection form in each
type (II) or (III).

Remark 1.1. The classification of such stably free modules and non-singular her-
mitian forms is a difficult algebraic problem. For example, there exist odd intersec-
tion forms which are not extended from Z for manifolds with these fundamental
groups (see [12, Sec. 6]). Moreover, we do not know the minimal rank of an inter-
section form with nontrivial Arf invariant.

A finitely-presented group π is geometrically two-dimensional (g-dim π ≤ 2) if
there exists a finite aspherical 2-complex with fundamental group π. Examples of
geometrically two-dimensional groups include free groups, 1-relator groups (e.g. sur-
face groups) and small cancellation groups [27], provided they are torsion-free, as
well as many word-hyperbolic groups [17, 2.3], [20, Sec. 10].
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It is attractive to see whether the results of Theorems A and B also hold
for more general fundamental groups of geometric dimension ≤ 2. In a series of
papers [17–20], Jonathan Hillman has investigated the homotopy classification of
Poincaré 4-complexes under various fundamental group assumptions. In the case
of g-dim ≤ 2, the problem was reduced to the minimal case, also studied here in
Section 3. However, the homotopy classification of minimal models was not com-
pleted except for free or surface fundamental groups. Our focus is on the classifi-
cation of 4-manifolds up to s-cobordism, and our methods differ from the classical
surgery approach in the sense that we do not need to understand the homotopy
classification first.

We now list the additional properties we will need for the fundamental groups
(see [36] for the surgery assembly maps).

Definition 1.2. A group π satisfies properties (W-AA) whenever

(i) The Whitehead group Wh(π) vanishes,
(ii) The assembly map A5: H5(π; L0) → L5(Zπ) is surjective.
(iii) The assembly map A4: H4(π; L0) → L4(Zπ) is injective.

For a 4-manifold M with fundamental group π and even equivariant intersection
form sM , there exists a unique class wM ∈ H2(π; Z/2) such that w2(M) = c∗(wM )
for a 2-equivalence c : M → K(π, 1) that induces the identity on fundamental
groups. In this setting, we define the w2-type of M to be the pair (π, wM ). If
sM is odd, M has type (I) and we define the w2-type to be the pair (π1(M), (I)).

An isomorphism between the w2-types of M and N is an isomorphism π1(M) ∼=
π1(N) that carries wM to wN . In the odd case, the condition on wM is interpreted
to mean that both M and N have type (I). The w2-type is a refinement of the
type as soon as the action of Aut(π) on H2(π; Z/2) has more than two orbits.
The zero element determines a preferred orbit, corresponding to type (II) above.
The remaining orbits refine type (III).

Theorem C. For closed oriented 4-manifolds with geometrically two-dimensional
fundamental groups satisfying properties (W-AA), and given Kirby–Siebenmann
invariant, any isometry between equivariant intersection forms inducing an iso-
morphism of w2-types can be realized by an s-cobordism.

Remark 1.3. It is important to point out that whenever the Farrell–Jones iso-
morphism conjectures [8] in algebraic K-theory and L-theory hold for a group π

with g-dim π ≤ 2, then π satisfies (W-AA), and in fact the assembly maps are
isomorphisms. We refer to [26] for a survey of results on these conjectures.

Remark 1.4. A central tool in our classification is the reduced intersection
form (sM )† on the quotient π2(M)† := π2(M)/R(sM ) by the radical of sM .
This is a finitely generated, stably-free Zπ-module and (sM )† is non-singular, by
Corollary 4.4. Since sM1

∼= sM2 if and only if (sM1)† ∼= (sM2)†, it follows that
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Theorems A and C could be formulated with the reduced intersection form (sM )†

replacing the intersection form sM in the statements.

Section 2 contains a summary of our classification technique as guide for the
paper, and the proof of Theorem C, modulo the computation of certain bordism
groups. Section 3 gives some basic constructions and facts concerning 4-manifolds,
and Section 4 discusses stable classification of 4-manifolds. We prove the first state-
ment of Theorem B in Corollary 3.2 and Corollary 4.4, just using stable classifi-
cation of 4-manifolds with geometrically two-dimensional fundamental group. In
Section 5 we complete the bordism calculations and the proof of Theorem C. In
Section 6 we show that the solvable Baumslag–Solitar groups satisfy conditions
(W-AA), deduce Theorem A from Theorem C, and prove the remaining parts of
Theorem B.

2. The Strategy: Reduced Normal 2-Types and Surgery

In this section we will explain our strategy and reduce the proof of Theorems A and
C to the computation of certain bordism groups, which we will analyze in Section 5.
The classical surgery approach to classifying manifolds [41] would need as an input
a homotopy equivalence h : N → M . Then one would ask whether h is normally
cobordant, over M , to a self-homotopy equivalence of M , and finally one would try
to do surgery on such a normal cobordism until it becomes an s-cobordism. This
last step can always be completed if the fundamental group π in question satisfies
the following subset of the properties (W-AA) in Definition 1.2

Wh(π) = 0 and the assembly map A5 : H5(π; L0) → L5(Zπ) is surjective. (W-A)

Note that the vanishing of the Whitehead group Wh(π) implies that one can sup-
press the decorations in the L-groups above. We will refer to these properties of π

as “properties (W-A)” in the following.
The other steps in this classical surgery approach depend on more than the

fundamental group, for example the normal cobordism computation involves all
homology groups of M . In many instances, even the homotopy classification is too
hard to understand.

In [25], the second author developed a modified surgery approach to classifica-
tion. In the case of 4-manifolds, he starts with the normal 2-type B → BSTOP of M .
This is the second stage of the Moore–Postnikov factorization of the classifying map
νM : M → BSTOP of the normal bundle (see [24, 30, and 33] for the construction of
this classifying map). The map from BSO to BSTOP is a 3-equivalence [22, p. 300],
so H2(BSTOP ; Z/2) ∼= Z/2. We call the nontrivial element w2 and define

w2(M) := ν∗
M (w2) ∈ H2(M ; Z/2). (2.1)
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The Moore–Postnikov factorization is a 3-coconnected fibration admitting a lift ν̃M

of νM which is a 3-equivalence:

B

��
M

ν̃M

�������� νM �� BSTOP

The homotopy groups of the fibre of B → BSTOP vanish in degrees ≥ 3 and the
normal 2-smoothing ν̃M induces an isomorphism of homotopy groups in degrees ≤ 2.

Given any fibration B → BSTOP , one can define the normal B-bordism groups
Ω4(B) of triangles as above [34], except that one does not require any homotopy
theoretic conditions on the lift of νM to B.

Theorem 2.2. ([25]) If two closed 4-manifolds admit B-bordant normal 2-
smoothings in the same 3-coconnected fibration B → BSTOP then they are s-
cobordant, provided their fundamental group satisfies properties (W-A) above.

Remark 2.3. Note that two 4-manifolds that admit normal 2-smoothings in the
same 3-coconnected fibration B → BSTOP must have isomorphic homotopy groups
in degrees ≤ 2. More precisely, given normal 2-smoothings ν̃M , ν̃N , the induced
maps on π1 and π2 are isomorphisms and by composing one such map with the
inverse of the other one obtains particular isomorphisms πi(M) ∼= πi(N) for i = 1, 2.
The main idea of [25] was that Poincaré duality would also force isomorphisms for
i > 2. This follows from showing that M and N are s-cobordant, and hence simple
homotopy equivalent.

Even though the above theorem avoids an a priori homotopy classification, the
computation of the B-bordism groups can still be formidable. During the current
collaboration, we realized that one can use the results of [25] to reduce the s-
cobordism classification to an easier bordism question.

We will first recall the definition of the equivariant intersection form sM men-
tioned in the Introduction. Let M be an oriented 4-manifold with universal cov-
ering M̃ . By Poincaré duality there is an isomorphism Hi

c(M̃ ; Z) ∼= H4−i(M̃ ; Z),
from cohomology with compact supports to homology. In particular, we obtain an
isomorphism

ε0 : H4
c (M̃ ; Z) → H0(M̃ ; Z) = Z.

