
QUOTIENTS OF S2 × S2

I. HAMBLETON AND J. A. HILLMAN

Abstract. We consider closed topological 4-manifolds M with universal cover S2 × S2

and Euler characteristic χ(M) = 1. All such manifolds with π = π1(M) ∼= Z/4 are ho-
motopy equivalent. In this case, we show that there are four homeomorphism types, and
propose a candidate for a smooth example which is not homeomorphic to the geometric
quotient. If π ∼= Z/2×Z/2, we show that there are three homotopy types (and between
6 and 24 homeomorphism types).

1. Introduction

The goal of this paper is to characterize 4-manifolds with universal cover S2×S2 up to
homeomorphism in terms of standard invariants, continuing the program of [8, Chapter

12]. A 4-manifold M has universal covering space M̃ ∼= S2 × S2 if and only if π = π1(M)
is finite, χ(M)|π| = 4 and its Wu class v2(M) is in the image of H2(π;F2). There are
eight such manifolds which are geometric quotients, with π acting through a subgroup of
Isom(S2 × S2) = (O(3)×O(3)) o Z/2.

We first recall that closed topological manifolds with π1(M) = 1 or π1(M) = Z/2 have
already been classified (without assumption on the universal convering):

(i) If |π| ≤ 2, and M is orientable, then M is classified up to homeomorphism by its
intersection form on H2(M ;Z)/Tors, w2(M) and the Kirby-Siebenmann invariant
(see Freedman [2] for π = 1, and [5, Theorem C] for π = Z/2).

(ii) If π = Z/2, and M is non-orientable, then M is classified up to homeomorphism
by explicit invariants (see [7, Theorem 2]), and a complete list of such manifolds
is given in [7, Theorem 3].

If we further impose the condition that M̃ = S2 × S2, then there are two orientable
geometric Z/2-quotients, namely the 2-sphere bundles S(η ⊕ 2ε) and S(3η) over RP 2,
where η is the canonical line bundle over RP 2. The second manifold is non-spin and has
a non-smoothable homotopy equivalent “twin” ∗M with KS 6= 0.

In the non-orientable case, there are two geometric quotients: S2×RP 2 and S2×̃RP 2 =
S(2η⊕ ε), and one further smooth manifold RP 4]S1RP 4 obtained by removing a tubular
neighbourhood of RP 1 ⊂ RP 4, and gluing the complements together along the boundary.
Each of these has a homotopy equivalent twin ∗M with KS 6= 0, so there are six such
non-orientable manifolds.
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2 I. HAMBLETON AND J. A. HILLMAN

We now assume that |π| = 4, which implies that any quotient M of S2 × S2 is non-
orientable and χ(M) = 1. If π = Z/4, there is just one geometric quotient M obtained
by the free action generated by (u, v) 7→ (−v, u), for (u, v) ∈ S2 × S2.

Theorem A. Let N be a closed topological 4-manifold with Ñ = S2 × S2.

(i) If π1(N) = Z/4, then N is homotopy equivalent to the unique geometric quotient
M.

(ii) Every self-homotopy equivalence of M is homotopic to a self-homeomorphism.
(iii) There are four such manifolds up to homeomorphism, of which exactly two have

non-trivial Kirby-Siebenmann invariant.

Remark 1.1. An analysis of one construction of the geometric example M leads to the
construction of another smooth 4-manifold in this homotopy type, which may not be
homeomorphic to the geometric manifold.

Remark 1.2. If π has order 2 or 4 then Wh(π) = 0 and the natural homomorphism from
L4(1) to L4(π,−) is trivial (see Wall [17]). Thus if M is non-orientable we may surger
the normal map M#E8 →M#S4 = M to obtain a twin: there is a homotopy equivalent
4-manifold ∗M with the opposite Kirby-Siebenmann invariant. On the other hand, when
|π| = 4 the mod 2 Hurewicz homomorphism is trivial. Hence pinch maps have trivial
normal invariant, so do not provide “fake” self homotopy equivalences (see [1, p. 420]).

In the remaining cases, where π = Z/2× Z/2, we classify the homotopy types.

Theorem B. There are two quadratic 2-types of PD4-complexes X with χ(X) = 1 and
π1(X) ∼= Z/2× Z/2, and seven homotopy types in all.

(i) All such complexes have universal cover homotopy equivalent to S2 × S2.
(ii) The two quadratic 2-types are represented by the total spaces of the two RP 2-

bundles over RP 2.
(iii) A third homotopy type includes a smooth manifold N with RP 4#S1RP 4 as a

double cover.
(iv) The remaining four homotopy types do not include closed manifolds.

The statement about the quadratic 2-types was proved in [8, Chapter 12, §6]. The
homeomorphism classification appears difficult: all we can say at this stage is that in
each case the TOP structure set has 8 members, so that there are between 6 and 24
homeomorphism types of such manifolds, of which half are not stably smoothable. To
resolve this ambiguity, more information is needed about self-homotopy equivalences.

Here is an outline of the paper. After some preliminary homotopy theoretic remarks
in §2, we review the constructions of the non-orientable smoothable quotients of S2 × S2

with π = Z/2 (see §§3 - 5). In §6 we show that there are four homeomorphism types with
π ∼= Z/4, and in §7 we construct a smooth example which may not be homeomorphic to
the geometric quotient.

In §8 we construct a new smooth 4-manifold N in the quadratic homotopy type of the
bundle space RP 2×̃RP 2, but distinguished from it by its non-orientable double covers
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(see Definition 8.1). In particular, N is not a geometric quotient. In §9 and §10 we show
that there are no other homotopy types of 4-manifolds with π ∼= Z/2× Z/2 and χ = 1.

In §11 we estimate the size of the group of homotopy classes of based self-equivalences
of RP 2 ×RP 2, and show in §12 that the strategy of §7 does not extend easily to provide
a candidate for a smooth fake RP 2×RP 2. A final §13 provides an alternate approach to
Theorem A via a stable homeomorphism classification result.

Acknowledgement. JAH would like to thank the Department of Mathematics and Sta-
tistics at McMaster University and the Fields Institute for their hospitality and support
in September and October 2009, and in October 2017, respectively.

2. some general results

Let X be a connected cell complex with fundamental group π, and let G#(X) be the
group of based self homotopy equivalences of X which induce the identity on all homotopy
groups. Let Pn(X) be the nth stage of the Postnikov tower forX. This may be constructed
by adjoining cells of dimension ≥ n+ 2 to X. Then G#(P2(X)) ∼= H2(π; π2(X)), and
there are exact sequences

Hn(Pn−1(X); πn(X))→ G#(Pn(X))→ G#(Pn−1(X)),

for n > 2, by Tsukiyama [16, Theorem 2.2 and Proposition 1.5], respectively. The image
on the right is the subgroup which stabilizes

kn(X) ∈ Hn+1(Pn−1(X), πn(X)).

In particular, if Hk(Pk−1(X);πk(X)) = 0 for 2 ≤ k ≤ n then self homotopy equivalences
of Pn(X) are detected by their actions on the homotopy groups.

