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Abstract. In this paper, an explicit classification result for certain 5-manifolds with
fundamental group Z/2 is obtained. These manifolds include total spaces of circle bundles
over simply-connected 4-manifolds.

1. Introduction

The classification of manifolds with certain properties is a central topic of topology, and
in dimensions ≥ 5 methods from handlebody theory and surgery have been successfully
applied to a number of cases. One of the first examples was the complete classification
of simply-connected 5-manifolds by Smale [21] and Barden [1] in 1960’s. This result has
been very useful for studying the existence of other geometric structures on 5-manifolds,
such as the existence of Riemannian metrics with given curvature properties. We consider
this as a model and motivation for studying the classification of non-simply connected
5-manifolds.

An orientable 5-manifold M is said to be of fibered type if π2(M) is a trivial Z[π1(M)]-
module. In this paper, we will be concerned with closed, orientable fibered type 5-
manifolds M5 with π1(M) ∼= Z/2, and torsion-free H2(M ; Z). The classification of
these manifolds in the smooth (or PL) and topological categories is given in Section
3. We give a simple set of invariants, namely the rank of H2(M ; Z) and the Pin†-bordism
(TopPin†-bordism) class of a characteristic submanifold, which determine the diffeomor-
phism (homeomorphism) types. Here is the main result in the smooth case.

Theorem 3.1. Two smooth, closed, orientable fibered type 5-manifolds M and M ′, with
fundamental group Z/2 and torsion-free second homology group, are diffeomorphic if and

only if they have the same w2-type, rank H2(M) = rank H2(M
′), and [P ] = [P ′] ∈ ΩPin†

4 /±,
where P and P ′ are characteristic submanifolds and † = c,−, + for w2-types I, II, III
respectively.

Here ΩPin†

4 /± denotes a quotient of the Pin-bordism group by a certain subgroup of
order two (see Definition 3.5). The Pin-bordism variants and the w2-type notation are
explained in Section 2.
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The homeomorphism classification is given in Theorem 3.4. We also determine all the
relation among these invariants (Theorem 3.6), and give a list of standard forms for these
manifolds (Theorem 3.7, Theorem 3.11).

One motivation for this classification problem comes from the study of circle bundles
M5 over simply-connected 4-manifolds, since their total spaces are of fibered type. Duan-
Liang [5] gave an explicit geometric description of M5 for simply-connected total spaces,
making essential use of the results of Smale and Barden. As an application of our results, in
Section 6 we give an explicit geometric description when the total spaces have fundamental
group Z/2.

Theorem 6.5 (type II). Let X be a closed, simply-connected, topological spin 4-manifold,
ξ : S1 ↪→ M5 → X be a circle bundle over X with c1(ξ) = 2·(primitive). Then we have

(1) if KS(X) = 0, then M is smoothable and M is diffeomorphic to

(S2 × RP3) ]S1((]k S2 × S2)× S1);

(2) if KS(X) = 1, then M is non-smoothable and M is homeomorphic to

∗(S2 × RP3) ]S1((]k S2 × S2)× S1).

Where k = rank H2(X)/2− 1.

In the statement, ∗(S2×RP3) denotes a non-smoothable manifold homotopy equivalent
to S2 × RP3. The corresponding results for the other w2-types are given in Theorem 6.7
and Theorem 6.8.

Classification results can also be useful in studying the existence problem for geometric
structures on fibered type 5-manifolds. For example, a closed, orientable 5-manifold with
π1 = Z/2, such that w2 vanishes on homology, admits a contact structure by the work of
Geiges and Thomas [7]. They showed that all such manifolds can be obtained by surgery
on 2-dimensional links from exactly one of ten model manifolds.

The topology of such manifolds of fibered type are described explicitly for the first
time by our results, and we note that all the manifolds listed in Theorem 3.7 satisfy the
necessary condition W3 = 0 for the existence of contact structures. Our results have
already been used by Geiges and Stipsicz [8] to prove new existence theorems for contact
structures on 5-manifolds. It may be possible to obtain similar information for fibered
type 5-manifolds which admit Sasakian or Einstein metrics by using the work of Boyer
and Galicki [2].

The surgery exact sequence of Wall [24] provides a way to classify manifolds within
a given (simple) homotopy type. However, in the application to concrete problems, one
often faces homotopy theoretical difficulties. In our situation, the setting of the problems
is appropriate for the application of the modified surgery methods developed by Kreck
[14]. The proofs in Section 4 and Section 5 are based on this theory.

In dimension 5, the smooth category and the PL category are equivalent. By convention,
M stands for either a smooth or a topological manifold when not specified.
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2. Preliminaries

§2A. Pin†-structures on vector bundles. Recall that the groups Pin±(n) are central
extensions of O(n) by Z/2

1 → Z/2 → Pin±(n) → O(n) → 1,

and Pinc(n) is a central extension of O(n) by U(1)

1 → U(1) → Pinc(n) → O(n) → 1

(see [11, §1] and [9, §2]). Let † ∈ {c, +,−}. After stabilization we have classifying spaces
B Pin† and fibrations B Pin† → BO. A Pin†-structure on a stable vector bundle ξ over a
space X is a fiber homotopy class of lifts of a classifying map cξ : X → BO to B Pin†.

Lemma 2.1. [9, Lemma 1]

(1) A vector bundle ξ over X admits a Pin†-structure if and only if

β(w2(ξ)) = 0 for † = c,
w2(ξ) = 0 for † = +,
w2(ξ) = w1(ξ)

2 for † = −,

where β : H2(X; Z/2) → H3(X; Z) is the Bockstein operator induced from the
exact coefficient sequence Z → Z → Z/2.

(2) Pin±-structures are in bijection with H1(X; Z/2) and Pinc-structures are in bijec-
tion with H2(X; Z).

Pin±-structures on a vector bundle ξ over X are related to Spin-structures on an asso-
ciated vector bundle:

Lemma 2.2. [11, Lemma 1.7] Let Spin(ξ) denote the set of equivalence classes of Spin
structures on ξ, and Pin±(ξ) denote the set of equivalence classes of Pin±-structures on
ξ. There are bijections

Pin−(ξ) → Spin(ξ ⊕ det ξ)

Pin+(ξ) → Spin(ξ ⊕ 3 det ξ).

which are natural under the actions of H1(X; Z/2).

It is well known that a Spinc-structure on a vector bundle ξ is the same as a Spin-
structure on ξ ⊕ γ, where γ is a complex line bundle with c1(γ) ≡ w2(ξ) (mod 2) (see
[16, Cor. D.4]). Similarly, a Pinc-structure on a vector bundle ξ may be viewed as a
Pin−-structure on ξ ⊕ γ, where γ is a complex line bundle with c1(γ) ≡ w1(ξ)

2 + w2(ξ)
(mod 2).
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§2B. w2-types and characteristic submanifolds. Let M be a closed, orientable 5-

manifold with π1(M) ∼= Z/2 and universal cover M̃ . The manifold M is said to be of

w2-type I if w2(M̃) 6= 0, of w2-type II if w2(M) = 0, and of w2-type III if w2(M) 6= 0 and

w2(M̃) = 0. . By the universal coefficient theorem, there is an exact sequence

0 → Ext(H1(M), Z/2) → H2(M ; Z/2) → Hom(H2(M), Z/2) → 0.

Lemma 2.3. M is of type type III ⇔ w2(M) 6= 0 and w2(M) ∈ Ext(H1(M), Z/2).

Proof. There is a commutative diagram

0 // Ext(H1(M), Z/2) //

��

H2(M ; Z/2) //

��

Hom(H2(M), Z/2) //

��

0

0 // Ext(H1(M̃), Z/2) // H2(M̃ ; Z/2) // Hom(H2(M̃), Z/2) // 0.

Let p : M̃ → M be the covering map, then TM̃ = p∗TM and w2(M̃) = p∗w2(M). By the
exact sequence π2(M) → H2(M) → H2(Z/2) → 0 and the fact H2(Z/2) = 0 (cf. [3]), it is

seen that the map H2(M̃) → H2(M) is surjective, therefore the last vertical map in the

diagram Hom(H2(M), Z/2) → Hom(H2(M̃), Z/2) is a monomorphism. Thus w2(M̃) = 0
if and only if w2(M) ∈ Ext(H1(M), Z/2). �

Remark 2.4. By this Lemma, the type II and type III manifolds are manifolds hav-
ing second Stiefel-Whitney class equal to zero on homology. The existence of contact
structures on these manifolds is shown in [7].

Recall that for a manifold Mn with fundamental group Z/2, a characteristic submanifold

P n−1 ⊂ M is defined as follows (see [18] and [7, §5]): there is a decomposition M̃ = A∪ TA

such that ∂A = ∂(TA) = P̃ , where T is the deck-transformation. Then P := P̃ /T is
called the characteristic submanifold of M . For example, if M = RPn, then P = RPn−1.
In general, let f : M → RPN (N large) be the classifying map of the universal cover,
transverse to RPN−1, then P can be taken as f−1(RPn−1). By equivariant surgery we may
assume that π1(P ) ∼= Z/2 and that the inclusion i : P ⊂ M induces an isomorphism on
π1. Different characteristic submanifolds of M are bordant, where a bordism is obtained
from a homotopy between the relevant classifying maps. The above construction also
holds in the topological category by topological transversality [12].

In the smooth category, the division of the manifolds under consideration into three
w2-types corresponds to different Pin†-structures on their characteristic submanifolds,
compare [7, Lemma 9] for † = ±.

