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Abstract

We consider a structural credit risk framework introduced in [5] where the log-
leverage ratio of the firm is a Lévy process in the form of a time-changed Brownian
motion (TCBM) where the time-change process has identically distributed indepen-
dent increments. In models of this type, “vanilla” credit derivative pricing formulas
are in closed form in terms of an explicit one-dimensional Fourier transform. Our
primary aim is to investigate whether two very simple specifications of the time
change process, namely the variance gamma (VG) model and the exponential jump
model (EXP), can lead to good fits to CDS data for a representative firm with an
interesting credit history, Ford Motor Co. Statistical inference in this class of intrin-
sically non-Gaussian hidden state models presents some new challenges which are a
second main focus of the paper. We consider several variations of nonlinear filtering
and statistical inference for TCBM models applied to a 4.5 year time series of credit
default swap (CDS) prices on Ford, with the goal of finding a fast, accurate, robust
scheme. The main conclusion is that the two TCBM models significantly outper-
form the classic Black-Cox model. Secondly, we show that a new inference method
called the “linearized measurement scheme” is much faster than a standard numer-
ical integration scheme (up to 100 times faster), and yields equivalent performance.
The statistical methodology proposed in this paper can be effectively implemented
for many other variations of TCBMs and applied to a wide range of firms, and opens
the door to far-ranging explorations of a new class of structural credit risk models.

Key words: Credit risk, structural model, first passage, Lévy process, jump process,
fast Fourier transform, credit default spread, nonlinear filtering, maximum likelihood
estimation.
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1 Introduction

Next to the Merton credit model of 1974 [13], the Black-Cox (BC) model [2] is perhaps
the best known structural credit model. It models the time of a firm’s default as the
first passage time for the firm’s log-leverage process, treated as an arithmetic Brownian
motion, to cross zero. The BC model is conceptually appealing, but its shortcomings,
such as the rigidity of credit spread curves, the counterfactual behaviour of the short end
of the credit spread curve and the difficulty of computing correlated multifirm defaults,
have been amply discussed elsewhere, see e.g. [9]. Indeed remediation of these different
flaws has been the impetus for many of the subsequent developments in credit risk.

One core mathematical difficulty that has hampered widespread implementation of
Black-Cox style first passage models has been the computation of first passage distribu-
tions for a richer class of processes one might want to use in modeling the log-leverage
process. This difficulty was circumvented in [5], enabling us to explore the consequences
of using processes that lead to a variety of desirable features: more realistic credit spreads,
the possibility of strong contagion effects, and “volatility clustering” effects. [5] proposed
a structural credit modeling framework where the log-leverage ratio Xt := log(Vt/K(t)),
where Vt denotes the firm asset value process and K(t) is a deterministic default threshold,
is a time-changed Brownian motion (TCBM). The time of default is the first passage time
of the log-leverage ratio across zero. In that paper, the time change was quite general:
our goal in the present paper is to make a thorough investigation of two simple specifi-
cations in which the time change is of Lévy type that lead to models that incorporate
specific desirable characteristics. We focus here on a single company, Ford Motor Co.,
and show that with careful parameter estimation, TCBM models can do a very good job
of explaining the observed dynamics of credit spreads. TCBMs have been used in other
credit risk models, for example [14], [4], [1] and [12].

One new model we study is an adaptation of the variance gamma (VG) model intro-
duced by [11] in the study of equity derivatives, and remaining very popular since then.
We will see that this infinite activity pure jump Lévy model of the log-leverage ratio
adapts easily to the structural credit context, and that the extra degrees of freedom it
allows over and above the rigid structure of geometric Brownian motion correspond to
desirable features of observed credit spread curves. The other model, the exponential
(EXP) model, is a variation of the Kou-Wang double exponential jump model [8]. Like
the VG model it is a Lévy model, but now with a finite activity exponential Lévy distri-
bution. We find that the EXP model perfoRMSE remarkably similarly to the VG model
when fit to our dataset.

We apply these two prototypical structural credit models to a dataset, divided into 3
successive 18 month periods, that consists of weekly quotes of credit default swap spreads
(CDS) on Ford Motor Company. On each date, seven maturities are quoted: 1, 2, 3,
4, 5, 7, and 10 years. The main advantages of CDS data over more traditional debt
instruments such as coupon bonds are their greater price transparency, greater liquidity,
their standardized structure, and the fact that they are usually quoted for more maturities.

Our paper presents and compares three alternative statistical inference schemes ap-
plied to this time series of credit data. One scheme, the benchmark method, is rather
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slow (with typical run times of one or two hours) while the other two schemes take full
advantage of the fast Fourier transform to speed up the large number of pricing formula
evaluations. Note that in our inference method, the model parameters are taken as con-
stants to be estimated for each 18 month time period: in contrast to “daily calibration”
methods, only the natural dynamical variables, not the parameters, are allowed to be
time varying.

Section 2 of this paper summarizes the financial case history of Ford Motor Co. over
the global credit crisis period, and describes the CDS and Treasury data we used. Section
3 reviews the TCBM credit modeling framework introduced in [5]. There we include
the main formulas for default probability distributions, defaultable bond prices and CDS
spreads. Each such formula is in the form of an explicit Fourier transform representation:
This is important for achieving a fast statistical algorithm. Section 4 gives the detailed
specification of the two TCBM models under study. Section 5 outlines three possible
statistical inference schemes appropriate for this type of model. Section 6 reports the
results achieved when these schemes were implemented for the TCBM and Black-Cox
credit models on the Ford CDS dataset. Some unresolved issues concerning these methods
are discussed in the concluding Section 7.