If X is a PD4-complex such that π is finite then any based self-homotopy equivalence of

X lifts to a based self-homotopy equivalence of the 1-connected PD4-complex X̃. Hence
if also π2(X) 6= 0 then that any based self-homotopy equivalence of X which induces the
identity on π and π2(X) is in G#(X), by [1, Theorem 3.1]. (Compare [6, Theorem A]).

Lemma 2.1. Each homotopy type within the quadratic 2-type of a PD4-complex X with
π finite may be obtained by varying the attaching map of the top cell to the 2-skeleton
X(3). The torsion subgroup of Zw ⊗Z[π] ΓW (π2(X)) acts transitively on the set of PD4-
polarizations of the quadratic 2-type.

Proof. In the statement, ΓW denotes the quadratic functor of Whitehead. These results
are contained in [14, Chap. 2] (see [4, Theorem 1.1] for the oriented case). �

Thus the cardinality of this subgroup is an upper bound for the number of homotopy
types within the quadratic 2-type. The ring homomorphism H∗(X;F2) → H∗(X(3);F2)
induced by the inclusion of the 3-skeleton is an isomorphism in degrees ≤ 3.

Since πi(G/TOP ) = 0 in all odd dimensions and the first significant k-invariant of
G/TOP is 0, there is a 6-connected map G/TOP → K(Z/2, 1) ×K(Z, 4) (see [11, §2]).
Hence if X is a closed 4-manifold then

[X,G/TOP ] ∼= H2(X;Z/2)⊕H4(X;Z).
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In these low dimensions, Poincaré duality with L-theory coefficients

[X,G/TOP ] = H0(X;L0) ∼= H4(X;L0)

on the left-hand side agrees with ordinary Poincaré duality on the right-hand side. This
gives [X,G/TOP ] ∼= H2(X;Z/2)⊕H0(X;Zw), where w = w1(X).

Kim, Kojima and Raymond [10] defined a Z/4-valued quadratic function qKKR(M) on
π2(M)⊗ Z/2, for M a closed non-orientable 4-manifold, by the rule

qKKR(M)(x) = e(ν(Sx)) + 2| Self(Sx)|,

where Sx : S2 → M is a self-transverse immersion representing x, e(ν(Sx)) is the Euler
number of the normal bundle and Self(Sx) is the set of double points of the image of

Sx. This is an enhancement of the mod 2 equivariant intersection pairing on M̃ , and is a
homotopy invariant for M .

We introduce some notation for later use. Let A be the antipodal involution of S2, and
let η : S3 → S2 be the Hopf fibration. Let η̄ : S3 → RP 2 be the composite of η with the
projection S2 → RP 2 = S2/x ∼ A(x).

3. Non-orientable quotients of S2 × S2 with π = Z/2

There are two quadratic 2-types of non-orientable PD4-complexes X with π = Z/2
and χ(X) = 2. All such quotients of S2 × S2 have the quadratic 2-type of S2 × RP 2

(see [8, Chapter 12, §5]). Let K = S2 ×RP 2 \D4 be the 3-skeleton of S2 × RP 2, let

I1, I2 : S2 → K̃ = S2 × S2 \ 2D4 be the inclusions of the factors, and let [J ] be the

homotopy class of a fixed lift J̃ : S3 → K̃ of the natural inclusion J : S3 = ∂D4 → K.
The torsion subgroup of Zw ⊗Z[π] ΓW (π2(S2 × RP 2)) is isomorphic to (Z/2)2, and is
generated by the images of ηi = Ii ◦ η, for i = 1, 2.

The four homotopy types represented by the PD4-complexes Wα = K ∪[J ]+α e
4 cor-

responding to α = 0, η1, η2 and η1 + η2 are in fact distinct, as we shall see. Clearly
W0 = K ∪[J ] D

4 ' S2 ×RP 2. There are two other closed 4-manifolds, namely the bundle

space S2×̃RP 2 and the manifold RP 4#S1RP 4, which are described in the next section,
and shown to have distinct homotopy types in §5. In [3] it is shown that the PD4-
complex PHM = Wη2 is not homotopy equivalent to a closed 4-manifold, but note that [3]
writes the factors in the opposite order. The remaining two possibilities Wη1 and Wη1+η2

must give S2×̃RP 2 and RP 4#S1RP 4. According to [10, p. 80], Wη1 ' S2×̃RP 2 and
Wη1+η2 ' RP 4#S1RP 4. Is this easily seen?

Since the homomorphisms H∗(Wα;F2)→ H∗(K;F2) are isomorphisms in degrees ≤ 3,
H1(Wα;F2) = 〈x〉, where x3 = 0 in all cases. The group H2(K;F2) is generated by x2 and
the class u pulled back by the projection to S2. The latter map extends to a map from
PHM to S2, and so u2 = 0 in H4(PHM ;F2). Since x4 = 0 also, it follows that v2(PHM) = 0.
On the other hand, this projection does not extend in this way when α = η1 or η1 + η2.

The only other quadratic 2-type with π = Z/2, w1 6= 1 and χ = 2 is that of RP 4#CP 2

(the nontrivial RP 2-bundle over S2), which contains two homotopy types. One of these
is not homotopy equivalent to a closed 4-manifold, by [14, §3.3.1]. These PD4-complexes
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have universal cover ' S2×̃S2, and do not cover PD4-complexes with χ = 1 (see [8,
Lemma 12.3].)

4. S2×̃RP 2 and RP 4#S1RP 4

Let E be a regular neighbourhood of RP 2 = {[x : y : z : 0 : 0] | x2 + y2 + z2 = 1}
in RP 4. Then ν = RP 4 \ E is a regular neighbourhood of RP 1 = {[0 : 0 : 0 : u : v] |
u2 + v2 = 1}, and ∂E = ∂ν is both the total space on an S1-bundle over RP 2 and the
mapping torus S2×̃S1 = S2 × [0, 1]/(s, 0) ∼ (A(s), 1). In particular, π1(∂E) ∼= Z, and so

E is not the product RP 2×D2. On passing to the universal cover we see that S4 = Ẽ∪ ν̃.
We may assume that

Ẽ = {(u, v, x, y, z) ∈ S4 | u2 + v2 ≤ 1

4
}.

Let h : Ẽ → S2 ×D2 be the homeomorphism given by h(ẽ) = (x/r, y/r, z/r, 2u, 2v),

where r =
√
x2 + y2 + z2, for all ẽ = (u, v, x, y, z) ∈ Ẽ. It follows that we may write

E = S2 × D2/(s, d) ∼ (A(s),−d), and the projection p : E → RP 2 is then given by
p([s, d]) = [s] ∈ RP 2. The space E is also an orbifold bundle with general fibre S2 over
the marked disc D(2), via the projection p′([s, d]) = d2. Here we view D2 as the unit disc
in the complex plane.

Doubling E along its boundary gives the total space of an S2-bundle over RP 2. This
space DE is non-orientable and v2(DE) 6= 0, since the core RP 2 in E has self-intersection
1 (mod 2). Thus DE is the nontrivial, non-orientable S2-bundle space

S2×̃RP 2 = S2 × S2/(s, t) ∼ (A(s), Rπt).

where Rπ is rotation of S2 through π radians. We shall view S2 as the purely imaginary
quaternions of length 1. The antipodal map is then multiplication by −1, and we may
identify Rπ with conjugation by ±k, i.e., rotation about the k axis. Composition of the
double covering of RP 2 with the projection of S2 × S2 onto its first factor induces the
S2-bundle projection DE → RP 2. The space DE is also the total space of an orbifold
bundle with general fibre S2 over the orbifold S(2, 2) (the double of D(2)).

