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Abstract

This paper introduces and explores variations on a natural extension of
the intensity based doubly stochastic framework for credit default. The es-
sential addition proposed here is to introduce a Markov chain for the “credit
rating” of each firm, which are independent conditioned on a stochastic time
change, or equivalently a stochastic intensity. The stochastic time change is
then combined with other stochastic factors, here the interest rate and the
recovery rate, into a multidimensional affine process. The resulting general
framework has the computational effectiveness of the intensity based models.
This paper aims to illustrate the potential of the general framework by explor-
ing a minimal implementation which is still capable of combining stochas-
tic interest rates, stochastic recovery rates and the multifirm default process.
Already within this minimal version we see very good reproduction of es-
sential features of credit spread curves, default correlations and multifirm de-
fault distributions. Increased flexibility can also be achieved with a number
of mathematical extensions of the basic framework. In a companion paper,
[Hurd and Kuznetsov (2006)] we show how the same framework extends to
large scale basket credit derivatives, particularly CDOs (collateralized debt
obligations).

Key words: Credit risk, stochastic intensity, credit migration, stochastic recovery,
default correlation, credit spread
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1 Introduction
The intensity based approach to credit risk initiated by [Jarrow and Turnbull (1995)]
and developed by many subsequent authors takes as its main ingredients the default
time t∗ of the firm, the interest rate rt, the survival indicator Yt = 1{t∗ > t}, and
the default intensity λt. In terms of these processes the instantaneous probability of
default is

P (t < t∗ < t+ dt|t∗ > t) := E[1{Yt+dt = 0}|Yt = 1] = λtdt. (1)

Then one can derive the probability of survival to time t:

P (t∗ > t) = E
[
e−

R t
0 λsds

]
,

and the price of a zero-recovery, zero-coupon defaultable bond:

E
[
e−

R T
0 rsdsI{t∗ > T}

]
= E

[
e−

R T
0 (rs+λs)ds

]
(2)

In many applications one needs to have a finer structure for the creditworthiness
of a firm than simply default or no default, and one is then led to the credit migra-
tion approach of [Jarrow et al. (1997)], [Lando (1998)], [Arvanitis et al. (1999)].
Here the idea is to generalize the 0, 1 process Yt to a finite state Markov chain on
{0, 1, 2, . . . , K} where the states {0, 1, 2, . . . , K} represent credit rating or distance
to default of the firm. 0 represents the default state, and the closer the rating of the
company is to 0 the higher is its probability of default. For example, if K = 7 one
can identify states with Moody’s or Standard and Poor’s ratings classes:

{0, 1, 2, . . . , 7} ↔ {“default”, CCC, B, BB, BBB, A, AA, AAA}.

One can also takeK large and think of k ≤ K as analogous to “distance to default”:
in this case rating class models take on the characteristics of structural models such
as the Black-Cox model [Black and Cox (1976)]. In general credit migration mod-
els, one specifies a stochastic intensity matrix Lt = (λkl,t)k,l∈{0,1,2,...,K} such that

P (Yt+dt = l|Yt = k) := E[1{Yt+dt = l}|Yt = k] = λkl,tdt, for k 6= l.

It is clear that to be useful, such a dramatic generalization of the intensity framework
must be constrained in some way. For example, to achieve tractable formulas for
credit derivative prices, [Lando (1998)] and [Arvanitis et al. (1999)] assume that the
matrix Lt is diagonalizable in a fixed time independent basis, and then specify the
joint law of the eigenvalue processes.

The primary purpose of the present paper is to extend the credit migration frame-
work developed in the above-mentioned works, with its flexibility and computa-
tional efficiency, from single firms to the multifirm setting. Our modelling of the
credit states Y (1)

t , Y
(2)
t , . . . , Y

(M)
t of multiple firms, as expressed in Assumptions

1-5 of the paper, is guided by certain considerations:
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1. For multiple firms, a natural simplification is to suppose that stochastic migra-
tion intensities, interest rate, and stochastic recovery are market factors that
apply identically to all firms. Thus, when conditioned on market information,
the credit migration processes Y (1)

t , Y
(2)
t , . . . , Y

(M)
t can be taken to be identi-

cally distributed independent Markov chains. This reduces the complexity of
the framework, and also has the consequence that while market factors can in-
fluence defaults, defaults cannot influence the market as they do in contagion
models such as [Davis and Lo (2001)].

2. The conditional independence of Y (1)
t , Y

(2)
t , . . . , Y

(M)
t implies that default

correlation arises purely from correlated migration intensities. It is well known
from intensity based approaches that the possible default correlations which
arise from correlating continuous intensity processes are generally too weak
to be realistic. For this reason, we allow stochastic intensities to be jump
diffusions, and thereby obtain the possibility of strong default correlations.

3. The special case of a single market wide migration intensity can be usefully
interpreted as a stochastic time change.

4. Mathematical consistency suggests that intensities, interest rates and recovery
rates must be positive processes. Modelling experience then suggests that the
affine class of positive jump-diffusion processes [Duffie et al. (2003)] is both
rich and computationally efficient.

5. It is important that the multifirm structure should allow efficient computa-
tion of high dimensional basket credit portfolio derivatives such as CDOs
by enabling a reduction to explicit low dimensional integrals. The compu-
tation of CDOs in the AMC framework is explored in a companion paper
[Hurd and Kuznetsov (2006)].

It is worth explaining in more detail the “credit migration with stochastic time
change” picture that holds in the simplest possible version of our framework, where
there is a single time change factor for the entire credit market. Viewed in stochastic
time, all firms undergo their credit migration independently with identical transition
intensities, eventually jumping to the absorbing default state. Viewed in real time
however, the stochastic clock variously speeds up or slows down each firm’s mi-
gration process, thereby raising or lowering its true default intensity. The result is a
complex structure of credit spreads and positive default correlations. The concept of
a stochastic market time has been used by numerous authors to explain asset price
dynamics: for example, stochastic volatility models can be viewed this way.

While the above considerations form the conceptual basis for the AMC multi-
firm framework, they are too restrictive to apply perfectly, or even adequately, to
real credit markets. For this reason, we investigate in the later sections of the paper
a number of different extensions that lead to greater flexibility while retaining the
basic picture and its structural and computational advantages. Thus we demonstrate
how to include multidimensional time changes that drive different modes of credit
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migration, enabling greater flexibility in modelling credit spread dynamics. These
extra time changes can be introduced one at a time, providing a more systematic
method than the general method proposed in [Lando (1998)]. We also show how to
correctly fit the credit spread curves of individual firms, while preserving the mar-
ket average credit spreads by rating class. We provide a third extension that gives a
flexible default correlation structure while fixing all marginal default probabilities,
somewhat analogous to the copula models of default.

