Two remarks on Wall's D2 problem

BY IAN HAMBLETON†

*Department of Mathematics & Statistics, McMaster University, Ontario L*8*S* 4*K*1*, Canada. e-mail*: hambleton@mcmaster.ca

(*Received* 18 *September* 2017; *revised* 30 *April* 2018)

Abstract

If a finite group *G* is isomorphic to a subgroup of *SO*(3), then *G* has the D2-property. Let *X* be a finite complex satisfying Wall's D2-conditions. If $\pi_1(X) = G$ is finite, and $\chi(X) \geq 1 - \text{def}(G)$, then $X \vee S^2$ is simple homotopy equivalent to a finite 2-complex, whose simple homotopy type depends only on *G* and $\chi(X)$.

1. *Introduction*

In [**32**, section 2], C. T. C. Wall initiated the study of the relations between homological and geometrical dimension conditions for finite *CW*-complexes. In particular, a finite complex *X satisfies Wall's* D2*-conditions* if $H_i(X) = 0$, for $i > 2$, and $H^3(X; \mathcal{B}) = 0$, for all coefficient bundles β . Here X denotes the universal covering of X . If these conditions hold, we will say that *X* is a D2*-complex*. If every D2-complex with fundamental group *G* is homotopy equivalent to a finite 2-complex, then we say that *G has the* D2*-property*.

In [**32**, p. 64], Wall proved that a finite complex *X* satisfying the D2-conditions is homotopy equivalent to a finite 3-complex. We will therefore assume that all our D2-complexes have dim $X \leq 3$.

The D2 problem for a finitely-presented group *G* asks whether every finite complex *X* with fundamental group *G* which satisfies the D2-conditions is homotopy equivalent to a finite 2-complex. The D2 problem has been actively studied for finite groups, but answered affirmatively only in a limited number of cases (see [**18**, **21**] for references to the literature on 2-complexes and the D2-problem, and compare [**19**, **20**, **24**] for some more recent work).

In this paper, I make two remarks concerning the (stable) solution of the D2-problem and cancellation, based on my joint work with Matthias Kreck [**11**, theorem B]. I am indebted to Dr. W. H. Mannan for asking about this connection some years ago.

For *G* a finitely presented group, let def(*G*) denote the *deficiency of G*, defined as the maximum value of the number of generators minus the number of relations over all finite presentations of *G*. We note that $1 - def(G)$ is the minimal Euler characteristic possible for a finite 2-complex with fundamental group *G*.

Swan defined $\mu_2(G)$ as the minimum of the numbers $\mu_2(\mathcal{F}) = f_2 - f_1 + f_0$, where f_i are the ranks of the finitely generated free $\mathbb{Z}G$ -modules F_i in an exact sequence

$$
\mathcal{F}:\ F_2\longrightarrow F_1\longrightarrow F_0\longrightarrow \mathbb{Z}\longrightarrow 0.
$$

In general, Swan [31, proposition 1] noted that $u_2(G) \leq 1-\text{def}(G)$. For a finite D2-complex X, we have the Euler characteristic inequality $\chi(X) \geq \mu_2(G)$ (see Section 2 for details). In addition, $\mu_2(G) \geq 1$ for *G* a finite group by [31, corollary 1.3].

THEOREM A. Let X be a finite D2-complex, and assume that $G := \pi_1(X)$ is a finite *group. Then*:

(i) *if* χ (*X*) > 1 – def(*G*)*, X* is simple homotopy equivalent to a finite 2-complex;

(ii) *If* $\chi(X) = 1 - \text{def}(G)$, $X \vee S^2$ *is simple homotopy equivalent to a finite* 2*-complex. In case* (i) *the simple homotopy type of X depends only on* $\pi_1(X)$ *and* $\chi(X)$ *.*

The uniqueness part is a direct application of [**11**, theorem B], since the resulting 2 complexes have non-minimal Euler characteristic. We remark that the unpublished work of Browning [**6**] implies the corresponding weaker statements for homotopy equivalence, rather than simple homotopy equivalance (see Corollary 2·6).

Remark 1·1*.* A stable solution of the problem for D2-complexes with any finitely presented fundamental group was first given by Cohen [**7**, theorem 1]: if *X* is a D2-complex, then there exists an integer $r \geq 0$ such that the stabilised complex $X \vee r(S^2)$ is homotopy equivalent to a finite 2-complex.