Lemma 2.5. Let M be a smooth, orientable 5-manifold with π1(M) ∼= Z/2 and H2(M ; Z)
torsion-free. Let P ⊂ M be a characteristic submanifold (with π1(P ) ∼= π1(M)). Then
TP admits a Pin†-structure, where

† =

 c if M is of type I
− if M is of type II
+ if M is of type III
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More precisely, if M is of type II, then a Spin-structure on TM gives a Pin−-structure
on TP ; if M is of type III, then a Spin-structure on TM ⊕ 2L gives a Pin+-structure on
TP , where L is the nontrivial line bundle over M ; if M is of type I, then a Spin-structure
on TM ⊕ γ gives a Pinc-structure on TP , where γ is a complex line bundle over M such
that c1(γ) ≡ w2(M) (mod 2).

Proof. Let i : P ⊂ M be the inclusion and ν be the normal bundle of this inclusion, then
TP ⊕ ν = i∗TM . If M is of type II, a Spin-structure on TM induces a Spin-structure on
TP ⊕ ν = TP ⊕ det TP , therefore by Lemma 2.2, gives a Pin−-structure on TP .

If M is of type III, then TM ⊕ 2L admits Spin-structures and such a structure induces
a Spin-structure on TP ⊕ 3 det TP , henceforth a Pin+-structure on TP .

If M is of type I, then TP has neither Pin− nor Pin+-structures. Now TM ⊕ γ has
Spin-structures. Such a structure induces a Spin-structure on TP ⊕ det TP ⊕ i∗γ, and
hence a Pin−-structure on TP⊕i∗γ. Since c1(i

∗γ) ≡ i∗w2(M) = w1(P )2+w2(P ) (mod 2),
we obtain a Pinc-structure on TP . �

Lemma 2.6. If M is of type II or III, then different characteristic submanifolds of M
with the Pin±-structures obtained by Lemma 2.5 represent a pair of mutually inverse
elements in the corresponding bordism group ΩPin±

4 .

Proof. If we fix a Spin-structure on TM (or TM ⊕ 2L), then it’s clear that all different
characteristic submanifolds with the induced Pin±-structure are Pin±-bordant, for they
are transversal preimages of classifying maps of π1(M) and all such maps are homotopic.
Now we fix a characteristic submanifold P , then the two Pin±-structures on TP are related
by the action of w1(P ), and it’s a general fact that P with such two Pin±-structures
give rise to a pair of mutually inverse elements in the corresponding bordism group [11,
p.190]. �

3. Main Results

Now we are ready to state the classification of the manifolds under consideration.

Theorem 3.1. Two smooth, closed, orientable fibered type 5-manifolds M and M ′, with
fundamental group Z/2 and torsion-free second homology group, are diffeomorphic if and

only if they have the same w2-type, rank H2(M) = rank H2(M
′), and [P ] = [P ′] ∈ ΩPin†

4 /±,
where P and P ′ are the characteristic submanifolds and † = c,−, + for types I, II, III
respectively.

Remark 3.2. It is known that ΩPin−

4 = 0 [11]. Therefore, rank H2(M) is the only diffeo-
morphism invariant for the type II manifolds.

There are topological versions of the central extensions mentioned above and we have
groups TopPin†(n), † ∈ {c, +,−}. For the preliminaries on TopPin†(n) we refer to [11]
and [9]. Therefore we have corresponding results in the topological category.

Lemma 3.3. Let M be a topological, orientable 5-manifold with π1(M) ∼= Z/2 and
H2(M ; Z) torsion-free. Let P ⊂ M be a characteristic submanifold (with π1(P ) ∼= π1(M)).
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Then TP admits a TopPin†-structure, where

† =

 c if M is of type I
− if M is of type II
+ if M is of type III

Theorem 3.4. Two topological, closed, orientable fibered type 5-manifolds M and M ′,
with fundamental group Z/2 and torsion-free second homology group, are homeomorphic
if and only if they have the same w2-type, rank H2(M) = rank H2(M

′) and [P ] = [P ′] ∈
ΩTopPin†

4 /±, where P and P ′ are characteristic submanifolds and † = c,−, + for type I,
II, III respectively.

The groups ΩPin±

4 and ΩTopPin±

4 are computed in [11]. ΩTopPinc

4 is computed in [9, p.654].
(Note that the rôle of Pin+ and Pin− in [9] are reversed since in that paper the authors
consider normal structures whereas here we use the convention in [11], looking at the
tangential Gauss-map.) In a similar way we will compute ΩPinc

4 below. We list the values
of these groups:

† ΩPin†

4 invariants generators

c Z/8⊕ Z/2 (arf, w2
2) RP4, CP2

+ Z/16 ? RP4

− 0 – –

† ΩTopPin†

4 invariants generators

c Z/2⊕ Z/8⊕ Z/2 (KS, arf, w2
2) E8, RP4, CP2

+ Z/2⊕ Z/8 (KS, arf) E8, RP4

− Z/2 KS E8

Computation of ΩPinc

4 : the extension

1 → Pin− → Pinc → U(1) → 1

induces Gysin-sequence (compare [9, p.654])

· · · → ΩPin−

4 → ΩPinc

4
∩ c−→ ΩPin−

2 (BU(1)) → ΩPin−

3 → · · · .

Since ΩPin−

4 = ΩPin−

3 = 0 (see [11]), we have an isomorphism

ΩPinc

4
∩ c−→ ΩPin−

2 (BU(1))

and the latter group is the same as ΩTopPin−

2 (BU(1)), which is computed in [9]. The
invariants in Theorem 3.1 are subject to certain relations.

Definition 3.5. Denote r = rank H2(M), q = [P ] ∈ ΩPin+

4 /± = {0, 1, . . . , 8} and (q, s) =
[P ] ∈ ΩPinc

4 /± = {0, 1, . . . , 4} × {0, 1}.

As an application of the semi-characteristic class [17], we have
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Theorem 3.6. Let M be a smooth, orientable 5-manifold with π1(M) ∼= Z/2 and torsion-
free H2(M), having the invariants as above. Then these invariants subject to the following
relations

type relation

I q + s + r ≡ 1 (mod 2)

II r ≡ 1 (mod 2)

III q + r ≡ 1 (mod 2)

Now we give a list of all the manifolds under consideration, realizing the possible in-
variants. We need some preliminaries.

By a computation of the surgery exact sequence, it is shown in [24] that in the smooth
(or PL) category, there are 4 distinct diffeomorphism types of manifolds which are homo-
topy equivalent to RP5, these are called fake RP5. An explicit construction using links
of singularities (Brieskorn spheres) can be found in [7]. Following the notations there, we
denote these fake RP5 by X5(q), q = 1, 3, 5, 7, with X5(1) = RP5. These manifolds fall
into the class of manifolds under consideration. They are of type III and the Pin+-bordism
class of the corresponding characteristic submanifold is q ∈ ΩPin+

4 /± = {0, 1, . . . , 8}, see
[7]. In our list of standard forms these fake projective spaces will serve as building blocks
under the operation ]S1—“connected-sum along S1”, which we explain now, compare [9].

Connected sum along a circle. Let Mi (i = 1, 2) be oriented 5-manifolds with fun-
damental group Z/2 or Z, and at least one of the fundamental groups is Z/2. Denote
the trivial oriented 4-dimensional real disc bundle over S1 by E. Choose embeddings of
E into M1 and M2, representing a generator of π1(Mi), such that the first embedding
preserves the orientation and the second reverses it. Then we define

M1 ]S1M2 := (M1 − E) ∪∂ (M2 − E).

Note that if one of the 5-manifolds admits an orientation reversing automorphism, then
the construction doesn’t depend on the orientations, and this is the case for the building
blocks in the list below, namely, S2 × RP3, S2 × S2 × S1, X5(q) and CP2 × S1 admit
orientation reversing automorphisms. (The fact that X5(q) admits orientation reversing
automorphisms follows from that RP5 admits orientation reversing automorphisms and
that the action of Aut(RP5) on the structure set S (RP5) is trivial.)

The Seifert-van Kampen theorem implies that π1(M1 ]S1M2) ∼= Z/2. The Mayer-
Vietoris exact sequence implies that H2(M1 ]S1M2) is torsion-free, and hence M1 ]S1M2 is
of fibered type. The homology rank H2(M1 ]S1M2) = rank H2(M1) + rank H2(M2) + 1 if
both fundamental groups are Z/2, and rank H2(M1 ]S1M2) = rank H2(M1)+rank H2(M2)
if one of the fundamental groups is Z.

Since π1SO(4) ∼= Z/2, there are actually two possibilities to form M1 ]S1M2. However,
from the classification result, it turns out that this ambiguity happens only when we con-
struct X5(q) ]S1X5(q′). This does depend on the framings, and therefore X5(q) ]S1X5(q′)
represents two manifolds. Note that the characteristic submanifold of M1 ]S1M2 is P1 ]S1P2

(see [9, p.651] for the definition of ]S1 for nonorientable 4-manifolds with fundamental
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group Z/2). Therefore if we fix Pin+-structures on each of the characteristic submanifolds,
then X5(q) ]S1X5(q′) is well-defined.

This construction allows us to construct manifolds with a given bordism class of char-
acteristic submanifold. Note that P1 ]S1P2 corresponds to the addition in the bordism
group ΩPin†

4 . Now for q = 0, 2, 4, 6, 8, choose l, l′ ∈ {1, 3, 5, 7} and appropriate Pin+-
structures on the characteristic submanifolds of X5(l) and X5(l′), we can form a manifold

X5(l) ]S1X5(l′) such that the characteristic submanifold [P ] = q ∈ ΩPin+

4 /±. We denote
this manifold also by X5(q). For example, we can form X5(0) = X5(1) ]S1X5(1) and
X5(2) = X5(1) ]S1X5(1) with different glueing maps.