2 Ford: The Test Dataset

We chose to study the credit history of Ford Motor Co. over the 4.5 year period from
January 2006 to June 2010 and to determine the performance of several new structural
credit models on this dataset. The case history of Ford over this period spanning the
global credit crisis represents the story of a major firm and its near default, and is thus
full of financial interest. Although not reported in this paper, we note that we have also
applied these models to the credit data for several other types of firm over this period,
and achieved similarly robust parameter estimation results. Thus our study of Ford truly
exemplifies the capabilities of our modeling and estimation framework.

We divided the period of interest into three nonoverlapping successive 78 week inter-
vals, one immediately prior to the 2007-2008 credit crisis, another starting at the outset of
the crisis, the third connecting the crisis and the early recovery period. We used Ford CDS
and US Treasury yield data, taking only Wednesday quotes in order to remove weekday
effects.

1. Dataset 1 consisted of Wednesday midquote CDS swap spreads ĈDS
T

m and their
bid-ask spreads wTm on weeks m = 0, 1, . . . ,M − 1 for maturities T ∈ T :=
{1, 2, 3, 4, 5, 7, 10} years for Ford Motor Co., for theM = 78 consecutive Wednesdays
from January 4th, 2006 to June 27, 2007, made available from Bloomberg.

2. Dataset 2 consisted of Wednesday midquote CDS swap spreads ĈDS
T

m and their
bid-ask spreads wTm on weeks m = M, . . . , 2M − 1 for maturities T ∈ T :=
{1, 2, 3, 4, 5, 7, 10} years for Ford Motor Co., for theM = 78 consecutive Wednesdays
from July 11, 2007 to December 31, 2008, made available from Bloomberg.
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3. Dataset 3 consisted of Wednesday midquote CDS swap spreads ĈDS
T

m and their
bid-ask spreads wTm on dates m = 2M, . . . , 3M − 1 for maturities T ∈ T :=
{1, 2, 3, 4, 5, 7, 10} years for Ford Motor Co., for theM = 78 consecutive Wednesdays
from January 7th, 2009 to June 30, 2010, made available from Bloomberg.

4. The US treasury dataset1 consisted of Wednesday yield curves (the “zero curve”)
on dates m = 0, 1, . . . , 3M − 1, for maturities

T ∈ T̃ := {1m, 3m, 6m, 1y, 2y, 3y, 5y, 7y, 10y, 20y, 30y}
for the period January 4th, 2006 to June 30, 2010.

We note that Ford Motor Company experienced a large number of credit rating changes
during this four-and-a-half year period. The recent history of Standard & Poors (S & P)
ratings is as follows: BB+ to BB- on January 5, 2006; BB- to B+ on June 28, 2006; B+
to B on September 19, 2006; B to B- on July 31, 2008; B- to CCC+ on November 20,
2008. The downgrades continued into 2009, with a move from CCC+ to CC on March 4,
2009 and to SD (“structural default”) on April 6, 2009. The latest news was good: on
April 13, 2009, S & P raised Ford’s rating back to CCC, on November 3, 2009 to B-, and
on August 2, 2010 to B+, the highest since the onset of the credit crisis.

In hindsight we see that Ford never actually defaulted, although it came close. At
the climax of its financial distress, Ford’s short term CDS spreads exceeded 100%. In
the following estimation methodology, we consider the non-observation of default as an
additional piece of information about the firm.

3 The TCBM Credit Setup

The time-changed Brownian motion credit framework of [5] starts with a filtered prob-
ability space (Ω,F ,Ft,P), which is assumed to support a Brownian motion W and an
independent increasing process G where the natural filtration Ft contains σ{Gu,Wv : u ≤
t, v ≤ Gt} and satisfies the “usual conditions”. P is taken to be the physical probability
measure.

Assumptions 1. 1. The log-leverage ratio of the firm is a TCBM of the form Xt :=
log(Vt/K(t)) := x + σWGt + βPσ

2Gt with parameters x > 0, σ > 0 and βP . The
time change Gt is characterized by its Laplace exponent ψ(u, t) := − log E[e−uGt ]
which is assumed to be known explicitly and has average speed normalized to 1 by
the condition

lim
t→∞

t−1∂ψ(0, t)/∂u = 1.

2. The time of default of the firm is the first passage time of the second kind for the log-
leverage ratio to hit zero (see the definition that follows). The recovery at default is
modelled by the “recovery of treasury” mechanism2 with constant recovery fraction
R ∈ [0, 1).

1Obtained from US Federal Reserve Bank, http://www.federalreserve.gov/datadownload/
2See [9].
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3. The family of default-free zero-coupon bond price processes {Bt(T ), 0 ≤ t ≤ T <∞}
is free of arbitrage and independent of the processes W and G.

4. There is a probability measure Q, equivalent to P and called the risk-neutral mea-
sure, under which all discounted asset price processes are assumed to be martingales.
Under Q, the distribution of the time change G is unchanged while the Brownian
motion W has constant drift.3 We may write Xt = x + σWQ

Gt
+ βQσ

2Gt for some
constant βQ where WQ

u = Wu + σ(βP − βQ)u is driftless Brownian motion under Q.

We recall the definitions from [5] of first passage times for a TCBM Xt starting at a
point X0 = x ≥ 0 to hit zero.

Definition 2. • The standard definition of first passage time is the F stopping time

t(1) = inf{t|Xt ≤ 0} . (1)

The corresponding stopped TCBM is X
(1)
t = Xt∧t(1) . Note that in general X

(1)

t(1)
≤ 0.