We may construct a different 4-manifold by identifying two copies of E via a diffeomor-
phism of their boundaries which does not extend across E. The action of conjugation by
eπit on S2 is rotation through 2πt radians about the i-axis.

Definition 4.1. Let E1 and E2 be two copies of E, and let ξ : ∂E1 → ∂E2 be the map
given by

ξ([s, x]1) = [eπitse−πit, x]2, ∀ s ∈ S2, ∀ x = e2πit ∈ S1.

We define RP 4#S1RP 4 = E1 ∪ξ E2.

Note that eπit is a square root for x = e2πit. This “twist map” ξ does not extend to a
homeomorphism from E1 to E2 (see [9, Corollary 2.2]).

This manifold is the total space of an orbifold bundle with regular fibre S2 over S(2, 2).
The exceptional fibres are the cores RP 2 of the copies of E, and each has self-intersection
1. Hence v2(RP 4#S1RP 4) 6= 0. We shall show in the next section that RP 4#S1RP 4 is
not homotopy equivalent to a bundle space [10], and hence it is not geometric.
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The universal cover of RP 4#S1RP 4 is the union Ẽ1 ∪ξ̃ Ẽ2, where ξ̃ is the lift of ξ given

by ξ̃((s, x)1) = (xsx−1, x)2, for all (s, x) ∈ S2 × S1 = ∂Ẽ1. This lift is isotopic to the

identity, and so Ẽ1 ∪ξ̃ Ẽ2
∼= S2 × S2.

We may make this explicit as follows. Let P (r, x) = sin(π
2
r)x+ cos(π

2
r)j, for 0 ≤ r ≤ 1

and x ∈ S1. Then P (0, x) = j and P (1, x) = x, for all x = e2πit ∈ S1. Write the second
factor of S2 × S2 as the union of two hemispheres S2 = D− ∪ D+, with boundary in
the (i, j)-plane. Let V : D+ → S3 be the function defined by V (d) = P (r, e2πit) for all
d = re2πit ∈ D2. Here we identify D+ with D2, and then Rπ corresponds to multiplication

by −1. Then the function H : S2 × S2 → Ẽ1 ∪ Ẽ2, defined by

H(s, d) = (s, d)1 ∈ Ẽ2, ∀ (s, d) ∈ S2 ×D−
and

H(s, d) = (V (d)sV (d)−1, d)2 ∈ Ẽ2, ∀ (s, d) ∈ S2 ×D+,

is a homeomorphism. Hence RP 4#S1RP 4 ∼= S2 × S2/〈ψ〉, where ψ is the free involution
given by

ψ(s, d) = (A(s), Rπ(d)), ∀ (s, d) ∈ S2 ×D−,
and

ψ(s, d) = (V (Rπ(d))−1V (d)A(s)V (d)−1V (Rπ(d)), Rπ(d)), ∀ (s, d) ∈ S2 ×D+.

The factor V (Rπ(d))−1V (d) may be written more explicitly as

V (Rπ(d))−1V (d) = cos(πr)1− sin(πr) cos(2πt)j + sin(πr) sin(2πt)k.

Thus V (Rπ(d))−1V (d) = 1 when r = 0 and V (Rπ(d))−1V (d) = −1 when r = 1.

5. distinguishing the homotopy types

We shall follow [10] in using the mod 2 intersection pairing (in the guise of v2) and
the invariant qKKR to show that RP 4#S1RP 4 is not homotopy equivalent to either of the
S2-bundle spaces. As our construction of RP 4#S1RP 4 differs slightly from that of [10],
we shall give details of the geometric computation of qKKR for these manifolds.

Let M = S2 × RP 2, S2×̃RP 2 or RP 4#S1RP 4, and let x, y ∈ π2(M) be the classes
corresponding to the first and second factors of S2 × S2. Then x + y corresponds to the
diagonal. In each case x is represented by the (general) fibres of the (orbifold) bundle
projections to RP 2, S(2, 2) and S(2, 2), respectively, which are embedded with trivial
normal bundle, and so qKKR(M)(x) = 0, while the normal Euler number of the diagonal
is ±2.

Let f : S2 → S2 be the map which folds one hemisphere onto another, and let g : S2 →
RP 2 be the 2-fold cover. The 2-sphere {(f(s), s)|s ∈ S2} represents y, and has trivial
normal bundle, since f is null homotopic. Its image in S2×RP 2 has a single double point,
and so qKKR(S2 × RP 2)(y) ≡ 2 (mod 4). The graph Γg ⊂ S2 × RP 2 is an embedded
2-sphere which lifts to the diagonal embedding in S2 × S2. Since there are no self inter-
sections, qKKR(S2×RP 2)(x+ y) ≡ 2 (mod 4) also. Hence qKKR(S2×RP 2) is nontrivial
for S2 ×RP 2.
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In S2×̃RP 2 the fibre of the bundle projection to RP 2 represents y. Hence

qKKR(S2×̃RP 2)(x) = qKKR(S2×̃RP 2)(y) = 0.

The image of the diagonal has a circle of self-intersections. However idS2 is isotopic
to a self-homeomorphism of S2 which is the identity on one hemisphere and moves the
equator off itself in the other hemisphere. Hence the diagonal embedding is isotopic to an
embedding whose image has just one self-intersection. Hence qKKR(S2×̃RP 2)(x+ y) = 0
also, and so qKKR(S2×̃RP 2) is identically 0 for S2×̃RP 2.

In RP 4#S1RP 4 the class y is represented by the image of {j} × S2. Double points in
the image correspond to pairs {s, s′} ⊂ S2 such that ψ(j, s) = (j, s′). If {s, s′} is such a
pair then s, s′ ∈ D+, s′ = Rπ(s) and

jV (Rπ(s))−1V (s) = −V (Rπ(s))−1V (s)j.

On using the explicit formula for V (Rπ(d))−1V (d) given at the end of §3, we see that
we must have cos(πr) = 0 and cos(2πt) = 0. Thus there are just two possibilities
for s, differing by the rotation Rπ. We may check that the double point is trans-
verse. Hence | Self(Sy)| = 1. Since {j} × S2 has trivial normal bundle in S2 × S2,
qKKR(RP 4#S1RP 4)(y) ≡ 2 (mod 4), and so RP 4#S1RP 4 is not homotopy equivalent to
S2×̃RP 2. It is not homotopy equivalent to S2 × RP 2 either, since v2(RP 4#S1RP 4) 6= 0.
Thus these three manifolds may be distinguished by the invariants v2 and qKKR.