With these notations, the list of standard forms of the manifolds under consideration
is given as follows:

Theorem 3.7. Every closed smooth orientable fibered type 5-manifold with fundamental
group Z/2 and second homology group Zr is diffeomorphic to exactly one of the following
standard forms:

type I : X5(q) ]S1(S2×RP3) ]S1((]k S2×S2)×S1), r = 2k+(5+(−1)q)/2, q ∈ {0, . . . , 4};

X5(q) ]S1(CP2×S1) ]S1((]k S2×S2)×S1), r = 2k+(3+(−1)q)/2, q ∈ {0, . . . , 4};

type II : (S2 × RP3) ]S1((]k S2 × S2)× S1), r = 2k + 1;

type III : X5(q) ]S1((]k S2 × S2)× S1), r = 2k + (1 + (−1)q)/2, q ∈ {0, . . . , 8}.

Where ]k S2 × S2 is the connected sum of k copies of S2 × S2.

Remark 3.8. There can be other descriptions of the manifolds in the list. For example,
we have a (more symmetric) description of the type II standard forms

(S2 × RP3) ]S1 · · · ]S1(S2 × RP3)︸ ︷︷ ︸
k times

.

Remark 3.9. Note that the universal covers of the manifolds under consideration have
torsion-free second homology, therefore, according to the results of Smale and Barden,
are diffeomorphic to ]r(S

2 × S3) or B]r−1(S
2 × S3), where B is the nontrivial S3-bundle

over S2. From this point of view, Theorem 3.7 gives the classification of orientation
preserving free involutions on ]r(S

2 × S3) and B]r−1(S
2 × S3), which act trivially on

H2. For example, consider the orientation preserving free involution on S2 × S3 given by
(x, y) 7→ (r(x),−y), where r : S2 → S2 is the reflection along a line and − : S3 → S3 is the
antipodal map. Then the quotient space is actually the sphere bundle of the nontrivial
orientable R3-bundle over RP3. From Theorem 3.1 it is easy to see that this is just X5(0).

Remark 3.10. The above list may be of use in the study of geometric structures on
these manifolds. Geiges and Thomas [7] show that the type II and type III manifolds
admit contact structures. On the other hand, a necessary condition for the existence
of contact structures on M2n+1 is the reduction of the structure group of TM to U(n),
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hence the vanishing of integral Stiefel-Whitney classes W2i+1(M). It is easy to see that
the type I manifolds satisfy this necessary condition. These manifolds also satisfy the
necessary conditions on the cup length and Betti numbers in [2] for the existence of
Sasakian structures. Therefore it would be interesting to study these geometric structures
on these manifolds.

The proof of Theorem 3.7. By the Van-Kampen theorem and the Mayer-Vietoris sequence
it is easy to see that all the manifolds in the list are orientable, with fundamental group
Z/2 and torsion-free H2, and the π1-action on H2 is trivial. Therefore we only need to
verify that these manifolds have different invariants and realize all the possible invariants.

Type II: rank H2((S
2 × RP3) ]S1((]k S2 × S2)× S1)) = 2k + 1.

Type III: the characteristic submanifold of X5(q) ]S1((]k S2 × S2) × S1) is just that of

X5(q), which corresponds to q ∈ ΩPin+

4 /± = {0, · · · , 8}.
Type I: similarly, the manifold X5(q) ]S1(CP2×S1) ]S1((]k S2×S2)×S1) has characteristic

submanifold invariant (q, 1) ∈ ΩPinc

4 /±. �

To give a list of standard forms of the manifolds under consideration in the topological
case, we need a topological 5-manifold which is homotopy equivalent to S2 × RP3 and

whose characteristic submanifold represents the nontrivial element in ΩTopPin−

4 = Z/2.
Note that by Theorem 3.4, if such manifolds exist, then the homeomorphism type is
unique. Following the notation in [9], we denote this manifold by ∗(S2 × RP3). We now
give the construction of ∗(S2 × RP3).

Let W = S2×RP3 ]S1E8×S1, so that π1(W ) = Z/2 and the characteristic submanifold
of W is S2×RP2 ] E8. Let h : W → S2×RP3 be a degree 1 normal map which extends the
degree 1 normal map f : S2×RP2 ] E8 → S2×RP2. Then by doing codimension 1 surgery
on h we obtain a W ′ with characteristic submanifold P = ∗(S2 × RP2) and a degree 1
normal map h′ : W ′ → S2 × RP3 extending a homotopy equivalence f ′ : ∗ (S2 × RP2) →
S2 × RP2 (cf. [9] for the construction of ∗(S2 × RP2)). The π-π theorem allows us to
do further surgeries on the complement of a tubular neighbourhood of P to obtain a
homotopy equivalence.

In the topological category there are four fake RP5’s. Two of them are smoothable.
We denote these manifolds by X5(p, q) (p ∈ {0, 1}, q ∈ {1, 3}) such that the charac-

teristic submanifold of X5(p, q) is (p, q) ∈ ΩTopPin+

4 /± = {0, 1} × {0, 1, 2, 3, 4}. Similar
to the smooth case, we can also construct X5(p, q) (p ∈ {0, 1}, q ∈ {0, 2, 4}) by circle
connected sum of fake RP5. (Note that the Kirby-Siebenmann invariant is additive under
the connected sum operation [20]).

Theorem 3.11. Every closed topological orientable fibered type 5-manifold with funda-
mental group Z/2 and second homology group Zr is homeomorphic to exactly one of the
following standard forms:

type I : X5(p, q) ]S1(S2 × RP3) ]S1((]k S2 × S2)× S1),

r = 2k + (5 + (−1)q)/2, q ∈ {0, . . . , 4}, p = 0, 1;
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X5(p, q) ]S1(CP2 × S1) ]S1((]k S2 × S2)× S1),

r = 2k + (3 + (−1)q)/2, q ∈ {0, . . . , 4}, p = 0, 1;

type II : (S2 × RP3) ]S1((]k S2 × S2)× S1), r = 2k + 1;

∗(S2 × RP3) ]S1((]k S2 × S2)× S1), r = 2k + 1;

type III : X5(p, q) ]S1((]k S2×S2)×S1), r = 2k+(1+(−1)q)/2, q ∈ {0, . . . , 4}, p = 0, 1.

From the above list, we can also give a homotopy classification.

Theorem 3.12. The homotopy type of M5 is determined by its w2-type, rank H2(M),
and in the type I case the number 〈w2(M)2 ∪ t + t5, [M ]〉 ∈ Z/2, where t ∈ H1(M ; Z/2)
is the nonzero element.

Proof. Note that X5(q) and X5(p, q) are homotopy equivalent to RP5 and the operation
]S1 preserves homotopy equivalence. This proves the theorem for the type II and III cases.
For type I manifolds, the s-component of the characteristic submanifold P is determined
by 〈w2(P )2, [P ]〉. Since w2(P ) = i∗(w2(M) + t2), 〈w2(P )2, [P ]〉 = 〈w2(M)2 ∪ t + t5, [M ]〉,
and this is a homotopy invariant. �

4. Bordism and Surgery

§4A. The framework of modified surgery. The main tool used in our solution of
the classification problem is the modified surgery developed by Kreck [13], [14]. We first
briefly describe how this theory is applied in our situation.

Let p : B → BO be a fibration, and ν̄ : M2m−1 → B be a lift of the normal Gauss map
ν : M → BO classifying the stable normal bundle of M . Such a lift ν̄ is called a normal
B-structure of M , and the pair (M, ν̄) is called a normal k-smoothing in B if the map
ν̄ is a (k + 1)-equivalence. Manifolds with normal B-structures form a bordism theory
Ω∗(B, p), described in Stong [22, Chap. II].

Suppose (M2m−1
i , ν̄i) (i = 1, 2) are two normal (m − 1)-smoothings in B, and suppose

that (W 2m, ν̄) is a B-bordism between (M2m−1
1 , ν̄1) and (M2m−1

2 , ν̄2). Then the surgery
obstruction for W 2m being B-bordant rel. boundary to an s-cobordism (implying that M1

and M2 are diffeomorphic) is a (−1)m-quadratic form over (Λ, S), where Λ = Z[π1(B)] is
the group ring and S ⊂ Λ is a certain form-parameter subgroup. The surgery obstruction
lies in an abelian group Ls,τ

2m(π1(B), w1(B), S) ([13, Theorem 5.2 b]), where w1(B) is the
orientation character. This group is related to Wall’s L-group in the following diagram
([13, p.37])

0 // Ls
2m(π1, w1) // Ls,τ

2m(π1, w1) //

��

Wh(π1)

Ls,τ
2m(π1, w1, S)

��
0
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where Wh(π1) is the Whitehead group (see [19]).
In our case, π1 = Z/2, Wh(Z/2) = 0 and Ls

6(Z/2) = Z/2. Therefore our surgery
obstruction group is either 0 or Z/2. In the latter case, it is isomorphic to Ls

6(Z/2), the
non-trivial element is detected by the Kervaire-Arf invariant (see Wall [24, §13A]). Since
the closed manifold S3× S3 admits a framing with Arf invariant 1, we may eliminate the
surgery obstruction by connected sum in the interior of W . We have the following:

Proposition 4.1. Two smooth 5-manifolds M1 and M2 with fundamental group Z/2 are
diffeomorphic if they have bordant normal 2-smoothings in some fibration B.

The fibration B is called the normal 2-type of M if p is 3-coconnected. This is an
invariant of M . Because of this proposition, the solution to the classification problem
consists of two steps: first, determine the normal 2-types B for the 5-manifolds under
consideration, and then determine invariants to detect the corresponding bordism groups
Ω5(B, p).