This result and the foundational work of J. H. C. Whitehead [**34**] shows that any two D2 complexes with isomorphic fundamental groups become stably simple homotopy equivalent after wedging on sufficiently many 2-spheres. I give a different argument in Lemma 2·1 for the stable result, and show that it holds whenever $r \ge b_3(X)$ (compare [19, proposition 3.5]). Here $b_3(X)$ denotes the number of 3-cells in *X*.

If the group ring $\mathbb{Z}G$ is noetherian, then there exists a uniform bound for this stable range, depending only on the fundamental group (see Proposition 2·7). This remark applies for example to polycyclic-by-finite fundamental groups.

THEOREM B. *Let G be a finite subgroup of SO*(3)*. Then any finite* D2*-complex with fundamental group G is simple homotopy equivalent to a finite* 2*-complex, and G has the* D2*-property.*

This result is an application of [**11**, theorem 2·1]. The result was known for cyclic and dihedral groups (see [**23**, **26**, **28**]), but the argument given here is more uniform and the tetrahedral, octahedral and isosahedral groups do not seem to have been covered before.

Remark 1·2*.* Brown and Kahn [**5**, theorem 2·1] proved that that a D2-complex which is a nilpotent space is homotopy equivalent to a 2-complex, but this does not appear to settle the D2 problem for nilpotent fundamental groups.

Remark 1·3*.* A result essentially contained in the proof of Wall [**33**, theorem 4] shows that there exist finite D2-complexes *X*, with $\pi_1(X) = G$ and $\chi(X) = \mu_2(G)$ realizing this minimum value, for every finitely presented group *G*. Since $\mu_2(G) \leq 1 - \text{def}(G)$ by Swan [**31**, proposition 1], a *necessary* condition for any group *G* to have the D2-property is that $\mu_2(G) = 1 - \text{def}(G)$.

*Two remarks on Wall's D*2 *problem* 3

2. *Cancellation and the D*2 *Problem*

We assume that *X* is a finite, connected 3-complex, with fundamental group $G = \pi_1(X)$, satisfying the D2-conditions. We use the following notation for the chain complex $C(\tilde{X}; \mathbb{Z})$ of the universal covering:

$$
C(X): 0 \longrightarrow C_3 \xrightarrow{\partial_3} C_2 \xrightarrow{\partial_2} C_1 \xrightarrow{\partial_1} C_0 \longrightarrow \mathbb{Z} \longrightarrow 0,
$$

considered as a chain complex of finitely-generated, free Λ -modules relative to a single 0-cell as base-point, where $\Lambda = \mathbb{Z}G$ is the integral group ring.

The boundary map ∂_3 is injective because $H_3(X) = 0$. Let $B_3 = \text{im}(\partial_3)$, with $j : B_3 \to C_2$ the inclusion map, and consider the boundary map ∂_3 : $C_3 \rightarrow B_3$ as defining a 3-cocycle. Since $H^3(X; B_3) = 0$, there is a Λ -module homomorphism $\phi: C_2 \to B_3$ such that $\phi \circ j =$ id. We have an exact sequence

$$
0 \longrightarrow C_3 \longrightarrow \pi_2(K) \longrightarrow \pi_2(X) \longrightarrow 0,
$$

where $K \subset X$ denotes the 2-skeleton (since $\pi_2(K) = Z_2 = \text{ker } \partial_2$). It follows that C_3 is a direct summand of $\pi_2(K)$, and hence $\pi_2(X)$ is a representative of the stable class $\Omega^3(\mathbb{Z})$. More explicitly, the map ϕ induces a direct sum splitting $C_2 = \text{im}(\partial_3) \oplus P$, and $P \cong$ C_2 / im(∂_3) is a finitely-generated, stably-free Λ -module since $C_3 \cong im(\partial_3)$ is a finitelygenerated, free Λ -module. This gives a commutative diagram:

where the vertical sequences are split exact, and hence a resolution

$$
0 \longrightarrow \pi_2(X) \longrightarrow P \longrightarrow C_1 \longrightarrow C_0 \longrightarrow \mathbb{Z} \longrightarrow 0.
$$

By a sequence of elementary expansions (on the chain complex these are just the direct sum with copies of $\Lambda = \Lambda$ in dimensions 1 and 2), we may assume that *P* is a finitelygenerated, free Λ -module. This operation doesn't change the (simple) homotopy type of *X*. The following result has also been observed in [**7**], [**19**, theorem 3·5]. Our proof uses the techniques of [**11**, section 2].