6. 4-manifolds with π ∼= Z/4 and χ = 1

Let M = S2 × S2/〈σ〉, where σ(s, t) = (t, A(s)) for all s, t ∈ S2. Let [s, t] be the image
in M of (s, t) ∈ S2 × S2. Let s 7→ s̄ be reflection across the equator S1 ⊂ S2, and fix a
basepoint e = ē on the equator. We shall take (e, e) and [e, e] as basepoints for S2×S2 and

M , respectively. Let π = π1(M) = Z/4 and Λ = Z[π] = Z[t]/(t4−1). Since M̃ = S2×S2,
πk(M) = πk(S

2)⊕ πk(S2), for all k ≥ 2. Let Π = π2(M), considered as a Z[π]-module.
Every PD4-complex X with π1(X) ∼= Z/4 and χ(X) = 1 is homotopy equivalent to M

(see [8, Chapter 12, §5]).

Theorem 6.1. Let M = S2 × S2/〈σ〉, as above. The natural map from π to Autπ(Π) is
an isomorphism, while G#(M) has order ≤ 2.

Proof. The group π = Z/4 acts on Π = Z2 via ( 0 1
−1 0 ), and so Π ∼= Λ/(t2 + 1) = Z[i].

Hence the natural map from π to Autπ(Π) ∼= Z[i]× = 〈i〉 is an isomorphism. Similarly, π
acts on π4(M) = (Z/2)2 via swapping the summands.

The Hopf maps corresponding to the factors of M̃ generate π3(M) ∼= Z2. Hence π = Z/4
acts on π3(M) via ( 0 1

1 0 ). Simple calculations using the standard periodic resolution of the
augmentation module Z give H0(π; Π) ∼= H0(π; π3(M)) ∼= Z, while

H2k−1(π; Π) = H2k(π; π3(M)) = Z/2

and H2k(π; Π) = H2k−1(π; π3(M)) = 0, for all k > 0.
The homotopy fibre of the classifying map from P2(M) to K(π, 1) is K(Π, 2). Since

K(Π, 2) has no cohomology in odd degrees, while H2(K(Π, 2);π3(M)) ∼= π3(M)2, all the
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terms with p+ q odd in the Leray-Serre spectral sequence

Hp(π;Hq(K(Π, 2); π3(M))⇒ Hp+q(P2(M);π3(M))

are 0. Hence the spectral sequence collapses, so H3(P2(M); π3(M)) = 0 and

H4(P2(M); π3(M)) ∼= Z⊕ T.
where T has order 4. Therefore G#(P2(M)) = G#(P3(M)) = 0.

We may assume that P3(M) has a single 5-cell, attached along a map which factors

through one of the S2 factors of M̃ . Therefore the connecting homomorphism

H4(M ; π4(M))→ H5(P3(M),M ; π4(M))

is zero, and restriction from H4(P3(M);π4(M)) to H4(M ; π4(M)) is an isomorphism.
Since

H4(M ; π4(M)) ∼= H0(M ; π4(M)) = Z/2,
by Poincaré duality, we see that G#(P4(M)) has order at most 2.

Self homotopy equivalences of M extend to self-homotopy equivalences of Pj(M), for all
j > 0. Conversely, if j ≥ 3 then every self-map f of Pj(M) restricts to a self-map of M , by
cellular approximation, and if f is a self-homotopy equivalence then so is the restriction,

by duality in the universal cover M̃ = S2 × S2 and the Whitehead theorems. Moreover,
if j ≥ 4 then homotopies of self maps of Pj(M) restrict to homotopies of self-maps of M .
Thus G#(M) = G#(P4(M)), and so has order ≤ 2. �

We do not know if G#(M) is trivial, but can avoid this issue by a different argument.

Let Mo = M \D4, and let jo : Mo →M be the natural inclusion.

Lemma 6.2. Let h be a based self homotopy equivalence of M which induces the identity
on π and Π. Then h is based homotopic to a self-homeomorphism of M .

Proof. The map h induces the identity on all homotopy groups, since πk(M) = πk(S
2)⊕

πk(S
2), for all k ≥ 2. Let Pj(h) be the extension of h to a self-homotopy equivalence of

Pj(M). Since P3(h) induces the identity on π, Π and π3(M), there is a homotopy Ht from
P3(h) to the identity, by the exact sequences and main result of Tsukiyama [16, Theorem
1].

We may assume that H(Mo × [0, 1]) has image in M . Thus h|Mo ∼ jo, and so we may
assume that h|Mo = jo, by the homotopy extension property. We then see that h is a
pinch map: h ∼ idM ∨ γ for some γ ∈ π4(M). Now γ = µ ◦ η ◦ Sη for some µ ∈ Π,
since π4(S2) = Z/2 is generated by η ◦ Sη. Since H2(M ;F2) = H2(π;F2), the Hurewicz
homomorphism from Π to H2(M ;F2) is 0. Therefore h has trivial normal invariant, by
the arguments in Cochran and Habegger [1, Theorem 5.1]. Hence h is homotopic to a
self-homeomorphism of M . �

Remark 6.3. As pointed out by Kirby and Taylor [11, Theorem 18], the argument for [1,
Theorem 5.1] does not require simple connectivity, but for the general statement w2 must
be replaced by the Wu class v2(M). For any closed 4-manifold, the second Stiefel-Whitney
class w2(νX) of the stable normal bundle is the Wu class v2(X) = w2(X) + w1(X)2. In
the present case v2(M) = w2(M), since w2

1(M) = 0.
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Theorem 6.4. Every based self-homotopy equivalence of M is based homotopy equivalent
to a homeomorphism.

Proof. Interchange of factors and reflection across the equator of S2 may be used to
define basepoint preserving homeomorphisms r and s of M , with r([x, y]) = [y, x] and
s([x, y]) = [x̄, ȳ], for all [x, y] ∈M . Let c be the equatorial arc from c(0) = e to c(1) = −e
in S2. Then γ(t) = [c(t), e] represents a generator of π, while rγ(t) = γ(1 − t) and
sγ(t) = γ(t), for all 0 ≤ t ≤ 1. Therefore π1(r) = −1 and π1(s) = 1. Clearly π2(r) and
π2(s) have matrices ( 0 1

1 0 ) and −I, respectively.
Let h be the homeomorphism which drags the basepoint ? around a loop representing

a generator g of π. Then π1(h) = idπ, since π is abelian, while π2(h) acts through g,
and so has matrix ( 0 1

−1 0 ) or its inverse. It is now clear that if f is a based self-homotopy
equivalence of M there is a based self-homeomorphism F such that πi(f) = πi(F ), for
i = 1 and 2. Since F−1f induces the identity on π and Π, the theorem follows from
Lemma 6.2. �

Corollary 6.5. There are four homeomorphism types of manifolds homotopy equivalent
to M .

Proof. The normal invariant map in the surgery exact sequence

STOP (M)→ [M,G/TOP ] = H2(X;Z/2)⊕H4(X;Z)

is a bijection, since the groups L5(Z/4,−) and L4(Z/4,−) are both trivial (see Wall
[17, Theorem 3.4.5]). Since every self-homotopy equivalence of M is homotopic to a
self-homeomorphism, by Theorem 6.4, there are four homeomorphism types of manifolds
homotopy equivalent to M . �

As observed in the Introduction, every such manifold has a fake twin. In particu-
lar, if h : M ′ → M is a homotopy equivalence with nontrivial normal invariant η(h) ∈
H2(M ;Z/2), then every closed 4-manifold with π ∼= Z/4 and χ = 1 is homeomorphic
to one of M , M ′, ∗M or ∗M ′. The normal invariant of M]E8 → M is non-trivial in
H4(M ;Z) ∼= Z/2. After surgery, this produces the twin manifold ∗M .