In addition to the basic development of the multifirm framework, plus the above
extensions, our paper provides detailed derivations of pricing formulas for bonds
and credit default swaps, under a number of different stochastic recovery mecha-
nisms. We show how to compute joint default distributions, enabling the study of
the default correlation function. We also provide a brief discussion of one consistent
method for a full-scale calibration of the model.

The organization of this paper is as follows. The main ingredients of the frame-
work are the processes which govern credit migration, interest rate, time change and
recovery. These are defined in Section 2 for both the reference probability measure
P and a risk neutral measureQ. Assumptions 1-3 are the main structural hypotheses
underlying the entire paper. Section 3 focusses on the computation of pure rating
transition and default probabilities. Section 4 gives general formulas for defaultable
zero coupon bonds and credit default swaps. Assumption 4 is introduced simply to
have closed expressions for several key results. Section 5 is devoted to stating and
proving the bond price formula under the recovery of market value mechanism. In
Section 6, Assumption 5 extends the AMC framework to the multifirm setting, and
the remainder of the section gives derivations of formulas for the joint default dis-
tribution and default correlation in a basic two firm context. We provide a number
of simple extensions of the basic framework in Section 7. These variations should
be useful for modelling some of the finer detail observed in real credit markets.
Section 8 provides a numerical illustration of two simple specifications of the mod-
elling framework where the market factors are modelled as affine jump diffusions.
The two models are chosen to have identical marginal default probabilities, but dif-
ferent default correlations. In Section 9, we outline a coherent calibration scheme
which in principle provides filtered estimates of unobservable market factors and
maximum likelihood estimates of modelling parameters, all based on a panel of ob-
served bond pricing data. Finally, the appendix gives detailed computations which
underlie some of the basic results.

2 The one–firm setup
In this section we will consider two probabilistic settings. We begin with our mod-
elling ingredients in the physical (or historical or natural) probability measure P .
Then we develop a richer dynamical framework which we interpret as the risk-
neutral framework, that is a probability measure Q under which all discounted
traded asset price processes are martingales. The P measure is interpreted as a
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reference measure, chosen compatible with long term historical credit migration
rates, under which the dynamics is as simple as possible. While it can be used
as the physical measure by a risk manager, typically, a sophisticated risk manager
who feels there are significant market drivers of “true” migration probabilities will
choose yet a different P ′ which has dynamics as rich as Q dynamics.

Assumption 1. The P probability setting supports stochastic processes and random
variables with the following properties:

(a) A continuous time, time-homogeneous Markov chain Yt on the space of rating
classes {0, 1, 2, . . . , K}. Since a firm, once defaulted, stays in default, we take
0 to be an absorbing state. The Markov generator of the chain, LY , is then a
K+1×K+1 matrix with rows summing to zero and the first row consisting
of zeros:

LY =


0 0 0 . . . 0
l10 −l11 l12 . . . l1,K
l20 l21 −l22 . . . l2K
...

...
... . . . ...

lK0 lK1 lK2 . . . −lKK

 (3)

The off-diagonal entries of LY record the instantaneous intensity for all pos-
sible migrations, since over any infinitesimal time interval

P (Yt+dt = j|Yt = k) := EP [1{Yt+dt = j}|Yt = k] = lkjdt, for k 6= j.
(4)

We assume there is always a non-zero intensity for the firm to migrate into
any other rating class, which means

lij > 0, if i > 0 and j 6= i. (5)

Finally, we denote the initial rating class of the firm by Y0 = y.

(b) The default time t∗, the mathematical idealization of the moment the firm
enters bankruptcy, is defined as the first time the process Yt hits the absorbing
state 0.

(c) A vector-valued process Xt = [rt, lt, λt]
′ where rt is the spot interest rate pro-

cess, the recovery rate process is Rt = e−lt , and λt is the stochastic migration
intensity process. We will shortly specify more properties of Xt: we think
of these as market or macroeconomic factors which will be used to drive the
default dynamics of all firms under the risk neutral measure Q. (Note that in
this article vectors will be written in bold font as x = {x1, x2, ..., xn}.)

Under the above assumptions, one can prove that the matrix LY is diagonaliz-
ableLY = V DV −1 and that the diagonal eigenvalue matrixD = −diag{α0, α1, α2, . . . , αK}
has α0 = 0 and α1, α2, . . . , αK all with positive real parts. The eigenvector matrix
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V = (vij)i,j=0...K is a matrix whose columns are the corresponding eigenvectors of
LY . The elements of V −1 will be denoted as V −1 = (ṽij)i,j=0...K . The transition
semigroup PY (t) for the process Y is a K + 1×K + 1 matrix valued function such
that for any t ≥ 0

P (Yt = j|Y0 = y) := EP
0,y[I{Yt = j}] = (PY )yj(t), y, j ∈ {0, . . . , K} (6)

It satisfies the Kolmogorov equation

d

dt
PY (t) = LYPY (t), PY (0) = I,

and as can be seen from the diagonal form of LY , can be computed as

(PY )yj(t) = (etLY )yj =
K∑
i=0

vyiṽije
−αit. (7)

The next assumption completes the specification of the model under the histor-
ical probability measure P .

Assumption 2. Under P ,

(a) Yt is independent of the process Xt;

(b) The process Xt is a given by a linear transformation Xt = MZt of an un-
derlying N -dimensional “solvable” time-homogeneous Markov state process
Zt. Here M is a 3×N dimensional matrix. By “solvable”, we mean that

GP (t,Z0;u,v) := EP
0,Z0

[e−
R t
0 u·Zsds−v·Zt ] (8)

is given by an explicit expression which is analytic in all its arguments. At
the end of this section, we give a list of pertinent examples of such formulas.

We now turn to the model under the risk-neutral measure Q. Without going
into technical details, the relationship between P and Q is captured by a version
of the Girsanov theorem applicable to measure changes of jump-diffusions (see
[Elliott (1982)]). Under this theorem, it is possible to define new measures equiv-
alent to P under which each non-zero off-diagonal entry of the migration intensity
matrix becomes a positive stochastic process. As well, the allowable Girsanov trans-
formations can change the drifts and jump intensities of the market process Zt, but
not its diffusive volatilities. By use of this theorem, and by assuming the absence of
arbitrage, we find we may assume:

Assumption 3. (a) There exists a risk neutral measure Q, equivalent to P , such
that all discounted traded assets are Q martingales.
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(b) Under Q, the Markov chain Yt has stochastic transition intensities λt(LY )ij:
thus for infinitesimal time intervals dt

Q(Yt+dt = j|Yt = k) := EQ[1{Yt+dt = j}|Yt = k] = λtlkjdt, for k 6= j.
(9)

(our use here of the Girsanov theorem imposes the further assumption that
λt > 0 almost surely).