§4B. Normal 2-types. Let M5 be a fibered type 5-maniofold. The universal coefficient

theorem implies that H2(M̃)⊗Z[π1]Z → H2(M) is an isomorphism. Since the π1(M)-action

on H2(M̃) is trivial, we have H2(M̃) ⊗Z[π1] Z = H2(M̃), therefore H2(M̃) → H2(M)
is an isomorphism, also is the second Hurewicz map π2(M) → H2(M). Now suppose
π1(M) ∼= Z/2 and H2(M) ∼= Zr.

We start with the description of the normal 2-types for type II manifolds. It is the
simplest situation and illuminates the ideas.

Type II: consider the fibration

p : B = RP∞ × (CP∞)r ×B Spin → BO,

where p : B → BO is trivial on the first two factors and on B Spin it is the canonical
projection from B Spin onto BO. A lift ν̄ : M → B is given as follows: the map to RP∞

is the classifying map of the fundamental group; choose a basis {u1, . . . , ur} of the free
part of H2(M) ∼= Zr⊕Z/2, by realizing each element ui by a map to CP∞ we get a map to
(CP∞)r; a Spin-structure on νM gives rise to a map to B Spin. It’s easy to see that (B, p)
is the normal 2-type of type II manifolds and that ν̄ induces an isomorphism on π1 and
H2. Since the second Hurewicz maps π2(M) → H2(M) and π2((CP∞)r) → H2((CP∞)r)
are isomorphisms, ν̄ is a normal 2-smoothing.

Type III: let η be the canonical real line bundle over RP∞, and 2η = η⊕ η. Consider the
fibration

p : B = RP∞ × (CP∞)r ×B Spin
f1×f2−→ BO ×BO

⊕−→ BO,

where f1 : RP∞ × (CP∞)r → BO is the classifying map of p∗1(2η), (where p1 : RP∞ ×
(CP∞)r → RP∞ is the projection map,) f2 : B Spin → BO is the canonical projection
and ⊕ : BO × BO → BO is the H-space structure on BO induced by the Whitney sum
of vector bundles. A lift ν̄ : M → B is given as follows: the map to RP∞× (CP∞)r is the
same as in type II. Since w2(2η) = w1(η)2 is the nonzero element in Ext(H1(RP∞), Z/2)
and w2(M) is the nonzero element in Ext(H1(M), Z/2), we have w2(ν̄

∗2η) = w2(νM).
This implies that νM − ν̄∗2η admits a Spin-structure. Such a structure induces a map to
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B Spin. Then ν̄ is a lift of ν. It is easy to see that (B, p) is the normal 2-type of type III
manifolds and ν̄ is a normal 2-smoothing.

Type I: let γ be the canonical complex line bundle over CP∞. Consider the fibration

p : B = RP∞ × (CP∞)r ×B Spin
f1×f2−→ BO ×BO

⊕−→ BO,

where f1 : RP∞ × (CP∞)r → BO is the classifying map of p∗2γ, p2 : RP∞ × (CP∞)r →
CP∞ is the projection map to the first CP∞. A lift ν̄ : M → B is given as follows:
since the Bockstein homomorphism β : H2(M ; Z/2) → H3(M ; Z) is trivial, w2(M) is
the mod 2 reduction of an integral cohomology class. Since w2(M) is not contained in
Ext(H1(M), Z/2), this integral cohomology class can be taken as a primitive one, say, u1

and we extend it to a basis {u1, . . . , ur}. Then the map to RP∞ × (CP∞)r is the same
as above. Now νM − ν̄∗γ admits a Spin-structure, this gives rise to a map M → B Spin.
Then ν̄ is a lift of ν. It is easy to see that (B, p) is the normal 2-type of type I manifolds
and ν̄ is a normal 2-smoothing.

§4C. Computation of the bordism groups. In this subsection we calculate the bor-
dism groups Ω5(B, p) for our types:

ΩSpin
5 (RP∞ × (CP∞)r), ΩSpin

5 (RP∞ × (CP∞)r; p∗12η), ΩSpin
5 (RP∞ × (CP∞)r; p∗2γ).

The main tools are the Atiyah-Hirzebruch spectral sequence and the Adams spectral
sequence. Before doing the calculation, we need to compute ΩSpin

5 (RP∞), ΩSpin
5 (RP∞; 2η)

and ΩSpin
5 (RP∞ × CP∞; p∗2γ). These groups can be calculated via the Adams spectral

sequence. Here we give an alternative argument, emphasizing the role of the characteristic
submanifolds.

There are long exact sequences (this is a special case of [6, (3.2)])

· · · → ΩSpin
n → ΩSpin

n (RP∞; kη)
∂→ ΩSpin

n−1(RP∞; (k + 1)η) → ΩSpin
n−1 → . . .

and

· · · → ΩSpin
n (CP∞; γ) → ΩSpin

n (RP∞ × CP∞; p∗2γ)
∂→ ΩSpin

n−1(RP∞ × CP∞; η × γ) → . . .

where the maps ∂ correspond to taking a characteristic submanifold. In particular we

have an isomorphism ΩSpin
5 (RP∞)

∼=→ ΩSpin
4 (RP∞; η), together with exact sequences

0 → ΩSpin
5 (RP∞; 2η) → ΩSpin

4 (RP∞; 3η)

and

ΩSpin
5 (CP∞; γ) → ΩSpin

5 (RP∞×CP∞; p∗2γ) → ΩSpin
4 (RP∞×CP∞; η× γ) → ΩSpin

4 (CP∞; γ)

Furthermore, we have

ΩSpin
n (RP∞; η) ∼= ΩPin−

n , ΩSpin
n (RP∞; 3η) ∼= ΩPin+

n , ΩSpin
n (RP∞ × CP∞; η × γ) ∼= ΩPinc

n .

This is seen as follows: first, given [Xn, f ] ∈ ΩSpin
n (RP∞; η), clearly

w1(f
∗η) = w1(X) = w1(det TX).

Therefore by Lemma 2.2, the Spin-structure on TX ⊕ f ∗η induces a Pin−-structure on
TX and we have a well-defined map ΩSpin

n (RP∞; η) → ΩPin−

n . Given Xn together with
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a Pin−-structure, by letting f : X → RP∞ be the classifying map for w1(X), we obtain
[X, f ] ∈ ΩSpin

n (RP∞; η). These two maps are inverse to each other. The Pin+ and Pinc

cases are similar.
The Pin±-bordism groups in low dimensions were calculated in [11]: we have ΩPin−

4 = 0

and ΩPin+

4
∼= Z/16, generated by ±RP4. Also it is clear that under the map

ΩSpin
5 (RP∞; 2η) → ΩSpin

4 (RP∞; 3η) ∼= ΩPin+

4 ,

the element [RP5, inclusion] goes to ±RP4, therefore the map

ΩSpin
5 (RP∞; 2η) → ΩSpin

4 (RP∞; 3η)

is an isomorphism. An easy Atiyah-Hirzebruch spectral sequence calculation shows that

ΩSpin
5 (CP∞; γ) ∼= Ω̃Spin

7 (CP∞) = 0 and ΩSpin
4 (CP∞; γ) ∼= Ω̃Spin

6 (CP∞) ∼= Z ⊕ Z. Therefore

the map ΩSpin
5 (RP∞×CP∞; p∗2γ) → ΩSpin

4 (RP∞×CP∞; η×γ) is also an isomorphism. To
summarize, we have

Lemma 4.2. Taking characteristic submanifolds gives isomorphisms

ΩSpin
5 (RP∞) ∼= ΩPin−

4 , ΩSpin
5 (RP∞; 2η) ∼= ΩPin+

4 , ΩSpin
5 (RP∞ × CP∞; p∗2γ) ∼= ΩPinc

4 .

Now we begin the calculation of the bordism groups of interest. As in the last subsec-
tion, we start with the type II manifolds, which is the simplest case.

Type II: recall that the normal 2-type is

p : B = RP∞ × (CP∞)r ×B Spin → BO,

where p : B → BO is trivial on the first two factors and is the canonical projection
from B Spin onto BO. Therefore the bordism group Ω5(B, p) is the Spin-bordism group

ΩSpin
5 (RP∞ × (CP∞)r). To compute this bordism group, we apply the Atiyah-Hirzebruch

spectral sequence. The E2-terms are E2
p,q = Hp(RP∞ × (CP∞)r; ΩSpin

q ).

To illuminate the situation, we first consider the group ΩSpin
5 (RP∞×CP∞). The relevant

terms and differentials in the spectral sequence are depicted as follows:

0 2 4 6
0

2

4

6

��������

��������??
?

?
?

��������??
?

��������??
?��������OOOOOOOO

gg

��������OOOOOOOO

gg

��������
OOOOOOOO

gg ��������

JJJJJJJJJJJJ

dd

·??
?

��������
OOOOOOOO

gg

The E2-terms are:
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• E2
1,4 = H1(RP∞ × CP∞) ∼= Z/2,

• E2
2,2 = H2(RP∞ × CP∞; Z/2) ∼= Z/2⊕ Z/2,

• E2
3,1 = E2

3,2 = H3(RP∞ × CP∞; Z/2) ∼= Z/2⊕ Z/2,

• E2
4,1 = E2

4,2 = H4(RP∞ × CP∞; Z/2) ∼= (Z/2)3,

• E2
5,0 = H5(RP∞ × CP∞) ∼= (Z/2)3,

• E2
5,1 = H5(RP∞ × CP∞; Z/2) ∼= (Z/2)3,

• E2
6,0 = H6(RP∞ × CP∞) ∼= Z/2.

The differential d2 : E2
p,1 → E2

p−2,2 is dual to the Steenrod square

Sq2 : Hp−2(RP∞ × CP∞; Z/2) → Hp(RP∞ × CP∞; Z/2);

the differential d2 : E2
p,0 → E2

p−2,1 is the mod 2 reduction composed with the dual of the
Steenrod square

Hp(RP∞ × CP∞; Z) → Hp(RP∞ × CP∞; Z/2)
(Sq2)∗−→ Hp−2(RP∞ × CP∞; Z/2).