Similarly, we have the manifold ∗M ′ whose normal invariant is non-trivial in both
summands of [M,G/TOP ], and KS(∗M ′) = 0 by the formula on [11, p. 398]. In contrast,
both M ′ and ∗M have non-trivial Kirby-Siebenmann invariant. We do not know whether
∗M ′ admits a smooth structure (see the next section for a candidate).

In general, the normal invariant is an invariant of a map. However, in this case the
normal invariant and the Kirby-Siebenmann invariant distinguish homeomorphism types
completely.

7. A smooth fake version of M ?

In this section we construct another smooth manifold M ′′ with π1(M ′′) = Z/4, which
is homotopy equivalent to the geometric quotient M . At present we are not able to
determine whether M ′′ is homeomorphic to M or to ∗M ′.

Let M+ = S2×S2/〈σ2〉 = S2×S2/(s, s′) ∼ (A(s), A(s′)) be the orientable double cover
of M = S2 × S2/〈σ〉. Let ∆ = {(s, s) | s ∈ S2} be the diagonal in S2 × S2. We may
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isotope ∆ to a nearby sphere which meets ∆ transversely in two points, by rotating the
first factor, and so ∆ has self-intersection ±2. The diagonal is invariant under σ2, and
so δ = ∆/〈σ2〉 ∼= RP 2 embeds in M+ with an orientable regular neighbourhood. Since
σ(∆) ∩∆ = ∅ this also embeds in M . We shall see that the complementary region also
has a simple description.

We shall identify S3 with the unit quaternions H1, and view S2 as the unit sphere in the
space of purely imaginary quaternions. The standard inner product on the latter space is
given by v • w = Re(vw̄), for v, w purely imaginary quaternions. Let

Cx = {(s, t) ∈ S2 × S2 | s • t = x}, ∀ x ∈ [−1, 1].

Then C1 = ∆ and C−1 = σ(∆), while Cx ∼= C0 for all |x| < 1. The map f : S3 → C0 given
by f(q) = (qiq−1, qjq−1) for all q ∈ S3 is a 2-fold covering projection, and so C0

∼= RP 3.
It is easily seen that N = ∪x≥εCx and σ(N) are regular neighbourhoods of ∆ and σ(∆),

respectively, while C = ∪x∈[−ε,ε]Cx ∼= C0 × [−ε, ε]. In particular, N and σ(N) are each
homeomorphic to the total space of the unit disc bundle in TS2 , and ∂N ∼= C0

∼= RP 3.
The subsets Cx are invariant under σ2. Hence N(δ) = N/〈σ2〉 is the total space of the
tangent disc bundle of RP 2. In particular, ∂N(δ) ∼= L(4, 1) and δ represents the nonzero
element of H2(M ;F2), since it has self-intersection 1 in F2.

Remark 7.1. It is not hard to show that any embedded surface representing the nonzero
element of H2(M ;F2) is non-orientable but lifts to M+, and so has an orientable regular
neighbourhood.

We also see that C/〈σ2〉 ∼= L(4, 1)× [−ε, ε]. Since f(q. 1√
2
(1 + k)) = σ(f(q)), the map

σ̃ : S3 → S3 defined by right multiplication by 1√
2
(1+k) lifts σ. Hence C0/〈σ〉 = S3/〈σ̃〉 =

L(8, 1), and so MC = C/〈σ〉 is the mapping cylinder of the double cover L(4, 1)→ L(8, 1).
Since S2 × S2 = N ∪ C ∪ σ(N) it follows that M = N(δ) ∪MC.

This construction suggests a candidate for another smooth 4-manifold in the same
(simple) homotopy type. Let M ′′ = N(δ) ∪MC ′, where MC ′ is the mapping cylinder of
the double cover L(4, 1)→ L(8, 5). Then π1(M ′′) ∼= Z/4 and χ(M ′′) = 1, and so there is
a homotopy equivalence h : M ′′ 'M .

Some questions for further investigation:

(i) Is there an easily analyzed explicit choice for h : M ′′ → M , with computable
codimension 2 Kervaire invariant?

(ii) Are M and M ′′ homeomorphic? diffeomorphic?
(iii) Is there a computable homeomorphism (or diffeomorphism) invariant that can be

applied here?

We remark that most readily computable invariants are invariants of homotopy type.

8. PD4-complexes with π ∼= (Z/2)2 and χ = 1

We now consider the remaining cases, where π ∼= (Z/2)2. As mentioned in the In-
troduction, there are two geometric quotients, namely RP 2 × RP 2 and the non-trivial
bundle RP 2×̃RP 2. In this section, we will construct a third smooth manifold N homo-
topy equivalent to RP 2×̃RP 2, but which is not a geometric quotient. By [8, Chapter 12,
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§6], there are two equivalence classes of quadratic 2-types realized by PD4-complexes X
with universal cover X ' S2 × S2 and

π1(X) ∼= π = 〈t, u | t2 = u2 = (tu)2 = 1〉.
Let {t∗, u∗} be the dual basis for H1(π;F2). If X is a PD4-complex with π1(X) ∼= π
and χ(X) = 1, then we may assume that v1(X) = t∗ + u∗ and v2(X) is either t∗u∗ or
t∗u∗ + (u∗)2. This is an easy consequence of Poincaré duality with coefficients F2 and the
Wu formulas.

Let X+ denote the orientation double cover of X. If v2(X) = t∗u∗ then v2(X+) =
t∗2 6= 0 and both non-orientable double covers have v2 = 0, while if v2(X) = t∗u∗ + (u∗)2

then v2(X+) = 0 and just one of the non-orientable double covers has v2 = 0. The two
possibilities for v2 are realized respectively by RP 2×RP 2 and the nontrivial bundle space
RP 2×̃RP 2 = S2 × S2/π, where π acts by t(s, s′) = (−s, s′) and u(s, s′) = (Rπ(s),−s′),
for all s, s′ ∈ S2.

We now construct a third smooth manifold N with universal cover S2× S2 and funda-
mental group π as follows. The map f([s, x]) = [−s, x] defines a free involution of S2×̃S1,
with quotient RP 2 × S1. By Definition 4.1, the manifold RP 4#S1RP 4 = E1 ∪ξ E2, with
glueing map ξ : ∂E1 → ∂E2. The maps f and ξ commute.

Definition 8.1. Let N denote the quotient space of RP 4#S1RP 4 by the free involution
F given by the formula F ([s, d]i) = [−s, d]3−i for all [s, d]i ∈ Ei and i = 1, 2.

We shall see below that N is in the quadratic 2-type of RP 2×̃RP 2. Let F+ be the lift
of F to the universal cover of RP 4#S1RP 4. Then the orientable double cover of N is
S2 × S2/〈H−1F+H〉. Now H−1F+H(s, s′) = (−s, R(s′)), where R is reflection across the
equator, and so this double cover is the S2-bundle space over RP 2 which is a spin manifold.
A similar argument shows that the other non-orientable double cover is RP 2 × S2.