(c) The process Zt is Markov and solvable under Q, and the function

GQ(t,Z0;u,v) := EQ
0,Z0

[e−
R t
0 u·Zsds−v·Zt ] (10)

has the same functional form as the function GP . In other words, the stochas-
tic differential equation (SDE) governing Zt under Q has the same form as its
SDE under P .

Remark 1. Formula (9) has a very important and natural interpretation, namely the
Q dynamics of Yt is equal in distribution to the P -dynamics of the time-changed
process Ỹt := Yτt defined by

τt =

∫ t

0

λsds, t > 0.

To see this, note that from (4), for infinitesimal time intervals dt

EP [1{Yτt+dt
= j}|Yτt = k] = EP [1{Yτt+λtdt = j}|Yτt = k] = λtlkjdt, for k 6= j.

(11)

Examples of SDEs for market factors: Explicit formulas for both GP , GQ exist
in the following two classes of examples. From now on, we confine our discussion
to the processes under the risk neutral measure Q: thus each Wt is a Q Brownian
motion, and each jump process Jt is taken to have a Lévy measure ν supported on
(0,∞) under Q.

1. (OU processes) The simplest formulation generalizes the Vasicek interest rate
model and assumes that Zt is a three-dimensional Ornstein-Uhlenbeck pro-
cess of the following general form:

dZt = A(Z̄− Zt) + dWt (12)

for A a 3× 3 matrix and Z̄ ∈ R3
+. Despite its inconsistency with fundamental

constraints rt > 0, lt > 0, λt > 0, for reasonable choices of A,M, Z̄ the
constraints hold with high probability. This model may prove to be rather
tractable despite this deficiency, and provide a good fit with observations.
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2. (Positive affine processes) We suppose there areN1 independent factorsZ(1)
t , . . . , Z

(N1)
t

each of which follows a Cox-Ingersoll-Ross (CIR) mean-reverting diffusion
process. The CIR process with parameters (a, b, c, z0) is the solution of the
SDE

dZt = (a− bZt)dt+
√

2cZtdWt, Z0 = z0 (13)

As well, we may take N2 independent factors Z(N1+1)
t , . . . , Z

(N1+N2)
t each of

which is a positive mean-reverting pure jump process governed by an SDE of
the form

dZt = −aZtdt+ dJt, Z0 = z0. (14)

Here Jt is a non-decreasing pure jump process with identical independent in-
crements, characterized by its jump measure ν which is supported on (0,∞).
A natural choice is the two parameter exponential family

ν(dy) = cde−cydy (15)

with c, d > 0. By taking rt,− log(Rt) and λt each to be a linear com-
bination of the Zs with nonnegative coefficients one can produce a flexi-
ble, solvable family of positive mean-reverting processes. That is, one takes
Xt = MZt, for a 3 × (N1 + N2) matrix M with non-negative entries, and
Zt = [Z

(1)
t , . . . , Z

(N1+N2)
t ]. In the Appendix, we provide explicit formulas for

a realization of this structure with N1 = N2 = 1.

3 Rating transition probabilities
The (risk neutral) transition probabilities of the credit rating migration process Yt,
in particular the distribution of the time of default, are explicit in terms of the GQ

function. In what follows, let the three row vectors of the matrix M be denoted
Mr,Ml,Mλ so that

[rt, lt, λt] = [Mr · Zt,Ml · Zt,Mλ · Zt].

For the remainder of the paper, we concentrate on risk neutral probabilities: com-
putations of physical probabilities are by and large straightforward, and left to the
reader.

Lemma 1. The rating transition probabilities for the process Yt are given by

Q0,Z0,y(Yt = j) =
K∑
i=0

vyiṽijG
Q(t,Z0;αiMλ,0). (16)
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Proof: We use the time change formula (11), the law of iterated expectations, and
(7):

Q0,Z0,y(Yt = j) = EQ
0,Z0,y

[EQ[1{Yt = j}|{Zs}s≤t]]
= EQ

0,Z0,y
[exp(τtLY )yj]

= EQ
0,Z0,y

[
K∑
i=0

vyiṽij exp(−τtαi)]

=
K∑
i=0

vyiṽijG
Q(t,Z0;αiMλ,0).

ut

Default time is the first time Yt hits the absorbing state 0 which means {t∗ ≤
t} = {Yt = 0}. Therefore default probability is computed from (16) with j = 0:

Corollary 2. The probability of default at or before time t > 0 is given by

Q0,Z0,y(t
∗ ≤ t) =

K∑
i=0

vyiṽi0G
Q(t,Z0;αiMλ,0). (17)

4 Pricing defaultable securities
In this section we derive pricing formulas for the basic default risky securities writ-
ten on a firm with credit rating y at time t, namely zero–coupon bonds and credit
default swaps. We first note thatBt(T ), the price at time t of a riskless zero–coupon
bond with maturity T , is given by

Bt(T ) = EQ
t,Zt

[
e−

R T
t rsds

]
= GQ(T − t,Zt;Mr,0). (18)

The price at time t of a defaultable zero–coupon bond with maturity T with a
specified recovery mechanismR = 1−Lwill be denotedBt(T, L). Then, using this
notation, Bt(T, 1) is the price of a defaultable bond with full loss (zero recovery)
while Bt(T, 0) := Bt(T ) is the price of a default free bond.

Lemma 3. The price of a y rated defaultable bond with zero recovery is given by

Bt(T, 1) = EQ
t,Zt,y

[
e−

R T
t rsdsI{t∗ > T}

]
= Bt(T )−

K∑
i=0

vyiṽi0G
Q(T − t,Zt;Mr + αiMλ,0).
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Proof. We find

EQ
t,Zt,y

[
e−

R T
t rsdsI{t∗ > T}

]
= EQ

t,Zt,y

[
e−

R T
t rsds(1− I{YT = 0})

]
= Bt(T )− EQ

t,Zt,y

[
e−

R T
t rsdsI{YT = 0}

]
where the second expectation can be computed as

EQ
t,Zt,y

[
e−

R T
t rsdsI{YT = 0}

]
= EQ

t,Zt,y

[
e−

R T
t rsdsEQ

t,y [I{YT = 0}|{Zs}s≤T ]
]

= EQ
t,Zt,y

[
e−

R T
t rsds

K∑
i=0

vyiṽi0e
−αi(τT−τt)

]

=
K∑
i=0

vyiṽi0G
Q(T − t,Zt;Mr + αiMλ,0)

ut

To show that our framework is capable of dealing with recovery which is cor-
related to other market factors, we now consider a nontrivial recovery mechanism
called recovery of treasury (RT). Other recovery specifications often considered in-
clude recovery of par and recovery of market value, [Schönbucher (2003)]. Up to
this point, all formulas have involved simple evaluation of the function GQ. The
more complicated structures we next consider involve more than one time interval.
A final structural assumption on our framework enables us to find explicit formulas
even for products which involve multiple time intervals.