With these identifications, the differentials d2 starting from or ending at the line p+q = 5
are easily computed. Let α ∈ H1(RP∞; Z/2), β ∈ H2(CP∞; Z/2) denote the generators,
then on the E3-page, we have three nontrivial terms in the line p + q = 5: E3

5,0 = Z/2,

dual to α3β; E3
4,1 = Z/2, dual to α2β; and E3

1,4 = Z/2. The terms E3
5,0 and E3

4,1 must
survive to infinity, for there are no non-trivial differentials starting from or ending at these
two positions (see the picture above).

There is a possibly non-trivial differential d3 : E3
4,2 → E3

1,4. To see this differential is

indeed non-trivial, we just need to note that the terms E3
1,4 = E2

1,4 = H1(RP∞×CP∞; Z/2)

come from RP∞ and ΩSpin
5 (RP∞) = ΩPin−

4 = 0. Therefore on the E∞-page, in the line
p + q = 5, the nontrivial terms are

E∞
5,0 = H3(RP∞)⊗H2(CP∞) ∼= Z/2, E∞

4,1 = H2(RP∞; Z/2)⊗H2(CP∞; Z/2) ∼= Z/2.

The calculation is finished once the extension problem is solved. We state the result in
the following lemma. Let τ : CP∞ → CP∞ be the involution on CP∞ with τ∗ = −1 on
H2(CP∞), then τ induces an involution τ∗ on ΩSpin

5 (RP∞×CP∞). Let α ∈ H1(RP∞; Z/2),
β ∈ H2(CP∞; Z/2) be the nonzero elements.

Lemma 4.3. The short exact sequence

0 → Z/2 → ΩSpin
5 (RP∞ × CP∞) → Z/2 → 0

is nonsplit, thus ΩSpin
5 (RP∞ × CP∞) ∼= Z/4. The elements ±1 are represented by RP3 ×

CP1 ↪→ RP∞ ×CP∞. A bordism class [X5, f ] equals ±1 if and only if 〈α3 ∪ β, f∗[X]〉 =
1 ∈ Z/2. There is a relation 〈α ∪ β2, f∗[X]〉 = 0. The action τ∗ is the multiplication by
−1.

Proof. There is a product map

ϕ : ΩSpin
3 (RP∞)⊗ ΩSpin

2 (CP∞) → ΩSpin
5 (RP∞ × CP∞),
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induced by the product of manifolds. There is a corresponding product map on the
Atiyah-Hirzebruch spectral sequences

Φ: Er
p,q(1)⊗ Er

s,t(2) → Er
p+s,q+t(3),

where on the E∞-page Φ is compatible with the filtrations on the bordism groups and on
the E2-page it is just the cross product map (see [23, p. 352]). It is easy to see that the

Atiyah-Hirzebruch spectral sequence of ΩSpin
2 (CP∞) collapses on the line p + q = 2. Also

since ΩSpin
3 (RP∞) ∼= ΩPin−

2
∼= Z/8 (by [11]), we see that the Atiyah-Hirzebruch spectral

sequence of ΩSpin
3 (RP∞) collapses on the line p + q = 3. From the knowledge of E∞

5,0(3)
and E∞

4,1(3) discussed above, we see there are surjections

Φ: E∞
3,0(1)⊗ E∞

2,0(2) → E∞
5,0(3), Φ: E∞

2,1(1)⊗ E∞
2,0(2) → E∞

4,1(3).

Therefore ϕ is surjective. Now ΩSpin
3 (RP∞) ∼= Z/8 is generated by [RP3, inclusion] and

ΩSpin
2 (CP∞) ∼= ΩSpin

2 ⊕H2(CP∞). The group ΩSpin
2 is generated by T 2 with the Lie group

spin structure. The product ϕ(RP3, T 2) = 0, since the map RP3 × T 2 → RP∞ × CP∞

factors through RP∞ and ΩSpin
5 (RP∞) = 0. Therefore we have a surjection

Z/8⊗ Z → ΩSpin
5 (RP∞ × CP∞).

This shows that ΩSpin
5 (RP∞ × CP∞) ∼= Z/4, generated by RP3 × CP1 ↪→ RP∞ × CP∞

and [X, (idRP∞ × τ) ◦ f ] = −[X, f ]. The fact that a bordism class [X5, f ] equals ±1 if
and only if 〈α3 ∪ β, f∗[X]〉 = 1 ∈ Z/2 comes from the fact that E∞

5,0 is dual to α3β. The

relation 〈α ∪ β2, f∗[X]〉 = 0 comes from the fact that the dual of d2 maps αβ to αβ2. �

In general, on the E∞-page of the Atiyah-Hirzebruch spectral sequence for ΩSpin
5 (RP∞×

(CP∞)r), the nontrivial terms in the line p + q = 5 are

E∞
5,0 =

⊕
i

H3(RP∞)⊗H2(CP∞
i )⊕

⊕
i6=j

H1(RP∞)⊗H2(CP∞
i )⊗H2(CP∞

j )

∼= (Z/2)r+r(r−1)/2

E∞
4,1 =

⊕
i

H2(RP∞; Z/2)⊗H2(CP∞
i ; Z/2)

∼= (Z/2)r

Using the same argument as in Lemma 4.3, we have the following:

Proposition 4.4 (type II). The bordism group ΩSpin
5 (RP∞ × (CP∞)r) is isomorphic to

(Z/4)r ⊕ (Z/2)r(r−1)/2. Let α ∈ H1(RP∞; Z/2), βi ∈ H2(CP∞
i ; Z/2) be the nonzero ele-

ments, τi be the involution on CP∞
i with τi∗ = −1 on H2, then

(1) the Z/2-factors are determined by the invariants 〈α ∪ βi ∪ βj, f∗[X]〉 ∈ Z/2, with
i, j = 1, · · · r, and i > j,

(2) a bordism class [X, f ] has component ±1 in the i-th Z/4-factor if and only if
〈α3 ∪ βi, f∗[X]〉 = 1 ∈ Z/2, i = 1, · · · r,

(3) there are relations 〈α ∪ β2
i , f∗[X]〉 = 0 for all i,
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(4) the action of τi on the bordism group is multiplication by −1 on the i-th Z/4-factor
and trivial on other factors.

Type III: the normal 2-type is

p : B = RP∞ × (CP∞)r ×B Spin → BO,

where the map on RP∞ is the classifying map of the vector bundle 2η. Therefore the
bordism group Ω5(B, p) is the twisted Spin-bordism group

ΩSpin
5 (RP∞ × (CP∞)r; p∗12η) = Ω̃Spin

7 (Th(p∗12η)).

In the Atiyah-Hirzebruch spectral sequence, the E2-terms are

E2
p,q = H̃p(Th(p∗12η); ΩSpin

q ).

Since 2η is orientable, we may apply the Thom isomorphism and after a degree shift
p 7→ p − 2 we have E2

p,q = Hp(RP∞ × (CP∞)r; ΩSpin
q ). Therefore the E2-terms are the

same as in the type II case, and in the identification of the differentials d2, we need to
replace Sq2 by Sq2 + w2(2η).

As before, we first look at the group ΩSpin
5 (RP∞×CP∞; p∗12η). Clearly ΩSpin

5 (RP∞; 2η) ∼=
Z/16 is a direct summand. Besides this, there are two terms on the E∞-page at positions
(5, 0) and (4, 1) respectively, each isomorphic to Z/2. The extension problem is solved in
the following lemma.

Lemma 4.5. We have an isomorphism

ΩSpin
5 (RP∞ × CP∞; p∗1(2η)) ∼= Z/4⊕ ΩPin+

4 .

A bordism class [X, f ] has component ±1 in the Z/4-factor if and only if 〈α3 ∪ β, f∗[X]〉 =
1 ∈ Z/2. There is a relation 〈α3 ∪ β, f∗[X]〉 = 〈α ∪ β2, f∗[X]〉. The action τ∗ of the
involution τ on CP∞ is the multiplication by −1 on the Z/4-factor and trivial on the

ΩPin+

4 -factor.

Proof. From the above discussion we have

ΩSpin
5 (RP∞ × CP∞; p∗1(2η)) ∼= G⊕ ΩPin+

4 ,

where the order of G is 4. To determine G, the geometric argument in Lemma 4.3 doesn’t
work since now we have ΩSpin

3 (RP∞; 2η) ∼= ΩPin+

2 = 0. Thus we turn to consider the

Adams spectral sequence for Ω̃Spin
t−s−2(RP∞ × CP∞; p∗1(2η)) = πS

t−s(Th(p∗1(2η)) ∧MSpin))
at prime 2:

Exts,tA (H∗(Th(p∗1(2η)) ∧MSpin; F2); F2) ⇒ πS
t−s(Th(p∗1(2η)) ∧MSpin))/non 2-torsion,

where A is the mod 2 Steenrod algebra. We have

H∗(Th(p∗1(2η)) ∧MSpin; F2) ∼= H̃∗(Th(p∗1(2η); F2)⊗F2 H∗(MSpin; F2),

where H̃∗(Th(p∗1(2η); F2) is a free F2[t, x]-module on one generator u2 of degree 2 (the
Thom class), where deg t = 1 and deg x = 2, and

Sq(u2) = u2 + t2u2.
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From this we may write down the A-module structure of H∗(Th(p∗1(2η)) ∧ MSpin; F2)
in degree≤ 9, produce a minimal free A-resolution of H∗(Th(p∗1(2η))∧MSpin; F2) which
corresponds to the E2-term of the spectral sequence. In practice, we may ignore the pure
terms from RP∞, since we already know the contribution of RP∞ is a Z/16-summand.