We identify π2(M) with H2(M̃ ; Z), by the Hurewicz Theorem, and then via Poincaré
duality with H2

c (M̃ ; Z). The cup product on H2
c (M̃ ; Z) is a π1(M)-invariant bilinear

form with values in Z, and thus we obtain a Λ-hermitian form

sM (x, y) :=
∑
g∈G

ε0(g−1x̃ ∪ ỹ) · g ∈ Zπ = Λ, (2.4)

where x̃, ỹ ∈ H2
c (M̃ ; Z) are the images of x, y ∈ π2(M) under the isomorphisms

above.
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Definition 2.5. The reduced normal 2-type of a 4-manifold M is a 3-coconnected
fibration B → BSTOP , admitting a lift of the classifying map νM of the normal
bundle, which is an isomorphism on π1 and on π2 is surjective with kernel the
radical R(sM ) of the intersection form sM . We call such a lift a reduced normal 2-
smoothing and note that it induces the epimorphism π2(M) → π2(B) ∼= π2(M)† =
π2(M)/R(sM ).

Theorem 2.6. If two closed 4-manifolds admit B-bordant reduced normal 2-
smoothings in the same 3-coconnected fibration B → BSTOP then they are s-
cobordant, provided their fundamental group satisfies properties (W-A) above. More
precisely, the s-cobordism induces the same isomorphisms on π1 and (π2)† as the
given reduced normal 2-smoothings.

Proof. Let W be a normal B-bordism between two reduced normal 2-smoothings.
We want to replace W by an s-cobordism. Since the Whitehead group Wh(π) is
trivial we may ignore bases and look for an h-cobordism instead. We are now in the
situation studied in [25, Thm. 4]. We may replace W by surgeries below the middle
dimension by a 2-equivalence c : W → B. Then the surgery obstruction Θ(W, c)
in the obstruction monoid l5(Zπ) is defined. This obstruction is given by a half
rank direct summand V in a direct sum of hyperbolic planes over the group ring
Zπ. There is an isometry from V to the kernel of the map π2(M1) → π2(B) [25,
Prop. 8(i)], which in our situation is equal to the radical R(sM ). Thus the quadratic
form vanishes on V and therefore Θ(W, c) is contained in the classical surgery group
L5(Zπ). Using our surjectivity assumption on the assembly map A5, we will show
below that this element can be assumed zero in L5(Zπ), by connected sum of the
original B-bordism W with a closed 5-manifold, equipped with a suitable reference
maps to B. Thus we are finished by applying [25, Thm. 4].

The last step in the above argument can be explained in more detail, as follows.
The assembly map is a map

N (M × I, M × {0, 1}) → L5(Zπ),

where N (M × I, M × {0, 1}) is the set of degree 1 normal maps (T, H, α) where
∂T = M + (−M), H : T → M × I is a degree 1 map which is the identity on both
boundary components, and α is a stable framing of νT − H∗νM . Given c : W → B

as in the proof above, we can form the sum of W with (T, H, α) by gluing along
a boundary component M . The new reference map is obtained by composition of
H with c. Up to bordism this sum is just the connected sum of W with the closed
manifold obtained by identifying the two boundary components of T .

Finally we note that if we glue T to W along M , the surgery obstruction is the
sum of the two surgery obstructions of W and T . This is an immediate consequence
of the construction of the surgery obstruction (see [41, Sec. 6]). Thus, if we can
realize every element of L5(Zπ) by an appropriate (T, H, α), then by gluing T to
W we can ensure that the surgery obstruction vanishes.
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To apply the above theorem, we need to understand when two 4-manifolds admit
reduced normal 2-smoothings into the same 3-coconnected fibration B → BSTOP .
For this purpose, we first describe B in terms of a given 4-manifold M .

Let P = P (M) denote a two-stage Postnikov system with π1(P ) = π1(M) = π,
and

π2(P ) = π2(M)† = π2(M)/R(sM ).

Up to homotopy, P is determined by these two homotopy groups and the k-invariant
in H3(π; π2(P )). If g-dim(π) ≤ 2 this k-invariant is automatically zero. Thus P is
determined by π1(M) and π2(M)† alone in this case.

Definition 2.7. A map c : M → P is called a reduced 3-equivalence if c induces an
isomorphism π1(M) ∼= π1(P ), and an isomorphism π2(M)† ∼= π2(P ).

Notice that a reduced 3-equivalence is always a 2-equivalence and it is a 3-
equivalence if and only if R(sM ) = 0. We will show in Corollary 3.2, that the
radical R(sM ) ∼= H2(π; Zπ) only depends on π and for most groups currently under
consideration, this module is non-trivial.

Lemma 2.8. Let c : M → P be a reduced 3-equivalence. Then there is a unique
class w ∈ H2(P ; Z/2) such that c∗(w) = w2(M).

Proof. We have a commutative diagram

0 �� H2(π; Z/2) �� H2(P ; Z/2) ��

c∗

��

H2(P̃ , Z/2)π

c̃∗

��

�� H3(π; Z/2)

0 �� H2(π; Z/2) �� H2(M ; Z/2) �� H2(M̃ ; Z/2)π �� H3(π; Z/2)

Since H2(M̃ ; Z/2) → H2(P̃ ; Z/2) is surjective, both vertical maps c̃∗ and c∗ are
injective, showing uniqueness of w. For existence, recall from Remark 3.9 that the
class w2(M̃) vanishes on the radical R(sM ) of sM . Hence it lies in the image of c̃∗

and a diagram chase shows that this forces w2(M) to be in the image of c∗.

Definition 2.9. The pair (P, w) is called the reduced w2-type of M , where P =
P (M) is defined above, and w ∈ H2(P ; Z/2) is the class constructed in Lemma 2.8.

Lemma 2.10. Let (P, w) be the reduced w2-type of M . Then M admits a reduced
normal 2-smoothing into the homotopy pullback along w :

BTOPSPIN
i �� B(P, w)

j ��

ξ

��

P

w

��
BTOPSPIN

i �� BSTOP
w2 �� K(Z/2, 2)
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where w2: BSTOP → K(Z/2, 2) denotes the universal second Stiefel–Whitney class.
In particular, the map ξ : B(P, w) → BSTOP is a 3-coconnected fibration.

Proof. Since we use the homotopy pullback, the map ξ is a fibration as required.
Its fiber is homotopy equivalent to the fiber of w which clearly has no homotopy
groups in degrees ≥ 3. Starting with any reduced 3-equivalence c: M → P , we
see that a lift of νM to B(P, w) is the same as a homotopy between the two maps
w2 ◦ νM and w ◦ c from M to K(Z/2, 2). By Lemma 2.8 such a homotopy exists by
our choice of w. Note that different choices of this homotopy correspond to different
lifts of νM . However, since BTOPSPIN , the fiber of the map w2, is 3-connected,
it is clear that any lift of νM constructed in this way is a reduced normal
2-smoothing.

The fibration B(P, w) → BSTOP constructed in Lemma 2.10 is the reduced
normal 2-type of M , as in Definition 2.5. The corresponding normal bordism
groups [34] will be denoted by Ω4(B(P, w)). They can be calculated via the James
spectral sequence [37], a variant of the Atiyah–Hirzebruch spectral sequence, with
E2-term

E2
p,q = Hp(P ; ΩTopSpin

q (∗)),
where the notation ΩTopSpin

∗ (∗) means the topological spin bordism groups. The next
result gives sufficient conditions for two 4-manifolds M and N to have the same
reduced normal 2-type B. This is the first step when trying to apply Theorem 2.6
to find a s-cobordism between M and N . The step will be to see whether
they represent the same element in Ω4(B) for some choices of reduced normal
2-smoothings.

Proposition 2.11. Let M, N be closed oriented 4-manifolds with geometrically
two-dimensional fundamental groups. Suppose there is an isomorphism α : π1(M) ∼=
π1(N) of their w2-types and an isometry β : π2(M)† ∼= π2(N)†, compatible with α.
Then there is a 3-coconnected fibration B → BSTOP admitting reduced normal
2-smoothings M → B and N → B that induce (α, β) in the sense of Remark 2.3.

Proof. As explained above, we may assume that B = B(P, w) is constructed
starting with a reduced 3-equivalence cM : M → P . The maps α, β give a reduced
3-equivalence cN : N → P .