LEMMA 2.1. *The stabilised complex* $X \vee r(S^2)$ *, with* $r = b_3(X)$ *, is simple homotopy equivalent to a finite* 2*-complex K .*

Proof. Let $u: K \subset X$ denote the inclusion of the 2-skeleton of X, so that we have the identification $\pi_2(K) \cong \pi(X) \oplus C_3$ discussed above. We further identify

$$
\pi_2(K \vee r(S^2)) \cong \pi_2(K) \oplus \Lambda^r \cong \pi_2(X) \oplus C_3 \oplus F \tag{2.2}
$$

available at <https://www.cambridge.org/core/terms>.<https://doi.org/10.1017/S0305004118000385> Downloaded from [https://www.cambridge.org/core.](https://www.cambridge.org/core) McMaster University Library, on 31 May 2018 at 15:09:25, subject to the Cambridge Core terms of use,

and fix free Λ -bases $\{e_1, \ldots, e_r\}$ for $C_3 \cong \Lambda^r$, and $\{f_1, \ldots, f_r\}$ for $F \cong \Lambda^r$. The same notation $\{e_i\}$ and $\{f_i\}$ will also be used for continuous maps $S^2 \to K \vee r(S^2)$ in the homotopy classes of $\pi_2(K \vee r(S^2))$ defined by these basis elements. Notice that the maps $f_i: S^2 \to K \vee r(S^2)$ may be chosen to represent the inclusions of the S^2 wedge factors.

We first claim that there exists a (simple) self-homotopy equivalence

$$
h\colon K\vee r(S^2)\longrightarrow K\vee r(S^2)
$$

such that the induced isomorphism

$$
h_*\colon \pi_2(K\vee r(S^2))\stackrel{\cong}{\longrightarrow} \pi_2(K\vee r(S^2))
$$

has the property $h_*(e_i) = f_i$, for $1 \leq i \leq r$, with respect to the chosen bases in the righthand side of (2·2), and induces the identity on the summand $\pi_2(X)$.

The construction of the required self-homotopy equivalences is given in [**11**, p. 101], where the realization of the group of elementary automorphisms $E(P_1, L \oplus P_0)$ is studied. In this notation P_0 , P_1 are free modules of rank one, and L is an arbitrary Λ -module. The basic construction is to realise automorphisms of the form $1+f$ and $1+g$, where $f: L \oplus P_0 \to P_1$ and $g: P_1 \rightarrow L \oplus P_0$ are arbitrary Λ -homomorphisms. We apply this to the sub-module $L \oplus \Lambda \cdot e_1 \oplus \Lambda \cdot f_1$, where $L = \pi_2(X)$, and realise the automorphism $id_L \oplus \alpha$ with $\alpha(e_1) = -f_1$ and $\alpha(f_1) = e_1$ via the composition

$$
\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}.
$$

We can now construct a homotopy equivalence $f: X \vee r(S^2) \rightarrow K$, by extending the simple homotopy equivalence $h: K \vee r(S^2) \rightarrow K \vee r(S^2)$ over the (stabilised) inclusion

$$
u \vee id: K \vee r(S^2) \longrightarrow X \vee r(S^2)
$$

by attaching the 3-cells of X in domain, and 3-cells in the range which cancel the $S²$ wedge factors. For the attaching maps $[\partial D_i^3] = e_i$, $1 \le i \le r$, of the 3-cells of *X* we have $h \circ [\partial D_i^3] = f_i$. Hence we can extend by the identity to 3-cells attached along the maps ${f_i: S^2 \to K \lor r(S^2)}$. We obtain a map

$$
h': X \vee r(S^2) \longrightarrow K \vee r(S^2) \bigcup \{D_i^3 : [\partial D_i^3] = f_i, 1 \leq i \leq r\} \simeq K
$$

extending h . It is easy to check that h' is a (simple) homotopy equivalence.