Assumption 4. The process Zt is affine under both P and Q [Duffie et al. (2003)].
That is, there are a scalar function φ(t,u,v) and vector function ψ(t,u,v) such that
the G functions have the exponential affine form

GQ(t,Z;u,v) = e−φ(t,u,v)−ψ(t,u,v)·Z (19)

In the next lemma we compute the price of a credit default swap (CDS) under
recovery of treasury (RT). One party, the insured, pays a constant rate CDS, called
the CDS spread, up to t∗ ∧ T , the minimum of the default time t∗ and the maturity
date. If default happens at or before maturity T , it is assumed that on that date
the insured exercises their right to exchange the now defaulted note for a riskless
bond of the same maturity T and par value. The defaulted note is assumed to have
a recovery value of Rt∗Bt∗(T, 0), so the net value to the insured of the insurance
exchange is (1−Rt∗)Bt∗(T, 0).

The fair CDS spread is chosen to solve the balance equation CDS × V0 = W0

at time 0, where the time t price of the premium leg which pays at rate 1 while
t < t∗ ∧ T is

Vt = EQ
t,Zt,y

 T∫
t

e−
R s

t ruduI{t∗ > s}ds

 (20)
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and price of the insurance leg at time t < t∗ ∧ T is

Wt = EQ
t,Zt,y

[
e−

R t∗
t rsds(1−Rt∗)Bt∗(T, 0)I{t∗ ≤ T}

]
. (21)

Lemma 4. Under Assumption 4, the price of the premium leg is given by

Vt =

T∫
t

Bt(s, 0)ds, (22)

and the price of the insurance leg is

Wt =
K∑
i=0

vyiṽi0

T∫
t

e−φ(T−s,Mr,0)αi(Mλ ·Dv)
[
GQ (s− t,Zt,Mr + αiMλ, ψ(T − s,Mr, 0))−

−GQ (s− t,Zt,Mr + αiMλ,Ml + ψ(T − s,Mr, 0))
]
ds

Here ψ and φ are given by (19) and DvG
Q denotes the derivative of GQ in the v

variable.

Proof. The premium leg is straightforward, so we address only the more compli-
cated insurance leg. We treat the increasing process Is := I{t∗ ≤ s} as an integrator
and use the law of iterated expectations to write

Wt = EQ
t,Zt,y

[∫ T

t

e−
R s

t rs′ds
′
(1−Rs)Bs(T, 0) dIs

]
= EQ

t,Zt

[∫ T

t

e−
R s

t rs′ds
′
(1−Rs)Bs(T, 0) dEQ

t,y

[
I{Ys = 0}|{Zu}u≤s

]]
Since EQ

t,y [I{Ys = 0}|{Zu}u≤s]] =
∑K

i=0 vyiṽi0e
−αi(τs−τt), rs = Mr · Zs, Rs =

e−Ml·Zs and the default-free bond price is given by (18) we find

Wt =
K∑
i=0

vyiṽi0E
Q
t,Zt

[∫ T

t

e−
R s

t Mr·Zs′ds
′−φ(T−s,Mr,0)−ψ(T−s,Mr,0)·Zs

×(1− e−Ml·Zs)(−αiMλ · Zs)e
−αi

R s
t Mλ·Zs′ds

′
ds

]
.

In order to finish the proof, one just needs to use the formula

EQ
0,Z0

[(−w · Zt)e
−

R t
0 u·Zsds−v·Zt ] = (w ·Dv)GQ(t,Z0;u,v).

ut

Finally, we note that a riskless bond is equivalent to a defaultable bond with
recovery RT plus the insurance leg of a CDS. Thus

Bt(T,RT ) = Bt(T, 0)−Wt. (23)

The credit yield spread on bonds with recovery RT is defined to be the function

h(t, T,X) =
logBt(T, 0)− logBt(T,RT )

T − t
. (24)
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5 Pricing under recovery of market value
Bond pricing with “recovery of market value” makes the assumption that at the
default time t∗, the defaulted bond pays the holder a single cash amount of Rt∗

times the market value of the bond at the instant prior to default. The random
variable Rt∗ = [Rt∗,1, . . . , Rt∗,K ]′ may depend on the credit rating Yt∗−, as well
as the market processes Zs, s ≤ t. The following useful formula generalizes the
well-known result of Duffie and Singleton [Duffie and Singleton (1999)], and has a
formally similar proof:

Theorem 5. The RMV value of a y rated defaultable zero coupon bond is

Bt(T,RMV ) =


∑K

k=1E
Q
t,Zt

[
e−

R T
t rsds

(
e

R T
t L̃sλsds

)
yk

]
y 6= 0

0 y = 0
(25)

Here L̃s = (l̃s,jk)j,k=1,...,K is theK×K recovery adjusted migration matrix process
with components l̃s,jk = ljk + δjkRs,jlj0.

Proof. Let the vector Vt = (Vt,1, . . . , Vt,K)′ denote the values of Bt(T,RMV ) in
each nondefault rating, and let Ut denote the matrix valued process exp[−

∫ t

0
(rs −

Lλs)ds]. One can write

Vt = EQ
t,Zt

[
U−1
t UTe + U−1

t

∫ T

t

Us(L̃s − L)Vsλsds

]
(26)

where e = (1, . . . , 1)′. This equals U−1
t

(
Nt −

∫ t

0
Us(L̃s − L)Vsλsds

)
where

Nt = EQ
t,Zt

[
UTe +

∫ T

0
Us(L̃s − L)Vsλsds

]
is a martingale. It follows that

dVt = (rt − Lλt)Vtdt− (L̃t − L)λtVtdt+ U−1
t dNt

Since the last term is a martingale, the expectation of the integral of this SDE yields
the result.

ut

If Rs,k = Rk are constants, we can then compute this formula by diagonalizing
L̃ and proceeding as before. In this case, we can say that the RMV bond price equals
the price of a zero recovery bond computed with the recovery adjusted migration
matrix. We note for future use the following formula for the yield of a zero coupon
bond:

Yt(T,RMV ) =
1

T − t
log

K∑
k,l=1

vykṽklG
Q(T − t,Zt;Mr + αkMλ,0). (27)

where v, ṽ and α arise from the diagonalization of the recovery adjusted matrix L̃.
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6 The Multiple Firm Framework
The simplest way to extend the credit framework to M firms is to assume:

Assumption 5. Firms are distinguishable in their creditworthiness at time t only
by their rating class at that time. The spot interest process rt, the recovery process
Rt = e−lt , and the stochastic migration intensity λt, are defined as for the one firm
model. The credit migration Markov chain processes Y (1)

t , . . . , Y
(M)
t are identical,

independent, and satisfy the instantaneous transition equations (4) under P . They
are identical, conditionally independent, and satisfy (9) underQ. The default time t∗i
of firm i is defined as the first time the corresponding process Y (i)

t hits the absorbing
state 0.