If w lies in the image of H2(π; Z/2) then c∗N (w) = w2(N) by our assumption
that α is an isomorphism of w2-types. It follows just like in Lemma 2.10 that N

admits a reduced normal 2-smoothing to B. By construction, the induced maps on
π1 and (π2)† compose to (α, β).

The harder case is when w does not lie in the image of H2(π; Z/2). This is exactly
the case where M and N have type (I). Since cM and cN induce the isometry

β = (cN )−1
∗ ◦ (cM )∗
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on reduced intersection forms, we know that c∗N (w̃) = w2(Ñ), where w̃ is the
pullback of w to the universal covering P̃ . It follows that c∗N (w) = w2(N) + u∗(x)
for some x ∈ H2(π; Z/2) and u: P → K(π, 1) a 2-equivalence. After post-composing
cM with the self-homotopy equivalence provided by the following lemma, our proof
finishes just as in the case above.

Lemma 2.12. Given x ∈ H2(π; Z/2) and w ∈ H2(P ; Z/2) not in the image of
H2(π; Z/2), there is a self-homotopy equivalence h of P over u : P → K(π, 1) such
that h∗(w) = w + u∗(x). Moreover, h induces the identity map on π2(P ).

Proof. The homotopy classes of self-equivalences of P inducing the identity on π1

and π2 are in bijection with the group H2(π; π2(P )). This correspondence is explic-
itly described in [2, Thm. 5.2.4, p. 300], and explained in the proof of Lemma 11
in [21]. After choosing a section of the fibration P → K(π, 1), there is a characteris-
tic element ιP ∈ H2(P ; π2(P )) which maps to the identity in HomΛ(π2(P ), π2(P ))
under the natural evaluation map. For any class φ ∈ H2(π; π2(P )), there exists a
self-equivalence hφ : P → P such that

h∗(ιP ) = ιP + u∗(φ).

If w ∈ H2(P ; Z/2) is not in the image of H2(π; Z/2), it induces a non-zero coefficient
homomorphism w : π2(P ) → Z/2, and we obtain a map

w∗ : H2(π; π2(P )) → H2(P ; Z/2).

Since g-dim π ≤ 2, any class x ∈ H2(π; Z/2) lifts to a class φ ∈ H2(π; π2(P )) such
that w∗(φ) = x, by the long exact coefficient sequence. Now the required formula
follows by applying the change of coefficients map w∗ to both sides of the relation
above.

The Proof of Theorem C. We can now reduce the proof of Theorem C to the
existence of a suitable B-bordism, which will be studied in Section 5. Let M and N

be two 4-manifolds as in that theorem. By Proposition 2.11 we know that they admit
reduced normal 2-smoothings in a common reduced normal 2-type B → BSTOP ,
inducing the given maps (α, β). We know that the fundamental group in question
satisfies properties (W-AA) and hence we can apply Theorem 2.6, once we show
that the reduced normal 2-smoothings are B-bordant.

The injectivity of the assembly map A4 is needed to show that such a B-bordism
indeed exists if M and N satisfy the assumptions of Theorem C. This fact is proven
in Section 5 and summarized in Corollary 5.14.

3. Thickenings and Minimal Models

For the proof of Theorem B it is important to have a good model for each bordism
class in the normal 1-type of M . The central tool for this is the construction of
certain minimal 4-manifolds.
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For any closed 4-manifold M with fundamental group π, we have an exact
sequence

0 → H2(π; Λ) → H2(M ; Λ) → HomΛ(H2(M ; Λ), Λ) → H3(π; Λ) → 0 (3.1)

arising from the universal coefficients spectral sequence. Here and in the following
we denote by Λ the group-ring Zπ of the fundamental group. Using Poincaré duality
and the Hurewicz isomorphism, we get

H2(M ; Λ) ∼= H2(M ; Λ) ∼= π2(M)

and we can identify the middle map in the above sequence with the adjoint of the
equivariant intersection form sM . Therefore, we obtain the following corollary.

Corollary 3.2. The radical R(sM ) of the intersection form sM is isomorphic to
the π-module R(π) := H2(π; Λ). Similarly, the coradical of sM is always isomorphic
to H3(π; Λ).

To construct smooth 4-manifolds with a given fundamental group π we start
with a finite presentation P of π with n generators and m relations. Then there is a
2-complex X(P) with a single 0-cell, n 1-cells and m 2-cells, attached according to
the relations. We can turn this 2-complex to a 4-manifold as follows. Take a single
0-handle and add n oriented 1-handles leading to a boundary connected sum of n

copies of S1 × D3.
The attaching maps for m 2-handles are homotopically determined by P but

they can also knot, link and have interesting framings. This leads to many differ-
ent 4-manifolds with fundamental group π which we refer to as four-dimensional
thickenings of X(P). This is a 4-manifold that contains X(P) as a deformation
retract. This zoo of possible thickenings is drastically reduced when we double such
a thickening along its boundary to produce a closed, smooth, orientable 4-manifold.
It is naturally the boundary of a five-dimensional thickening of X(P), namely the
product of a four-dimensional thickening cross the unit interval.

Lemma 3.3. For any finite presentation P of a group π, and class w ∈
H2(X(P); Z/2), there is unique orientable five-dimensional thickening W (P , w)
with deformation retraction r onto X(P) satisfying r∗(w) = w2(W (P , w)).

Proof. This lemma goes back to Wall’s paper on thickenings [39] but we give a
direct handle argument for the convenience of the reader: Since the handles are five-
dimensional the attaching circles of the 2-handles cannot knot or link and hence
their isotopy class is determined by the presentation P . Moreover, the framing on
each 2-handle is just defined mod 2. More precisely, a cocycle representative for the
class w ∈ H2(X(P); Z/2) gives a function on the 2-cells to Z/2, which can be used
to vary the given framings by an element of π1(SO(3)) = Z/2 for each 2-handle. If
one started with trivial framings (that extend over some Seifert surface) then it is
not hard to see that w turns into the second Stiefel–Whitney class of the thickening
W (P , w).
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Since any 2-cochain is a 2-cocycle of X(P) it only remains to show that a
2-coboundary does not change the diffeomorphism class of W (P , w). It suffices to
discuss 2-coboundaries that change the framings of all 2-handles that go over a given
1-handle an odd number of times. However, a 1-handle forms S1×D4 together with
the 0-handle and the twisting diffeomorphism of S1 × S3 coming from π1(SO(3))
clearly extends over this 5-manifold.

We denote by M(P , w) the boundary of a five-dimensional thickening W (P , w).
As explained above, this is the double of a four-dimensional thickening. Now recall
that for any space X with fundamental group π there is an exact sequence

0 → H2(π; Z/2) → H2(X ; Z/2) → H2(X̃ ; Z/2)π. (3.4)

In particular, if X is aspherical then the first map is an isomorphism which will
be the case for X = X(P) in the following discussion. In that case, the double
M(P , w) is determined by a class w ∈ H2(π; Z/2) which is its w2-type as explained
in the Introduction. It will be implicit in the following that if a 4-manifold has a
w2-type w ∈ H2(π; Z/2) then it does not have type (I).

Definition 3.5. A closed oriented 4-manifold M will be called minimal if the
intersection form on π2(M) vanishes, or equivalently, if π2(M) = R(sM ) ∼= R(π)
via the map in the above sequence (3.4).

The following class of groups turns out to allow minimal 4-manifolds and several
other steps in the classification of Bausmlag–Solitar groups generalize easily to this
larger class.

Definition 3.6. A finitely presentable group π is geometrically two-dimensional if
there exists a finite presentation P such that the corresponding 2-complex X(P) is
aspherical. We will use the notation g-dim π ≤ 2.

Remark 3.7. A finite presentation P for which X(P) is aspherical will be called
a minimal presentation. This is equivalent to the matrix of Fox derivatives cor-
responding to P being non-singular over Zπ. Examples of geometrically two-
dimensional groups include free groups, 1-relator groups and small cancellation
groups [27], provided they are torsion-free, as well as many word-hyperbolic groups
(see also [17, 2.3], [20, Sec. 10]).

We shall prove that minimal 4-manifolds with fundamental group π exist, assum-
ing that g-dimπ ≤ 2.