An *algebraic* 2*-complex over the group ring* $\Lambda := \mathbb{Z}G$ is a chain complex (F_*, ∂_*) of the form

$$
F_2 \xrightarrow{\partial_2} F_1 \xrightarrow{\partial_1} F_0
$$

consisting of an exact sequence of finitely-generated, stably-free Λ -modules, such that $H_0(F_*) = \mathbb{Z}$. An *r*-stabilisation of an algebraic 2-complex is the result of direct sum with a complex (E_*, ∂_*) , where $E_2 = \Lambda^r$ for some $r \ge 0$, $\partial_* = 0$ and $E_i = 0$ for $i \ne 2$. We say that an algebraic 2-complex is *geometrically realisable* if it is chain homotopy equivalent to the cellular chain complex $C(X)$ of a (geometric) finite 2-complex X with fundamental group $\pi_1(X) = G$.

LEMMA 2·3. *Any algebraic* 2*-complex* (F_*, ∂_*) *over* $\Lambda = \mathbb{Z}G$ *is geometrically realisable* after an *r*-stablisation, for some $r \geqslant 0$.

Proof. We compare the resolution

$$
0 \longrightarrow L \longrightarrow F_2 \longrightarrow F_1 \longrightarrow F_0 \longrightarrow \mathbb{Z} \longrightarrow 0,
$$

where $L = \ker \partial_{2}$, to one obtained from the chain complex

 $0 \longrightarrow \pi_2(K) \longrightarrow C_2(K) \longrightarrow C_1(K) \longrightarrow C_0(K) \longrightarrow \mathbb{Z} \longrightarrow 0$

of any finite 2-complex *K* with fundamental group *G*. Then Schanuel's Lemma shows that these two resolutions of Λ -modules (regarded as connected 3-dimensional chain complexes) are stably chain isomorphic after direct sum with elementary complexes of the form $\Lambda = \Lambda$ in degrees $(i, i - 1)$ for $1 \leq i \leq 3$ (compare [33, lemma 3B], or [12, p. 415]).

The stabilisations in degrees $(i, i - 1)$ for $i < 3$ produce a complex (F'_*, ∂'_*) of finitely generated free Λ -modules, and a chain homotopy equivalence $(F'_*, \partial'_*) \simeq (F_*, \partial_*)$. The additional degree (3, 2) stabilisations produce a complex (F''_*, ∂''_*) , and a chain homotopy equivalence $(F''_*, \partial''_*) \simeq (F_*, \partial_*) \oplus (E_*, \partial_*),$ where (E_*, ∂_*) is a complex concentrated in degree 2 (as defined above).

In other words, the resulting stabilised complex $(F_*, \partial_*) \oplus (E_*, \partial_*)$ is an *r*-stabilisation of (*F*∗, ∂∗). The chain homotopy equivalence

$$
(F_*,\partial_*)\oplus (E_*,\partial_*)\simeq C_*(K\vee r(S^2))
$$

shows that the algebraic 2-complex (F_*, ∂_*) is geometrically realisable after *r*-stabilisation.

COROLLARY 2·4 (Wall). *Every algebraic* 2*-complex F*[∗] *is chain homotopy equivalent to the chain complex* $C_*(X)$ *of a* D2*-complex.*

Proof. The construction produces a chain homotopy equivalence

$$
(F_*,\partial_*)\oplus (E_*,\partial_*)\simeq C_*(K\vee r(S^2))
$$

after an *r*-stabilisation of F_* , and in particular an isomorphism $L \oplus E_2 = \pi_2(K) \oplus \Lambda^r$, for some $r \ge 0$. Then one can attach 3-cells to $K \vee r(S^2)$, using the images in $\pi_2(K \vee r(S^2))$ of a free basis of the summand $E_2 \cong \Lambda^r$, to produce a D2-complex *X* and a chain homotopy equivalence $C(X) \simeq F_*$.

Remark 2·5*.* The ingredients in the proof of Lemma 2·3 are essentially the same as those used by Wall to prove [**33**, theorem 4]. Similar ideas appear in [**21**, appendix B], [**25**, theorem 2.1].