This strong assumption implies that different firms of the same rating will have
identical credit yield curves, and thus it certainly fails for real rating systems such
as Moody’s and Standard and Poor’s that are influenced by factors other than credit
worthiness. Nonetheless, we argue that the assumption is a good approximation
for an ideal system that rates firms solely on the basis of their instantaneous credit
worthiness. In Section 7, we indicate two simple and natural extensions of the
modelling framework which weaken Assumption 5: one extension breaks the in-
disinguishability assumption, the other breaks the independence assumption.

In the above multifirm framework, all credit derivatives on a single firm are
computed as before. As a first multifirm computation, we find the joint default
probability distribution of any two firms:

Lemma 6. The joint probabilityQ0,Z0,y1,y2(t
∗
1 ≤ s, t∗2 ≤ t) for two firms with Y (1)

0 =

y1, Y
(2)
0 = y2 is given by

Q0,Z0,y1,y2(t
∗
1 ≤ s, t∗2 ≤ t) = EQ

0,Z0,y1,y2

[
I{Y (1)

s = 0}I{Y (2)
t = 0}

]
(28)

=
K∑

k,l=0

vy1kṽk0vy2lṽl0E
Q
0,Z0

[
e−αkτs−αlτt

]
,

Under Assumption 4, the expectation EQ
0,Z0,y1,y2

[e−αkτs−αlτt ] is given explicitly in
(A.10) in Appendix A.

For the remainder of this section, we focus on the dependence between default
times of the two firms. An important measure of dependence is the default correla-
tion between events {t∗1 ≤ t}, {t∗2 ≤ t} defined as a function of t and the two rating
classes y1, y2 to be

ρ12(t) =
E12(t)− E1(t)E2(t)√

(E1(t)− E1(t)2)(E2(t)− E2(t)2)
, (29)

where

E12(t) = EQ
0,Z0,y1,y2

[I{t∗1 ≤ t}I{t∗2 ≤ t}] ,
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and

En(t) = EQ
0,Z0,yn

[I{t∗n ≤ t}] , n = 1, 2

The following formulas are proved by mimicking the proofs done so far:

Lemma 7. The above expectations E1, E2, E12 are given by

E12(t) = EQ
0,Z0,y1,y2

[
I{Y (1)

t = 0}I{Y (2)
t = 0}

]
(30)

=
K∑

k,l=0

vy1kṽk0 vy2lṽl0G
Q(t,Z0; (αk + αl)Mλ,0), (31)

and

En(t) = EQ
0,Z0,yn

[
I{Y (n)

t = 0}
]

(32)

=
K∑
ik=0

vynkṽk0G
Q(t,Z0;αkMλ,0), n = 1, 2. (33)

7 Extensions
To this point, we have considered the simplest possible multifirm structure, which
although it admits many desired features, is far too restrictive for practical purposes.
Let us now briefly discuss three extensions which add flexibility for fitting both
credit spread curve dynamics and default correlations, while retaining the essential
feature of computational feasibility.

7.1 Multidimensional Time Change
Models with S-dimensional time change bring greater dynamic flexibility, and can
be formulated by replacing the single generator L by matrices L(1), . . . ,L(S) which
can be diagonalized by the same matrix L(i) = V D(i)V −1, and hence span a com-
muting subgroup:

L(i)L(j) = L(j)L(i), i, j ≤ S

We can assume Q dynamics of the form

Q(Yt+dt = j|Yt = k) =
S∑
s=1

λ
(s)
t l

(s)
kj dt, for k 6= j,

where now Xt = [rt, lt, λ
(1)
t , . . . , λ

(S)
t ] is a 2+S dimensional vector-valued process.

S can be increased one step at a time, thereby introducing new modes of credit
migration, and consequently new degrees of freedom in the shapes of credit spreads.
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The most natural first step arises with the special stochastic matrix

L(2) :=


0 0 0 . . . 0
1 −1 0 . . . 0
1 0 −1 . . . 0
... . . . ...
1 0 0 . . . −1

 , (34)

which commutes with any stochastic matrix. Its inclusion adds a rating independent
default rate to each firm. One can see that its effect is to shift all credit spread curves
up by a similar amount and it can be used to model the liquidity risk premium
that is the usual explanation for the gap between the highest rated firms and the
corresponding risk free curve.

7.2 Fitting Yield Curves
Multidimensional time change also leads us to a simple method to fit yield curves
of each firm exactly on a single date t = 0: this is necessary in practise to break the
symmetry between identically rated firms and to fit observed bond prices exactly.
The basic idea is similar to the Hull-White extensions of short-rate models: we add
a deterministic function f(s) to the default intensity which can then be used to fit
the bond data exactly. It is simplest to apply such a correction using the special
generator L(2) given by (34).

We suppose that at time 0, we have a multifirm model of the above form, with all
market parameters underlying X,L calibrated to credit spread dynamics averaged
over rating classes (see Section 9 for a more detailed discussion). We also suppose
that for the ith firm, we observe a family of zero coupon bond prices {B(i)(T )} of
various maturities T ∈ T (i).

For the ith firm, we introduce a deterministic function f (i)(t) which is piecewise
constant over the tenor structure T (i), and replace the Q Markov chain probabilities
by

Q(Y
(i)
t+dt = j|Y (i)

t = k) = (λtlkj + f (i)(t)δj0)dt, for k 6= j. (35)

One can now use the following lemma to recursively find a unique solution for the
values of f (i)(t) in terms of the observed bond prices.