• The first passage time of the second kind is the F stopping time

t(2) = inf{t|Gt ≥ t∗} (2)

where t∗ = inf{t|x+ σWt + βPσ
2t ≤ 0}. The corresponding stopped TCBM is

X
(2)
t = x+ σWGt∧t∗ + βPσ

2(Gt ∧ t∗) (3)

and we note that X
(2)

t(2)
= 0.

The general relation between t(1) and t(2) is studied in detail in [6] where it is shown
how the probability distribution of t(2) can approximate that of t(1). For the remainder of
this paper, however, we consider t(2) to be the definition of the time of default.

The following proposition, proved in [5], is the basis for computing credit derivatives
in the TCBM modeling framework.

Proposition 3. Suppose the firm’s log-leverage ratio Xt is a TCBM with σ > 0 and that
Assumptions 1 hold.

1. For any t > 0, x ≥ 0 the survival probability P (2)(t, x) := Ex[1{t(2)>t}] is given by

e−βx

π

∫ ∞

−∞

u sin(ux)

u2 + β2
e−ψ(σ2(u2+β2)/2,t)du+ (1− e−2βx)1{β>0}, (4)

The density for Xt conditioned on no default is

ρ(y; t, x) :=
d

dy
Ex[1{Xt≤y}|t(2) > t] (5)

= P (2)(t, x)−11{y>0}
eβ(y−x)

2π

∫
R

[
eiu(y−x) − e−iu(y+x)

]
e−ψ(σ2(u2+β2)/2,t)du

3This assumption can be justified by a particular version of the Girsanov theorem. A more general
assumption would be to allow the distribution of G to be different under Q, but to avoid this added
complexity we do not consider this possibility further here.
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The characteristic function for Xt conditioned on no default is

Ex[e
ikXt|t(2) > t] = P (2)(t, x)−1Ex[e

ikXt · 1{t(2)>t}] (6)

= P (2)(t, x)−1 e
−βx

π

∫
R

u sin(ux)

(β + ik)2 + u2
e−ψ(σ2(u2+β2)/2,t)du

+
(
eikx − e−ikx−2βx

)
e−ψ(σ2(k2−2iβk)/2,t)

(
1

2
1{β=0} + 1{β>0}

)
2. The time 0 price B̄RT (T ) of a defaultable zero coupon bond with maturity T and

recovery of treasury with a fixed fraction R is

B̄RT (T ) = B(T )[P (2)(T, x)) +R(1− P (2)(T, x))] (7)

3. The fair swap rate for a CDS contract with maturity T = N∆t, with premiums paid
in arrears on dates tk = k∆t, k = 1, . . . , N , and the default payment of (1−R) paid
at the end of the period when default occurs, is given by

CDS(x, T ) =
(1−R)

[∑N−1
k=1 [1− P (2)(tk, x)][B(tk)−B(tk+1)] +B(T )[1− P (2)(T, x)]

]
∆t

∑N
k=1 P

(2)(tk, x)B(tk)
(8)

Remarks 4. • We shall be using the above formulas in both probability measures P
and Q, as appropriate.

• We observe in (4) that the survival and default probabilities are invariant under the
following joint rescaling of parameters

(x, σ, β) → (λx, λσ, λ−1β), for any λ > 0. (9)

It follows that all pure credit derivative prices are invariant under this rescaling.

4 Two TCBM Credit Models

The two credit models we introduce here generalize the standard Black-Cox model that
takes Xt = X0 +σWt+βPσ

2t. They are chosen to illustrate the flexibility inherent in our
modeling approach. Many other specifications of the time change are certainly possible
and remain to be studied in more detail. The following models are specified under the
measure P: by Assumption 1 they have the same form under the risk-neutral measure Q,
but with βP replaced by βQ.

4.1 The Variance Gamma Model

The VG credit model with its parameters Θ = (X0, σ, βP , βQ, b, c, R) arises by taking G to
be a gamma process with drift defined by the characteristic triple (b, 0, ν)0 with b ∈ (0, 1)
and Lévy measure ν(z) = ce−z/a/z, a > 0 on (0,∞). The Laplace exponent of Gt is

ψV G(u, t) := − logE[e−uGt ] = t[bu+ c log(1 + au)]. (10)
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and by choosing a = 1−b
c

the average speed of the time change is t−1∂ψV G(0, t)/∂u = 1.
This model and the next both lead to a log-leverage process of Lévy type, that is, a
process with identical independent increments that are infinitely divisible.

4.2 The Exponential Model

The EXP credit model with its parameters Θ = (X0, σ, βP , βQ, b, c, R) arises taking by G
to be a Lévy process with a characteristic triple (b, 0, ν)0 with b ∈ (0, 1) and Lévy measure
ν(z) = ce−z/a/a, a > 0 on (0,∞). The Laplace exponent of Gt is

ψExp(u, t) := − logE[e−uGt ] = t

[
bu+

acu

1 + au

]
.

and by choosing a = 1−b
c

the average speed of the time change is t−1∂ψV G(0, t)/∂u = 1.