Proof of Theorem A. Let *X* be a finite 3-complex which satisfies the D2-conditions. By Lemma 2.1, there exists a finite 2-complex *K* and a simple homotopy equivalence $f: X' :=$ $X \vee r(S^2) \rightarrow K$, for any $r \geq b_3(X)$. Now let $G = \pi_1(X)$ be a finite group, and let K_0 denote a minimal finite 2-complex K_0 with fundamental group *G*. Then $\chi(K_0) = 1 - \text{def}(G)$, and, after perhaps stabilising further, we can assume that K is simple homotopy equivalent to a stabilisation of K_0 . We then obtain a simple homotopy equivalence of the form

$$
X \vee r(S^2) \simeq K_0 \vee t(S^2) \vee r(S^2),
$$

where $t \geq 0$ provided that $\chi(X) \geq 1 - \text{def}(G) = \chi(K_0)$. We note that the arguments in [11, section 2] are at first completely algebraic (to obtain cancellation of the π_2 modules via elementary automorphisms). This step depends on the assumption of finite fundamental group for the application of [**11**, corollary 1·2 and lemma 1·16] (compare the proof of

[**11**, theorem B]). Then we show (following [**11**, p. 101]) how to realize the necessary elementary automorphisms by simple homotopy equivalences.

If $\chi(X) > \chi(K_0)$, then $t \geq 1$ and we can construct simple self-equivalences of $K_0 \vee$ $t(S^2) \vee r(S^2)$ to cancel the extra *r* wedge summands of $X \vee r(S^2)$. The resulting 2-complex will be $K' \simeq K_0 \vee t(S^2)$.

If $\chi(X) = \chi(K_0)$, then $t = 0$ but we can perform the same operations after replacing X by *X* \vee *S*², and the resulting 2-complex will be *K*^{\prime} \cong *K*₀ \vee *S*². In either case, the resulting 2complex *K'* has non-minimal Euler characteristic $\chi(K') > \chi(K_0)$, so its simple homotopy type is uniquely determined by *G* and χ (*X*) (see [11, theorem B]).

The techniques used in this proof also give a version for algebraic 2-complexes (answering a question of Browning $[6, \text{section 5-6}])$. We recall that an *s*-basis for a stably free Λ -module *M* is a free Λ -basis for some stabilisation $M \oplus \Lambda^r$ by a free module.

COROLLARY 2*·6. Let F and F' be s-based algebraic* 2*-complexes over* $\Lambda = \mathbb{Z}G$, where *G* is a finite group. If $\chi(F) = \chi(F') > \mu_2(G)$, then *F* and *F'* are simple chain homotopy *equivalent.*

Proof. We apply Corollary 2.4 and the method of proof for Theorem A.

Proof of Theorem B. The same remarks as above apply to the proof of [11, theorem 2.1]. In addition, we note that $\mu_2(G) = 1 - \text{def}(G)$ for all of the finite subgroups of *SO*(3). For these groups, $\text{def}(G) \geq -1$ (see Coxeter [8, section 6·4]), and $\mu_2(G)$ can be estimated by group cohomology using Swan [**31**, theorem 1·1]. We can now apply cancellation down to $r = 0$ for fundamental groups which are finite subgroups of $SO(3)$. This proves that every algebraic 2-complex with one of these fundamental groups is geometrically realisable.

The uniform stability bound for D2-complexes in Theorem A is a special result for finite fundamental groups, based initially on the fact that their integral group rings are finite algebras over the integers. Here is a sample stability result which applies to certain infinite fundamental groups (compare Brown [**4**]).

PROPOSITION 2·7. *Let G be a finitely presented group such that the integral group ring* $\mathbb{Z}G$ is noetherian of Krull dimension d_G . If X is a finite complex with $\pi_1(X) = G$ satisfying *the* D2*-conditions, then* $X \vee r(S^2)$ *is simple homotopy equivalent to a finite* 2*-complex, for* $r \geq d_G + 1$, whose simple homotopy type is uniquely determined by G and $\chi(X)$.

Proof. (Sketch) The arguments follow the same outline as those used by Bass [**1**, chapter IV·3·5] to prove a cancellation theorem for modules using elementary automorphisms. The ingredients in these arguments were generalised to apply to non-commutative noetherian rings by Magurn, van der Kallen and Vaserstein [**22**], and Stafford [**29**, **30**] (see also Mc-Connell and Robson [**27**, chapter 11]). The application to 2-complexes follows by realising elementary automorphisms by simple homotopy self-equivalences, as in [**11**, section 2].

Remark 2.8*.* For *G* finite, the integral group ring $\mathbb{Z}G$ has Krull dimension $d_G = 1$, so the Bass stability bound would be $d_G + 1 = 2$. If *G* is a polycyclic-by-finite group, the group ring $\mathbb{Z}G$ is again noetherian and $d_G = h_G + 1$, where h_G denotes the *Hirsch length* of G (see [**27**, 6·6·1]). The examples of [**9**, **15**, **16**, **17**] show that for general infinite fundamental groups (for example, the fundamental group of the trefoil knot), there can be (infinitely) many distinct 2-complexes with the same Euler characteristic.