Lemma 8. Under dynamics (35), the zero-coupon bond price with recovery mech-
anism R, is given by:

e−
R T

t f(s)dsBt(T, 1−R).

where Bt(T, 1−R) is computed using the dynamics with f(t) = 0.
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Proof. Let Ỹt be the process defined by

Q(Ỹt+dt = l|Ỹt = k) = λtlkldt, for k 6= l

and let ξ be the exponential random variable with intensity f(t):

Q(ξ ≤ t+ dt|ξ > t) = f(t)dt

Define a new process Ŷt as follows: Ŷt = Ỹt if ξ ≤ t and Ŷt = 0 if ξ > t. Then
one can check that Ŷt and Y (i)

t defined by (35) are identically distributed processes.
Thus, for example, the zero recovery bond price can be computed as

EQ
t,Zt,y

[
e−

R T
t rsdsI{Y (i)

T 6= 0}
]

= EQ
t,Zt,y

[
e−

R T
t rsdsI{ỸT 6= 0}I{ξ > T}

]
= e−

R T
t f(s)dsEQ

t,Zt,y

[
e−

R T
t rsdsI{ỸT 6= 0}

]
= e−

R T
t f(s)dsBt(T, 1).

The same argument applies for bond prices with general recovery R . ut

7.3 Correlations
Recall that in our basic framework, the credit migration processes Y (i) are inde-
pendent under the reference measure P , but become dependent under Q via the
influence of the market factors Xt. We now describe a natural extension of the dy-
namics which changes credit migration correlations (even under P ), while keeping
the marginal migration probabilities fixed. This construction, reminiscent of the
copula construction, should be important in pricing correlation sensitive securities
such as CDOs.

Observe that a homogeneous Markov chain remains a homogeneous Markov
chain if subjected to a time change by any independent increasing Lévy process.
For illustration purposes, we consider here time changes by the specific process ηt
defined by its characteristic exponent (assumed to be the same under both P and
Q):

Ψ(u) := − logE[e−uη1 ] =
u

1 + βu
(36)

where β ≥ 0 is taken as a fixed parameter, but the same construction goes through
for more general η. This particular choice of η is the pure jump Lévy process
with an exponential jump measure ν(dx) = β−2e−x/βdx, with its average rate of
increase normalized to 1. β is a measure of stochasticity: as β → 0, the process
ηt becomes equal in distribution to the deterministic time t. Using the diagonal
form L = V DV −1, and the inverse function Ψ−1(u) = u

1−βu , we define the matrix
Ψ−1(L) := −VΨ−1(−D)V −1 where

Ψ−1(−D) = diag{0,Ψ−1(α1), . . . ,Ψ
−1(αK)}.

There is a maximal value 0 ≤ β̄ < ∞ such that Ψ−1(L) is a stochastic matrix for
all β ≤ β̄. One can now compute that if β ≤ β̄ and Ỹt is the time-homogeneous
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Markov chain with transition generator Ψ−1(L), then the time changed process Ỹηt

has the original generator L. The multifirm process subject to the same time change
[Ỹ

(1)
ηt , . . . , Ỹ

(M)
ηt ] will be correlated, but has marginals which are identical in distri-

bution to Yt. The parameter β plays a role analogous to the correlation parameter in
the one factor normal copula: correlation goes to zero as β → 0, and increases as
β ↑ β̄.

The following lemma gives the essential formulas for the two firm distribution.

Lemma 9. The joint default probability Q0,Z0,y1,y2(t
∗
1 ≤ s, t∗2 ≤ t) in this extended

model is given for s ≤ t by

Q0,Z0,y1,y2(t
∗
1 ≤ s, t∗2 ≤ t) =

K∑
k,l=0

vy1kṽk0vy2lṽl0E
Q
0,Z0

[
e−τsΨ(Ψ−1(αk)+Ψ−1(αl))−(τt−τs))αl

]
(37)

Under Assumption 4, the expectation E0,Z0

[
eατs+βτt

]
can be computed explicitly

(see (A.10) in Appendix A).
Default correlation in this extended model is given by (29) with

E12(t) = EQ
0,Z0,y1,y2

[
I{Ỹ (1)

ηt
= 0}I{Ỹ (2)

ηt
= 0}

]
=

K∑
k,l=0

vy1kṽk0vy2lṽl0G(t,Z0; Ψ(Ψ−1(αk) + Ψ−1(αl))Mλ,0), (38)

and En(t) given by (32).

Proof. Again, using iterated expectations, the joint default probability can be writ-
ten

EQ
0,Z0,y1,y2

[
I{Ỹ (1)

η(s) = 0}I{Ỹ (2)
η(t) = 0}

]
= EQ

0,Z0,y1,y2

[
(eη(τs)Ψ

−1(L))y10(e
η(τt)Ψ−1(L))y20

]
=

K∑
k,l=0

vy1kṽk0vy2lṽl0E
Q
0,Z0

[
e−η(τs)(Ψ

−1(αk)+Ψ−1(αl))−(η(τt)−η(τs))Ψ−1(αl)
]

=
K∑

k,l=0

vy1kṽk0vy2lṽl0E
Q
0,Z0

[
e−τsΨ(Ψ−1(αk)+Ψ−1(αl))−(τt−τs)αl

]
(39)

The proof of (38) is similar. ut

Remark 2. The restriction β ≤ β̄ implies a bound on the amount of correlation
possible using this method. We will see in section 8 that in practice one can push
for higher correlations by applying this method with β > β̄, without a breakdown
in the computations.
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8 Illustrative Models
In this section we give two model specifications designed to give similar credit
spread curve dynamics, but different correlation structures. Our main intention is
to illustrate how the various pieces of the model can be put together, and how the
resulting formulas can be computed.

We adopt the “credit rating” interpretation of the state space {0, . . . , K}. Then
the first step is to determine the Markov generator LY , a K + 1 × K + 1 matrix,
such that eLY is a reasonable approximation of the one-year historical rating tran-
sition matrix as published by a rating agency such as Moody’s or Standard and
Poor’s. This guarantees that the model dynamics under the reference measure P is
compatible with historical default data. Here we simply take:

LY =



0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.2856 −0.4318 0.0928 0.0250 0.0142 0.0142 0.0000 0.0000
0.0753 0.0479 −0.1928 0.0568 0.0073 0.0034 0.0021 0.0000
0.0273 0.0144 0.1181 −0.2530 0.0813 0.0089 0.0025 0.0005
0.0049 0.0020 0.0174 0.0701 −0.1711 0.0713 0.0047 0.0007
0.0010 0.0000 0.0048 0.0107 0.0688 −0.1172 0.0309 0.0010
0.0000 0.0000 0.0030 0.0030 0.0105 0.0787 −0.1043 0.0091
0.0000 0.0000 0.0000 0.0031 0.0020 0.0083 0.1019 −0.1153


(40)

which generates a typical one-year transition matrix taken from [Jarrow et al. (1997)].
A good discussion on how to find an approximate generator matrix from a given
one-year transition matrix can be found in [Kreinin and Sidelnikova (2001)].