Lemma 3.8. If g-dimπ ≤ 2, the doubles M(P , w) are minimal for any minimal
presentation P of π.
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Proof. We have M := M(P , w) = N ∪N , where N denotes one of the thickenings
of P described above. The long exact sequence

· · · → H2(N ; Λ) → H2(M ; Λ) → H2(M, N ; Λ) → H1(N ; Λ)

reduces to an isomorphism in the middle because Hi(N ; Λ) = 0 for i = 1, 2 since
N has the homotopy type of the aspherical 2-complex X(P). This, together with
excision and Poincaré duality, leads to isomorphisms

π2(M) ∼= H2(M ; Λ) ∼= H2(M, N ; Λ) ∼= H2(N, ∂N ; Λ)
∼= H2(N ; Λ) ∼= H2(π; Λ) = R(π)

showing that M is minimal.

Remark 3.9. There is no minimal 4-manifold M with type (I). This is because
w2(M̃) �= 0 would imply that there exists a class x ∈ π2(M) with ordinary self-
intersection x · x �≡ 0 (mod 2). But the ordinary self-intersection number is just the
coefficient of sM (x, x) at the identity element, and for a minimal 4-manifold the
form sM is zero.

4. Stable Classification

Recall that two 4-manifolds are stably homeomorphic if they become homeomorphic
after connected sum with copies of S2×S2. It is clear that this operation preserves
the fundamental group and the w2-type. Fixing the fundamental group π, the stable
classification is always given by the bordism group of the normal 1-type of the
4-manifolds, see [25, p. 711]. As for the normal 2-type explained in Section 2, this
is a 2-coconnected fibration B → BSTOP that admits a lift of the normal Gauss
map that is a 2-equivalence.

The easiest case is type (I) where we have the following application of the
methods of [25]. For any closed, oriented 4-manifold M , let c : M → K(π, 1) denote
a classifying map of its universal covering, and let c∗[M ] ∈ H4(π, Z) denote the
image of its fundamental class.

Lemma 4.1. Two closed oriented 4-manifolds M1 and M2 of type (I) are stably
homeomorphic if and only if they have the same fundamental group, signature and
Kirby–Siebenmann invariant, and c∗[M1] = c∗[M2] ∈ H4(π; Z).

Proof. For type (I), the normal 1-type is just BSTOP × K(π, 1) and we can use
the Atiyah–Hirzebruch spectral sequence (and the well-known values ΩSTOP

4 (∗) =
Z ⊕ Z/2 and ΩSTOP

q (∗) = 0 for 1 ≤ q ≤ 3) to compute

ΩSTOP
4 (K(π, 1)) ∼= Z ⊕ Z/2 ⊕ H4(π; Z)

with signature, Kirby–Siebenmann invariant and fundamental class c∗[M ] giving
the isomorphism.
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Remark 4.2. Recall that the signature of a closed, oriented 4-manifold M refers to
the signature of the intersection form on H2(M ; Z), given by the cup product pairing
and evaluation on [M ] ∈ H4(M ; Z). If a 2-equivalence c : M → K(π, 1) has the
property that 0 = c∗[M ] ∈ H4(π; Z), then sign(M) is equal to the signature of the

form sM ⊗Zπ Z. This is because the image H2(π; Z) c∗→H2(M ; Z) is totally isotropic
under the cup product pairing by the following observation for x, y ∈ H2(π; Z):

〈c∗(x) ∪ c∗(y), [M ]〉 = 〈x ∪ y, c∗[M ]〉 = 0.

This remark applies in particular to all 4-manifolds with geometrically two-
dimensional fundamental group.

Corollary 4.3. Let M be a closed, oriented 4-manifold with geometrically two-
dimensional fundamental group and type (I). Then M is stably homeomorphic to
M0#N, where M0 is minimal and N is a closed simply-connected 4-manifold.

Proof. Let M0 denote a minimal smooth 4-manifold constructed in Lemma 3.8.
Adding copies of CP2, or the Chern manifold, with appropriate orientations we
can arrange that M and M0#N have the same signature and Kirby–Siebenmann
invariant, and both have type (I). By the above lemma and remark, they are stably
homeomorphic.

The following proves the first part of Theorem B:

Corollary 4.4. If M is a closed, oriented 4-manifold with geometrically two-
dimensional fundamental group π, then π2(M)† = π2(M)/R(sM ) is a finitely-
generated stably-free Zπ-module, where R(sM ) is the radical of the intersection form
sM on π2(M).

Proof. If M is any closed 4-manifold with π1(M) = π, we can form M#CP2

to obtain type (I). Therefore, M#CP2 is stably homeomorphic to a manifold of
the form M0#N , where N is simply-connected and M0 is minimal, i.e. π2(M0) ∼=
R(sM0). The result now follows from the exact sequence (3.1), which is split short
exact in this case.

Lemma 4.5. For w2-type w ∈ H2(π; Z/2), with g-dimπ ≤ 2, the bordism groups
of the normal 1-type are given by

Ω4(B(π, w)) ∼= 8Z ⊕ H2(π; Z/2).

The first invariant is the signature (always divisble by 8) and modulo the action
of the automorphism group of π on the second factor, this gives the stable homeo-
morphism classification of closed oriented manifolds with fundamental group π and
w2-type w.
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Proof. Just as in Lemma 2.10, one proves that the normal 1-type is given by the
homotopy pullback

BTOPSPIN �� B(π, w) ��

ξ

��

K(π, 1)

w

��
BTOPSPIN �� BSTOP

w2 �� K(Z/2, 2)

where w2 : BSTOP → K(Z/2, 2) denotes the universal second Stiefel–Whitney
class. The corresponding normal bordism groups will be denoted by Ω4(π, w). They
can be calculated via the James spectral sequence [37], with E2-term

E2
p,q = Hp(π; ΩTopSpin

q (∗)).
Recall that ΩTopSpin

q (∗) = Z, Z/2, Z/2, 0, Z, in the range 0 ≤ q ≤ 4. Since π is
two-dimensional, all groups with p > 2 are zero. In particular, there are no dif-
ferentials affecting the line p + q = 4. The bordism class represented by the E8-
manifold accounts for the term E2

0,4 = 8Z. The term E2
2,2 = H2(π; Z/2) and there

are no other terms on the line p + q = 4. It follows from [37] that the signature
of any 4-manifold with this normal 1-type is divisible by 8 and hence the result
follows.

5. Detecting B-Bordism Classes

In this section we fix a geometrically two-dimensional group π that is going to
be the fundamental group of all our 4-manifolds below. We want to compute the
bordism group Ω4(B(P, w)) using the James spectral sequence. For this we compute
the homology of P from the Leray–Serre spectral sequence of the fibration

K(A, 2) → P
u→K(π, 1),

where A := π2(P ) is a finitely-generated, stably-free Λ-module by Corollary 4.4.
Hence A is a countably-generated free abelian group. Let Γ(A) = H4(P̃ ; Z) denote
Whitehead’s Γ-functor (see [42, Sec. 5]), and for any Λ-module L we will use the
notation Lπ := L ⊗Λ Z for the cofixed set of L.

Lemma 5.1. For i = 0, 1, 2, 3, 4, the homology groups Hi(P ; Z) are given by

Z, H1(π; Z), H2(π; Z) ⊕ Aπ , 0, Γ(A)π .

Proof. Since A is a stably-free Λ-module, so is Γ(A) (compare [14, Lemma 2.2]).
This means that Hi(π; A) = 0 and Hi(π; Γ(A)) = 0 for i > 0. Further details will
be left to the reader.

In order to compute the differentials in the James spectral sequence below, we
will need the following result. Let u : P → K(π, 1) denote the classifying map of
the universal covering.
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Lemma 5.2. For any class w ∈ H2(P ; Z/2), the map Sq2
w : H2(P ; Z/2) →

H4(P ; Z/2), given by Sq2
w(x) = x ∪ x + x ∪ w, has kernel generated by

{w, u∗H2(π; Z/2)}.