Thus N is not homotopy equivalent to a bundle space. Nor is it homotopy equivalent
to the total space of an orbifold bundle over a 2-orbifold: indeed, any such bundle would
have general fibre RP 2, and so the total space would be foliated by copies of RP 2. Hence
the base orbifold would have no singular points.

9. the quadratic 2-type of RP 2 ×RP 2

Let K = RP 2 ×RP 2 \D4, let I1, I2 : S2 → K̃ = S2 × S2 \ 4D4 be the inclusions of

the factors, and let [J ] be the homotopy class of a fixed lift J̃ : S3 → K̃ of the natural
inclusion J : S3 = ∂D4 → K. Then Π = π2(K) ∼= Z2 is generated by I1 and I2, and

Π ∼= Λ/(t+ 1, u− 1)⊕ Λ/(t− 1, u+ 1)

as a Λ-module, Λ = Z[π] denotes the integral group ring. The Hurewicz homomorphism

h : π3(K) → H3(K̃;Z) ∼= Z3 is surjective, with kernel the image of ΓW (Π), generated

by Whitehead products and composites with η. Then h([J ]) generates H3(K̃;Z) as a

Λ-module, and H3(K̃;Z) ∼= Λ/(1− t)(1− u)Λ.
The elements η1 = I1 ◦ η, η2 = I2 ◦ η and ζ = [I1, I2] are a basis for ΓW (Π) ∼= Z3.

Since ΓW (Π) is torsion free and 2ηi = [Ii, Ii], we see that tηi = uηi = ηi for i = 1, 2,
while tζ = uζ = −ζ. Hence Zw ⊗Λ ΓW (Π) ∼= Z ⊕ (Z/2)2, and the torsion subgroup
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is generated by the images of η1 and η2. Since the k-invariant is symmetric under the
involution which interchanges the summands of Π, there are three homotopy types of
PD4-complexes Xα = K ∪[J ]+α e

4 in this quadratic 2-type, represented by α = 0, η1 and
η1 + η2.

As above, let {t∗, u∗} be the basis of H1(π;F2) dual to {t, u}. Let X t
α and Xu

α be
the covering spaces associated to the subgroups 〈t〉 = Ker(u∗) and 〈u〉 = Ker(t∗) of π,
respectively. Since the homomorphisms H∗(Xα;F2) → H∗(K;F2) are isomorphisms in
degrees ≤ 3 and (t∗)3 = (u∗)3 = 0 in H3(RP 2 × RP 2;F2), we see that (t∗)3 = (u∗)3 = 0
in H3(Xα;F2), for all α. It follows easily from the nonsingularity of Poincaré duality that
the rings H∗(Xα;F2) are all isomorphic. In particular, w1(Xα) = t∗ + u∗, v2(Xα) = t∗u∗

and x4 = 0, for all x ∈ H1(Xα;F2), in each case. Hence X+
α ' S2 × S2/〈σ2〉, while the

non-orientable double covers X t
α and Xu

α each have v2 = 0. Thus the manifold N defined
in (8.1) is not in this quadratic 2-type.

We shall adapt the argument of [3, §3] to show that if α 6= 0 then Xα is not homotopy
equivalent to a closed 4-manifold.

Theorem 9.1. Let M be a closed 4-manifold with π = π1(M) ∼= (Z/2)2 and χ(M) =
1, and such that x4 = 0 for all x ∈ H1(M ;F2). Then M is homotopy equivalent to
RP 2 ×RP 2.

Proof. Our hypotheses imply that M is in the quadratic 2-type of RP 2 × RP 2, and so
M ' Xα = K ∪[J ]+α e

4, for some α = 0, η1 or η1 + η2. If M in the quadratic 2-type
of RP 2×̃RP 2 then there is a class x ∈ H1(M ;F2) such that x3 6= 0. Poincaré duality
considerations then imply that x4 6= 0 (see [8, Chapter 12, §§4-6]).

Suppose that α = η1 or η1 + η2. Then the image of α in π3(RP 2) under composition
with the projection pr1 to the first factor is η̄. Hence the composite of the inclusion K ⊂
RP 2 ×RP 2 with pr1 extends to a map p : Xα → L = RP 2 ∪η̄ e4. (Note that Ker(π1(p) =

〈u〉.) Let p̃ : Xu
α → L̃ be the induced map of double covers, and let f : Xα → RP k+1 (for

k large) be the classifying map for the double cover Xu
α → Xα.

Let a = p̃∗(c) be the image of the generator of H2(L̃;F2) = F2, let b̄ = (u∗)2 ∈
H2(Xα;F2), and let b be the image of b̄ in H2(Xu

α;F2). The 3-skeleton of Xu
α is Ku, and

so the covering transformation t acts on H2(Xu
α;F2) via the identity. Hence the quadratic

form q used in [3] in computing the Arf invariant A(Xα, f) of the covering Xu
α → Xα is

an enhancement of the ordinary cup product. The pair {a, b} is a symplectic basis with
respect to the cup product, and q(a) = 1, by the argument of [3]. Since (u∗)3 = (u∗)4 = 0
in H∗(Xα;F2), Sqib̄ = Sq2−ib̄ = 0 for i = 0 or 1. Hence we also have q(b) = 1, by [3,
Proposition 1.5], and so A(Xα, f) is nonzero. But this contradicts the assumption that
Xα is homotopy equivalent to a closed manifold, by [3, Proposition 2.2]. Hence α = 0
and so M is homotopy equivalent to RP 2 ×RP 2. �

Corollary 9.2. There is exactly one homotopy type for a closed manifold in the quadratic
2-type of RP 2 ×RP 2.

The inclusion RP 2 → L = RP 2 ∪η̄ e4 induces isomorphisms on πi for i ≤ 2. Since L is
covered by S2 ∪η e4 ∪Aη e4 ' S2 ∪η e4 ∨ S4 = CP 2 ∨ S4, π3(L) = 0. Hence we may view
L as the 4-skeleton of P2(RP 2). (See [13].)
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10. the quadratic 2-type of RP 2×̃RP 2

Now let K ′ = RP 2×̃RP 2 \D4, and let Π′ = π2(K ′). Let J ′ : S3 = ∂D4 → K ′ be
the natural inclusion, and let η′i : S

3 → K ′ (with i = 1, 2) be “Hopf maps” factoring
through inclusions of the factors of the universal cover S2 × S2. We again find that
Zw ⊗Λ ΓW (Π′) ∼= Z ⊕ (Z/2)2, and the torsion subgroup is generated by the images of η′1
and η′2. However there are four homotopy types of PD4-complexes Yα = K ′ ∪[J ′]+α e

4 in
this quadratic 2-type, represented by α = 0, η′1, η′2 and η′1 + η′2.