We assume we have one of two versions of a two-factor positive affine form of
the processes Xt = [rt, lt, λt]

′ = MZt with N1 = N2 = 1, each based on processes
Z

(1)
t , Z

(2)
t . Z1 is taken to be a CIR process with parameters α = 0.3790, Z̄ = 1, σ =

0.3486 and initial value Z1(0) = 1. Z2 is taken to be a mean-reverting jump process,
with generator

L2
Zf(x) = −xf ′(x) +

∫ ∞

0

[f(x+ y)− f(x)]ν(dy)

with an exponential jump measure

ν(dy) = cde−cydy

and with parameters d = 1/3, c = 1/3 and initial value Z2(0) = 1.

1. Model A: Under P we take identical independent Markov chains Y (j)
t with

transition generator LA := LY . Under Q, the dynamics follows (9) with

M =

 .0365 0
0.2 0.2
1.0 1.0
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Thus the interest rate process rt is CIR, with parameters selected to yield
typical values for observed bond prices. The intensity process λt is a mixture
of CIR and the Z2 process and is positively correlated with rt. Its parameters
lead to a long term average “credit risk premium” value of 2. We also include
a dynamic (log) recovery process lt in the span of Z1 and Z2.

2. Model B is constructed to have identical marginal default distributions to
Model A, but with higher default correlation. Thus, we follow method of
Section 7.3 with the Lévy time change ηβt , β = 1, and LB := Ψ−1(LA), and
otherwise identical parameters. Note that in this case β̄ is very small (because
some off-diagonals of LY are close to zero) and β > β̄. Thus the model is not
strictly a Markov chain model (it generates small nonpositive “probabilities”),
but we find that the resulting formulas nonetheless produce plausible values
except for very short time intervals.

We computed the credit spread curves based on defaultable bonds, for each rat-
ing class, computed with recovery of treasury using the formula (24). The results
are of course the same for both models, and are summarized in Figure 1. This graph
illustrates that the AMC model is capable of reproducing the general features ob-
served in real market data, such as hump-backed, decreasing and increasing curves
for firms of (respectively) intermediate, low and high credit quality. Figures 2 and
3 illustrate the dependence of these curves on the initial values Z1(0), Z2(0). Simi-
lar graphs showing dependence on all other underlying parameter values are easily
generated, but space doesn’t permit their inclusion here.

Default correlation is a very important issue in credit risk, so we next considered
the joint properties of two firms. Figures 4 and 5 show the joint default distributions
for two firms, one B and one BBB, under Models A and B. Observe their similari-
ties and differences, in particular the existence of simultaneous jumps in Model B.
Figures 6 and 7 give the default correlation function ρ12(t) between a BBB firm and
all rating classes in both models. One can see from these results that as predicted,
Model A shows relatively low correlation, while Model B shows generally higher
correlation.

Taken together, these plots illustrate a range of features observed in real market
data, and show that the modelling framework has the right qualitative features to be
useful for credit risk.

9 Calibration Issues
A fully specified model in the AMC framework amounts to the specification of
the parametric form of the Z Markov state process, the recovery mechanism R, the
number S and and sizeK+1 of commuting Markov chain generators. As a guide to
how to actually implement the AMC framework, we now consider the steps needed
to calibrate a multifirm model with S = 1,K = 7, andN = 3 market factors, where
we adopt the RMV bond valuation formula (27) with constant recovery fractions.
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The aim is to capture the average pricing of the entire bond market for firms of
all ratings, as driven by the Markov state process Zt. In this context it is natural
to assume exchangeability of firms (Assumption 5), with the understanding that
once the model is calibrated, the credit yield curve fitting technique described in
the previous section can be used to capture the exact yield curves of each individual
firm on one fixed date.

It is convenient to suppose that pure interest rate theory nests as a 2-factor
submodel inside the full AMC model, leading to a splitting of parameters Θ =
(ΘIR,ΘCR) and the process components Zt = (Zt,IR, Zt,CR). Then, as argued
by Duffee (1999), Dai and Singleton (2003), and Bakshi et al (2006), an effective
strategy begins by applying a Kalman Filter/Maximization Likelihood estimation
(KFML estimation) procedure (see [Harvey (2001)]) to calibrate the interest rate
submodel to a panel of observed default-free yield curves on dates t = 1, 2, . . . , T .
Suppose that this relatively standard exercise has been completed, giving estimates
of the pure interest rate parameters Θ̂IR jointly with the time series of the unob-
served interest rate components {Ẑt,IR}t=1,...,T . We now investigate how in princi-
ple to do a KFML estimation for the one-dimensional time series Zt,CR and the re-
maining parameters ΘCR (amongst which we include the recovery adjusted Markov
chain generator L̃), based on a panel of corporate bond data consisting of a time se-
ries of N observed zero coupon bond yields Yt = {Y 1

t , . . . , Y
N
t }, on each of the

dates t = 1, . . . , T , each yield referring to a bond with known credit rating and
maturity.

KFML relies on formulas for certain basic quantities, all of which are explicitly
computable in the AMC model: the Markov probability density ρ(Zt|Zt−1,Θ), the
measurement equation

Yt = F(Zt,Θ) + ηt, (41)

where F is the bond yield formula (27) and ηt are independent zero mean Gaussians,
and the prior density ρ(Θ). It proceeds by iteration of two steps until adequate
convergence is achieved.

1. Kalman filter step: from a single sample Ŷ of Y1, . . . ,YT , and an estimate
Θ̂ of Θ, it produces for t = 1, 2, . . . , T a maximum likelihood estimate Ẑt =
Ẑt(Y1, . . . ,Yt) conditional on Y1, . . . ,Yt by computing

Ẑt := argmaxZ exp [−1

2
σ−2
η |Ŷt − F(Z, Θ̂)|2]ρ(Z|Ẑt−1, Θ̂) (42)

sequentially starting with an initial value Ẑ0.

2. Maximization likelihood step: from a single sample Ŷ of Y1, . . . ,YT , and
estimates Ẑ1, . . . , ẐT , it produces a maximum likelihood estimate

Θ̂ = argmaxΘσ
−NT
η exp [−1

2
σ−2
η |Ŷt − F(Z,Θ)|2]ρ(Z|Ẑt−1,Θ)ρ(Θ) (43)
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Practical implementation of this method meets a number of difficulties whose
resolution goes beyond the scope of the present paper. We mention here how to
avoid two major obstacles. First, to bypass difficulties associated with nonlinear-
ities in the AMC model, the KF step can be reduced to linear algebra in a Gaus-
sian approximation obtained by matching first and second moments, Zt|Ẑt−1 ∼
N(µt(Ẑt−1), vart(Ẑt−1)), and making linear approximations of the function F about
µt(Ẑt−1). However, care must be taken to verify the accuracy of the linearized filter.
Second, we note that the complexity of the ML step, a high dimensional nonlinear
optimization, can be reduced by a careful specification of the prior density ρ(Θ).
In particular, bond prices are strongly sensitive to default probabilities but not mi-
gration probabilities, so it follows that an effective, parsimonious calibration of the
Markov chain generator L̃ can arise if we take a prior density where L̃ − L̃hist is
diagonal, mean zero, and Gaussian, and L̃hist is estimated from historical transition
frequencies and losses given default.