Proof. Let p : P̃ → P denote the projection of the universal covering and
w̃ = p∗(w). If w̃ �= 0, then u∗(y) ∪ w = 0, for all y ∈ H2(π; Z/2), since
H2(π; H2(P̃ ; Z/2)) = 0 in the (2, 2) position of the spectral sequence for the uni-
versal covering P̃ → P . We therefore have the commutative diagram

0 �� H2(π; Z/2) u∗
��

��

H2(P ; Z/2) ��

Sq2
w

��

H2(P̃ ; Z/2)

Sq2
w̃

��
0 �� H4(P ; Z/2) �� H4(P̃ ; Z/2)

since H4(π; Z/2) = 0.
The map induced by Sq2

w̃ on H2(P̃ ; Z/2) has kernal 〈w̃〉 since the space P̃ =
K(A, 2) is the Eilenberg–Maclane space of a countable direct sum of copies of Z.
Its homotopy type is the colimit

K(A, 2) = K

( ∞⊕
Z, 2

)
� colim

k→∞

(
k∏

i=1

CP∞
)

of products of finitely many copies of CP∞.

Lemma 5.3. Let (P, w) be a reduced w2-type with g-dimπ1(P ) ≤ 2. Then there is
an injection

Ω4(B(P, w)) ⊆ Z ⊕ Z/2 ⊕ H2(π; Z/2) ⊕ H4(P ; Z)

detecting the bordism groups of the reduced normal 2-type B(P, w). The invariants
are the signature, the KS-invariant, an invariant in H2(π; Z/2), and the funda-
mental class c∗[M ] ∈ H4(P ; Z).

Later we will define and investigate the bordism invariant in H2(π; Z/2).

Proof. The argument splits naturally into two cases, depending on whether
B(P, w) is of type (I) or not. In the latter case, the reduced normal 2-type pulls
back from the normal 1-type. Since the k-invariant for P lies in H3(π; π2(P )) = 0,
the fibration P → K(π, 1) has a section which gives a direct sum splitting of the
bordism groups. The result then follows almost directly from the homology com-
putation in Lemma 5.1. The James spectral sequence has E2-term

E2
p,q = Hp(P ; ΩTopSpin

q (∗)),
and the only subtlety is the d2-differentials that start in the E4,i spots, where
i = 0, 1. For i = 1, it is given by the dual of the map in Lemma 5.2 above. This
lemma implies that the cokernel of d2 is H2(π; Z/2). For i = 0, one needs to compose
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in addition with the reduction map from H4 with integral to Z/2 coefficients. The
resulting d2-differential has a kernel inside H4(P ; Z) which is exactly the image of
the inclusion described in the statement of our lemma.

Now assume that (P, w) is of type (I). By Lemma 5.2 the E3-term of the
James spectral sequence has at the (2, 2) position H2(π; Z/2) ⊕ Z/2 [α], where
α ∈ H2(P ; Z/2) is a spherical class such that 〈w, α〉 �= 0. We claim that the compo-
nent in Z/2[α] is determined by the Kirby–Siebenmann invariant. It is enough to
find a bordism class with signature zero and trivial image of the fundamental class
which represents α and has nontrivial Kirby–Siebenmann invariant. For this we
consider N := CH#(−CP2), where CH = ∗CP2 is the Chern manifold with non-
trivial Kirby–Siebenmann invariant [11]. The manifold N is homotopy equivalent
to CP2#(−CP2) which is an S2-bundle over S2. The bundle projection translates
to a map g : N → S2 which sends the classes of square ±1 in H2(N) to generators
in H2(S2).

Since α is a spherical class, there is a map h : S2 → P representing α. The
bordism class we are looking for is represented by (N, hg). By construction the
pullback of w under this map is w2(N) and so it gives an element in our bordism
group, which has the desired properties.

Remark 5.4. If (P, w) is not of type (I) then the above proof shows that the
bordism groups of the reduced normal 2-type B(P, w) are detected by the natural
map to the bordism groups of the normal 1-type B(π, w) and the fundamental
class c∗[M ] ∈ H4(P ; Z). In particular, it follows from Lemma 4.5 that the signature
is divisible by 8 and the Kirby–Siebenmann invariant is determined by the other
invariants. For type (I) we proved that the signature can be any integer and the
Kirby–Siebenmann invariant is independent from all other invariants.

Next we will show that the bordism invariant in H2(π; Z/2) given in Lemma 5.3
is detected by the other invariants. This was used in the proof of Theorem C.

Recall that a closed oriented 4-manifold M determines a reduced 3-equivalence
c : M → P (see Definition 2.7), where (P, w) is the reduced w2-type (P, w) of M

(see Lemma 2.8 and Definition 2.9). Let B(M) = B(P, w) denote the resulting
reduced normal 2-type of M .

Definition 5.5. We define the subset of normal structures in Ω4(B(M)), denoted
by Ω4(B(M))M . It consists of the normal bordism classes (N, f) over B(M),
with f∗[N ] = c∗[M ], sign(N) = sign(M), and KS(M) = KS(N). In other
words it is the subset of the reduced bordism group, which is the fibre over
(c∗[M ], sign(M), KS(M)) of the map to H4(P ) ⊕ Z ⊕ Z/2 given by the image of
the fundamental class, the signature and the Kirby–Siebenmann invariant.

We stress that Ω4(B(M))M is a subset and not a subgroup. This subset is
non-empty, since it contains [M, ĉ]. Now we define a map

θ : Ω4(B(M))M → L4(Zπ)

J.
 T

op
ol

. A
na

l. 
20

09
.0

1:
12

3-
15

1.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 M

C
M

A
ST

E
R

 U
N

IV
E

R
SI

T
Y

 o
n 

07
/2

5/
16

. F
or

 p
er

so
na

l u
se

 o
nl

y.



July 9, 2009 13:19 WSPC/243-JTA 00008

140 I. Hambleton, M. Kreck & P. Teichner

as follows: for any element [N, f ] ∈ Ω4(B(M))M , we do surgeries until f is
2-connected and let

V := ker(π2(N) → π2(B(M))).

Since f∗(w) = w2(N), it follows that w2(Ñ) is zero when restricted to V . Moreover,
R(sN ) ⊆ V since the intersection form is non-singular on π2(B) by construction.

Lemma 5.6. The restriction of sN to V induces a non-singular, even form λN,f

on V † = V/R(sN ), which is a finitely-generated stably free Λ-module.

Proof. Since π2(B) ∼= π2(P ) ∼= π2(M)† is a stably-free Λ-module, we can split
V = R(π) ⊕ A, where A is also a stably-free Λ-module. Since j∗f∗[N ] = c∗[M ]
it follows that the restriction of sN to A ∼= V † is non-singular (this is the usual
argument for surgery kernels [41, Lemma 2.2]).

Remark 5.7. If [N, f ] ∈ Ω4(B(M))M and f is a reduced 3-equivalence, then
(sN )† ∼= (sM )†. The reason is that the image of the fundamental class of a reduced
3-equivalence determines the reduced intersection form.

Definition 5.8. We define the map θ : Ω4(B(M))M → L4(Zπ) by setting
θ(N, f) = [λN,f ] ∈ L4(Zπ).

Lemma 5.9. The map θ is well-defined.

Proof. If [N1, f1] = [N2, f2], then by [25, Cor. 3] the manifolds N1 and N2 become
homeomorphic over B, after connected sum with copies of S2 × S2. It follows that
the non-singular even forms λV1 and λV2 become isometric by adding hyperbolic
forms on free Λ-modules.

If X is a closed, simply-connected manifold, then we have a stabilization map

jX : Ω4(B(M)) → Ω4(B(M#X)),

defined by sending an element (N, f) to (N#X, fX), where the new reference map
fX : N#X → B(M#X) is given by the composition

N#X → N ∨ X
f∨idX−−−−→ B(M) ∨ X → B(M) ∨ B(X) → B(M#X).