Let {t∗, u∗} be the basis of H1(π;F2) dual to {t, u}, and let Y t
α and Y u

α be the covering
spaces associated to the subgroups 〈t〉 = Ker(u∗) and 〈u〉 = Ker(t∗) of π, respectively.
We may assume that u∗ is induced from the base RP 2, so (u∗)3 = 0, and then (t∗)3 6= 0,
since v2(RP 2×̃RP 2) 6= 0. We again find that the F2-cohomology rings of the Yα are all
isomorphic. In particular, v2(Yα) = t∗u∗ + (u∗)2 in each case. Hence in each case Y +

α

is homotopy equivalent to the S2-bundle space over RP 2 which is a spin manifold. The
covering space Y t

α is homotopy equivalent to S2 × RP 2, since v2(Y t
α) = 0, while Y u

α is
homotopy equivalent to one of either RP 4#S1RP 4 or S2×̃RP 2, since v2(Y u

α ) 6= 0.

Theorem 10.1. Let M be a closed 4-manifold with π = π1(M) ∼= (Z/2)2 and χ(M) = 1,
and such that x4 6= 0 for some x ∈ H1(M ;F2). Then M is homotopy equivalent to
RP 2×̃RP 2 or N .

Proof. We shall adapt the proof of Theorem 9.1, again based on the arguments of [3]. In
this case M must be in the quadratic 2-type of RP 2×̃RP 2, and so M ' Yα = K ′∪[J ′]+α e

4

for some α = 0, η′1, η′2 or η′1 + η′2. The double covering space M t is homotopy equivalent
to RP 2 × S2. As in Theorem 9.1, the covering automorphism induces the identity on
H2(Mu;F2).

Suppose that α = η′2 or η′1 + η′2. The composite of the inclusion K ′ ⊂ RP 2×̃RP 2 with

the bundle projection extends to a map p : Yα → L. Let p̃ : Y u
α → L̃ be the induced

map of double covers, and let a = p̃∗(c) be the image of the generator of H2(L̃;F2).
Let b̄ = (t∗)2 ∈ H2(Yα;F2), and let b be the image of b̄ in H2(Y t

α;F2). Then {a, b} is
a symplectic basis for the cup product pairing. We again find that q(a) = q(b) = 1, so
the Arf invariant associated to the 2-fold covering Y u

α → Yα is nonzero, contradicting
the hypothesis that M is a closed manifold. Therefore either α = 0 or α = η′1. Since
Y0 = RP 2×̃RP 2 and N are manifolds in this quadratic 2-type, and are not homotopy
equivalent, we must have Yη′1 ' N and M must be one of these two manifolds. �

The manifolds RP 2×̃RP 2 and N may be distinguished by their (non-orientable) double
covers. However, in general we do not know which of the PD4-complexes Wα of §3 are
double covers of the PD4-complexes Xβ or Yγ of §8 or §9.

11. self homotopy equivalences

The standard cellular decomposition ofRP 2 has three cells, with basepoint ∗ = [1 : 0 : 0]
and 1-skeleton RP 1 = {[x : y : 0]}. Reflection across the (x, y)-plane in R3 induces an
involution h of RP 2 given by h([x : y : z]) = [x : y : −z], for all [x : y : z] ∈ RP 2. Then h
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fixes RP 1 ∪ {[0 : 0 : 1]}. The image of h generates E∗(RP
2) = Z/2, while π2(h) = −1, so

G#(RP 2) = 1. Since h is freely isotopic to the identity, E(RP 2) = 1.
The product cell structure for M has basepoint (∗, ∗) and intermediate skeleta

RP 1
1 ∨RP 1

2 ⊂ RP 2
1 ∪ T ∪RP 2

2 ⊂ RP 2 ×RP 1 ∪T RP 1 ×RP 2,

where RP k
1 = RP k × {∗} and RP k

2 = {∗} × RP k, for k = 1, 2, and T is the torus
RP 1 × RP 1 ⊂ RP 2 ×RP 2. Let ji : RP

2 → M be the inclusions of RP 2
i into M , for

i = 1, 2, and let p1, p2 : M → RP 2 be the projections to the factors.
Let f be a based self homotopy equivalence of M = RP 2 × RP 2. Then f ∗w = w, and

so either π1(f) interchanges the generators corresponding to the factors or π1(f) = idπ.
In the latter case π2(f) has diagonal matrix with respect to the basis for Π = π2(M)
corresponding to the factors of M . Since there are based homeomorphisms switching the
factors and inducing the diagonal actions on Π, we may assume that π1(f) = idπ and
π2(f) = idΠ, if we seek exotic self-homotopy equivalences. Such maps induce the identity
on all homotopy groups. Let f ∈ G#(M), and let fi = pif , for i = 1, 2. Then fiji ∼ id,
for i = 1, 2, so we may assume that f restricts to the identity on RP 2

1 ∨RP 2
2 .

The results of Tsukiyama [16] cited in §1 imply that G#(P2(M)) ∼= H2(π; Π) and that
the natural homomorphism from G#(P3(M)) to G#(P2(M)) has image the stabilizer of
k3(M), and kernel a quotient of H3(P2(M);π3(M)). It is easily seen that H2(π; Π) ∼=
(Z/2)2. Since π acts diagonally on Π, it fixes the Hopf maps η1 and η2, and so acts
trivially on π3(M) ∼= Z2. As noted at the end of §8, we may assume that P2(RP 2) has
4-skeleton L = RP 2 ∪η̄ e4. Hence

H3(P2(M);Z) ∼= H3(L× L;Z) = Tor(H2(L;Z), H2(L;Z)) = Z/2,
and so H3(P2(M);π3(M)) ∼= (Z/2)2. However, the action of H3(P2(M);π3(M)) on the
homotopy type of P3(M) may not be effective. Thus G#(P3(M)) has order at most 16.

If f is homotopic to idM as a map into P3(M) then we may assume that f = idM on

the 3-skeleton Mo = M \D4. The map f is then a pinch map. Since the mod 2 Hurewicz
homomorphism is trivial in this case, such maps have trivial normal invariant, and so are
homotopic to homeomorphisms.

If M ′ = RP 2×̃RP 2 is the nontrivial bundle space and w = w1(M ′) then

H∗(M ′;F2) ∼= F2[w, x]/(x3, w2(w + x)),

where x ∈ H1(M ′;F2) is induced from the base RP 2. Every self homotopy equivalence
of M ′ must induce the identity on this cohomology ring, and so on π. It must also act
diagonally on π2(M ′), with respect to the standard basis. Reflections of the factors of

M̃ ′ = S2 × S2 across their equators commute with the action of π, and cover homeo-
morphisms of M ′ which preserve a basepoint and induce the diagonal automorphisms
of π2(M ′). As before, it would be enough to understand the subgroup G#(M ′

o), where

M ′
o = M ′ \D4).
The manifoldN constructed in §7 has the same 3-skeleton asRP 2×̃RP 2, andH∗(N ;F2) ∼=

H∗(M ′;F2). (See [8, Chapter 12, §4].) Hence self homotopy equivalences of N must in-

duce the identity on π, and similar estimates apply for G#(No), where No = N \D4).
Are the nontrivial diagonal automorphisms of π2(N) realized by homeomorphisms?
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In each case, STOP (M) has 8 elements, half of which have domains with nontrivial
Kirby-Siebenmann invariant, and so the image of Homeo(M) in the group of (free homo-
topy classes of) self homotopy equivalences of M has index at most 4. However, whether
every self homotopy equivalence of M is homotopic to a homeomorphism remains open.
To make further progress we need explicit representatives for the self homotopy equiva-
lences.