*Two remarks on Wall's D*2 *problem* 7

3. *The relation gap problem*

We will conclude by mentioning a related problem. If *F*/*R* is a finite presentation for a group *G*, then the action of the free group *F* by conjugation on the normal subgroup *R* induces an action of *G* on the quotient abelian group $R_{ab} := R/[R,R]$. This $\mathbb{Z}G$ -module *Rab* is called the *relation module* for *G*.

Let $d(\Gamma)$ denote the minimum number of elements needed to generate a group Γ , and if a group Q acts on Γ , then let $d_O(\Gamma)$ denote the minimum number of Q-orbits needed to generate Γ . Note that $d(\Gamma) \geq d_G(\Gamma)$.

In this notation, $d_F(R)$ is the minimum number of normal generators for *R*, and $d_G(R/[R.R])$ is the minimum number of $\mathbb{Z}G$ -module generators for the module R_{ab} .

Definition 3.1. For a finite presentation F/R of a group *G*, the *relation gap* is the difference $d_F(R) - d_G(R/[R, R])$. The *relation gap problem* is to decide whether there exists a finite presentation with a positive relation gap.

The survey articles of Harlander [**13**, **14**] provide some key examples (such as those constructed by Bridson and Tweedale [**3**]), and a guide to the literature. A connection to the D2 problem is provided by the following result:

THEOREM 3.2 (Dyer [13, theorem 3.5]). Let G be a group with $H^3(G;\mathbb{Z}G) = 0$. If there *exists a finite presentation F*/*R with a positive relation gap, realizing the deficiency of G, then the* D2 *property does not hold for G.*

The D2 problem can be considered a generalisation of the Eilenberg–Ganea conjecture [**10**], which states that a group *G* with cohomological dimension 2 also has geometric dimension 2. If $cd(G) = 2$ and the classifying space *BG* is homotopy equivalent to a finite complex, then *G* will satisfy the Eilenberg–Ganea conjecture if *G* has the D2 property.

A striking result of Bestvina and Brady [**2**, theorem 8·7] shows that either the Eilenberg– Ganea conjecture is false, or there is a counterexample to the Whitehead conjecture, which states that every connected subcomplex of an aspherical 2-complex is aspherical.

Acknowledgments. I would like to thank Jens Harlander and Jonathan Hillman for helpful comments and references.

REFERENCES

- [**1**] H. BASS. Algebraic *K*-theory. (W. A. Benjamin, Inc., New York-Amsterdam, 1968).
- [**2**] M. BESTVINA and N. BRADY. Morse theory and finiteness properties of groups. *Invent. Math.* **129** (1997), 445–470.
- [**3**] M. R. BRIDSON and M. TWEEDALE. Deficiency and abelianised deficiency of some virtually free groups. *Math. Proc. Camb. Philos. Soc.* **143** (2007), 257–264.
- [**4**] K. A. BROWN. Relation modules of polycyclic-by-finite groups. *J. Pure Appl. Algebra* **20** (1981), 227–239.
- [**5**] K. S. BROWN and P. J. KAHN. Homotopy dimension and simple cohomological dimension of spaces. *Comment. Math. Helv.* **52** (1977), 111–127.
- [**6**] W. J. BROWNING. Homotopy types of certain finite cw-complexes with finite fundametal group. (ProQuest LLC, Ann Arbor, MI, 1978) Ph.D. thesis. Cornell University.
- [**7**] J. M. COHEN. *Complexes of cohomological dimension two*. Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976), Part 2, Proc. Sympos. Pure Math., XXXII (Amer. Math. Soc., Providence, R.I., 1978), pp. 221–223.
- [**8**] H. S. M. COXETER and W. O. J. MOSER. Generators and relations for discrete groups. fourth ed. *Ergeb. Math. Grenzgeb.* [Results in Mathematics and Related Areas], vol. 14 (Springer-Verlag, Berlin-New York, 1980).