5 The Statistical Method

The primary aim of this exercise is to develop a robust, efficient and theoretically sound
statistical method that will determine whether our two TCBM credit models fit market
CDS data on a single firm, in this case Ford Motor Company, better than the original
Black-Cox structural model. The three important challenging aspects of the problem are:
(i) there is a latent (unobserved) process Xt; (ii) the pricing formula is nonlinear in the
state variable; (iii) the transition densities are far from Gaussian. We summarize the
modeling ingredients and dataset and make some important remarks:

• model parameters Θ ∈ D ⊂ Rn, where D is a choice of hyperrectangle in parameter
space. We augment the vector Θ → (Θ, η) to include an additional measurement
error parameter η (which could be a matrix or scalar);

• an unobserved Markov process Xt ∈ R with initial condition X0 = x taken to be
one component of Θ;

• the model formula (8) F k(X,Θ) giving theoretical CDS spreads for different tenors
k;

• a dataset consisting of spreads Y := {Ym} observed on weeks m = 0, . . . ,M − 1
where Ym = {Y T

m}F∈T for a term structure T with 7 tenors, plus their associated
quoted bid/ask spreads wTm. As well, we observed the US Treasury dataset, assumed
to give exact information about the discount factors entering into (8);

• We use a shorthand notation for collections of variables Y≤m := {Y0, . . . , Ym} and
X<m := {X1, . . . , Xm−1} etc.

The primary output of the inference methodology will be maximum likelihood estima-
tors for Θ and the corresponding observed Fisher information matrix:

Θ̂ = argmaxΘ∈D logL(Θ|Y<M), Î := −
[
∂2

Θ logL(Θ̂|Y<M)
]
. (11)
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In addition we will compute filtered estimates X̂<M = (X̂1, . . . , X̂M−1) of the hidden
Markov process Xt. The likelihood function is computed via intermediate conditioning
on the values of the hidden Markov state process:

L(Θ|Y<M) := ρ(Y<M |Θ) =

∫
RM−1

F(Y<M |X<M ,Θ) P(X<M |Θ) dX1 . . . dXM−1 (12)

Here the “full measurement density” of the observations Y conditioned on X,Θ has the
form

F(Y<M |X<M ,Θ) :=
M−1∏
m=0

fm(Ym|Xm,Θ) (13)

where the measurement density fm for a given date will depend on our assumptions on
the distributional nature of the measurement errors. The multiperiod transition density
conditioned on nondefault is

P(X<M |Θ) =
M−1∏
m=1

p(Xm|Xm−1,Θ) (14)

where p(Xm|Xm−1,Θ) is the one week Markov transition density given by (5) with t =
1/52.

We now make some remarks on the nature of the inference problem (11).

Remark 5. This is some variant of nonlinear filtering. Existing nonlinear filtering meth-
ods include the extended Kalman filter, the particle filter, the unscented Kalman filter
and the Markov Chain Monte Carlo method, but each of these seems likely to be either
inaccurate or difficult to implement for our models. 4 The X integration in (12) can be
done as iterated one-dimensional integrals as follows:

L(Θ|Y<M) =

∫ ∞

0

f(YM−1|XM−1,Θ) ρM−1(XM−1, Y<M−1|Θ) dXM−1 (15)

where for m = 0, . . . ,M − 2

ρm+1(Xm+1, Y≤m|Θ) =


∫∞

0
p(Xm+1|Xm,Θ) fm(Ym|Xm,Θ) ρm(Xm, Y<m,Θ) dXm, m > 0

p(X1|X0,Θ)f0(Y0|X0,Θ) m = 0
(16)

Being analytically intractable, each integral must be dealt with numerically, and each
integrand requires evaluation of the model formula (8) for all values of X.

4We have also implemented a nonfiltering method similar to one given in [16] by adopting a hypothesis
that the hidden state variable X can be observed exactly as implied by the 5 year CDS spread (which is
in practice the most liquid tenor). Although such an approach is easy to implement and yields similar
but less accurate results, we elected to treat the CDS data symmetrically with respect to tenor and are
thus lead to filtering methods.
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Remark 6. The time series of filtered estimates of the state variables X1, . . . , XM−1 are
the solutions X̂1, . . . , X̂M−1 of

X̂m = argmaxx∈R+
log

(
fm(Ym|x, Θ̂)ρm(x, Y<m|Θ̂)

)
(17)

Following common practice, we also adopt the filtered estimate for X0 instead of the
maximum likelihood estimate coming from (11):

X̂0 = argmaxx∈R+
log

(
f0(Y0|x, Θ̂)

)
(18)

Remark 7. An essential characteristic of TCBM models is that the transition density
(5) can be far from Gaussian: Fig 1a plots the one-week log-transition density that arises
from the VG model calibrated to Ford on a typical day, and shows the default barrier at
x = 0.

Remark 8. The Fast Fourier transform (FFT) is a natural choice for evaluating the
integral in the model CDS formula (8) for a linear grid of X values, that can then be
used for numerical evaluation of the integrals in (15). But there will be challenges to
control errors uniformly over the range of parameters Θ and X values: The basic FFT
error analysis for this formula is given in the Appendix.

Remark 9. The measurement density F is part of the model specification, and is to some
extent controlled by the modeler. Two possible specifications of fm on a typical day are
plotted as a function of X in Fig 1b.

Remark 10. A quasi-Newton method applied to the optimization problem (11) will
involve a large number of evaluations of the likelihood function L(Θ|Y<M) which may
potentially have multiple local maxima.

Here we outline three alternative inference schemes that will be implemented and
compared in Section 6.

5.1 Standard Measurement (SM) Scheme

The most obvious choice for the measurement densities fm that relate the model to the
observations arises by what we call the “standard measurement hypothesis” that CDS
spreads are observed with a Gaussian measurement error:

fSMm (Ym|Xm,Θ) =
∏
T∈T

[
1√

2πηwTm
exp

(
−(Y T

m − F T (Xm,Θ))2

2η2(wTm)2

)]
(19)

Here we have adopted a parsimonious specification that the residuals Y T
m − F T (Xm,Θ)

are independent across date and tenor, and have standard deviations that are a scalar
parameter η times the observed bid/ask spreads wTm.
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The SM scheme requires numerical evaluation of the integrals (15) form = 1, . . .M−2.
After experimentation with different grid sizes for Simpson’s Rule and different FFT
parameters, it was found that an inference scheme with adequate stability and robustness
requires about n = 1000 Simpson grid points and an FFT grid with about 210 points. So
specified, we used this method as a benchmark against which to compare to two faster
algorithms we describe next.