It is clear that the stabilization map induces a map of the normal structure subsets.
By construction of the map θ, we have the following:

Lemma 5.10. Let X be a closed simply connected manifold. Then θ commutes
with the stabilization map jX : Ω4(B(M))M → Ω4(B(M#X))M#X .
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Recall from Lemma 5.3 that we have an injection of sets

ρM : Ω4(B(M))M → H2(π1; Z/2)

defined by projecting the element

[N, f ] �→ [N, f ] − [M, c],

in the second filtration subgroup of Ω4(B(M)) to E∞
2,2 ⊆ H2(π; Z/2) ⊕ Z/2, and

then projecting further into H2(π; Z/2). By construction, the map ρ also commutes
with the stabilization map Ω4(B(M))M → Ω4(B(M#X))M#X as defined above.
We want to relate ρ to the assembly map

A4 : H4(K(π, 1); L0(Z)) → L4(Zπ)

as described in [15, Sec. 1]. The domain of this assembly map is given by

H4(K(π, 1); L0(Z)) = H0(π; Z) ⊕ H2(π; Z/2)

and we only need the restriction

κ2 : H2(π; Z/2) → L4(Zπ)

of A4 to the second summand. By comparing with the trivial group, it is easy to see
that A4 is injective if and only if κ2 is injective, so that is part of our assumption
(W-AA) in Theorem C.

Lemma 5.11. In the above setting there is a commutative diagram

Ω4(B(M))M

ρM

��������������
θM �� L̃4(Zπ)

H2(π; Z/2)

κ2

������������

Proof. The case where M is a minimal spin manifold follows from Davis [6,
Thm. 3.10]. By the signature theorem, for any degree one normal map f : N →
(M, νM ) the signature of N is equal to that of M . Thus there is a bijection between
the set of degree one normal maps to (M, νM ) and H2(M ; Z/2) [41, 23]. Since the
Kirby–Siebenmann invariant of a spin manifold is determined by the signature, also
this invariant agrees with that of M . Davis starts with such a degree 1 normal map
f : N → (M, νM ) (which corresponds to an element β ∈ H2(M ; Z/2)), and chooses
spin structures on M and N so that he can consider the elements [M, id] and [N, f ]
in ΩTopSpin

4 (M). Then he considers the Atiyah–Hirzebruch spectral sequence com-
puting ΩTopSpin

4 (M) and shows that there are spin structures on M and N such that
γ := [M, id]− [N, f ] sits in the filtration subgroup F2,2. Furthermore he shows that
γ maps to β ∩ [M ] ∈ H2(M ; Z/2) = E∞

2,2. This together with Wall’s characteristic
class formula [40, 36] implies that κ2(u∗(γ)) = θ(N, f).

Now we compare this information with the corresponding information when we
pass from M to B(M). If M is minimal, then B(M) = K(π, 1) × BTOPSPIN . By
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construction of our map θ and the classical surgery obstruction we have θ(N, f) =
θ(N, cf). We conclude that for M minimal

θ[N, cf ] = κ2(ρ[N, cf ]).

We summarize these considerations: If M is a minimal spin manifold and
β ∈ H2(π; Z/2) there is an α ∈ Ω4(B(M))M with ρ(α) = β and

θ(α) = κ2(ρ(α)).

This implies that ρ is surjective and so, since it is injective, a bijection to H2(π; Z/2).
From this we have the required formula for minimal manifolds.

Since the maps ρ commute with stabilization by connected sum with any simply
connected manifold X , ρ is a bijection for M0#X and the stabilization map

jX : Ω4(B(M))M → Ω4(B(M#X))M#X

is a bijection. Since the maps θ also commute with stabilization, the relation
θ(α) = κ2(ρ(α)) holds for M0#X as well.

Next we remark that an orientation-preserving homeomorphism h : M → M ′

over K(π, 1) induces a map

Ω4(B(M))M ≈ Ω4(B(M ′))M ′

on the subset of normal structures, induced by composing the reference maps with
h, or (N, f) �→ (N, h ◦ f). More precisely, it is clear that the fundamental class
c∗[M ] �→ c′∗[M

′], and the conditions on signature and KS-invariant are preserved
by orientation-preserving homeomorphisms.

Finally, if M1 is arbitrary and KS(M) = 0, there exist integers (r, s) and
(r′, s′) such that M = M0#X is homeomorphic to M ′ = M1#X ′, where
X = #rCP2#s(−CP2), and X ′ = #r′CP2#s′(−CP2). Again commutativity
of the maps under stabilization with 1-connected manifolds implies the lemma.
If KS(M) = 1, we replace one of the CP2’s by the Chern manifold CH.

Corollary 5.12. Suppose that [N, f ], is an element in Ω4(B(M)), with f a reduced
3-equivalence such that sign(N) = sign(M) and KS(N) = KS(M). If f∗[N ] =
c∗[M ] and κ2 : H2(π; Z/2) → L4(Zπ) is injective, then [N, f ] = [M, c] ∈ Ω4(B(M)).

Proof. If f∗[N ] = c∗[M ], the intersections forms are isometric since f is a reduced
3-equivalence, and so θ[N, f ] = θ[M, c] = 0. By the previous lemma, κ2(ρ[N, f ]) = 0
and so ρ[N, f ] = 0 since κ2 is injective. But ρ[N, f ] is defined as the projection of the
difference element [N, f ]− [M, c] into H2(π; Z/2). Since by Lemma 5.3 the bordism
class is determined by the signature, the Kirby–Siebenmann obstruction, the image
of the fundamental class and ρ, we have [N, f ] = [M, c].

The next step in our bordism calculation is to control the image of the funda-
mental class c∗[M ] ∈ H4(P ) by the reduced intersection form (sM )†.
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Theorem 5.13. Two reduced 3-equivalences cM : M → P and cN : N → P satisfy

(cM )∗[M ] = (cN )∗[N ] ∈ H4(P ; Z)

if and only if (cN )−1∗ ◦ (cM )∗: π2(M)† → π2(N)† induces an isometry of reduced
intersection forms.

The proof of this result will be given at the end of this section. Since the signa-
ture is determined by the intersection form on π2(M), we conclude from this result
and Corollary 5.12 the following result.

Corollary 5.14. Let M and N be closed oriented 4-manifolds with the same Kirby–
Siebenmann invariants. Suppose that κ2 : H2(π1(M); Z/2) → L4(Zπ1(M)) is injec-
tive. Let α: π1(M) → π1(N) be an isomorphism of w2-types and β: π2(M)† →
π2(N)† an α-compatible isometry. Then there are reduced 2-smoothings M → B(M)
and N → B(M) compatible with (α, β) which are bordant in Ω4(B(M)).

Proof. Proposition 2.11 implies that there are reduced 2-smoothings into the same
3-coconnected fibration B → BSTOP which we may assume to equal B(M).
Lemma 5.3 gives the invariants that control the bordism class in Ω4(B(M)).
All these invariants are controlled by our assumptions and Theorem 5.13,
Corollary 5.12.

The remaining part of this section is devoted to the proof of Theorem 5.13.
There is a commutative diagram

H lf
4 (P̃ ; Z)π ω �� HomZ(H2

cp(P̃ ; Z), H2(P̃ ; Z))π

H4(P ; Z) ω ��

tr

��

HomΛ(H2(P ; Λ), H2(P ; Λ))

where tr : H4(P ; Z) → H lf
4 (P̃ ; Z) denotes the transfer map induced by the universal

covering P̃ → P . The image of tr(c∗[M ]) under the top horizontal slant product
map ω is just the inverse of the adjoint of the equivariant intersection form (sM )†.

Lemma 5.15. The composition ω ◦ tr is injective.

It is enough to prove this injectivity after stabilizing M by connected sum with
copies of S2 × S2, so we may assume that A = π2(P ) is a finitely-generated, free
Λ-module. Let {ai} denote a Z-basis for A. In our applications, each ai = gej, for
some g ∈ π, where {ej} denotes a given Λ-basis for A. This is the natural underlying
Z-basis for a free, based Λ-module.