- [**9**] M. J. DUNWOODY. The homotopy type of a two-dimensional complex. *Bull. London Math. Soc.* **8** (1976), 282–285.
- [**10**] S. EILENBERG and T. GANEA. On the Lusternik–Schnirelmann category of abstract groups. *Ann. of Math.* (2) **65** (1957), 517–518.
- [**11**] I. HAMBLETON and M. KRECK. Cancellation of lattices and finite two-complexes. *J. Reine Angew. Math.* **442** (1993), 91–109.
- [12] I. HAMBLETON, S. PAMUK and E. YALCIN. Equivariant CW-complexes and the orbit category. *Comment. Math. Helv.* **88** (2013), 369–425.
- [**13**] J. HARLANDER. Some aspects of efficiency. Groups—Korea '98 (Pusan) (de Gruyter, Berlin, 2000) pp. 165–180.
- [**14**] J. HARLANDER. On the relation gap and relation lifting problem. Groups St Andrews 2013 London Math. Soc. Lecture Note Ser. vol. 422 (Cambridge University Press, Cambridge, 2015), pp. 278– 285.
- [**15**] J. HARLANDER and J. A. JENSEN. Exotic relation modules and homotopy types for certain 1-relator groups. *Algebr. Geom. Topol.* **6** (2006), 2163–2173.
- [**16**] J. HARLANDER and J. A. JENSEN. On the homotopy type of CW-complexes with aspherical fundamental group. *Topology Appl.* **153** (2006), 3000–3006.
- [**17**] J. HARLANDER and A. MISSELDINE. On the *K*-theory and homotopy theory of the Klein bottle group. *Homology Homotopy Appl.* **13** (2011), 63–72.
- [**18**] C. HOG-ANGELONI and W. METZLER (EDS.). Two-dimensional homotopy and combinatorial group theory. London Mathematical Society Lecture Note Series, vol. 197 (Cambridge University Press, Cambridge, 1993).
- [**19**] F. JI and S. YE. Partial Euler characteristics, normal generations and the stable D(2) problem. arXiv:1503.01987 (2015).
- [**20**] X. JIN, Y. SU and L. YU. Homology roses and the D(2)-problem. *Sci. China Math.* **58** (2015), 1753– 1770.
- [**21**] F. E. A. JOHNSON. Stable modules and the *D*(2)-problem. London Math. Soc. Lecture Note Series, vol. 301 (Cambridge University Press, Cambridge, 2003).
- [**22**] B. A. MAGURN, W. VAN DER KALLEN and L. N. VASERSTEIN. Absolute stable rank and Witt cancellation for noncommutative rings. *Invent. Math.* **91** (1988), 525–542.
- [**23**] W. H. MANNAN. The *D*(2) property for *D*8. *Algebr. Geom. Topol.* **7** (2007), 517–528.
- [**24**] W. H. MANNAN. Quillen's plus construction and the D(2) problem. *Algebr. Geom. Topol.* **9** (2009), 1399–1411.
- [**25**] W. H. MANNAN. Realising algebraic 2-complexes by cell complexes. *Math. Proc. Camb. Phil. Soc.* **146** (2009), 671–673.
- [**26**] W. H. MANNAN and S. O'SHEA. Minimal algebraic complexes over *D*4*n*. *Algebr. Geom. Topol.* **13** (2013), 3287–3304.
- [**27**] J. C. MCCONNELL and J. C. ROBSON. Noncommutative Noetherian rings. revised ed. Graduate Studies in Math., vol. 30 (American Mathematical Society, Providence, RI, 2001), With the cooperation of L. W. Small.
- [**28**] S. O'SHEA. The *D*(2)-problem for dihedral groups of order 4*n*. *Algebr. Geom. Topol.* **12** (2012), 2287–2297.
- [**29**] J. T. STAFFORD. Stable structure of noncommutative Noetherian rings. *J. Algebra* **47** (1977), 244– 267.
- [**30**] J. T. STAFFORD. Absolute stable rank and quadratic forms over noncommutative rings. *K -Theory* **4** (1990), 121–130.
- [**31**] R. G. SWAN. Minimal resolutions for finite groups. *Topology* **4** (1965), 193–208.
- [**32**] C. T. C. WALL. Finiteness conditions for *CW*-complexes. *Ann. of Math.* (2) **81** (1965), 56–69.
- [**33**] C. T. C. WALL. Finiteness conditions for cw complexes. II. *Proc. Roy. Soc. Ser. A* **295** (1966), 129– 139.
- [**34**] J. H. C. WHITEHEAD. Simplicial spaces, nuclei and *m*-groups. *Proc. Lond. Math. Soc.* **45** (1939), 243–327.