In low degrees, the E2-page of the spectral sequence is depicted as follows (with hori-
zontal index t − s and vertical index s. The calculation is confirmed by Olbermann and
Abczynski using a computer program developed by Bruner):

· · · · · ·

· · · · · ·

· · · · · ·

· · · · · ·

· · · · · ·

· · · · · ·

4 5 6 7 8 9
0
1
2
3
4
5

��������
��������
��������
��������
...

��������
��������
��������
��������
��������
...

��������
��������

��������

This shows that G ∼= Z/4.
The fact that the generators of the Z/4-factor are detected by the invariant 〈α3 ∪

β, f∗[X]〉 ∈ Z/2 and the relation 〈α3 ∪ β, f∗[X]〉 = 〈α ∪ β2, f∗[X]〉 are seen from the
Atiyah-Hirzebruch spectral sequence, as in the type II case. From this, we claim that
[X5(0), f ] represents a generator of Z/4, where

f : X5(0) → RP∞ × CP∞

is a normal 2-smoothing. To see this, recall that

X5(0) = (RP5 − S1 ×D4) ∪∂ (RP5 − S1 ×D4),

and RP5 − S1 ×D4 is the disc bundle D(2η) over RP3. Therefore X5(0) is actually the
sphere bundle S(2η ⊕ R). The cohomology groups are easily computed and we see that
〈α3 ∪ β, f∗[X]〉 = 1.

Now let r : X5(0) → X5(0) be the fiberwise antipodal map, we have a commutative
diagramm

X5(0)
f //

r

��

RP∞ × CP∞

(id,τ)

��
X5(0)

f // RP∞ × CP∞.

Since r is orientation reversing, we conclude that the action of τ on the Z/4 factor is

multiplication by −1. It’s also clear that the action of τ on the ΩPin+

4 is trivial. �
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In the general situation, the calculation is similar, and we have

Proposition 4.6 (type III). The bordism group ΩSpin
5 (RP∞× (CP∞)r; p∗1(2η)) is isomor-

phic to (Z/4)r ⊕ (Z/2)r(r−1)/2 ⊕ ΩPin+

4 . Furthermore,

(1) the Z/2-factors are determined by the invariants 〈α ∪ βi ∪ βj, f∗[X]〉 ∈ Z/2, with
i, j = 1, · · · r, and i > j,

(2) a bordism class [X, f ] has component ±1 in the i-th Z/4-factor if and only if
〈α3 ∪ βi, f∗[X]〉 = 1 ∈ Z/2, i = 1, · · · r,

(3) there are relations 〈α ∪ β2
i , f∗[X]〉 = 〈α3 ∪ βi, f∗[X]〉 for all i,

(4) the action τi on the bordism group is the multiplication by −1 on the i-th Z/4-factor
and trivial on other factors.

Type I: recall that the normal 2-type is

p : B = RP∞ × (CP∞)r ×B Spin → BO,

where the map p on the first CP∞ is the classifying map of the vector bundle γ. Therefore
the bordism group Ω5(B, p) is the twisted Spin-bordism group

ΩSpin
5 (RP∞ × (CP∞)r; p∗2γ) = Ω̃Spin

7 (Th(p∗2γ)).

As before we apply the Thom isomorphism and the E2-terms in the Atiyah-Hirzebruch

spectral sequence are E2
p,q = H̃p(RP∞× (CP∞)r; ΩSpin

q ), where in the identification of the

differentials d2, we replace Sq2 by Sq2 + w2(γ). The calculation is analogous to the type
II case.

Proposition 4.7 (type I). The bordism group ΩSpin
5 (RP∞ × (CP∞)r; p∗2γ) is isomorphic

to (Z/4)r−1 ⊕ (Z/2)r(r−1)/2 ⊕ ΩPinc

4 . Furthermore,

(1) the Z/2-factors are determined by the invariants 〈α ∪ βi ∪ βj, f∗[X]〉 ∈ Z/2, with
i, j = 1, · · · r, and i > j,

(2) a bordism class [X, f ] has component ±1 in the i-th Z/4-factor if and only if
〈α3 ∪ βi, f∗[X]〉 = 1 ∈ Z/2, i = 2, · · · , r,

(3) there are relations 〈α5 + α3 ∪ β1, f∗[X]〉 = 0 and 〈α ∪ β2
i , f∗[X]〉 = 〈α ∪ β1 ∪

βi, f∗[X]〉 for all i,
(4) the action τi (i ≥ 2) on the bordism group is the multiplication by −1 on the i-th

Z/4-factor and trivial on other factors.

5. Proofs of the Main Results

In this section we prove Theorem 3.1 and Theorem 3.6. From the point of view of
Propositioni 4.1, the key point to prove Theorem 3.1 is to show that for manifolds having
the same invariants stated in the theorem, we can find appropriate normal 2-smoothings
in B, such that they are bordant in Ω5(B, p). (In some applications, this is done by under-
standing the action of the group of fiber homotopy equivalences Aut(B, p) on Ωn(B, p).
But in our situation, we find it more practical to find the smoothings directly.)
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Lemma 5.1. Let M5 be a fibered type manifold with π1(M) ∼= Z/2 and H2(M) ∼= Zr. Let
t ∈ H1(M ; Z/2) be the nonzero element, and let {t2, x1, · · · , xr} be a basis of H2(M ; Z/2).
Then {t3, tx1, · · · , txr} is a basis of H3(M ; Z/2).

Proof. Consider the Leray-Serre cohomology spectral sequence for the fibration M̃ →
M → RP∞ with Z/2-coefficients. Note that dim H2(M ; Z/2) = r+1 and dim H2(M̃ ; Z/2) =
r. This implies that the differential

d2 : E0,2
2 = H2(M̃ ; Z/2) → E3,0

3 = H3(RP∞; Z/2)

must be trivial. Therefore, the elements t3, tx1, · · · , txr all survive to form a basis of
H3(M ; Z/2). �

The proof of Theorem 3.1. First of all, by Lemma 2.6, we see that in the type II and III
cases, [P ] ∈ ΩPin±

4 /{±1} is an invariant for M . Since we don’t have a statement for Pinc,
we will give an alternative argument below for the type I case.

Let f : M5 → RP∞ be the classifying map of π1, t = f ∗α ∈ H1(M ; Z/2). Consider the
nondegenerate symmetric bilinear form

λ : H2(M ; Z/2)×H2(M ; Z/2)
∪→ H4(M ; Z/2)

∪ t→ H5(M ; Z/2) ∼= Z/2.

Type II: note that since 〈t5, [M ]〉 = 〈α5, f∗[M ]〉 and ΩSpin
5 (RP∞) = 0, we have λ(t2, t2) =

0. From this and the relations in Proposition 4.4 we see that λ(x, x) = 0 for all x.
Therefore we may extend t2 to a symplectic basis of λ, {t2, u1, · · · , ur}. Especially we have
λ(t2, u1) = 1, λ(u1, u1) = 0 and λ(t2, ui) = λ(u1, ui) = 0 for i > 1. Now let u′i = ui + u1

for i > 1, then λ(t2, u′i) = 1 for all i and λ(u′i, u
′
j) = λ(ui, uj). We may lift {u′1, · · · , u′r}

to a basis of the free part of H2(M) and get a map M → (CP∞)r. Together with the
canonical map f : M → RP∞ and the classifying map of a Spin-structure M → B Spin,
we obtain a normal 2-smoothing ν̄ : M → B = RP∞ × (CP∞)r ×B Spin.

Now suppose M ′ is another manifold, with a normal 2-smoothing ν̄ ′ constructed as
above, then by Proposition 4.4, (composing ν̄ ′ with some τi to interchange ±1 in the Z/4-

factors if necessary) [M, ν̄] = [M ′, ν̄ ′] ∈ ΩSpin
5 (RP∞ × (CP∞)r). Proposition 4.1 implies

that they are diffeomorphic.

For the other two cases, the procedure of finding an appropriate map to (CP∞)r is
similar, thus we will omit the details.

Type III: first note that by the relation in Proposition 4.6, for all x ∈ H2(M ; Z/2),

λ(t2, x) = λ(x, x). There are two different cases:

(1) if λ(t2, t2) = 0: then there exists a u1 such that λ(t2, u1) = 1. On the orthogonal
complement of span(t2, u1), we have λ(x, x) = 0, thus there exists a symplectic
basis {u2, · · · , ur}. Then the argument is the same as in the previous case.

(2) if λ(t2, t2) = 1: let U be the orthogonal complement of span(t2), then λ(x, x) =
λ(t2, x) = 0 for all x ∈ U . There exists a symplectic basis of U , {u1, · · · , ur}. Let
u′i = ui +t2, then λ(t2, u′i) = 1 for all i and λ(u′i, u

′
j) = λ(ui, uj)+1. The remaining

argument is the same as in the previous case.
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For M and M ′ having the same rank H2 = r, like in the type II case, we may use
maps to (CP∞)r constructed above to make the corresponding bordism classes have equal

(Z/4)r ⊕ (Z/2)r(r−1)/2-component. Now if M and M ′ have [P ] = [P ′] ∈ ΩPin+

4 /±, then

by choosing an appropriate Spin-structure on TM ⊕ f ∗(2η), we may make the ΩPin+

4 -
component equal.

Type I: let u1 = w2(M). By the relation in Proposition 4.7, for all x ∈ H2(M ; Z/2),
λ(u1, x) = λ(x, x). To find the map to (CP∞)r, we have four cases:

(1) if λ(t2, t2) = 1 and λ(u1, u1) = 0: then λ is nondegenerate on span(t2, u1). Let U
be the orthogonal complement of span(t2, u1), then and for all x ∈ U λ(x, x) = 0.
There exists a symplectic basis {u2, · · · , ur}.