Following [42, p. 62], we define

A∗ = {φ : A → Z |φ(ai) = 0 for almost all i}.
Let {a∗

i } denote the dual basis for A∗. We say that a homomorphism f : A∗ → A is
admissible if f(a∗

i ) = 0 for almost all i, and that f is symmetric if a∗fb∗ = b∗fa∗

for all a∗, b∗ ∈ A∗.
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Lemma 5.16. ([42, p. 62])

Γ(A) ∼= {f : A∗ → A | f is symmetric and admissible}

The Proof of Lemma 5.15. Suppose now that A = Λr, and notice that
HomΛ(A, Λ) ∼= A∗. Then we have a commutative diagram

Γ(A)π � � �� H lf
4 (P̃ ; Z)π ω �� HomZ(A∗, A)π

Γ(A)π

N

��

H4(P̃ ; Z)π
≈ ��

N

��

Homa
Z
(A∗, A)π

N

��

where Homa denotes the admissible homomorphisms, and the norm maps N : Lπ →
Lπ are formally defined for any Λ-module by applying the operator N =

∑{g | g ∈
π} (this makes sense only if the sum is actually finite when N is applied to elements
of L). Now the point is that the right-hand norm map in the diagram is a direct
sum of the norm maps

N : Homa
Z
(Λ∗, Λ)π → HomZ(Λ∗, Λ)π.

It is convenient to identify Λ∗ ∼= Λ, and then express

HomZ(Λ∗, Λ) ∼= HomZ(Λ, Λ) ∼=
⊕
g∈π

HomZ(Λ, Z),

where the induced π-action on the right-hand side permutes the copies of
HomZ(Λ, Z) by the formula (h · φ)g = hφh−1g. If we restrict to the π-fixed set
of this action, then the component at g = e determines all of the other components.
Therefore, projection on the component of g = e gives an isomorphism(⊕

g∈π

HomZ(Λ, Z)
)π

∼= HomZ(Λ, Z).

Similarly, if we restrict to admissible maps and project to the co-fixed set, the maps
concentrated at the identity component represent the equivalence classes. Therefore

Homa
Z
(Λ∗, Λ)π

∼=
(⊕

g∈π

Homa
Z
(Λ, Z)

)
π

∼= Homa
Z
(Λ, Z).

Let φ = (φg) be an admissible homomorphism with φg = 0 unless g = e. The norm
map is now given by the formula

(Nφ)g =
∑

h

(h · φ)g =
∑

h

hφh−1g = gφe.

After projection to the identity component, we see that the right-hand norm map
in the diagram is just a direct sum of standard inclusions

Homa
Z
(Λ, Z) ⊂ HomZ(Λ, Z)

which is certainly injective. It follows that ω ◦ N is injective.
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Under our assumptions on P , we have an isomorphism H4(P̃ ; Z)π
∼= H4(P ; Z) by

projection from the universal covering. Therefore the norm map N : H4(P̃ ; Z)π →
H lf

4 (P̃ ; Z)π may be identified with the transfer tr. Therefore ω ◦ tr is injective.

Remark 5.17. Another way to express this conclusion about N is to identify

Λ ∼= Homa
Z
(Λ∗, Λ)π → HomZ(Λ∗, Λ)π ∼= Λ̂,

where Λ̂ denotes the ring of infinite Z-linear combinations of elements of π. One
can verify that the norm map corresponds to the natural inclusion Λ ⊂ Λ̂, which is
just

⊕
g∈π Z ⊂∏g∈π Z.

The Proof of Theorem 5.13. If (c1)∗[M1] = (c2)∗[M2], we get (sM1)† ∼= (sM2)†

by applying the map ω ◦ tr. The converse holds since ω ◦ tr is injective by
Lemma 5.15.

6. Baumslag–Solitar Groups

Our goal in this section is to establish the properties (W-AA) from Definition 1.2 for
these groups. The Baumslag–Solitar groups π = B(k) are 1-relator groups, so the
presentation 2-complex X is a K(π, 1), [27]. It follows that H2(X ; Zπ) = H2(π; Zπ).

Remark 6.1. For the “exceptional” cases k = 0, 1,−1 we just have X = S1, the
torus T 2, or the Klein bottle.

The chain complex C(X̃) for k �= 0 has the form (compare [13, Lemma 4.3])

0 → Λ ∂2−→ Λ ⊕ Λ ∂1−→ Λ ε−→ Z → 0,

where Λ = Zπ denotes the integral group ring, and ε is the augmentation map. The
boundary map ∂1 = (1 − a, 1 − b) and the boundary map ∂2 =

(
∂a

∂b

)
is given by the

Fox derivatives [9] of the relation aba−1b−k

∂a = 1 − aba−1, ∂b = a − aba−1b−k

(
bk − 1
b − 1

)
.

From this complex, one can compute the homology of B(k). Note the conven-
tion (∂1 ◦ ∂2)(v) = v · ∂2 · ∂1 expressing the composition in terms of right matrix
multiplication.

Lemma 6.2. For π = B(k), we have the following (co)homology groups.

(i) H1(π; Z) = Z ⊕ Z/(k − 1), Hi(π; Z) = 0 for i > 2.
(ii) H2(π; Z) = Z if k = 1, and H2(π; Z) = 0 otherwise.
(iii) H2(π; Z/2) = Z/2, if k is odd, and H2(π; Z/2) = 0, if k is even.
(iv) Hi(π; Zπ) = 0 for i �= 2 and k �= 0.
(v) R(π) = H2(π; Zπ) is free abelian, and surjects onto Z[1/k] if k �= 0.
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Proof. By [28, Cor. 2] the group H2(π; Zπ) is free abelian for 1-relator groups,
and as observed in [13, Lemma 4.3] it surjects onto Z[1/k]. The other parts will be
left to the reader.

Remark 6.3. It is an interesting question whether π2(M) is always a free abelian
group, for any closed 4-manifold M . This seems to be the same as asking whether
H2(π; Zπ) is always free abelian for any finitely-presented group π. The latter is a
well-known question in group theory.

We will need to compute the Whitehead group Wh(π) and the surgery obstruc-
tion groups L4(Zπ), L5(Zπ), for our fundamental groups π = B(k). We will use
the well-known fact that the K-theory and L-theory functors commute with direct
limits of rings (with involution). The idea is that these functors are defined in terms
of n × n matrices over rings, and such matrices live at a finite stage of the direct
limit. The results here are well-known to the experts.

To apply this remark, we notice that π ∼= Z[1/k]�Z, if k �= 0, where aba−1 = bk

and the subgroup normally generated by b

〈b, a−1ba, a−2ba2, . . .〉 ⊂ π

is isomorphic to Z[1/k]. The Wang exact sequence

· · · → Hi(Z[1/k]; A) 1−α∗−−−→ Hi(Z[1/k]; A) → Hi(π; A) → Hi−1(Z[1/k]; A) → · · ·
now gives another method of calculation for A any Zπ-module. Here α : Z[1/k] →
Z[1/k] is the group automorphism “multiplication by k” induced by conjugation by
a. To see this, let c0 = b, and define ci = a−ibai for i > 0. Then α(ci) = ck

i = ci−1 for
i > 0 and α(b) = bk. Since Z[1/k] is the direct limit (Z k−→ Z

k−→ · · ·), with countable
Z-basis {c0, c1, . . .}, and homology commutes with direct limits, the maps 1−α∗ can
be evaluated to arrive at Lemma 6.2. The same technique will be used for L-theory.

Lemma 6.4. (Waldhausen [38, 19.5]) Wh(B(k)) = 0.

Because of this result, we can suppress L-theory torsion decorations and use
L ≡ Lh throughout the rest of this section.

We now compute the quadratic L-groups using a long exact Wang sequence
[3, p. 167], [31]:

· · · → Ln(S) 1−α∗−−−→ Ln(S) → Ln(Zπ) δ→ Ln−1(S) → · · ·
where S = Z[Z[1/k]]. There is a similar exact sequence for the symmetric L-groups
(see [29, 4.1]).

Lemma 6.5. For π = B(k), we have

(i) L4(Zπ) ∼= Z ⊕ Z/2 for k odd.
(ii) L4(Zπ) ∼= Z for k even.
(iii) L5(Zπ) ∼= Z ⊕ Z/(k − 1).
(iv) L0(Zπ) ∼= Z.
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Proof. Since the inclusion map L4(Z) → L4(Z[Z]) is an isomorphism, the map
induced on L4(Z[Z]) by α is the identity (here Z[Z] is the group ring generated by
〈b〉, and α(b) = bk). Since L-theory commutes with direct limits, it follows that the
inclusion L4(Z) → L4(S) is an isomorphism. On the other hand, if k is odd, the
map induced by α on L3(Z[Z]) is also the identity, so L3(Z[Z]) ∼= L3(S) ∼= Z/2
detected by a codimension two Arf invariant.