10 Conclusion
This article has introduced a flexible yet computationally efficient multifirm model
of credit risk. In the basic version, the variations in credit quality across firms
are determined by the credit ratings alone. Each firm undergoes a credit migration
process which is correlated with market conditions only through the stochastic time
change τt. The speed of the single time change process provides a measure of the
credit environment experienced by firms at each time: when the speed is high, firms
migrate quickly and hence default quickly, and the opposite when the speed is low.

The dynamics built into the basic model reflects in a plausible way the true
dynamics of the market. In focussing on dynamics, our model contrasts with static
copula methods for credit risk, which are the current industrial standard models for
multifirm credit products. A detailed comparison of the relative advantages of the
two frameworks is needed. The simple model we present here produces a wide
range of possible behavior, and the graphs we show pass visual inspection to be
plausible representation of the real market.

We also explored a number of extensions which will be necessary in practice to
fit the complexities of real credit markets. All versions we propose share a com-
mon structure, and lead to extremely efficient algorithms for pricing standard credit
products.

For basket credit products written on a large number of names, such as CDOs
and basket CDSs, it is natural to distinguish firms only by ratings class, a simpli-
fication which makes an AMC description acceptable. This case is investigated in
a companion paper [Hurd and Kuznetsov (2006)] where it is found that the compu-
tational complexity for CDOs and certain basket credit derivatives can be reduced
enormously, and are computable almost as quickly as basic one firm computations.

In summary, we have introduced a versatile family of credit risk models capable
in principle of reproducing most of the important features of real markets. The
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framework appears to be deserving of future development.
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Appendix: Explicit computations in the positive affine
setting

We consider here the setting of positive affine processes discussed in Section 2, in
the special case of N1 = N2 = 1. The extension to larger values of N1, N2 follows
in straightforward fashion by independence.

Proposition 10. In this setting, the function GQ defined by (10) is given explicitly
by

GCIR(t, z
(1)
0 ;u(1), v(1))GMR(t, z

(2)
0 ;u(2), v(2)) (A.1)

where

1. GCIR has the exponential affine form

GCIR(t, z;u, v) = e−φ
CIR(t,u,v)−zψCIR(t,u,v), (A.2)

where the functions φCIR and ψCIR are explicit:ψCIR(t, u, v) = −ψ2 +
(
1 + c

γ
(v + ψ1) (eγt − 1)

)−1

(v + ψ2),

φCIR(t, u, v) = −aψ1t+ a
c
log

(
1 + c

γ
(v + ψ1) (eγt − 1)

) (A.3)

with constants ψ1, ψ2 and γ given by
γ =

√
b2 + 4uc

ψ1 = b+γ
2c

ψ2 = b−γ
2c

(A.4)

2. GMR has the exponential affine form

GMR(t, z;u, v) = e−φ
MR(t,u,v)−zψMR(t,u,v), (A.5)

where the functions φMR and ψMR are explicit:{
ψMR(t, u, v) =

(
v − u

b

)
e−bt + u

b

φMR(t, u, v) = dt− cd
cb+u

log
(

(cb+u)ebt−u+vb
cb+vb

)
,

(A.6)

Proof. These results are derived from the Feynman-Kac formula which states that
when Zt is a continuous time Markov process with generator L then

G(t, z) = E0,z[e
−

R t
0 uZsdsF (Zt)] (A.7)

is characterized as the unique solution of the equation{
−[∂tf ](t, z) + [Lf ](t, z)− uzf(t, z) = 0 t > 0

f(0, z) = F (z)
(A.8)
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The generator for the CIR process is

[LCIRf ](z) = (a− bz)f ′(z) + czf ′′(z),

and one can verify by inspection that the solution G(t, z) with G(0, z) = e−vz is
given by G(t, z) = e−φ

CIR(t,u,v)−zψCIR(t,u,v) with φCIR, ψCIR given by (A.3). The
result now follows by taking t = 0.

Similarly, the generator of the MR process is

LMRf(z) = −bzf ′(z) + cd

∞∫
0

(f(z + y)− f(z))e−cydy.

Plugging in the affine form for GMR leads to the following system of ordinary
integral-differential equations

dψ
dt

= −bψ + u, ψ(0, u, v) = v

dφ
dt

= dψ
c+ψ

, φ(0, u, v) = 0.

(A.9)

which can be solved explicitly to yield (A.6). ut

Finally we derive an explicit formula for the expectations appearing in Lemmas
6 and 9.

Proposition 11. If Assumptions 1-4 hold and τt =
t∫

0

u · Zsds then

E0,Z0

[
e−ατs−βτt

]
= e−φ(t−s,βu,0)G(s, x;α+ β, ψ(t− s, βu, 0)) (A.10)

when s ≤ t (the symmetric formula holds when t ≤ s).

Proof. We can rewrite the expression as an iterated expectation

E0,Z0

[
e−(α+β)τsEs

[
e−β(τt−τs)

]]
. (A.11)

and compute the inner expectation to obtain

E0,Z0

[
e−(α+β)τse−φ(t−s,βu,0)−ψ(t−s,βu,0)·Zs

]
.

The final expectation is done using the definition (10), leading to the final result. ut
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Figure 1: The credit spreads for all rating classes in Models A (and also Model B).
These are computed with the “Recovery of treasury” mechanism.
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Figure 2: The one year credit spreads for all ratings, as a function of the initial value
Z1

0 , computed in Model A.
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Figure 3: The one year credit spreads for all ratings, as a function of the initial value
Z2

0 , computed in Model A.

28



Figure 4: The joint default distribution for a B and a BBB rated firm in Model A.
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Figure 5: The joint default distribution for a B and a BBB rated firm in Model B.
Note the ridge along the diagonal represents the singular support for simultaneous
defaults.
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Figure 6: The default correlation as a function of time for a BBB firm versus firms
of all ratings, in model A.
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Figure 7: The default correlation as a function of time for a BBB firm versus firms
of all ratings, in model B.
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