(2) if λ(t2, t2) = 0 and λ(u1, u1) = 0: then exists a u2 such that λ(u1, u2) = 1 and
λ(t2, u2) = 0. λ is nondegenerate on span(u1, u2). On the orthogonal complement
we have λ(x, x) = 0. Therefore there is a symplectic basis {t2, u3, · · · , ur}.

(3) if λ(t2, t2) = 1 and λ(u1, u1) = 1: let U be the orthogonal complement of span(u1),
then there exists a symplectic basis {u2, u3, · · · , ur} for U and we may choose
u2 = t2 + u1.

(4) if λ(t2, t2) = 0 and λ(u1, u1) = 1: then on the orthogonal complement of span(x1)
there is a symplectic basis {t2, u2, · · · , ur}.

Now we need to consider the ΩPinc

4 -component. Note that since the manifolds in the
list given in Theorem 3.6 exhaust all possible values of rankH2 and [P ], an M of type I
must be diffeomorphic to some manifolds in the list. Now we just need to show that the
manifolds in the list are not diffeomorphic to each other.

The s-component of [P ] ∈ ΩPinc

4 is determined by w2(P )2, therefore varying Pinc-
structures on P 4 will not change the s-component. Thus we see that the two subfamilies

X5(q) ]S1(S2 × RP3) ]S1((]kS
2 × S2)× S1)

and

X5(q) ]S1(CP2 × S1) ]S1((]kS
2 × S2)× S1)

don’t have coincidence.
Let Q4 be a characteristic submanifold of X5(q), then a characteristic submanifold of

X5(q) ]S1(S2 ×RP3) ]S1((]kS
2 × S2)× S1) can be taken as P = Q](S2 ×RP2)](S2 × S2).

We have [S2 × RP2] = [S2 × S2] = 0 ∈ ΩPinc

4 . So we see [P ] = q ∈ ΩPinc

4 /± and different
q’s give non-diffeomorphic X5(q) ]S1(S2 × RP3) ]S1((]kS

2 × S2) × S1). Similar for the
manifolds X5(q) ]S1(CP2 × S1) ]S1((]kS

2 × S2)× S1), since [CP2] = (0, 1) ∈ ΩPinc

4 .
�

The relations among the invariants are essentially seen in the previous proof, but there
is a more conceptual way to see this.

The proof of Theorem 3.6. We will use the semi-characteristic class defined by R. Lee in
[17]. We work with Q-coefficient, in this case, the semi-characteristic class of an odd
dimensional manifold with a free Z/2-action is a homomorphism

χ1/2 : Ω5(Z/2) → L5(Q[Z/2]) ∼= Z/2,
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where Ω5(Z/2) is the bordism group of closed smooth oriented manifolds with an orientation-
preserving free Z/2-action, and L5(Q[Z/2]) is the symmetric L-group of the rational group
ring Q[Z/2]). We refer to [17] and [4] for details.

Let M5 be an oriented smooth 5-manifold with fundamental group Z/2, then the semi-

characteristic class χ1/2(M̃ ; Q) ∈ Z/2 is defined. There is a characteristic class formula
[4, Theorem C]

χ1/2(M̃ ; Q) = 〈w4(M) ∪ f ∗(α), [M ]〉,
where f : M → RP∞ is the classifying map of the covering and α ∈ H1(RP∞; Z/2) is the

nonzero element. On the other hand, χ1/2(M̃ ; Q) is identified with (see [4, p.57])

χ̂1/2(M̃ ; Q) := dimQ H0(M̃ ; Q) + dimQ H1(M̃ ; Q) + dimQ H2(M̃ ; Q) (mod 2)
≡ 1 + r (mod 2).

Type II: the Wu classes of M are v1 = 0 and v2 = 0 since w1(M) = w2(M) = 0. Therefore

w4(M) = Sq2v2 = 0. This means r is odd.

Type III: the Wu classes of M are v1 = 0 and v2 = w2(M) = t2. Therefore w4(M) =

Sq2v2 = t4 and 〈w4(M) ∪ f ∗(α), [M ]〉 = 〈α5, ν̄∗[M ]〉. By the Atiyah-Hirzebruch spectral
sequence, there is a nonsplit exact sequence

0 → Z/8 → ΩSpin
5 (RP∞; 2η) → H5(RP∞) → 0.

Note that the bordism class [M, ν̄] ∈ ΩSpin
5 (RP∞; 2η) corresponds to the Pin+-bordism

class of a characteristic submanifold, which we denote by q. Therefore ν̄∗[M ] ≡ q (mod 2).
This implies r + q is odd.

Type I: the Wu classes of M are v1 = 0 and v2 = w2(M) = ν̄∗w2(γ). Therefore w4(M) =

Sq2v2 = ν̄∗w2(γ)2 and 〈w4(M) ∪ f ∗(α), [M ]〉 = 〈α ∪ β2, ν̄∗[M ]〉. Check on the generators

of ΩSpin
5 (RP∞ × CP∞; γ), RP5 ]S1(S2 × RP3) with (q = 1, s = 0) and RP5 ]S1(CP2 × S1)

with (q = 1, s = 1), it is seen that 〈α ∪ β2, ν̄∗[M ]〉 ≡ q + s (mod 2). This implies the
relation q + s + r ≡ 1 (mod 2). �

6. Circle Bundles over 1-connected 4-manifolds

As an application of the main results, in this section we study the classification of
certain circle bundles over simply-connected 4-manifolds.

Let X4 be a simply-connected 4-manifold, smooth or topological, and let ξ be a complex
line bundle over X, with first Chern class c1(ξ) ∈ H2(X; Z). Choose a Riemannian metric
on ξ, and then the total space of the corresponding circle bundle is a 5-manifold M . The
homotopy long exact sequence of the fiber bundle shows that π1(M) ∼= Z/m if c1(ξ) is an
m-multiple of a primitive element.

In [5], a classification of M in terms of the topological invariants of X and c1(ξ) is
obtained for m = 1, using the classification theorem of Smale and Barden. It is also
known that H2(M) is torsion-free of rank H2(X)−1 and that M is of fibered type. In this
section, we will apply the classification results to the m = 2 case, to give classification of
M in terms of the topological invariants of X and c1(ξ). We will also identify M in the
list of standard forms in Theorem 3.7 and Theorem 3.11.
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§6A. Invariants of M . In this subsection we collect the basic algebraic-topological in-
variants of M .

Proposition 6.1. Let M5 be a circle bundle over a simply-connected 4-manifold X, with
first Chern class c1(ξ) = 2 · primitive, then

(1) π1(M) ∼= Z/2
(2) H2(M) ∼= Zr where r = rank H2(X)− 1.

(3) the π1(M)–action on H2(M̃) is trivial.
(4) the type of M5 is given by

type I type II type III

w2(X) 6= 0

w2(X) 6≡ c1(ξ̃) (mod 2) w2(X) = 0 w2(X) ≡ c1(ξ̃) (mod 2)

Proof. First of all, the homotopy long exact sequence

π1(S
1) → π1(M) → π1(X)

implies that π1(M) is a cyclic group. The Gysin sequence

0 → H2(M) → H2(X)
∩ c1−−→ H0(X) → H1(M) → 0

shows that H2(M) is torsion-free of rank equal to rank H2(X)−1 and H1(M) ∼= Z/2 since

c1(ξ) = 2 · (primitive). Note that the universal cover M̃ is a circle bundle over X, denoted

by ξ̃, with first Chern class c1(ξ̃) = 1
2
c1(ξ). The π1(M)-action on M̃ is the antipodal map

on each fiber, and thus the commutative diagram

H2(M̃)
T∗ //

p∗

$$JJJJJJJJJ
H2(M̃)

p∗

��
H2(X)

shows that the action on H2(M̃) is trivial. For the Stiefel-Whitney class, if X is smooth,
we have TM ⊕ R = p∗(TX ⊕ ξ) (where p is the projection map), this implies w2(M) =
p∗w2(X). In general, X − pt admits a smooth structure, then the same argument holds,
see [5, Lemma 3]. �

§6B. Smoothings of M .

Proposition 6.2. Let ξ : S1 ↪→ M5 → X be a nontrivial circle bundle over a closed,
simply-connected, topological 4-manifold. If c1(ξ) is an odd multiple of a primitive element,
then M is smoothable; if c1(ξ) is an even multiple of a primitive element, then M admits
a smooth structure if and only if KS(X) = 0.

Proof. Let M5 be a topological 5-manifold, then by [12], the obstruction for smoothing
M lies in H4(M ; π3(Top/O)) = H4(M ; π3(Top/PL)) = H4(M ; Z/2) ∼= H1(M ; Z/2). The
latter group is trivial if c1(ξ) is an odd multiple of a primitive element. On the other
hand, we have TM ⊕ R = π∗(TX ⊕ ξ), where π is the projection map. Therefore the
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obstruction for smoothing M is π∗KS(X). It is seen from the Gysin sequence that
π∗ : H4(X; Z/2) → H4(M ; Z/2) is injective if c1(ξ) is an even multiple of a primitive
element. Therefore M admits a smooth structure if and only if KS(X) = 0. �

Now we give a geometric description of the characteristic submanifold of a circle bundle
over simply-connected X4.

Lemma 6.3. Let ξ : S1 ↪→ M5 → X be a circle bundle, π1(M) ∼= Z/2. Let F ⊂ X be an

embedded surface dual to c1(ξ̃), N(F ) be a tubular neighborhood of F in X, S1 ↪→ B → F
be the restriction of ξ on F . Then there is a double cover map ∂N(F ) → B and the

characteristic submanifold of M is P 4 = (X − N̊(F )) ∪∂ B.