5.2 Linearized Measurement (LM) Scheme

The computational complexity of the SM scheme led us to consider the following nonlinear
mapping from Y<M ,Θ to random variables Z<M = (Z0, . . . , ZM−1):

ZT
m = GT (Y T

m ,Θ) (20)

where GT is the inverse function of F T (we note that F T , being monotonic in X, has an
inverse). The measurement densities fSMm are then transformed into

f̃SMm (Zm|Θ) := fSMm (F (Zm,Θ)|Θ) J(Zm,Θ) (21)

where J is the Jacobian determinant:

J(Zm,Θ) =
∏
T∈T

[
∂GT

∂Y

∣∣∣
Y=FT (ZT

m)

]
(22)

The transformed measurements ZT
m for different T can be all interpreted as direct mea-

surements of Xm, that is as “market implied log-leverage”, and it is very natural to
consider the residuals ZT

m − Xm rather than F T (ZT
m) − F T (Xm). The “linearized mea-

surement hypothesis” that ZT
m −Xm are independent Gaussians is thus in some sense as

natural as the standard measurement hypothesis, and leads to the following alternative
measurement densities:

f̃LMm (Zm|Xm,Θ) =
∏
T∈T

[
1√

2πηw̃Tm
exp

(
−(ZT

m −Xm)2

2η2(w̃Tm)2

)]
fLMm (Ym|Xm,Θ) =

∏
T∈T

[
1√

2πηwTm
exp

(
−(GT (Y T

m ,Θ)−Xm)2

2η2(w̃Tm)2

)]
(23)

Here the standard deviations of the new residuals are naturally ηw̃Tm where w̃Tm = ∂GT

∂Y T
m
wTm

and the inverse Jacobian is J−1 =
∏

T∈T (w̃Tm/w
T
m).

Note that the linearized measurement scheme is applicable whenever the measurement
equation is monotonic in the latent state variable: thus it can be applied in some other
important problems in finance, most notably, filtering in stochastic volatility models. The
main advantage of this type of scheme is that fLMm is a Gaussian in X with computable
moments, whereas fSMm is a complicated function. In the next section we capitalize on
the explicit Gaussian form of the measurement density fLMm to implement an effective
approximation scheme for the integrals (16). The idea is to inductively approximate the
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intermediate density ρm by a truncated Gaussian density that vanishes for x < 0, and to
combine this with exact moment formulas for p to compute the first and second moments
of the density ρm+1. Then moment matching can be used to determine the approximation
for the next density ρm+1.

5.3 Linear Kalman Filter (KF) Scheme

Having accepted the linearized measurement hypothesis, it becomes possible to reduce the
inference problem to a variation of the linear Kalman filter, by additionally approximating
the transition densities p(Xm|Xm−1,Θ) as Gaussian distributions. The resulting algorithm
can be expressed as a typical Kalman filter that recursively computes the filtered estimates
of Xm and its variance [7]. However, Fig 1a shows that p(Xm|Xm−1,Θ) is typically far
from Gaussian in our models, so we need to investigate whether or not this inconsistency
turns out to make a big impact on the overall accuracy of the method.

Figure 1: The left hand plot shows the true one-week VG log-transition density log p
computed for 01/01/2006, a typical day in the time series. The right hand plot shows
the standard measurement log-density log fSMm and linearized measurement log-density
log fLMm on the same date, as functions of the Markov state X. Model parameters are
taken from Table 1.
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6 Numerical Implementations

We now summarize the results of the SM, LM and KF inference schemes, each applied to
the three time periods of the dataset. Before starting, we reduce the complexity of our
models with negligible loss in accuracy by removing two “nuisance parameters”. First,
in view of the rescaling invariance (9), and the interpretation of σ as the volatility of X,
without loss of generality we set σ = 0.3 in all models. Second, since estimating βP is
equivalent to estimating the mean of Xt in the physical measure, and well known to be
a poorly determined statistic, we arbitrarily set βP = −0.5. So specified, the two TCBM
models have five free parameters Θ = (b, c, βQ, R, η) as well as two frozen parameters
σ = 0.3, βP = −0.5. The Black-Cox model with its free parameters Θ = (βQ, R, η) and
frozen parameters σ = 0.3, βP = −0.5 then nests as the c = 0 limit inside both the VG
and EXP models, for all b. We determined the maximal likelihood estimators by the
quasi-Newton optimization algorithm fmincon implemented in MATLAB, constrained to
the following domain D:

b ∈ [0.2, 1]; c ∈ [0.1, 10]; βQ ∈ [−3,−0.1]; R ∈ [0, 1]; η ∈ [0.5, 10] .

Note the error analysis outlined in the Appendix shows that we need to bound b away
from 0 if we are to use the FFT to compute (8) sufficiently accurately. Early experimen-
tation showed that the likelihood function is slowly varying in b, and that the b estimator
usually drifted slowly to the boundary value b = 0.2 with little increase in likelihood,
demonstrating that this parameter is also in some sense a “nuisance” parameter. On
the given domain D we were able to choose the FFT truncation parameter ū = 300 and
depending on Θ, we allowed the size of the FFT lattice to vary from 28 to 210. With these
choices, we were able to keep the combined truncation-discretization error within 10−10.