The group automorphism α : Z[1/k] → Z[1/k] induces the identity map on both
L3(S) and L4(S), since α acts as the identity on the coefficients Z. By the Wang
sequence for the L-theory of a twisted Laurent ring, if k is odd then

L4(Zπ) ∼= L4(Z) ⊕ L2(Z),

detected by the ordinary signature and codimension two Arf invariant. This is a
direct sum because L4(Z) splits off, or alternatively, the map to L2(Z) is induced
by the boundary map δ in the Wang sequence above.

The map induced by α on L5(Z[Z]) is multiplication by k, so L5(S) = Z[1/k].
It follows that cok(1 − α∗ : L5(S) → L5(S)) = Z/(k − 1), and hence L5(Zπ) =
Z ⊕ Z/(k − 1) from the Wang sequence.

Finally, we notice that L0(Zπ) = L2(Zπ,−1) by the skew-suspension map (see
[32, Prop. 6.1]). The long exact Wang sequence of [29, 4.1], together with similar
calculations of the direct limits shows that L0(Z) ∼= L0(Zπ).

Definition 6.6. The codimension two Arf invariant for π = B(k), k odd, is the
projection

Arf : L4(Zπ) → L̃4(Zπ) = L4(Zπ)/L4(Z) ∼= L2(Z) = Z/2.

It is defined for any non-singular even form (V, λV ) on a finitely-generated free
Λ-module, as the Arf invariant of the element [λV ] ∈ L4(Zπ). If M has an even
equivariant intersection form sM , we define Arf(M) := Arf((sM )†).

Remark 6.7. We can compare the Wang sequences for computing H∗(π; Z) or
H∗(π; Z/2) and the Wang sequence for the L-groups L∗(Zπ) via the universal homo-
morphisms in the assembly map

A∗ : H∗(K(π, 1); L0(Z)) → L∗(Zπ)

as described in [15, Sec. 1]. In our case, we only need the homomorphisms

Ij : Hj(π; Z) → Lj(Zπ), for j = 0, 1

and

κj : Hj(π; Z/2) → Lj+2(Zπ), for j = 0, 1, 2.

In general the range of these homomorphisms should be localized at 2, but in low
dimensions we have integral lifts for these maps (see [23, Secs. 2–3]).
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These homomorphisms give natural transformations between the two Wang
sequences.

Lemma 6.8. The assembly map A∗ is an isomorphism for ∗ = 4, 5.

Proof. The domains of the assembly maps are given by

H4(K(π, 1); L0(Z)) = H0(π; Z) ⊕ H2(π; Z/2)

and

H5(K(π, 1); L0(Z)) = H1(π, Z).

The result follows by naturality of the Wang sequences for homology and L-theory,
and the calculations in Lemmas 6.2 and 6.5.

It follows that the surgery obstruction groups in these dimensions are gener-
ated by closed manifold surgery obstructions. Explicitly, we use S1 × E8 with two
injections of Z → π, distinct up to conjugation.

The Proof of Theorem A. We have now shown that the groups B(k) satisfy
properties (W-AA) in Section 6. Since H2(π; Z/2) ⊆ Z/2 for the solvable Baumslag–
Solitar groups, the w2-type is equivalent to the type and hence Theorem A follows
from Theorem C.

For manifolds M with type (III) there is a relation between the Kirby–
Siebenmann invariant and the codimension two Arf invariant from Definition 6.6.
We first give a more general result.

Theorem 6.9. Assume that M is a closed oriented 4-manifold with sM even and
w2-type (π, w), that lies in the F2,2-term of the filtration for the James spectral
sequence of the normal 1-type. Then one has

KS(M) ≡ sign(M)
8

+ 〈w, ρ(M, ν̃)〉 (mod 2),

where ρ : F2,2 Ω4(π, w) � E∞
2,2

∼= H2(π; Z/2)/Im(d2, d3) is the natural projection
and ν̃ is a normal 1-smoothing for M . In particular, w evaluates trivially on the
images of the differentials ending in Er

2,2.

Proof. As in Lemma 4.5, the normal 1-type B(π, w) pulls back from BSTOP via
the map w : K(π, 1) → K(Z/2, 2). We compare the James spectral sequences for
these two fibrations, knowing that oriented topological bordism is classified by

Ω4(∗) ∼= Z ⊕ Z/2

via the signature and Kirby–Siebenmann invariant. From the well-known compu-
tations

H4(K(Z/2, 2); Z) ∼= Z/4 and Hi((K(Z/2, 2); Z/2) ∼= Z/2, i = 2, 3,
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it follows that the F2,2-term in this case is 8Z ⊕ Z/2. Moreover, the quotient Z/8
must be the signature modulo 8. Looking at the examples of CP2, CH = ∗CP2

and E8, we see that the Kirby–Siebenmann invariant on the F2,2-term is given by

sign/8 (mod 2) + p2 : Ω4(∗) → Z/2,

where p2 is the projection onto the second Z/2. On comparing this to Ω4(π, w), the
only remaining observation is that w : K(π, 1) → K(Z/2, 2) induces a map

w∗ : H2(π; Z/2)/Im(d2, d3) → H2(K(Z/2, 2); Z/2) ∼= Z/2

that translates into the evaluation 〈w,−〉 used in the statement of the theorem.

Corollary 6.10. If M is a closed oriented 4-manifold of type (III), with solvable
Baumslag–Solitar fundamental group, then

KS(M) ≡ sign(M)
8

+ Arf(M) (mod 2).

Proof. For π ∼= B(k) the group H2(π; Z/2) is either 0 or Z/2, depending on
whether k is even or odd. For type (III) we must be in the latter case and hence
our w2-type is (π, w) with w �= 0. By Lemma 4.5 we have an isomorphism

Ω4(π, w) ∼= 8Z ⊕ H2(π; Z/2) ∼= 8Z ⊕ Z/2,

where the isomorphism on the right-hand side is induced by evaluating w. Both
sides of the equation define a homomorphism on this group and we want to prove
equality. By Lemma 5.11, the Arf-invariant gives the nontrivial projection onto the
second summand Z/2. Thus our result follows from Theorem 6.9.

Proof of Theorem B. The first statement of Theorem B has already been proved
in Corollary 3.2 and Corollary 4.4. It remains to establish parts (i) and (ii) con-
cerning the realizability of the forms. Note that by topological surgery [10], a form
is realizable if and only if it is stably realizable, where “stably” means after orthog-
onal sum with hyperbolic forms or after connected sum with S2 × S2’s for forms
and manifolds respectively.

Suppose that (F, λ) is a non-singular hermitian form on a finitely-generated,
stably-free Λ-module F . After stabilizing by hyperbolic forms, we may assume that
F is Λ-free. If F is an odd form, then it represents an element in the Witt group
L0(Zπ) = Z, so there exists metabolic forms ω, ω′ on free Λ-modules so that λ ⊥
ω ∼= λ0 ⊥ ω′, where λ0 is a standard form (diagonal ±1) with the same signature
as λ. By [16, Lemma 3], we may assume that ω and ω′ are hyperbolic forms, and
hence λ is stably realizable. Since the form λ0 can be realized by manifolds with
different KS-invariants, there are two possibilities (as stated in part (ii)).

Now suppose that (F, λ) is an even form. Then there exists a quadratic refine-
ment µ so that (F, λ, µ) represents an element of L4(Zπ) = Z ⊕ Z/2 (k odd) or
L4(Zπ) = Z (k even). By Lemma 4.5, any element of the L-group is realizable by
a manifold of type II or III. It follows that (F, λ) is stably realizable, and hence
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realizable by a 4-manifold. For the remaining assertion in part (ii), note that the
Kirby–Siebenmann invariant is determined by the intersection form (see Corollary
6.10 for k odd).

Remark 6.11. For manifolds with geometrically two-dimensional fundamental
group π, the same argument proves that any such even form is realizable by
an s-cobordism, whenever the assembly map A4 : H4(π; L0) → L4(Zπ) is an
isomorphism.
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