12. reconstructing RP 2 ×RP 2 ?

Arguments similar to those of §7 show that RP 2 ×RP 2 ∼= N(δ) ∪MC ′′, where MC ′′ is
the mapping cylinder of the double cover of S3/Q(8). Since S3/Q(8) is the only 3-manifold
with fundamental group non-cyclic and of order 8, we cannot vary the construction by
replacing MC ′′ by another such mapping cylinder. It is tempting to consider instead
replacing the unit tangent disc bundle N(δ) by another disc bundle over RP 2, with Euler
class k times the generator of H2(RP 2;Zw) ∼= Z and total space Nk. Then ∂Nk is a prism
manifold with fundamental group of order 2k. This double covers another prism manifold,
and so we may adjoin a mapping cylinder, to get a closed nonorientable 4-manifold Mk

with χ(Mk) = 1 and π1(Mk) ∼= (Z/2)2.
Unfortunately this construction gives nothing new, for RP 2 ×RP 2 is the union of such

a disc bundle and the corresponding mapping cylinder, for any k ≥ 1! Let fk(z) = zk,

for z ∈ Ĉ = S2, and let f ′k(z) = A(fk(z)) = (−1)z̄−k be the image of fk(z) under the
antipodal map of S2. The graphs of fk and f ′k are disjoint, and are interchanged by the
canonical generators of (Z/2)2, acting on S2 × S2 in the standard way. Therefore their
images in RP 2 ×RP 2 coincide, and are diffeomorphic to RP 2. Since the graph of fk has
self-intersection number 2k, tubular neighbourhoods of this copy of RP 2 are diffeomorphic
to Nk. It is straightforward to check that the homomorphism induced by the double cover
maps H2(RP 2;Zw) onto 2H2(S2;Z). As in §4, the complementary region is a mapping
cylinder of the type proposed above.

13. Stable classification

Let ξ : B → BTop denote the normal 1-type of the geometric quotient M of S2 × S2

with fundamental group π = Z/4. We may assume that B = BTopSpin×K(π, 1), since

w2(M̃) = 0 (see [14, Theorem 5.2.1 and §8.1]). Let γ : B → K(π, 1) be the projection
onto the second factor.

In order to compute the bordism group Ω4(B, ξ) we use the Atiyah-Hirzebruch spectral
sequence with E2

p,q = Hp(π; ΩTopSpin
q ) where the coefficients

ΩTopSpin
q = Z,Z/2,Z/2, 0,Z/2, for 0 ≤ 1 ≤ 4,

are twisted by w1. We have E2
p,0 = Hp(π;Z−) = Z/2, for p even, and E2

p,0 = 0 for p odd.

Similarly, E2
0,4 = Z/2. The first differential

d2 : E2
p,q → E2

p−2,q+1

is dual to the map

d̂ : Hp−2(π;Z/2)→ Hp(π;Z/2)
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for the cases (4, 2) and (3, 1). Note that the cohomology ring H∗(π;Z/2) = P (u)⊗E(x),
where |u| = 2 and |x| = 1, with Sq1u = 0 and x2 = 0. The classes w1(νM) = x and
w2(νM) = u.

According to Teichner [15, §2] the map d̂ is given by the formula

d̂(α) = Sq2α + (Sq1α)w1 + αw2.

We compute using this formula and obtain:

d̂ : H1(π;Z/2)→ H3(π;Z/2), d̂(x) = xu 6= 0

d̂ : H2(π;Z/2)→ H4(π;Z/2), d̂(u) = 0

d̂ : H3(π;Z/2)→ H5(π;Z/2), d̂(xu) = 0

d̂ : H4(π;Z/2)→ H6(π;Z/2), d̂(u2) = u3 6= 0.

After dualizing, we get E3
0,4 = Z/2, E3

3,1 = 0, E3
2,2 = H2(π;Z/2) = Z/2, and E3

4,0 = Z/2.

Moreover, the only nonzero entry on the line p+q = 5 of the E3 page is E3,2 = E2
2,2 = Z/2.

We remark that the non-zero element in E3
4,0 = Z/2 is represented by the image of the

E8-manifold under the inclusion map

ΩTopSpin
4 (∗)→ Ω4(B, ξ).

However. we have a factorization:

ΩTopSpin
4 (∗)→ Ω4(B, ξ)→ ΩTopSpinc

4 (∗),

and the E8-manifold represents a non-trivial element in ΩTopSpinc

4 (∗), as noted in [7, p. 654].
Hence the E3

4,0-term survives to E∞4,0. The conclusion is that

Ω4(B, ξ) = Z/2⊕H2(π;Z/2)⊕ Z/2.

Let c : M → B denote the classifying map of the ξ-structure on M . To detect elements
in this bordism group, we can define

Ω4(B, ξ)M = {(M ′, c′)) : γ∗c
′
∗[M

′] = γ∗c∗[M ] ∈ H4(π;Z/2)}

If f : M ′ →M is a homotopy equivalence, then we can cover f by a bundle map. The pro-
jection of the difference [M ′, c′]− [M, c] into H2(π;Z/2) is detected by the first component
of the normal invariant η(f) ∈ [M,G/TOP ], with respect to the identification

[M,G/TOP ] = H2(M ;Z/2)⊕H4(M ;Z) ∼= H2(π;Z/2)⊕ Z/2

given by Poincaré duality. We will call this the reduced normal invariant of M , and
denote by η(M ′) ∈ H2(π;Z/2) the equivalence class of η(f) modulo the action on normal
invariants by homotopy self equivalences of M . If this is zero, then the difference [M ′, c′]−
[M, c] is detected by the KS invariant.

Lemma 13.1. Suppose that f : M → M is a self homotopy equivalence. Then the ele-
ments (M, c ◦ f) and (M, c) are ξ-bordant.
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Proof. By functoriality, the homotopy equivalence f : M → M induces a self homotopy
equivalence φ : B → B, such that c ◦ f ' φ ◦ c. However, since B = BTopSpin×K(π, 1)
has the homotopy type of K(Z, 4) × K(π, 1) through dimensions ≤ 5, the composition
φ ◦ c is determined by the map φ∗ : H4(B;Z)→ H4(B;Z). Either φ ◦ c ' c or φ ◦ c differs
from c by a non-trivial map K(π, 1) → K(Z, 4). In this case, the normal invariant of f
would have non-zero component in H2(π;Z/2) ⊂ [M,G/TOP ]. But this would imply a
change in the Kirby-Siebenmann invariant from domain to range of f , by the formula in
[11, p. 398], which is impossible for a self homotopy equivalence. �

Corollary 13.2. Stably homeomorphic manifolds homotopy equivalent to M are homeo-
morphic. Such manifolds are distinguished by their reduced normal invariant and the KS
invariant.

Proof. The calculations above, and the theory of [12, §4], show that there are 4 distinct
stable homeomorphism classes. However the structure set STOP (M) has 4 elements, so
there can be no non-trivial self-homotopy equivalences. If follows that the choice of a
homotopy equivalence f : M ′ →M is unique up to homotopy. Hence the reduced normal
invariant η̄(M ′) ∈ H2(π;Z/2) is a well-defined invariant of M ′. �
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