Table 1 summarizes the estimation results for each of the three models, for the three
datasets in 2006-2010, using the LM and SM inference methods. Estimated parameter
values are given with standard errors, as well as summary statistics for the resulting
filtered time series of Xt. We also present the root mean square error (RMSE) defined as
the average error of the CDS spreads quoted in units of the bid/ask spread:

RMSE =

√√√√√ 1

7M

M−1∑
m=0

∑
t∈T

(
F T (X̂m,Θ)− Y T

m

)2

(wTm)2

We do not exhibit the results from the KF scheme because in all cases they were very
similar to LM scheme results.

For each of the three schemes, the fmincon algorithm involved approximately 200 eval-
uations of the function L before settling near a well defined maximum. The total compu-
tation times for the rather slow benchmark SM method were typically several hours for
each dataset on a standard laptop. The total times for both the LM and KF implemen-
tations were similar and much faster, about 2 minutes. While a priori we worried that
the output from the fmincon iteration scheme would be highly dependent on the initial
value of Θ, that is that there might be multiple local maxima of the likelihood function,
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we found the results to be robust over a wide range of initial values. Overall, we see that
the SM and LM inference methods give similar results, verifying that for our dataset it
is reasonable to apply quite brutal approximations to the partial likelihood functions to
facilitate an efficient estimation.

As a check on the consistency of the three inference methods, we tested them on a
simulated dataset with VG parameters taken from Table 1 and found that parameter
values and the filtered state variable Xt were in all cases reliably estimated on longer
datasets (300 weeks gave very accurate estimates) while parameter values estimated over
78 weeks were close to the known values but showed appreciable scatter.

We find that the VG and EXP models give very good, perhaps surprisingly good,
qualitative fit of the observed CDS spreads over the 78 week periods considered. Figure 2
shows the in-sample fit of the three models to the observed market data on three typical
dates in the time series. One can note that the two TCBM models are better able than
the BC model to fit the varying term structure shapes. The finite activity EXP model
shares similarities with the infinite activity VG model, both in behavior and performance.
For these two TCBM models, model parameters are quite similar between dataset 1 and
dataset 3. It is consistent with Ford’s history of credit ratings that dataset 3 has lower,
more volatile log-leverage ratios and lower recovery rate than dataset 1. We can also
see that during the peak of the credit crisis in dataset 2, the estimated parameters show
noticeable signs of stress. The mean time change jump size is up by approximately 50%,
driven mainly by the increased short term default probability. The recovery rate is also
significantly lower for dataset 2. In the very stressed financial environment at that time,
a firm’s value would be greatly discounted and its capacity to liquidate assets would be
limited. On the other hand the risk neutral drift βQ is significantly higher, reflecting a
certain positive expectation on the firm. At the peak of the credit crisis, Ford’s annualized
credit spreads exceeded 100%. The log-leverage ratios are much suppressed to a level of
about 65% of that of dataset 1.

By definition, RMSE measures the deviation of the observed CDS spreads from the
model CDS spreads while η measures the deviation of the “observed” log-leverage ratios X̃t

from the “true” log-leverage ratios Xt. We can see that RMSE and η are very close in all
cases, which implies that the objective functions based on the standard CDS measurement
density (19) and the linearized measurement density (23) are fundamentally very similar.

In terms of RMSE and η, both TCBM models performed consistently better than
the Black-Cox model. The TCBM fit is typically within two times the bid/ask spread
across 3 datasets, while the errors of the Black-Cox model are about 30% higher on
average. Figure 3 displays histograms of (wTm)−1

(
F T (Xm,Θ)− Y T

m

)
, the signed error in

units of the bid/ask spread, for the three models, for the short and long end of the term
structure. For both TCBM models we can see that most errors are bounded by ±2 and
are without obvious bias. By comparison, the errors of the Black-Cox model are highly
biased downward in both the short and long terms. For 1-year spreads the majority of
errors stay near -2 and for 10-year spreads there is a concentration of errors near -4.
Surprisingly, all the three models perform better and more closely to one another during
the crisis period of dataset 2. For the TCBM models, the great majority of errors are near
0 and without obvious bias. The Black-Cox model does not have obvious bias either, but
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there are more errors beyond the ±2 range. The performance of all three models is better
for intermediate tenors between 1 and 10 years, with the mid-range 5-year and 7-year
tenors having the best fit. The histograms for these tenors (not shown) do still indicate
that the TCBM models perform better than the Black-Cox model, in regard to both bias
and absolute error.

The estimation results using the Kalman filter method indicate that for our dataset,
the transition density can be safely approximated by a Gaussian density. The Kalman
filter is convenient for calculating the weekly likelihood function, which is needed in the
Vuong test [17], a test to compare the relative performance of nested models. If X̄m and
P̄m denote the ex-ante forecast and variance of time m values of the measurement series
obtained from Kalman filtering, and X̂m denotes the filtered estimate, then the weekly
log-likelihood function can be written as

lm = −1

2
log |P̄m| −

1

2
(X̂m − X̄m)>(P̄m)−1(X̂m − X̄m)− fLMm (Ym|X̂m,Θ). (24)

The log-likelihood ratio between two models i and j is

λij =
M−1∑
m=1

(lim − ljm)

and the Vuong test statistic is

Tij =
λij

ŝij
√
M − 1

,

where ŝ2
ij is the sample variance of {lim− ljm}m=1,...,M−1. Vuong proved that Tij is asymp-

totic to a standard normal under the null hypothesis that models i and j are equivalent in
terms of likelihood function. Due to the serial correlation within the log-likelihood func-
tions, Newey and West’s estimator [15] is used for ŝ. The Vuong test results are shown in
Table 2 and confirm that the Black-Cox model is consistently outperformed by the two
TCBM models. Moreover, by this test, the EXP model shows an appreciable improvement
over the VG model that could not be easily observed in the previous comparison. Similar
conclusions about the relative performance of the three models are also supported by the
Akaike Information Criterion (AIC), also given in Table 2, that compares the values of
the likelihood function achieved.