In other words, the characteristic submanifold P is obtained by removing a tubular

neighborhood of an embedded surface dual to c1(ξ̃) and then identifying antipodal points
on on each fiber.

Proof. Since c1(ξ) = 2·(primitive), the circle bundle is the pull-back of the circle bundle
over CP2 with first Chern class = 2·(primitive):

S1 = //

��

S1

��
M5

f //

��

RP5

��

⊃ RP4 = RP3 ∪D4

X
g // CP2 = CP1 ∪D4

Now P = f−1(RP4) = f−1(D4 ∪S3 RP3). Let F = g−1(CP1) be the transvere preimage
of CP1, then the normal bundle ν of F in X is the pullback of the Hopf bundle, and the
restriction of ξ on F is ν ⊗ ν, therefore there is a double cover ∂N(F ) → B. It is easy to

see that P 4 = (X − N̊(F ) ∪∂ B. �

Lemma 6.4. Let P be as above. Then KS(P ) = KS(X).

Proof. We identify N(F ) with the normal 2-disk bundle, let V be the associated RP2-
bundle obtained by identifying antipodal points on ∂N(F ). Then by the construction,

P = X ∪N(F )×{0} N(F )× I ∪N(F )×{1} V.

Therefore P is bordant to X t V . It was shown by Hsu [10] and Lashof-Taylor [15] that the
Kirby-Siebenmann invariant is a bordism invariant, thus KS(P ) = KS(X) + KS(V ) =
KS(X) since V is smooth. �

§6C. Classification. Now we can give a classification of circle bundles over 1-connected
4-manifolds, and identify them with the standard forms in Theorem 3.7 and Theorem
3.11, in terms of the topology of X and ξ.

For the type II manifolds it is an immediate consequence of Theorem 3.1 and Theorem
3.4.
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Theorem 6.5 (type II). Let X be a closed, simply-connected, topological spin 4-manifold,
ξ : S1 ↪→ M5 → X be a circle bundle over X with c1(ξ) = 2·(primitive). Then we have

(1) if KS(X) = 0, then M is smoothable and M is diffeomorphic to

(S2 × RP3) ]S1((]k S2 × S2)× S1);

(2) if KS(X) = 1, then M is non-smoothable and M is homeomorphic to

∗(S2 × RP3) ]S1((]k S2 × S2)× S1).

Where k = rank H2(X)/2− 1.

Remark 6.6. Note that for a spin 4-manifold X, rank H2(X) is even, and thus k is an
integer.

For smooth manifolds of type III, we do not know a good invariant detecting the
bordism group ΩPin+

4 . Therefore we could only determine the diffeomorphism type up to
an ambiguity of order 2. This is based on the following exact sequence (see [11, §5])

0 → Z/2 → ΩPin+

4

∩w2
1−→ ΩPin−

2 → 0,

where ∩w2
1 is the operation of taking a submanifold dual to w2

1. The generators of ΩPin−

2

is ±RP2 and ∩w2
1 maps ±RP4 to ±RP2. The image of [P ] in ΩPin−

2 can be determined
from the data of the circle bundle.

In the topological case, we have an epimorphism (see [11, §9])

ΩTopPin+

4 → ΩTopPin−

2
∼= Z/8,

which is an isomorphism on the subgroup generated by RP4. By Lemma 6.4, we have
KS(P ) = KS(X). Therefore by Theorem 3.4, we have a complete topological classifica-
tion.

Theorem 6.7 (type III). Let X be a closed, simply-connected topological 4-manifold,
and let ξ : S1 ↪→ M5 → X be a circle bundle over X with c1(ξ) = 2·(primitive) and

w2(X) ≡ c1(ξ̃) (mod 2). Then we have

(1) if X is smooth, then the diffeomorphism type of M (with the induced smooth struc-

ture) is determined up to an ambiguity of order 2 by rank H2(X) and 〈c1(ξ̃)
2, [X]〉 ∈

(Z/8)/± = {0, 1, 2, 3, 4}.
(2) M is homeomorphic to X5(p, q) ]S1((]k S2 × S2) × S1), where q = 〈c1(ξ̃)

2, [X]〉 ∈
(Z/8)/± = {0, 1, 2, 3, 4}, k = (rank H2(X)− (3 + (−1)q)/2)/2, p = KS(X).

Proof. We only need to prove (1), since the proof of (2) is similar. We see from the proof
of Lemma 6.3 that P = f−1(RP4), where f : P → RP4 induces an isomorphism on π1.
If the mod 2 degree of f is 1, then the submanifold dual to w1(P ) is f−1(RP3), and the
submanifold V dual to w1(P )2 is f−1(RP2). Now we have the following commutative
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diagram

S1 = //

��

S1

��
∂N(F )

f //

��

RP3

��

⊃ RP2 = D2 ∪ S1

F
g // CP1 = D2 ∪ pt

Let d = deg g = 〈c1(ξ̃)
2, [X]〉 and D = g−1(pt) = {p1, · · · , pd}, it is seen that V =

f−1(RP2) = (F −D)∪∂ d ·S1 (where the glueing map is of degree 2) and [V ] = d · [RP2] ∈
ΩPin−

2 . If the mod 2 degree of f is zero, then we consider the circle bundle over X ] CP2

with first Chern class (c1(ξ), 2). The corresponding map has nonzero mod 2 degree,

the image of the corresponding characteristic submanifold in ΩPin−

2 equals to that of the

original one plus 1. Finally 〈(c1(ξ̃), 1)2, [X ] CP2]〉 = 〈c1(ξ̃)
2, [X]〉 + 1. This proves the

theorem. �

For the manifolds of type I, we have

Theorem 6.8 (type I). Let X be a closed, simply-connected non-spin topological 4-
manifold, and let ξ : S1 ↪→ M5 → X be a circle bundle over X with c1(ξ) = 2·(primitive)

and w2(X) 6≡ c1(ξ̃) (mod 2). We have

(1) if KS(X) = 0, then M is smoothable and

• if 〈w2(X)2, [X]〉 ≡ 〈c1(ξ̃)
2, [X]〉 (mod 2), then M is diffeomorphic to

X5(q) ]S1(S2 × RP3) ]S1((]k S2 × S2)× S1),

where q = 〈c1(ξ̃)
2, [X]〉 ∈ (Z/8)/± = {0, 1, 2, 3, 4} and

k =
1

2
(rank H2(X)− 1

2
(7 + (−1)q));

• if 〈w2(X)2, [X]〉 6≡ 〈c1(ξ̃)
2, [X]〉 (mod 2), then M is diffeomorphic to

X5(q) ]S1(CP2 × S1) ]S1((]k S2 × S2)× S1),

where q = 〈c1(ξ̃)
2, [X]〉 ∈ (Z/8)/± = {0, 1, 2, 3, 4} and

k =
1

2
(rank H2(X)− 1

2
(5 + (−1)q)).

(2) if KS(X) = 1, then M is non-smoothable and

• if 〈w2(X)2, [X]〉 ≡ 〈c1(ξ̃)
2, [X]〉 (mod 2), then M is homeomorphic to

X5(1, q) ]S1(S2 × RP3) ]S1((]k S2 × S2)× S1),

where q = 〈c1(ξ̃)
2, [X]〉 ∈ (Z/8)/± = {0, 1, 2, 3, 4} and

k =
1

2
(rank H2(X)− 1

2
(7 + (−1)q));
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• if 〈w2(X)2, [X]〉 6≡ 〈c1(ξ̃)
2, [X]〉 (mod 2), then M is homeomorphic to

X5(1, q) ]S1(CP2 × S1) ]S1((]k S2 × S2)× S1),

where q = 〈c1(ξ̃)
2, [X]〉 ∈ (Z/8)/± = {0, 1, 2, 3, 4} and

k =
1

2
(rank H2(X)− 1

2
(5 + (−1)q)).

Remark 6.9. Note that for a 4-manifold X, 〈w2(X)2, [X]〉 ≡ rank H2(X) (mod 2). This
ensures that k is an integer.

Proof. We only need to prove (1); the proof of (2) is similar. Recall that we have ΩPinc

4
∼=

Z/8⊕Z/2, with generators RP4 and CP2. Thus the q-component is determined as in the
type III case. The s-component of P is determined by the bordism number 〈w2(P )2, [P ]〉 ∈
Z/2. (Here we use the notations given before Theorem 3.6.) Since KS(X) = 0, there
exists an integer m such that X0 = X ]m(S2 × S2) is smooth. Note that if we do the
same construction on X0 we get P0 = P ]m(S2×S2), and 〈w2(P0)

2, [P0]〉 = 〈w2(P )2, [P ]〉.
Therefore, to compute the s-component, we may assume that X is smooth. Recall that
P = (X − N̊(F )) ∪∂ B, it is seen that the bordism class of P is determined by the
bordism class of the pair (X, F ), which can be viewed as a singular manifold (X, f) ∈
Ω4(BU(1)) ∼= Ω4 ⊕H4(BU(1)). We have two homomorphisms

Ω4(BU(1)) → Z/2, [X, F ] 7→ 〈w2(P )2, [P ]〉
and

Ω4(BU(1)) → Z/2, [X, c1(ξ̃)] 7→ 〈w2(X)2 + c1(ξ̃)
2, [X]〉.

By a check on the generators (CP2 ] (S2×S2), c1(ξ̃) = (1, 0, 1)) and (CP2 ] (S2×S2), c1(ξ̃) =

(0, 0, 1)), we see that s = 〈w2(P )2, [P ]〉 = 〈w2(X)2 + c1(ξ̃)
2, [X]〉 (mod 2). The two cases

correspond to the values s = 0 and s = 1. For the proof of (2), the only change is that

ΩTop
4

∼= Z⊕ Z/2 with generators CP2 and ∗CP2 ] CP2 [10]. �
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