It is interesting to compare the time series of Ford stock prices Sm to the filtered
log-leverage ratios X̂m. Fig 4 shows there is a strong correlation between these two quan-
tities, indicating that the equity market and credit market are strongly interconnected.
The empirical observations supporting this connection as well as financial modeling that
interprets this connection can be found in [12], [3] and their references.

7 Conclusions

In this paper, we demonstrated that the Black-Cox first passage model can be efficiently
extended to a very broad class of firm value processes that includes exponential Lévy
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processes. We tested the fit of two realizations of Lévy subordinated Brownian motion
models to observed CDS spreads for Ford Motor Co., a representative firm with an in-
teresting credit history in recent years. We found that the two Lévy process models can
be implemented easily, and give similarly good performance in spite of the very different
characteristics of their Lévy measures. Both models outperform the Black-Cox model in
fitting the time series of CDS term structures over all three 78 week periods, as measured
by both the Vuong statistic and the Akaike Information Criterion. However, they still
have limitations in fitting all tenors of the CDS term structure, suggesting that further
study is needed into models with more flexible time changes. In this preliminary study
we focused on just one firm, Ford, and an important next step should be an extended
survey of a wide variety of firms from different countries and different economic sectors.

We tested three methods for filtered statistical inference, and found that both the
linearized measurement (LM) scheme and a Kalman Filter (KF) scheme gave similar
results whereas the parameters determined by the standard measurement scheme while
different, were similar in accuracy. By their strategic use of the fast Fourier transform,
both the LM and KF approximation methods can be made rather efficient: a complete
parameter estimation and filtering for a time series of term structures for 78 weeks can
be computed on a laptop in about two minutes using these schemes, compared to over
two hours for our realization of the Standard Measurement (SM) scheme. One should
note that the LM and KF schemes can be implemented for filtering problems in finance
whenever the measurement equation is monotonic in the latent variable, for example,
stochastic volatility models.

Finally, we observe a strong correlation between Ford’s stock price and the filtered
values of its unobserved log-leverage ratios. This final observation provides the motivation
for our future research that will extend these TCBM credit models to TCBM models for
the joint dynamics of credit and equity.

Appendix: Numerical Integration

Statistical inference in these models requires a large number of evaluations of the integral
formula (4) that must be done carefully to avoid dangerous errors and excessive costs. To
this end, we approximate the integral by a discrete Fourier transform over the lattice

Γ = {u(k) = −ū+ kδ|k = 0, 1, . . . , N − 1}

for appropriate choices of N, δ, ū := Nδ/2. It is convenient to take N to be a power of 2
and lattice spacing δ such that truncation of the u-integrals to [−ū, ū] and discretization
leads to an acceptable error. If we choose initial values x0 to lie on the reciprocal lattice
with spacing δ∗ = 2π/Nδ = π/ū

Γ∗ = {x(`) = `δ∗|` = 0, 1, . . . , N − 1}
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then the approximation is implementable as a fast Fourier transform (FFT):

P (2)(t, x(`)) ∼ −iδe−βx(`)

π

N−1∑
k=0

u(k)eiu(k)x(`)

u(k)2 + β2
exp[−ψ(σ2(u(k)2 + β2)/2, t)] (25)

= −i(−1)nδe−βx(`)
N−1∑
k=0

u(k)e2πik`/N

u(k)2 + β2
exp[−ψ(σ2(u(k)2 + β2)/2, t)] (26)

Note that we have used the fact that e−iNδx(`)/2 = (−1)n for all ` ∈ Z.
The selection of suitable values for N and δ in the above FFT approximation of (8) is

determined via general error bounds proved in [10]. In rough terms, the pure truncation
error, defined by taking δ → 0, N → ∞ keeping ū = Nδ/2 fixed, can be made small
if the integrand of (4) is small and decaying outside the square [−ū, ū]. Similarly, the
pure discretization error, defined by taking ū→∞, N →∞ while keeping δ fixed, can be
made small if e−|β|x̄P (2)(x̄, t), or more simply e−|β|x̄, is small, where x̄ := π/δ. One expects
that the combined truncation and discretization error will be small if ū and δ = π/x̄ are
each chosen as above. These error bounds for the FFT are more powerful than bounds
one finds for generic integration by the trapezoid rule, and constitute one big advantage
of the FFT. A second important advantage to the FFT is its O(N logN) computational
efficiency that yields P (2) on a lattice of x values with spacing δ∗ = 2π/Nδ = π/ū: this
aspect will be very useful in estimation. These two advantages are offset by the problem
that the FFT computes values for x only on a grid.

We now discuss choices for N and δ in our two TCBM models. For β < 0, the survival
function of the VG model is

P (2)(0, t, x, β) =
e−βx

π

∫ ∞

−∞
exp[−tbσ2(u2 + β2)/2]

(
1 +

aσ2(u2 + β2)

2

)−ct
u sinux

u2 + β2
du

while for the EXP model

P (2)(0, t, x, β) =
e−βx

π

∫ ∞

−∞
exp

[
−t

(
bσ2(u2 + β2)/2 +

acσ2(u2 + β2)

2 + aσ2(u2 + β2)

)]
u sinux

u2 + β2
du

In both models, the truncation error has an upper bound ε when ū > C|Φ−1(εC ′)|, where
Φ−1 is the inverse normal CDF and C,C ′ are constants depending on t. On the other
hand, provided β < 0, the discretization error will be small (of order ε or smaller) if
N > ū

2π|β| log (ε−1(1 + exp(−2βx))). Errors for (6) can be controlled similarly.
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04/01/06-27/06/07 11/07/07-31/12/08 07/01/09-30/06/10

VG Model
LM scheme SM scheme LM scheme SM scheme LM scheme SM scheme

σ̂ 0.3 0.3 0.3 0.3 0.3 0.3

b̂ 0.2 0.2 0.2 0.2 0.2 0.2
ĉ 1.039(0.060) 1.093(0.063) 0.451(0.034) 0.519(0.040) 1.08(0.11) 1.21(0.14)

β̂Q -1.50(0.12) -1.34(0.11) -0.879(0.061) -0.888(0.063) -1.368(0.066) -1.303(0.053)

R̂ 0.626(0.026) 0.590(0.029) 0.450(0.029) 0.457(0.029) 0.611(0.018) 0.576(0.016)
η̂ 1.53 1.54 0.897 0.902 1.80 1.93
x̂av 0.693 0.699 0.457 0.462 0.480 0.503
x̂std 0.200 0.181 0.239 0.234 0.267 0.264

RMSE 1.43 1.43 0.84 0.84 1.79 1.80

EXP Model
LM scheme SM scheme LM scheme SM scheme LM scheme SM scheme

σ̂ 0.3 0.3 0.3 0.3 0.3 0.3

b̂ 0.2 0.229(0.038) 0.2 0.240(0.038) 0.2 0.2
ĉ 2.23(0.12) 2.153(0.11) 1.17(0.07) 1.150(0.06) 2.33(0.20) 2.526(0.26)

β̂Q -1.44(0.12) -1.29(0.10) -0.780(0.060) -0.841(0.073) -1.286(0.027) -1.207(0.059)

R̂ 0.609(0.028) 0.573(0.030) 0.395(0.033) 0.433(0.038) 0.588(0.022) 0.548(0.019)
η̂ 1.503 1.492 0.882 0.835 1.755 1.902
x̂av 0.702 0.706 0.479 0.475 0.486 0.506
x̂std 0.199 0.180 0.242 0.234 0.266 0.260

RMSE 1.41 1.41 0.821 0.833 1.76 1.78

BC Model
LM scheme SM scheme LM scheme SM scheme LM scheme SM scheme

σ̂ 0.3 0.3 0.3 0.3 0.3 0.3

β̂Q -2.02(0.10) -2.02(0.10) -1.793(0.067) -1.789(0.064) -1.78(0.12) -1.822(0.082)

R̂ 0.773(0.011) 0.773(0.011) 0.757(0.009) 0.759(0.009) 0.760(0.013) 0.713(0.011)
η̂ 2.38 2.39 1.29 1.24 2.18 2.35
x̂av 0.624 0.642 0.406 0.421 0.422 0.493
x̂std 0.187 0.189 0.214 0.221 0.237 0.256

RMSE 2.19 2.13 1.19 1.17 2.14 2.20

Table 1: Parameter estimates and filtered X statistics for the VG, EXP and Black-
Cox models, using two different filtering methods. The numbers in brackets are standard
errors. The estimation uses weekly (Wednesday) CDS data from January 4th 2006 to June
30 2010. x̂std is the square root of the annualized quadratic variation of X̂t. Columns 2,
4, 6 refer to the Linearized Measurement scheme evaluated using the truncated Gaussian
approximation; columns 3, 5, 7 refer to the Standard Measurement scheme. Results for
the Kalman Filter scheme are very similar to those from the LM scheme and are not
recorded here.

19



VG EXP B-C

Vuong 0 -2.21/-1.41/-2.33 5.42/5.10/2.03
VG AIC, LM 0 16/18/12 -424/-348/-184

AIC, SM 0 12/6/8 -394/-286/-188

Vuong 2.21/1.41/2.33 0 5.46/5.22/2.19
EXP AIC, LM -16/-18/-12 0 -440/-366/-196

AIC, SM -12/-6/-8 0 -406/-292/-196

Vuong -5.42/-5.10/-2.03 -5.46/-5.22/-2.19 0
B-C AIC, LM 424/348/184 440/366/196 0

AIC, SM 394/286/188 406/292/196 0

Table 2: Results of the Vuong and AIC tests for the three models, for dataset 1, dataset
2 and dataset 3. Positive values for the Vuong statistic and negative values for the AIC
statistic indicate that the row model is more accurate than the column model.
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Figure 2: The in-sample fit of the two TCBM models and Black-Cox model to the observed
Ford CDS term structure for November 22, 2006 (top), December 3, 2008 (middle) and
February 24, 2010 (bottom). The error bars are centered at the mid-quote and indicate
the size of the bid-ask spread.
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Figure 3: Histograms of the relative errors, in units of bid-ask spread, of the in-sample fit
for the VG model (blue bars), EXP model (green bars) and Black-Cox model (red bars)
for dataset 1 (top), dataset 2 (middle) and dataset 3 (bottom). The tenor on the left is
1-year and on the right, 10-year.
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Figure 4: Filtered values of the unobserved log-leverage ratios Xt versus stock price for
Ford for dataset 1(top), 2 (middle) and 3 (bottom).
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